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Abstract

The recent merger waives in airline markets have received attention by researchers and the general
public alike. Most academic studies have analysed the problem using demand/supply or entry
models. These contributions assume that airlines’ route networks are exogenous, or that airlines’
entry decisions are i.i.d. across routes. Instead, we estimate a two-stage model where airlines choose
their route networks in the first stage and compete in prices in the second stage. The two-stage
framework allows us to account for selection of airlines into interdependent routes. Moreover, it
permits us to make counterfactual exercises which robustly predict changes not only in prices and
markups, but also in how airlines adjust their route networks. We estimate the model using cross-
sectional data on the US airline market and use our results to evaluate a merger between American
Airlines and US Airways. We find that after the merger consumer surplus rises by around 7% and
that remedies imposed to the merging parties by the Department of Justice at Charlotte Airport
were effective in preventing harm to consumers.
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1 Introduction

Competition in airline markets has received a lot of attention in the economic literature, sparked
by the U.S. Airline Deregulation Act of 1978 which lifted federal control on ticket prices, routes,
and market entry, among others. Many contributions analyzing the entry of new airlines,
the appearance of airline hubs, and the competition between airlines have been made since.
However, a common aspect of these contributions is that either they assume airlines’ “route
networks” to be exogenous, or they assume airlines’ entry decisions to be i.i.d. across routes
(also called local manager hypothesis). Such an approach ignores the fact that a service between
two airports allows passengers to reach other destinations. Further, it ignores the fact that a
wise design of route networks with interdependent arms can lead to significant cost savings for
airlines and serve as an anti-competitive tool (Berry, 1990). Therefore, neglecting the formation
of route networks may cause bias in the estimation of demand and marginal cost functions,
produce misleading counterfactual results, and induce wrong policy recommendations. Recent
advances in the field of set identification have made it possible to estimate a stage where airlines
choose their route networks. In fact, revealed preference arguments derived from observed
equilibrium behaviour can be used to bound the parameters of interest. In this paper we
incorporate such a stage into a standard model of demand and supply for the airline sector. In
the first stage, airlines form their route networks and in the second stage, they compete in prices.
The two-stage framework allows us to account for selection of airlines into interdependent
routes. Moreover, it permits us to make counterfactual exercises which robustly predict changes
not only in prices and markups, but also in how airlines adjust their route networks. We
estimate our model using cross-sectional data on the US airline market and use the results to
evaluate a merger between American Airlines and US Airways.

More precisely, we consider a group of airline firms playing a two-stage game. In the first
stage, the firms simultaneously choose which routes (or, equivalently, markets) to serve (i.e,
offer non-stop flights) and pay the associated fixed costs. On one hand, the firms want to
serve multiple routes in order to take advantage of consumers’ heterogeneity and increase their
expected variable profits from the second stage. On the other hand, serving multiple routes
may inflate the firms’ fixed costs. Crucially, we allow the fixed cost of serving a route to
depend on the decision of serving adjacent routes. In fact, when serving adjacent routes, some
airports may become connecting points for one-stop journeys. In those cases, the firms may
need to invest additional resources in order to manage the flows of passengers travelling via the
connecting airports and minimise the risk of congestion. The firms may also need more facilities
and slots at the connecting airports, as well as use larger aircrafts. In the second stage, for
each route chosen in the first stage, the firms sell flights to consumers in a simultaneous pricing
game. Such flights can be non-stop or one-stop depending on the route networks designed by
the firms in the first stage.

We assume that the researcher observes the firms’ route networks and several attributes
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and cost shifters of the products offered. The researcher is interested in exploiting such data
to study identification and inference of the parameters entering the above two-stage game.
We show identification of the second-stage parameters by following the standard approach
for supply and demand models with differentiated products (e.g., Berry and Haile, 2014).
In particular, we rely on moments that are expectations of the demand and marginal cost
shocks interacted with instruments. Developing identification arguments for the first-stage
parameters is more challenging. In fact, the first stage of the game may display multiple
equilibria and the equilibrium selection mechanism adopted by the firms is unobserved by
the researcher. Therefore, without further assumptions, the researcher cannot write down a
well-defined likelihood function for the equilibrium route networks. Further, the researcher
observes only one realisation of the route networks, whose components are interdependent.
Therefore, it is not possible to implement a many-markets partial identification approach à
la Tamer (2003) and Ciliberto and Tamer (2009). We handle these challenges by adopting
a revealed preference perspective and bound the first stage parameters through inequalities
derived from equilibrium implications, as proposed by Pakes, Porter, Ho, and Ishii (2015) and
implemented, e.g., also by Holmes (2011), Ho and Pakes (2014), Eizenberg (2014), Houde,
Newberry, and Seim (2017), Kuehn (2018), and Wollmann (2018). The inequalities obtained
are also computationally appealing because linear in the first-stage parameters.

To estimate the model we use data from the Airline Origin and Destination Service which
consists of a random sample of all the tickets issued in the United States during the second
quarter of 2011. We focus on flights operated between the 85 largest metropolitan statistical
areas in the United States, which are served by United Airlines, Delta Airlines, American
Airlines, US Airways, Southwest Airlines, low and medium cost carriers. We use the estimated
coefficients to simulate the merger between two of the four legacy carriers in our sample,
American Airlines and US Airways. These two firms did in fact merge in 2013. Standard
merger analysis do not take into account network endogeneity, assume that the firms’ route
networks stay fixed, and artificially determine how the product covariates adjust after the
merger, hence possibly incurring into serious misspecification. However, after the approval of
the merger, the merging firms may react with further entry accommodations in order to respond
to competitors’ reactions. Our methodology can handle such effects by allowing the firms to
re-optimise prices and route networks after the merger. There are several findings from the
counterfactual experiment. Most importantly, we find that after the merger consumer surplus
rises by around 7%. We also find that some of the remedies imposed in 2013 by the Department
of Justice to the merging entities (in particular, the maintenance of a hub at the Charlotte
International Airport) were indeed effective in preventing harm to consumers.

This paper aims to bridge a gap between two strands of the literature: the literature on
empirical models of market entry and the literature estimating demand and marginal cost func-
tions. The literature on empirical models of market entry builds on the work by Bresnahan
and Reiss (1990; 1991a; 1991b). Berry (1992) develops a structural model of market entry with
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heterogeneous firms. He finds that an airline’s market presence at an airport is an important
determinant of entry into other routes from that airport. Ciliberto and Tamer (2009) extend
Berry (1992)’s approach by allowing for heterogeneous competitive effects and do not make as-
sumptions on equilibrium selection, which may lead to set identification. They find substantive
heterogeneity in how different airlines affect each other through their entry decisions. Goolsbee
and Syverson (2008) study incumbents’ reactions to a threat of entry using Southwest Airlines’
entry decisions and find that incumbents cut prices significantly when facing the threat of en-
try by Southwest. Fu, Jin, Liu, Oum, and Yan (2019) analyse the point-to-point network of
Southwest Airlines. Based on a Spatial Probit model, they find that network effects arise in the
form of market presence and market substitutability. Aguirregabiria and Ho (2012) investigate
how demand, costs, and strategic factors affect the adoption of hub-and-spoke networks in a
dynamic setting. They find that the sunk cost of entry into a route declines with the number
of connections served from its endpoints. Their results also reveal the existence of an entry
deterrence effect that explains adoption of hub-and-spoke networks. Berry, Carnall, and Spiller
(1996) estimate a discrete-type version of a random coefficient Logit model (Berry, Levinsohn,
and Pakes, 1995, BLP henceforth). Studying the post-deregulation market in the US, they find
that longer routes admit economics of density. Berry and Jia (2010) use a similar methodology
and estimate their model on data from 1999 and 2006. They find evidence that consumers
have become more price sensitive and more averse to choosing connecting flights over time.

An important paper combining both entry and pricing into one empirical model is Ciliberto,
Murry, and Tamer (2018). There are two main differences with respect to our approach.
First, while in their case airlines’ entry decisions are i.i.d. across routes, we adopt a network
perspective and allow airlines’ entry decisions to be interdependent across routes. Second,
while they consider a simultaneous static game, we develop a two-stage (hence, sequential)
game. Other contributions are Li, Mazur, Park, Roberts, Sweeting, and Zhang (2018) and
Yuan (2018).

Our paper also relates to the empirical literature on two-stage models, with demand and
supply models in the second stage and entry, location, or product portfolio choices in the first
stage. For instance, Eizenberg (2014) looks at upstream innovation in the US Home PC market
and endogenises PC configuration choices. Holmes (2011) and Houde et al. (2017) study the
rollout of Walmart stores and Amazon fulfilment centers, respectively. Kuehn (2018) estimates
spillovers from bank branch networks by allowing banks to enter or exit markets and adjust
the number of branches in a given market. Rossetti (2018) examines product variety in the
US Yogurt market. Finally, Wollmann (2018) analyzes what the market outcome on the US
truck market would have been if government had not bailed out GM and Chrysler. All the
cited papers use revealed preference arguments derived from observed equilibrium behaviour
to obtain bounds for the parameters of interest.

Our paper also relates to recent advances in the econometrics of network formation (see
e.g. Chandrasekhar (2015), De Paula (2017), De Paula (2019), Graham (2015) for reviews).
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We have decide to pursue a revealed preference approach rather than applying those methods
in our first stage for two main reasons. First, most of the methodologies developed in the
econometrics of network formation assume that the linking decisions are taken by the nodes. In
our case, this would imply that the linking decisions are taken at the airport level and, hence,
would not help us breaking the local manager hypothesis. Second, those methods typically
involve computationally serious challenges, which become even deeper when combined with
our second stage. Instead, the inequalities that we obtain from equilibrium implications are
computationally tractable to calculate because linear in the first stage parameters.

Lastly, our paper also relates to the recent and growing literature analyzing markups over
the past 30 years (De Loecker and Eeckhout, 2017). This literature has found rising markups
in airline markets. Our method applied to various periods could be used to decompose the
effect of market concentration and higher fixed costs on markups over time.

The rest of the paper is organised as follows. Section 2 presents the model. Sections 3 and
4 discuss identification and estimation, respectively. Section 5 describes the data. Section 6
shows our results. Section 7 illustrates some counterfactual experiments. Section 8 concludes.

Notation Capital letters are used for random variables/vectors/matrices and small case let-
ters for their realisations. Given a random variable X, SuppX denotes its support. Given two
sets, A and R ⊆ A, A\R is the complement of R in A. 02 indicates the 2× 1 vector of zeros.

2 The model

We consider N airline firms playing a two-stage game. In the first stage, the firms simulta-
neously choose which routes to serve (i.e, offer non-stop flights) and pay the associated fixed
costs. On one hand, the firms want to serve multiple routes in order to take advantage of
consumers’ heterogeneity and increase their expected variable profits from the second stage.
On the other hand, serving multiple routes may inflate the firms’ fixed costs. We allow the
fixed cost of serving a route to depend on the decision of serving adjacent routes in order to
capture spillover effects from connecting flights. In the second stage, for each route chosen in
the first stage, the firms sell flights to consumers in a simultaneous pricing game. Such flights
can be non-stop or one-stop depending on the route networks designed by the firms in the first
stage.
More precisely, the two-stage game has the following timeline:

1. The firms are aware of the fixed costs incurred to serve each possible route. Further,
the firms have beliefs about the demand and marginal cost shocks entering the demand
and supply models in the second stage. The firms simultaneously choose which routes
to serve in order to maximise the expected profits from the second stage minus the fixed
costs from the first stage. At the end of the first stage, the firms pay the fixed costs for
each chosen route.
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2. At the beginning of the second stage, the firms observe the realisations of the demand
and marginal cost shocks entering the demand and supply models, for each route chosen
in the first stage. The firms simultaneously set flight prices for each route chosen in the
first stage in order to maximise their total profits from participating in the game.

Sections 2.1 and 2.2 describe the two-stage game formally.

2.1 The first stage of the game

Let N ≡ {1, ..., N} be the set of firms. Let C ≡ {1, ..., C} be the set of cities endowed with
airport facilities where the firms can decide to be present.1 Every pair of cities, h, k ∈ C, defines
a segment, {h, k}. Let R be the set of all segments, with cardinality C(C − 1)/2.

Before the game starts, each firm f selects some cities from C which will act as connection
points for one-stop flights (hereafter, firm f ’s hubs). Then, the firms simultaneously choose
which segments to serve. In what follows, we consider firms’ hubs as exogenously determined
and focus on modelling firms’ choices of segments to serve.

Let Ghk,f be equal to 1 if firm f serves segment {h, k}, i.e. if it offers non-stop service
between cities h, k. Further, if city k is a hub for firm f and Ghk,f = Gkd,f = 1, then firm f

also offers one-stop service between cities h, d via city k. Let Gf be the C × C matrix with
hk-th term equal to Ghk,f . Note that Gf is symmetric with all entries on the main diagonal
equal to zero. Hereafter, we refer to Gf as firm f ’s network. In the first stage of the game,
firms choose G ≡ (Gf ∀f ∈ N ).

We now move to define firms’ objective functions. Every segment {h, k} that firm f could
serve is associated with a fixed cost determined, e.g., by the number of gates that firm f

operates, aircraft financing, scheduling coordination, etc. More precisely, we specify the fixed
cost that firm f incurs when serving segment {h, k} as

FChk,f (Gf , ηf ; γ) ≡ γ1NoHubhk,f + γ2f
∑

d ∈ C \ {h, k}
1{Indirecthkd,f or Indirectdhk,f}+ ηhk,f , (1)

where ηhk,f represents a fixed cost shock, ηf ≡ (ηhk,f ∀{h, k} ∈ R), and the vector of parameters
γ ≡ (γ1, γ2f ∀f ∈ N ) should be identified by the researcher. NoHubhk,f is a dummy variable
equal to one if neither endpoint is a hub for firm f . 1{Indirecthkd,f or Indirectdhk,f} is a dummy
variable equal to one if city k is a hub for firm f and Gkd,f = 1, or if city h is a hub for firm f

and Gdh,f = 1. 1{Indirecthkd,f or Indirectdhk,f} captures the fact that the fixed costs of serving
segment {h, k} could be higher when one-stop service is provided between cities h, d via city
k.2 This is because firm f may need to manage the flows of passengers traveling between cities
h, d via hub city k and, thus, invest additional resources to minimise the risk of congestion.

1To enhance computational tractability, we do not distinguish among different airports in the same city.
2Recall that if Ghk,f = 1 and city k is a hub for firm f , then firm f also offers one-stop service between

cities h, d via city k.
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Firm f may also need more facilities and slots at airport k, as well as use larger aircrafts.
For similar reasons, the fixed costs of serving segment {h, k} could be higher when one-stop
service is provided between cites k, d via hub city h.3 Therefore, γ1 captures the systematic
fixed cost of serving non-hub segments, γ2,f captures the systematic fixed the cost of serving
hub segments. Note that we allow the systematic fixed cost of serving hub segments to vary
across firms.
In turn, the total fixed cost incurred by firm f is

TFCf (Gf , ηf ; γ) ≡
∑

{h,k}∈R
Ghk,f × FChk,f (Gf , ηf ; γ).

The firms observe the realisation of η ≡ (ηf ∀f ∈ N ) at the beginning of the first stage.
Further, they form expectations on the second stage’s profits. To formally define such expec-
tations we need to introduce additional notation. Let Mhk be the total measure of consumers
in segment {h, k} and M ≡ (Mhk ∀{h, k} ∈ R). For any possible g ∈ SuppG chosen by the
firms in the first stage, let Xg and Wg be the matrices of product characteristics and cost-
shifters entering the demand and supply models in the second stage, respectively. Let ξg and
ζg be the vectors of demand and marginal cost shocks entering the demand and supply mod-
els in the second stage, respectively.4 Let X ≡ (Xg ∀g ∈ SuppG), W ≡ (Wg ∀g ∈ SuppG),
ξ ≡ (ξg ∀g ∈ SuppG), and ζ ≡ (ζg ∀g ∈ SuppG). The realisations of X,W,M are observed by
the firms at the beginning of the first stage. The realisations of ξ, ζ are not observed by the
firms at the beginning of the first stage. Let fξ,ζ(·|G,X,W,M, η) denote the density of (ξ, ζ)
conditional on the first stage information set, (G,X,W,M, η). The objective function that firm
f seeks to maximise in the first stage is

E
[
Π2
f (XG,WG,M, ξG, ζG; θ)

∣∣∣∣G,X,W,M, η
]
− TFCf (Gf , ηf ; γ), (2)

where θ is the vector of parameters entering the demand and supply models in the second
stage and Π2

f (XG,WG,M, ξG, ζG; θ) is firm f ’s profit from the second stage. Note that the
expectation in (2), “E”, is computed using fξ,ζ(·|G,X,W,M, η).

2.2 The second stage of the game

As anticipated in Section 2.1, if firm f decides to serve segment {h, k} in the first stage (i.e.,
Ghk,f = 1), then in the second stage firm f offers the following products in segment {h, k}: (i)
a direct flight between cities h, k; (ii) a one-stop flight between cities h, k via each hub city d
if Gdk,f = Gdh,f = 1. Therefore, a product is defined as a flight between two cities, run from
a particular carrier, and featuring certain connections. Note that we consider tickets featuring

3Recall that if Ghk,f = 1 and city h is a hub for firm f , then firm f also offers one-stop service between
cities k, d via city h.

4More details on Xg,Wg, ξg, ζg are in Section 2.2.
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the same firm-itinerary combination but different fares as the same product. In the second
stage, the firms simultaneously set prices for each product in order to maximise their total
profits from participating in the game.

Before describing the second stage in detail, we introduce some useful notation. For sim-
plicity of exposition, we relabel segments using subscript t ∈ T ≡ {1, ..., C(C − 1)/2}. The
terms “segment” and “market” will be used as synonyms. We denote by JG,t ≡ {1, ..., JG,t}
the set of products offered by the firms in segment t. Given that products are defined as
firm-itinerary combinations, note that the number and types of products offered by the firms
in segment t depend on G. Lastly, J 0

G,t ≡ JG,t ∪ {0}, where product 0 is the outside option,
i.e., the possibility to purchase none of the products in JG,t.

2.2.1 The demand model

On the demand side we use a Nested Logit demand model (Berry, 1994). We first describe
the features of the products offered in segment t. Product j ∈ JG,t is associated with a vector
of characteristics, (Xj,t, Pj,t, ξj,t). Xj,t collects product j’s attributes whose realisations are
observed by the researcher, such as the number of stops, the maximum number of connections at
the segment endpoints, and the distance between the segment endpoints. ξj,t represents product
j’s attributes whose realisations are unobserved by the researcher, such as ticket restrictions,
time of departure, flight frequency, and online ticket sale. Pj,t denotes product j’s price and
its realisation is observed by the researcher. Given that products are defined as firm-itinerary
combinations, Pj,t is computed as the weighted average over all fares that we observe in our
data for that firm-itinerary combination.5 Lastly, we define PG,t ≡ (Pj,t ∀j ∈ JG,t), PG ≡
(PG,t ∀t ∈ T ), ξG,t ≡ (ξj,t ∀j ∈ JG,t), ξG ≡ (ξG,t ∀t ∈ T ), XG,t ≡ (Xj,t ∀j ∈ JG,t), and
XG ≡ (XG,t ∀t ∈ T ). ξG is also referred to as the vector of demand shocks.

We now describe the preferences of each consumer i over the products offered in segment t.
These preferences depend on (XG,t, PG,t, ξG,t). In addition, they depend on consumer i’s tastes
represented by the scalar νi,t and the vector (εij,t ∀j ∈ J 0

G,t), whose realisations are unobserved
by the researcher. Specifically, when consumer i buys product j ∈ JG,t, she receives the payoff

uij,t(Xj,t, Pj,t, ξj,t, νi,t, εij,t; θd) ≡ X ′j,tβ − αPj,t + ξj,t + νi,t + λεij,t,

where the vector of parameters θd ≡ (α, β, λ) should be identified by the researcher. The payoff
from purchasing the outside good is ui0,t ≡ εi0,t. The structure assigned to payoffs is based
on the Nested Logit framework, where the “inside” goods are separated from the outside good
and the payoffs of the inside goods are correlated. We assume that {νi,t, εij,t}i,j∈JG,t,t∈T are
i.i.d., and independent of (XG, PG, ξG). Moreover, the probability distribution of νi,t + λεij,t

is chosen to yield the familiar Nested Logit market share function, with λ ∈ (0, 1). Lastly,
differently from Berry et al. (1996) and Berry and Reiss (2007), the parameters α and β are

5More details on the calculation of Pj,t are in Section 5.

8



nonrandom. In fact, given that products are defined as firm-itinerary combinations and prices
are computed by averaging over fares, we do not have sufficient price variation to allow for
random coefficients.

Each consumer i in segment t chooses the product from J 0
G,t maximising her payoff.6 There-

fore,
Pr
(
j =argmaxk∈J 0

G,t
uik,t(Xk,t, Pk,t, ξk,t, νi,t, εik,t; θd)

∣∣∣∣XG, PG, ξG

)

=
exp

(
X′

j,tβ−αPj,t+ξj,t

λ

)
1 +∑

k∈JG,t
exp

(
X′

k,t
β−αPk,t+ξk,t

λ

) ≡ σGj,t(XG,t, PG,t, ξG,t; θd),

for every j ∈ JG,t, where the map

σGj,t : SuppXG,t,PG,t,ξG,t
→ (0, 1),

is the demand function of product j ∈ JG,t. Moreover, we define the map

σG0,t : SuppXG,t,PG,t,ξG,t
→ (0, 1),

such that σG0,t(XG,t, PG,t, ξG,t; θd) = 1−∑j∈JG,t
σGj,t(XG,t, PG,t, ξG,t; θd).

Let Sj,t denote the market share of product j ∈ J 0
G,t. If the demand model is correctly

specified, then
Sj,t = σGj,t(XG,t, PG,t, ξG,t; θd), (3)

for every j ∈ J 0
G,t. Lastly, we define SG,t ≡ (Sj,t ∀j ∈ JG,t) and SG ≡ (SG,t ∀t ∈ T ). In what

follows the realisation of SG is considered observed by the researcher. For this to be the case, it
is sufficient to have a random sampling scheme in which the researcher draws consumers from
the continuum of consumers in every segment t ∈ T and records their chosen products.

2.2.2 The supply model

We specify the marginal cost function of every product j ∈ JG,t in segment t as

MCj,t ≡ Wj,tψ + ζj,t,

where Wj,t is a vector of exogenous cost-shifters whose realisations are observed by the re-
searcher, such as the number of stops, the average number of connections at each stop (which
we call “Presence”), and the distance between the segment endpoints. ζj,t collects other deter-
minants of the marginal cost whose realisations are unobserved by the researcher. The vector of
parameters ψ should be identified by the researcher. We also defineMCG,t ≡ (MCj,t ∀j ∈ JG,t),
MCG ≡ (MCG,t ∀t ∈ T ), ζG,t ≡ (ζj,t ∀j ∈ JG,t), ζG ≡ (ζG,t ∀t ∈ T ), WG,t ≡ (Wj,t ∀j ∈ JG,t),

6Note that, since we compute prices by aggregating up individual fares to the firm/itinerary level, we do
not face the problem of product availability.
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and WG ≡ (WG,t ∀t ∈ T ). ζG is also referred to as the vector of marginal cost shocks.
At the beginning of the second stage, the firms observe the realisations of ξG and ζG. Then,

the firms simultaneously set prices for every product j ∈ JG in order to maximise their profits.
The profit of firm f is given by

Π2
f (XG,WG,M, ξG, ζG; θ)− TFCf (Gf , ηf ; γ)

≡
∑
t∈T

∑
j∈JG,t,f

[Pj,t −MCj,t]× σGj,t(XG,t, PG,t, ξG,t; θd)×Mt − TFCf (Gf , ηf ; γ),

where θ ≡ (θd, ψ) and JG,t,f ⊆ JG,t is the set of products offered by firm f in segment t. In
what follows, we refer to Π2

f (XG,WG,M, ξG, ζG; θ) as firm f ’s variable profit.
Hence, the equilibrium prices in segment t satisfy the first-order conditions

MCj,t = Pj,t − bGj,t(XG,t, PG,t, SG,t; θd), (4)

for every j ∈ JG,t, where bGj,t(XG,t, PG,t, SG,t; θd) are the markups.

2.3 Equilibrium

Given a realisation of (X,W,M, η), the firms solve the game described above by working
backward from the second stage. First, they calculate the equilibrium profits that will likely
accrue to them under any possible set of segment choices and realisation of (ξ, ζ). Then, they
choose to serve the segments that maximise the expected value of those profits. The researcher
solves the problem in the same order but does not observe the realisation of η.

A pure strategy Subgame Perfect Nash Equilibrium consists of segment choices, g∗ ∈ SuppG,
and price functions, {p∗g(ξ, ζ) ∀g ∈ SuppG},7 which constitute a Nash equilibrium in every
subgame. As standard in the literature, we assume existence of such an equilibrium and
we assume that the second stage has a unique equilibrium. However, we allow for multiple
equilibria in the first stage.

3 Identification

This section discusses identification of the true vector of parameters, (θ0, γ0) ∈ Θ × Γ ⊆
RK ×RN+1, where K is the dimension of θ0 and N + 1 is the dimension of γ0. Recall that θ0 is
the true vector of parameters entering the demand and supply models in the second stage, γ0

is the true vector of parameters entering the fixed cost equation in the first stage. We organise
the discussion in two parts: Section 3.1 explains how to identify θ0, Section 3.2 explains how
to identify γ0.

7For every realisations g ∈ SuppG of G and (ξ̄, ζ̄) ∈ Suppξ,ζ of (ξ, ζ), p∗g(ξ̄, ζ̄) is the vector of optimal prices
charged by the firms in the second stage.
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To formalise our identification arguments, we introduce some new notation. As highlighted
in Section 2.3, the first stage can feature multiple equilibria. For this reason, we introduce an
auxiliary random variable, V , which represents a public signal that the firms use to coordinate
on a specific equilibrium in the first stage. J all

t denotes the set of all possible products that
the firms would offer in the second stage in segment t ∈ T , should they choose to serve every
segment in the first stage. We also define the set J all ≡ ∪t∈T J all

t . Lastly, for every segment
t ∈ T and product j ∈ J all

t , we collect the demand and marginal cost shocks into a 2 × 1
vector, ρj,t ≡ (ξj,t, ζj,t).

3.1 Identification of the second stage

This section discusses identification of θ0. We follow the identification arguments developed
for supply and demand models with differentiated products (e.g., Berry and Haile, 2014). In
particular, we rely on moments that are expectations of the demand and marginal cost shocks
interacted with instruments.

More formally, let us first introduce some assumptions and then discuss them.

Assumption 1. (Data) Let the number of cities, C, be large. The researcher observes the
realisation (g, x, w,m, pg, sg) of (G,X,W,M,PG, SG), where the pair (g, pg) is an equilibrium
outcome of the two-stage game described in Section 2.

Assumption 2. (Exogeneity of demand and marginal cost shocks) For every segment t ∈ T
and product j ∈ J all

t , E(ρj,t|X,W,M, η, V ) = 02 a.s. Further, for every segment t ∈ T and
product j ∈ J all

t , we define the map zj,t : SuppX,W → RL, where L ≥ K.

Assumption 3. (i.i.d.ness of demand and marginal cost shocks) {ρj,t}j∈J all
t ,t∈T are i.i.d. con-

ditional on (X,W,M, η, V ) a.s.

Assumption 1 states which data are considered available to the researcher in order to identify
θ0. Specifically, the researcher observes the entire network, gf , built by each firm f . Further,
the researcher observes the price and market share, (pj,t, sj,t), of each product j ∈ Jg,t and
segment t ∈ T . Finally, the researcher observes the attributes and cost-shifters, (xj,t, wj,t),
of each product j ∈ J all

t and segment t ∈ T , hence including also products not chosen for
production.

We construct instruments by taking various functions of the products’ covariates. For in-
stance, we consider the number of direct flights operated by the competing firms, the number
of different itineraries offered by the competing firms, and the number of competing firms.
Assumption 2 guarantees that the instruments are valid. Assumption 2 is similar to the exo-
geneity condition in standard supply and demand models for differentiated products. However,
there are two relevant aspects to notice, which relates to the two-stage structure of the game.
First, we impose exogeneity also with respects to the products not chosen for production. This
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is because the firms could invest resources in the first stage to improve their beliefs about the
demand and marginal shocks appearing in the second stage. Such a behaviour would cause
endogeneity of the covariates of the selected products. Eizenberg (2014) uses an analogous
restriction for studying the U.S. personal computer market. Second, we impose exogeneity also
with respect to the vector of fixed cost shocks, η, and the public signal followed by the firms
to coordinate on an equilibrium in the first stage, V .

Assumption 3 imposes conditional i.i.d.ness of the demand and marginal cost shocks. This
ensures that θ0 can be expressed as a function of identified quantities as the number of products
gets large.

The formal identification result follows.

Proposition 1. (Identification of the second stage) Consider segment t ∈ T and product
j ∈ J all

t . Let the associated vector of demand and supply shocks, ρj,t, be rewritten as a
function of the observables, δj,t(XG,t, PG,t, SG,t,WG,t,Mt; θ0), via BLP inversion. Lastly, let
qj,t(X,W,M, η, V ) be a function of (X,W,M, η, V ) taking value 1 if product j is chosen for
production, and zero otherwise. Under Assumptions 1-3, θ0 is point identified from the L
moment conditions

E
[
δj,t(XG,t, PG,t, SG,t,WG,t,Mt; θ0)× zj,t,l(X,W )

∣∣∣∣qj,t(X,W,M, η, V ) = 1
]

= 02 ∀l = 1, ..., L.

for any segment t ∈ T and product j ∈ Jg,t. �

3.2 Identification of the first stage

This section discusses (partial) identification of γ0. In particular, we construct bounds for γ0

based on the revealed preference approach proposed by Pakes et al. (2015) and implemented,
e.g., also by Holmes (2011), Ho and Pakes (2014), Eizenberg (2014), Houde et al. (2017), Kuehn
(2018), and Wollmann (2018).8

Studying identification of γ0 presents several challenges. First, the first stage of the game
may display multiple equilibria and the equilibrium selection mechanism adopted by the firms
is unobserved by the researcher. Therefore, without further assumptions, the researcher can-
not write down a well-defined likelihood function for the equilibrium network, G. Second, the
researcher observes only one realisation, g, of G whose components are interdependent. In-
terdependence is due to the fact that the segments to serve are selected in the first stage
on the basis of a prediction of the second stage profits. Crucially, the second stage fea-
tures as potential products not only direct flights, but also one-stop flights, hence impeding
i.i.d.ness across segments. Interdependence is also due to the fact that the fixed cost incurred
to serve each segment may depend on the decision of serving other segments through the term

8Note that the bounds derived are not sharp because revealed preference-based inequalities represent nec-
essary, and not necessary and sufficient, equilibrium conditions.
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∑
d ∈ C \ {h, k} 1{Indirecthkd,f or Indirectdhk,f} in (1). Therefore, the researcher cannot adopt

a many-markets partial identification approach à la Tamer (2003) and Ciliberto and Tamer
(2009).

We handle these challenges by bounding γ0 through inequalities derived from equilibrium
implications. Specifically, if the observed pair (g, pg) is an equilibrium outcome of the two-stage
game, then no firm can increase its expected variable profit net of fixed costs by unilaterally
altering its network. Such necessary conditions produce inequalities that, in turn, are exploited
to bound γ0.

More precisely, the identification procedure involves two steps. First, we need to construct
some inequalities from equilibrium implications.9 Consider any unilateral deviation, gdev

f , from
the network observed in the data, gf , that could be implemented by firm f . Given that (g, pg)
is an equilibrium outcome of the two-stage game, the difference between firm f ’s expected
variable profit net of fixed costs under (gf , g−f ) and firm f ’s expected variable profit net of
fixed costs under (gdev

f , g−f ) should be positive. That is,

E
[
Π2
f (XG,WG,M, ξG, ζG; θ0)

∣∣∣G = g,X = x,W = w,M = m, η = ηobs
]
− TFCf (gf , ηobs

f ; γ0)

− E
[
Π2
f (XG,WG,M, ξG, ζG; θ0)

∣∣∣G = (gdev
f , g−f ), X = x,W = w,M = m, η = ηobs

]
+ TFCf (gdev

f , ηobs
f ; γ0) ≥ 0,

(5)
where (g, x, w,m) is the realisation of (G,X,W,M) observed in the data and ηobs ∈ Suppη is
the realisation of η observed by the firms and not observed by the researcher. By repeating such
an argument for every unilateral deviation gdev

f and for every firm f , one obtains D inequalities.
Let us index each of these inequalities by d ∈ D ≡ {1, ..., D}. Recall from Section 2.1 that
the fixed cost incurred by firm f for every segment {a, b} is additively separable in the fixed
cost shock, ηab,f , and is linear in γ0. Further, by Proposition 1, the researcher knows the two
expected values in (5). Therefore, each inequality d ∈ D can be more simply expressed as

Kd(θ0) + γ′0Ad + td(ηobs) ≥ 0, (6)

where Kd(θ0) captures the differences in the expected variable profits and is known by the re-
searcher; γ′0Ad captures the differences in the systematic fixed costs, is known by the researcher
up to γ0, and is linear in γ0; td(ηobs) captures the differences in the fixed cost shocks, is known
by the researcher up to ηobs, and is linear in ηobs.

Second, we need to approximate the left-hand-side of (6) by using quantities that do not
contain ηobs. The difficulty here lies in the fact that considering the average of theD inequalities
does not help because 1

D

∑D
d=1 td(ηobs) is close to

E[td(η)|G = g,X = x,W = w,M = m],
9Let us add some notational remarks. g ≡ (g1, ..., gN ) is the observed network under Assumption 1. Also,

for any firm f , g ≡ (gf , g−f ), where g−f denotes g without gf .
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which, in turn, is different from 0 given that the realisation of η is known by the firms when
choosing g. This is the selection problem discussed by Pakes et al. (2015). We solve such
an issue by following the instrumental variable approach proposed by Pakes et al. (2015) and
implemented, e.g., by Wollmann (2018). In particular, we assume to have H instruments,
{Z1, ..., ZH}, which allow us to select from D some deviations that the firms would not have
found profitable under any realisation of η. Hence, we expect the firms to have taken the
observed decision not because of the particular realisation of η but rather because of the other,
observed, factors in their information sets. For example, in our data, we observe that airlines
rarely enter segments where none of the endpoints is a hub. Instead, airlines are more likely
to serve segments where at least one of the endpoints is a hub. Also, airlines are more likely
to serve segments with large market size, all else equal. Further, around the time period
considered for our empirical analysis, several airports were operating at maximum capacity or
close to it,10 thus helping airlines to easily anticipate which airports will be capacity constraint.
We argue that selecting deviations according to these factors observed both by the firms and
the researcher helps us overcoming the selection problem.

Let Dh be the collection of deviations selected by instrument Zh. Let 1d(Zh) be an indicator
function taking value 1 if instrument Zh selects deviation d ∈ D and 0 otherwise. Then, if the
fixed cost shocks are conditionally i.i.d., the average of td(ηobs) over the deviations selected by
instrument Zh is close to

1
|D|

∑
d∈D

E[td(η)|1d(Zh) = 1, G = g,X = x,W = w,M = m],

for D large. Moreover, if instrument Zh is valid,

E[td(η)|1d(Zh) = 1, G = g,X = x,W = w,M = m] = E[td(η)|1d(Zh) = 1, X = x,W = w,M = m],

where the latter expectation can be assumed equal to zero. Therefore,

1
|Dh|

∑
d∈Dh

[Kd(θ0) + γ′0Ad] + 1
|Dh|

∑
d∈Dh

td(ηobs) ≥ 0,

can be approximated by
1
|Dh|

∑
d∈Dh

[Kd(θ0) + γ′0Ad] ≥ 0, (7)

forD large. Lastly, note that the left-hand-side of (7) is linear in γ0. This means that projecting
the identified set for γ0 along every dimension simply amounts to solving a linear maximisation
and a linear minimisation problem.

The arguments illustrated above can be condensed down to three assumptions. Assumption
4 formalises the idea of having H instruments allowing us to select from D some deviations

10https://www.faa.gov/airports/planning_capacity/media/FACT3-Airport-Capacity-Needs-in-the-
NAS.pdf
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that the firms would not have been found profitable under any realisation of η. Assumption
5 impose mean independence of η from such instruments. Assumption 6 requires conditional
i.i.d.ness of the fixed costs shocks.

Assumption 4. (First stage instruments) For some H ∈ N and for each h ∈ H ≡ {1, ..., H},
there exists an instrument, Zh, which allows us to select from the set of all deviations, D,
a subset of deviations, Dh, that the firms would not have been found profitable under any
realisation of η. Hence,

E[td(η)|1d(Zh) =1, G = g,X = x,W = w,M = m]

= E[td(η)|1d(Zh) = 1, X = x,W = w,M = m] ∀d ∈ Dh,∀h ∈ H,

where the functions td(η) and 1d(Zh) have been defined earlier, (g, x, w,m) is the realisation
of (G,X,W,M) observed in the data under Assumption 1.

Assumption 5. (Exogeneity of fixed cost shocks) For each firm f ∈ N and for each segment
{a, b} ∈ R, E(ηab,f |Z1, ..., ZH , X = x,W = w,M = m) = 0 a.s., where (x,w,m) is the
realisation of (X,W,M) observed in the data under Assumption 1.

Assumption 6. (i.i.d.ness of fixed cost shocks) {ηab,f}{a,b}∈R,f∈N are i.i.d. conditional on
Z1, ..., ZH , G = g,X = x,W = w,M = m a.s., where (g, x, w,m) is the realisation of
(G,X,W,M) observed in the data under Assumption 1.

The formal identification result follows.

Proposition 2. (Identification of the first stage) Under Assumptions 1-6,

γ0 ∈
{
γ ∈ Γ : 1

|Dh|
∑
d∈Dh

[Kd(θ0) + γ′Ad] ≥ 0 ∀h ∈ H
}
.

�

4 Estimation

This section discusses estimation of the true vector of parameters, (θ0, γ0). We organise the
discussion in two parts: Section 4.1 explains how to estimate θ0, Section 4.2 explains how to
estimate the identified set for γ0.

4.1 Estimation of the second stage

We estimate θ0 by using a standard GMM approach. In particular, we consider the L moment
conditions of Proposition 1 and use their sample analogues to construct our GMM objective
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function which should be minimised with respect to θ ∈ Θ,

Q(θ) = M(θ)′AM(θ),

where

M(θ) ≡



1
|JG|

∑
t∈T

∑
j∈JG,t

[δj,t(XG,t, PG,t, SG,t,WG,t,Mt; θ)× zj,t,1(X,W )]
1
|JG|

∑
t∈T

∑
j∈JG,t

[δj,t(XG,t, PG,t, SG,t,WG,t,Mt; θ)× zj,t,2(X,W )]
...

1
|JG|

∑
t∈T

∑
j∈JG,t

[δj,t(XG,t, PG,t, SG,t,WG,t,Mt; θ)× zj,t,L(X,W )]

 ,

is a 2L× 1 vector and A is an appropriate 2L× 2L weighting matrix.
Note that we estimate the demand and supply sides jointly. One could also estimate the

demand and supply sides separately, by following a two-step procedure: first, the demand
parameters are estimated; then, these estimates are used to compute the markups; lastly,
the resulting marginal costs are regressed on the observed cost shifters to obtain the supply
parameters. We have decided to estimate the demand and supply sides jointly because it allows
us to take into account correlations between demand and supply moments and, hence, obtain
more precise estimates (e.g., Berry et al., 1995). Further, given that we have a computationally
“light” demand specification, the additional cost of estimating the demand and supply sides
jointly is negligible.

4.2 Estimation of the first stage

Let θ̂ be the estimate of θ0 from the second stage. We estimate the identified set for γ0

characterised in Proposition 2 by constructing the feasible region of the linear programming

1
|Dh|

∑
d∈Dh

[Kd(θ̂) + γ′Ad] ≥ 0 ∀h ∈ H,

with respect to γ ∈ Γ. Further, in order to obtain the projection of the feasible region along
each dimension, we simply solve these linear minimisation and maximisation problems

min
γ∈Γ

γk s.t. 1
|Dh|

∑
d∈Dh

[Kd(θ̂) + γ′Ad]) ≥ 0 ∀h ∈ H,

max
γ∈Γ

γk s.t. 1
|Dh|

∑
d∈Dh

[Kd(θ̂) + γ′Ad] ≥ 0 ∀h ∈ H,

for each k-th element of the vector γ.
We have discussed in Section 3.2 our choice of the first stage instruments. In what fol-

lows, we add some minor computational remarks. We include in the collection of all feasible
deviations, D, only one-segment unilateral deviations. That is, we allow every firm f to add
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one segment (if not present in the observed network gf ) or to delete one segment (if present
in the observed network gf ) at a time, while competitors’ networks remain fixed. Moreover,
for each deviation d and candidate parameter γ, we compute [Kd(θ̂) + γ′Ad] in a few steps.
Suppose that deviation d is implemented by firm f and consists in adding the segment {c, c′}
to the observed network gf . First, we update the systematic fixed costs. Second, we update
the list of products offered by firm f , by adding a direct flight between cities c, c′ and some
one-stop flights if city c and/or city c′ are hubs for firm f . Third, we update the matrices of
product covariates by adding the attributes and cost shifters of the new products. Fourth, we
randomly draw 500 vectors from the joint empirical distribution of the demand and marginal
cost shocks.11,12 For each of these draws, we iterate on the firms’ first order conditions (4) to
find the new prices13 and we compute the variable profits. Lastly, we average across draws
and obtain our simulated expected variable profits. Hence, [Kd(θ̂) + γ′Ad] is obtained as the
difference between the systematic fixed costs plus expected variable profits under g and the
systematic fixed costs plus expected variable profits under deviation d. A specular algorithm
is developed for the case where deviation d consists of deleting the segment {c, c′} from the
observed network gf .

5 Data

We use data from the Airline Origin and Destination Service (hereafter, DB1D) which consists
of a 10% random sample of all the tickets issued in the United States during the second
quarter of 2011. By then, the merger between United Airlines and Continental Airlines had
been completed and American Airlines and US Airways had not announced their intention
to merge yet. Moreover, we restrict the sample to flights operated between the 85 largest
metropolitan statistical areas (hereafter, MSAs) in the United States. If an MSA has more
than one airport (such as New York, Chicago, or Los Angeles), we lump them together in our
analysis. We refer to MSAs as “cities” throughout the paper. If an airport within a city serves
as a hub for a given airline, that city will be a “hub city” for that airline.14 The major carriers
in the sample are United Airlines (hereafter, UA), Delta Airlines (hereafter, DL), American
Airlines (hereafter, AA), US Airways (hereafter, US), and Southwest Airlines (hereafter, WN).
All the other carriers in the sample are put either in a group called “Low Cost Carriers”

11Recall that the joint empirical distribution of the demand and marginal cost shocks can be obtained from
the second-stage estimate, θ̂, by applying BLP inversion.

12Note that we can draw second-stage shocks from the joint empirical distribution of the demand and
marginal cost shocks because of the timing structure of our game that, combined with Assumption 2, guarantees
there is no selection on second-stage shocks.

13We have decided to use the firms’ first order conditions (4) as a contraction mapping because it has
shown to have good convergence properties. While we cannot formally prove that such a function is indeed
a contraction mapping, we have found that the resulting price vector does not change when using different
starting values and that the mapping converges in all the considered cases.

14For instance, Dallas/Fort Worth serves as a hub for American Airlines whereas Dallas Love Field does not.
Given that we combine both airports into one, the resulting city (Dallas) is a hub for American Airlines.
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(hereafter, LCC), or in a group called “Other”. This is because we assume these carriers to
merely be fringe competitors, differing only in whether or not they can be classified as low cost.
Also, to enhance computational tractability, we do not consider their fixed costs of entry when
estimating the first stage and we assume that they keep their networks unchanged.

Table 1: Summary Statistics

Variable Mean St.Dev.
Variables

Price (100 USD) 4.32 1.20
Number of Stops 0.86 0.34

Connections 20.06 18.56
Distance (1000 km) 1.44 0.68

Squared Distance (1 million km) 2.54 2.19
Presence 55.9 14.77

Product share 4.61e-04 1.48e-03
Observations 17481

Passengers by Airline (in 1 million)
American Airlines 3.15
Delta Airlines 4.85
United Airlines 3.81
US Airways 2.21

Southwest Airline 6.00
Low Cost Carriers 4.08
Other Carriers 1.21

Market-Level Statistics
Number of Products 5.56 4.43
Number of Firms 3.59 1.81

Direct Passengers (1000) 6.82 23.98
Connecting Passengers (1000) 1.23 1.58
Number of Market Served 3146

We delete tickets with multiple operating carriers or multiple ticketing carriers. Also, we
delete tickets with different inbound and outbound itineraries. Further, we delete tickets that
are not round-trip. As anticipated in Section 2, we consider tickets featuring the same firm-
itinerary combination but different fares as the same product. We compute the corresponding
price as follows. First, we delete tickets with fares in the highest and lowest percentiles and
tickets with fares below $25. Then, we construct the weighted average price over all the
remaining fares. Another possibility could have been to keep separately several fare bins,
as in Berry et al. (1996) and Berry and Jia (2010). Both strategies have advantages and
disadvantages. On one hand, proceeding with fare bins allows to capture lots of consumers’
heterogeneity with respect to prices through random coefficients. This is not possible when
averaging over fares because there is not sufficient price variation left in the data. On the other
hand, the researcher has to define bins and decide how many bins a firm makes use of when
entering a market, which can be susceptible to misspecification. Further, keeping separately
several fare bins would increase substantially the computational burden of our procedure.
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We allow the marginal cost parameters to differ between short-haul and long-haul flights,
which are defined as flights covering up to 1,500 miles and flights covering more than 1,500
miles, respectively. As mentioned in Section 2, for each segment t ∈ T and product j ∈ J all

t ,
Xj,t collects the number of stops (“Stops”), the maximum number of connections at the segment
endpoints (“Connections”), the distance between the segment endpoints (“Distance”), and such
a distance squared (“Distance2”). Similarly, Wj,t collects the number of stops (“Stops Short”,
“Stops Long”), the average number of connections at each stop (“Presence Short”, “Presence
Long”), and the distance between the segment endpoints (“Distance Short”, “Distance Long”).
We include in the demand and supply models firm and city fixed effects in order to capture
brand preferences and unobserved city-specific features. Lastly, we use data from the US
Census Bureau on MSA population in order to compute the market sizes. In particular, we
compute the market size of each segment t ∈ T , Mt, as the geometric mean of the populations
at the segment endpoints. Table 1 provides summary statistics for the data.

6 Results

Section 6.2 present the second stage results. Section 6.1 present the first stage results.

6.1 Results from the second stage

Table 2: Second Stage Parameters

Variable Estimate Standard Error Variable Estimate Standard Error
Demand Variables Cost Variables

Constant -5.476 0.213 Constant Short 3.336 0.090
Price -0.666 0.050 Constant Long 3.920 0.113
Stops -1.648 0.032 Stops Short 0.030 0.028

Connections 0.898 0.072 Stops Long -0.19 0.041
Distance 0.355 0.081 Distance Short 0.476 0.036
Distance2 -0.097 0.017 Distance Long 0.667 0.032

Nesting Parameter (λ) 0.563 0.023 Presence Short -1.243 0.135
Presence Long -1.849 0.143

Carrier Dummies
DL -0.171 0.024 DL 0.081 0.035
UA -0.370 0.024 UA 0.049 0.031
US 0.170 0.030 US 0.078 0.031
WN -0.504 0.030 WN -0.362 0.029
LCC -0.391 0.048 LCC -1.507 0.055
Other -0.135 0.046 Other -1.398 0.048

Value of Objective Function 1919.456
Number of Observations 17,481

The second stage results are in Table 2. On the demand side, the price coefficient is negative.
It lies in between the price coefficients for the two types in Berry and Jia (2010) and in the
ballpark compared to other contributions as well. Passengers exhibit a strong disutility for
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connecting flights. Further, they benefit from having a high number of connections at the
segment endpoints and, hence, from airlines’ networks being dense. In fact, a high number of
connections enhances the value of frequent flyer programs, the number of check-in places and
separate lounges, etc. In line with previous findings, utility seems to be an inverted U-shaped
function with respect to the distance between the segment endpoints. We estimate the nesting
parameter, λ, to be around 0.6. Recall that as λ approaches one, the Nested Logit model
collapses into the standard Logit model. We can conclude that there is substitution between
the inside goods and the outside option.

On the cost side, a carrier’s market presence lowers marginal costs substantially. This
highlights that hub-and-spoke networks can induce (marginal) cost savings. The estimated
coefficients of all other cost shifters are positive, with the exception of the number of stops for
long-haul flights. Such a negative coefficient suggests that, when controlling for the size of an
airline’s operation at the endpoints, connecting flights are less expensive to provide in the case
of long-haul flights. Lastly, as expected, Southwest, low-cost carriers, and medium size carriers
have lower marginal costs than the legacy carriers.

Table 3: Breakdown of Profits

Profits (100k) Price Marginal Cost Markup Lerner Index
All Flights 1.560 431.740 333.870 97.870 0.240

Direct Flights 9.880 397.390 290.640 106.750 0.300
Connecting Flights 0.250 437.130 340.660 96.480 0.240

Table 4: Profits by Firm

Profits (100k) Price Marginal Cost Markup Lerner Index
AA (All) 1.47 453.36 357.21 96.15 0.23

AA (Direct) 11.4 402.37 299.54 102.83 0.27
AA (Indirect) 0.32 459.26 363.88 95.38 0.22

DL (All) 1.18 436.45 332.34 104.1 0.26
DL (Direct) 10.32 463.26 342.88 120.38 0.28
DL (Indirect) 0.27 433.8 331.3 102.5 0.25

UA (All) 1.03 445.56 350.44 95.12 0.23
UA (Direct) 7.53 458.5 357.06 101.44 0.24
UA (Indirect) 0.17 443.85 349.56 94.29 0.23

US (All) 1.07 453.43 358.69 94.74 0.22
US (Direct) 7.47 407.34 297.2 110.14 0.29
US (Indirect) 0.28 459.1 366.25 92.85 0.21
WN (All) 2.33 419.43 321.58 97.85 0.25

WN (Direct) 10.11 365.14 259.23 105.91 0.31
WN (Indirect) 0.18 434.4 338.77 95.63 0.23

LCC 3.96 363.97 270.46 93.51 0.29
Total Number of Passengers (in 1m) 25.33

Tables 3 and 4 show average profits and firm-level average profits, respectively. Table 3
reveals that the legacy carriers are quite heterogeneous in terms of marginal costs. Whereas
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Table 5: Elasticity Estimates

Price Elasticity −4.690
Aggregate Easticity −2.380

Connection semi-elasticity 0.870

American Airlines and US Airways have substantially lower marginal costs on direct flights, it is
the opposite for Delta Airlines and United Airlines. Further, Southwest and low-cost carriers
have significantly lower marginal costs on direct flights than the legacy carriers. Lastly, all
carriers make the overwhelming majority of their profits from direct flights.

Table 5 shows various elasticity measures. The price elasticity is relatively high. This may
be due to the fact that our model does not capture sufficient consumers’ heterogeneity in price
sensitivity. The connection semi-elasticity measures the change in the number of passengers
when a direct flight becomes a connecting flight, while holding all other characteristics fixed.
It is higher than in Berry and Jia and, thus, in line with the trend towards increasingly strong
preferences for direct flights acknowledged by the authors in that paper.

6.2 Results from the first stage

The first stage results are in Table 6. In particular, Table 6 reports the projections of the
estimated identified set. The intervals for the γ2’s components are substantially heteroge-
neous across firms. Further, serving hub segments is more costly for Southwest than for the
legacy carriers. This may be due to the fact that Southwest does not employ a full-fledged
hub-and-spoke network but rather a network with so-called “base cities” with some degree of
connectivity.

Table 7 attempts to measure of how well our model fits the data. The second column reports
the observed entry probability (computed as the number of segments served over the total
number of segments in the sample), the third column reports the predicted entry probability
at the midpoints of the projections of the estimated identified set. We fit entry probabilities
reasonably well with the exception of Southwest.

Table 6: Projections of Estimated Identified Set

Lower Bound Upper Bound
No Hub (γ1) 1.028 2.679

Hub AA (γ2,AA) 0.129 0.224
Hub DL (γ2,DL) 0.090 0.164
Hub UA (γ2,UA) 0.098 0.151
Hub US (γ2,US) 0.115 0.139

Hub WN (γ2,WN) 0.263 0.341
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Table 7: Predicted Entry Probabilities at Midpoint

Firm Data Predicted Midpoint
AA 6.97 6.88
DL 12.5 10.81
UA 13.1 11.20
US 7.03 6.85
WN 19.05 13.19

7 Counterfactuals

This section studies the impact on firm and market outcomes of a merger between two of the
four legacy carriers in our sample, American Airlines and US Airways. These two firms did
in fact merge in 2013. They first expressed interest to merge in January 2012 and officially
announced their plans to merge in February 2013.15 At the time they expressed interest
to merge in January 2012, American Airlines’ holding company (AMR Corporation) was in
Chapter 11 bankruptcy. The merger was cleared by a federal court in March 2012. Shortly after,
the Department of Justice (hereafter, DOJ), along with several state attorney generals, sought
to block the merger. In 2013 a settlement was reached in which the merging parties pledged
to give up landing slots or gates at 7 major airports and “to maintain hubs in Charlotte, New
York (Kennedy), Los Angeles, Miami, Chicago (O’Hare), Philadelphia, and Phoenix consistent
with historical operations for a period of three years”.16 Below, we refer to such settlement
as the 2013 settlement. According to articles from the time the merger was announced, the
parties expected the merger to make the new entity the largest airline in the world in terms of
passenger numbers, and annual cost savings of around $1 billion per year.17 Also, the merger
was seen by analysts as an opportunity for American Airlines to expand its footprint in markets
along the East Coast, where US Airways had a strong presence.18

In what follows, Section 7.1 describes the exercise and the algorithm designed to reach the
counterfactual scenarios. Section 7.2 discusses our results. Section 7.3 investigates the impact
on consumer welfare of one the remedies imposed by the 2013 settlement. Sometime we will
refer to the merged entity as American Airlines because this is the brand name that “survived”
the merger.

7.1 Set-up

We consider three counterfactual scenarios:
15Recall that we use data from the second quarter of 2011. This is before the two parties expressed interest

to merge and corresponds to the last quarter before AMR filed for Chapter 11 bankruptcy.
16https://www.justice.gov/opa/pr/justice-department-requires-us-airways-and-american-airlines-divest-

facilities-seven-key, https://americanairlines.gcs-web.com/news-releases/news-release-details/amr-corporation-
and-us-airways-announce-settlement-us-department

17https://www.reuters.com/article/uk-americanairlines-merger-idUSLNE91D02020130214
18https://money.cnn.com/2013/02/14/news/companies/us-airways-american-airlines-merger/index.html
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1. Network Fixed - Base Case. After the merger, (g, x, w,m) remain at the pre-merger
level. The firms play the simultaneous pricing game described in Section 2.2 and a
new equilibrium outcome, p∗, arises. In particular, the merging firms choose the prices
maximizing their joint profits, i.e., they behave as if they colluded.

2. Network Fixed - Best Case. After the merger, (g, x−AA,US, w−AA,US,m) remain at the
pre-merger level. The covariates of the merged entity’s products are constructed by
assigning to the merged entity the most favourable features, both on the demand and
cost sides. For example, on the demand side, the estimated coefficient of the variable
“Connections” is positive. Hence, the merged entity’s products will get the highest value
of “Connections” between what American Airlines and US Airways had before merging.
After such rearrangements, we let the firms play the simultaneous pricing game described
in Section 2.2 and a new equilibrium, p∗, arises.

3. Two-Stage. After the merger, we treat the merged entity as a new firm and we let the
firms play the entire two-stage game described in Section 2. A new equilibrium outcome,
(g∗, p∗), arises. More details on how the firms re-optimise networks and prices are in
Section 7.1.1.

The first two scenarios do not take into account network endogeneity, as it is standard in the
literature. In such scenarios, the researcher assumes that the firms’ networks stay fixed and
artificially determines how the product covariates adjust after the merger, hence possibly in-
curring into serious misspecification. The third scenario considers the entire two-stage game
and allows the firms to re-optimise prices and networks after the merger, by leveraging on our
methodology. In fact, after the approval of the merger, the merging firms may react with further
entry accommodations in order to respond to competitors’ reactions. Therefore, the counter-
factual predictions from the third experiment incorporates general equilibrium considerations
and are expected to be more robust.

In all scenarios, we focus on segments in which American Airlines and/or US Airways have
a hub at one or both endpoints.19 These segments represent around 20% of all segments in
our sample and are presumably those where the DOJ would be most worried about potential
anti-competitive effects of the merger. Finally, in all scenarios the merged entity takes on the
most favourable firm dummies, both on the demand and cost sides.

7.1.1 Experiment “Two-Stage”: details

In the third counterfactual experiment of Section 7.1, the firms re-optimise networks and prices.
However, given the complexity of the network formation process, it is infeasible to list all

19We assume that cities in which either American Airlines or US Airways had a hub prior to the merger will
continue to serve as hubs. This means that the merged entity will entertain hubs in Dallas, Chicago, Charlotte,
Philadelphia, New York City, Washington DC/Baltimore, Phoenix, Miami, and Los Angeles.
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possible post-merger equilibria. To circumvent this issue, we design the following sequential
approach. First, consider the network observed before the merger, g, and create a new net-
work, gmerg, by combining the pre-merger networks of American Airlines and US Airways. For
example, if American and US Airways both offer a direct flight in segment t before the merger,
we combine them into a single product. Consequently, update the covariates of the merged
entity’s products. Second, rank segments and firms according to some criteria. Then, start
with the first firm in the first segment and compute that firm’s best response to competitors’
actions with respect to entry/exit and prices. Update the first firm’s network and prices and
move on to the second firm in the first segment. Repeat the same procedure and update the
second firm’s network and prices. When all firms have updated their networks and prices, start
again from the first firm in the first segment. Once no firm wishes to deviate from their current
decisions in the first segment,20 move to the second segment. When all markets have been
completed, start again with the first firm in the first market and repeat the process. If there
are no deviations between the first and the second iterations, stop. Otherwise, proceed to a
third iteration, and so on, until convergence.

Other steps are worth discussing. First, when calculating a firm’s best response in the
sequential procedure above, we have to compare the total profits of that firm under its current
entry/exit status (say, serving the segment) with the total profits under the deviation (say,
not serving the segment). When one endpoint of the segment is a hub, the firm is allowed to
offer one-stop flights via that endpoint. In cases where an endpoint is a hub and the firm does
not serve the segment, we assume that, when deviating, the firm offers all one-stop flights via
the endpoint that the firm can feasibly supply given its current network. In cases where an
endpoint is a hub and the firm serves the segment, we assume that, when deviating, the firm
deletes all one-stop flights the firm offered via the endpoint.

Second, the parameters of the first stage are partially identified. Hence, we have to pick a
value of such parameters at which to run our counterfactual experiments. As discussed earlier,
Table 7 suggests that the midpoints of the projections of the estimated identified set fit well
the entry probabilities. Hence, we run our counterfactual experiments at these midpoints.

Third, we have to choose a density from where the fixed cost shocks are drawn. In fact,
recall that the probability distribution of η has not been parametrically specified. Different
approaches have been taken in the literature. For example, Wollmann (2018) draws the fixed
cost shocks from a normal distribution with zero mean and variance equal to a fraction of
the variance of the systematic fixed costs. Kuehn (2018) finds, for each segment, the range
of realisations of the fixed cost shock generating either entry or exit and takes the midpoint.
We use a procedure that is similar in spirit to Kuehn (2018). Specifically, given a firm’s
expected variable profit net of fixed costs, for each (un)served segment, we find the (minimum)
maximum possible realisation that the fixed cost shock could have taken for that segment

20In our simulations, we typically get convergence within three iterations. It happens rarely that convergence
is not attained. In those few cases, we pick the state of the market at the 25th iteration.
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Table 8: Firm Outcomes

Before Base Case Best Case Two-Stage

Pax Market Share Pax Market Share Pax Market Share Pax Market Share

Merged Entity 4.53 29.61 4.86 31.16 10.42 50.34 4.68 28.47
DL 1.71 11.18 1.70 10.90 1.61 7.78 2.64 16.06
UA 2.14 13.99 2.13 13.66 2.01 9.71 2.10 12.78
WN 3.10 20.26 3.09 19.81 2.98 14.40 3.26 19.83

Table 9: Market Outcomes

Before Base case Best Case Two-Stage

Price 4.30 4.31 4.04 4.27
Marginal Cost 2.74 2.73 2.45 2.67
Consumer Surplus 3256 3319 4417 3480

to remain (un)served. This gives us a vector of “maximum shocks” for served segments and
“minimum shocks” for unserved segments. Then, for each served segment, we find the range
of values lying between that segment’s “maximum shock” and the 5-th percentile of the vector
of “minimum shocks”. Likewise, for each unserved segment, we find the range of values lying
between that segment’s “minimum shock” and the 95-th percentile of the vector of “maximum
shocks”. We then take the mid-point of those ranges. Such mid-points represent the shock
draws.

7.2 Results

Table 8 shows the effects of the merger on firm outcomes.21 The results differ quite dramatically
between the Base Case and the Best Case scenarios. While market shares are not substantially
altered in the Base Case scenario, they increase by roughly 70% in the Best Case scenario and
gets close to a threshold used by the DOJ to detect monopoly power in the past.22 In contrast,
all other firms’ market shares drop significantly. The counterfactual market shares under the
Two-Stage scenario resemble those of the Base Case scenario, except for Delta whose market
share rises by almost 5 percentage points.

Table 9 shows the effects of the merger on market outcomes. In the Base Case scenario,
prices rise slightly and marginal costs fall slightly. This can be due to the fact that the
merged entity takes on the most favourable firm dummies, both on the demand and cost sides.
Consumer surplus rises by around 2%. In contrast, in the Best Case scenario, prices and
marginal costs fall by much larger amounts. The fall in marginal costs can be due to the fact
that the marginal costs for flights between and passing through well-connected airports are
lower. Lastly, consumer surplus rises by around 36%. This suggests that, under the Best Case

21In Table 8, “Pax” means “Passengers”.
22E.g., United States v. Dentsply Int’l, Inc. 2005
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Table 10: Segments Served Out of Hubs, AA

Before After

Dallas 67 67
Charlotte 60 36
Chicago 58 59
Philadelphia 51 50
New York City 41 39
Washington DC 39 44
Phoenix 41 32
Miami 39 38
Los Angeles 28 27

scenario, the merger should be allowed to go through. In the Two-Stage scenario, prices fall.
This can be due to the fact that the merged entity (and also other competitors) saves marginal
costs by disposing of a larger network, as likewise indicated by the drop in marginal costs. In
terms of welfare, consumer surplus rises by around 7%.

Table 10 shows the number of segments served by American Airlines before and after
the merger. Operations stay roughly the same in most hubs. Let us add few comments on
Washington DC. Under the 2013 settlement, the new American Airlines was forced to divest
slots and gates at Washington Reagan National Airport, in order to facilitate the entry of
other airlines, e.g., Southwest. Our result reveals that these divestitures were warranted. In
fact, the new American Airlines adds 5 segments at Washington DC, while Southwest- which
the DOJ had identified as a potential entrant in many markets- only adds 2 segments to its
already existing 60 (not reported here). This is in line with the findings of Ciliberto, Murry,
and Tamer (2018).23

7.3 Remedies at American Airlines’ hub in Charlotte

Under the 2013 settlement, the new American Airlines agreed to maintain hubs at a number
of airports, e.g., Charlotte International Airport, “consistent with historical operations for a
period of three years”.24 In this section, we use our methodology to study the impact of such
a remedy on consumer welfare. On one hand, the new American Airlines faces a trade-off
between keeping and expanding operations, which results in marginal cost savings. On the
other hand, the fixed cost of serving a segment increases. Both forces are present in our model.
Hence, we can exploit our results to make detailed predictions, compared to other frameworks
in the literature where instead networks are kept fixed.

We consider two counterfactual scenarios:

1. After-Free. This is the Two-Stage scenario above.
23Contrary to us, Ciliberto, Murry, and Tamer (2018) keep airports separate. Hence, they are able to isolate

the effect at the targeted airport (Reagan National Airport).
24https://americanairlines.gcs-web.com/news-releases/news-release-details/amr-corporation-and-us-

airways-announce-settlement-us-department
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Table 11: Effects of the Merger in Charlotte

Before After-Free After-Restricted

Served by American 60 36 62
Consumer Surplus 156.88 123.89 165.31

2. After-Restricted. The merged entity is forced to keep serving each market out of Charlotte
it had served before the merger.

The results in Table 11 show that under the After-Free scenario, consumer surplus contracts
sharply by around 21%. Under the After-Restricted scenario, consumer surplus increases by
around 5%. This suggests that the remedy was warranted to prevent harm to consumers in
Charlotte due to the merger. Further, under the After-Restricted scenario, the new American
Airlines even adds 2 segments. This mirrors real developments after the merger occurred.
In fact, the new American Airlines expanded operations in Charlotte, both domestically and
internationally.

8 Conclusion

We consider a two-stage model of airline competition where airlines design their route networks
in the first stage and compete in prices in the second stage. Our model relaxes the assumption of
exogeneity of airlines’ route networks and of i.i.d.ness of airlines’ entry decisions across routes.
The two-stage framework allows us to account for selection of airlines into interdependent
routes. Moreover, it permits us to make counterfactual exercises which robustly predict changes
not only in prices and markups, but also in how airlines adjust their route networks. We show
identification of the second-stage parameters by following the standard approach for supply and
demand models with differentiated products. We show (partial) identification of the first stage
parameters by adopting a revealed preference perspective and exploiting inequalities derived
from equilibrium implications. We estimate our model using data on the US airline industry
from the second quarter of 2011. We then use the results to evaluate the merger between
American Airlines and US Airways which did occur at a later date. We find that consumer
surplus increased by around 7%. We then look at the effects of the merger in markets out of
Charlotte, where the merged entity had to pledge to keep operations at previous levels, and
find that this remedy was indeed warranted to prevent harm to consumers.

One limitation of our model is that we abstract from capacity and frequency choices which
are an important point of concern both to consumers as well as antitrust authorities. Extending
our framework to include these kind of choices is possible, albeit at the cost of increasing the
computational burden. We are currently working on inference for the first stage parameters.
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A Proofs

Proof of Proposition 1 The proof builds on Berry and Haile (2014) and Eizenberg (2014).

Step 0 For every segment t ∈ T and product j ∈ J all
t , let qj,t(X,W,M, η, V ) be a function of

(X,W,M, η, V ) taking value 1 if product j is chosen for production, and zero otherwise. Note
that such a function does not depend on (ξ, ζ) because the firms do not observe the realisation
of (ξ, ζ) when making their first stage choices. Further, note that under Assumption 1 the
researcher observes a realisation of qj,t(X,W,M, η, V ).

Step 1 Assumption 2 implies

E
[
ρj,t × zj,t,l(X,W )× qj,t(X,W,M, η, V )

]
= 02 ∀l = 1, ..., L, (A.1)

for each product j ∈ J all
t and segment t ∈ T , where zj,t,l(X,W ) is the l-th element of the L×1

random vector zj,t(X,W ). If Pr(qj,t(X,W,M, η, V ; θ0, γ0) = 1) > 0, (A.1) implies

E
[
ρj,t × zj,t,l(X,W )

∣∣∣∣qj,t(X,W,M, η, V ) = 1
]

= 02 ∀l = 1, ..., L, (A.2)

for each product j ∈ J all
t and segment t ∈ T .

Step 2 Fix any g ∈ SuppG. Note that, for each segment t ∈ T , there exists only one
realisation of (ξg,t, ζg,t), denoted by (ξ̄g,t, ζ̄g,t) ∈ Suppξg,t,ζg,t

, such that

sj,t = σgj,t(xg,t, pg,t, ξ̄g,t; θ0,d) ∀j ∈ J 0
g,t,

wj,tψ0 + ζ̄j,t = pj,t − bgj,t(xg,t, pg,t, sg,t; θ0,d) ∀j ∈ Jg,t,

from (3) and (4), for every (xg,t, pg,t, sg,t, wg,t,mt) ∈ SuppXg,t,Pg,t,Sg,t,Wg,t,Mt
. In turn, (ξ̄t, ζ̄t) is

given by
ξ̄j,t = σ−1,g

j,t (xg,t, pg,t, sg,t; θ0,d) ∀j ∈ Jg,t,

ζ̄j,t = pj,t − bgj,t(xg,t, pg,t, sg,t; θ0,d)− wj,tψ0 ∀j ∈ Jg,t.

This implies that ρj,t in (A.2) can be expressed as a function of the observables,

δj,t(XG,t, PG,t, SG,t,WG,t,Mt; θ0).

Therefore,

E
[
δj,t(XG,t, PG,t, SG,t,WG,t,Mt; θ0)× zj,t,l(X,W )

∣∣∣∣qj,t(X,W,M, η, V ) = 1
]

= 02 ∀l = 1, ..., L,
(A.3)

for each product j ∈ J all
t and segment t ∈ T .
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Step 3 For any product j ∈ J all
t and segment t ∈ T , we can solve the system of equations

(A.3) with respect to θ0 and show that it has a unique solution, under appropriate rank
condition.

Step 4 For each l = 1, ..., L, under Assumption 3 (plus additional regularity conditions), it
holds that

1
|Jg|

∑
t∈T

∑
j∈Jg,t

[
δj,t(xg,t, pg,t, sg,t, wG,t,mt; θ0)× zj,t,l(x,w)

]
,

computed with the available data, is close to

E
[
δj,t(XG,t, PG,t, SG,t,WG,t,Mt; θ0)× zj,t,l(X,W )

∣∣∣∣qj,t(X,W,M, η, V ) = 1
]
,

for every product j ∈ J all
t and segment t ∈ T , when |J all| is large. Hence, the researcher can

rewrite the unique solution, θ0, of system (A.3) as a function of known quantities. Therefore,
θ0 is point identified.

Proof of Proposition 2 The proof develops identification arguments similar to those in
Eizenberg (2014), Houde, Newberry, and Seim (2017), Kuehn (2018), and Wollmann (2018).

Step 0 We introduce some useful notation. Given the realisation (g, x, w,m, pg, sg) of (G,X,
W,M,PG, SG) observed by the researcher under Assumption 1, let ηobs ∈ Suppη be the corre-
sponding realisation of η observed by the firms and not observed by the researcher. For each
firm f ∈ N , let g−f denote the collection of competitors’ networks. Hence, g ≡ (g1, ..., gN) ≡
(gf , g−f ). Further, for each firm f ∈ N , take any gdev

f ∈ SuppGf
\ {gf} and let (gdev

f , g−f )
denote the collection of networks obtained by replacing gf with gdev

f in g. Lastly, for each firm
f ∈ N , let ∆f (g, (gdev

f , g−f ), x, w,m, ηobs; θ0, γ0) be the difference between firm f ’s expected
variable profit net of fixed costs under g and firm f ’s expected variable profit net of fixed costs
under (gdev

f , g−f ). That is,

∆f (g, (gdev
f , g−f ), x, w,m, ηobs; θ0, γ0) ≡ E

[
Π2
f (XG,WG,M, ξG, ζG; θ0)

∣∣∣G = g,X = x,W = w,M = m, η = ηobs
]

− TFCf (gf , ηobs
f ; γ0)

− E
[
Π2
f (XG,WG,M, ξG, ζG; θ0)

∣∣∣G = (gdev
f , g−f ), X = x,W = w,M = m, η = ηobs

]
+ TFCf (gdev

f , ηobs
f ; γ0).

(A.4)
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Step 1 Given that the pair (g, pg) is an equilibrium outcome of the two-stage game by
Assumption 1, it should be that

∆f (g, (gdev
f , g−f ), x, w,m, ηobs; θ0, γ0) ≥ 0 ∀gdev

f ∈ SuppGf
\ {gf}, ∀f ∈ N . (A.5)

Step 2 We now rewrite (A.4) in a more useful way. First, note that the researcher knows
the two expected values in (A.4) by Proposition 1. Second, recall that the fixed cost of every
segment {a, b} ∈ R is additively separable in the fixed costs shock, ηab,f , and is linear in γ0

(see Equation (1)). Therefore, (A.4) can be expressed as the sum of three components,

∆f (g, (gdev
f , g−f ), x, w,m, ηobs; θ0, γ0) = Kgdev

f
(θ0) + γ′0Agdev

f
+ tgdev

f
(ηobs), (A.6)

where Kgdev
f

(θ0) captures the differences in the expected variable profits and is known by the
researcher; γ′0Agdev

f
captures the differences in the systematic fixed costs, is known by the

researcher up to γ0, and is linear in γ0; tgdev
f

(ηobs) captures the differences in the fixed cost
shocks, is known by the researcher up to ηobs, and is linear in ηobs.

To simplify the notation, let us index the inequalities in (A.5) by the integers in D ≡
{1, ..., D}, where D is the total number of inequalities. Hence, by using (A.6), (A.5) can be
rewritten as

Kd(θ0) + γ′0Ad + td(ηobs) ≥ 0 ∀d ∈ D.

Step 3 For every h ∈ H, take the subset of deviations, Dh, selected by instrument Zh. By
Assumption 6,

1
|Dh|

∑
d∈Dh

td(ηobs),

is close to
1
|D|

∑
d∈D

E
[
td(η)

∣∣∣∣1d(Zh) = 1, G = g,X = x,W = w,M = m
]
,

for D large. By Assumption 4,

1
|D|

∑
d∈D

E
[
td(η)

∣∣∣1d(Zh) = 1, G = g,X = x,W = w,M = m
]

= 1
|D|

∑
d∈D

E
[
td(η)

∣∣∣1d(Zh) = 1, X = x,W = w,M = m
]
.

Further, by Assumption 5,

1
|D|

∑
d∈D

E
[
td(η)

∣∣∣∣1d(Zh) = 1, X = x,W = w,M = m
]

= 0.

Therefore,
1
|Dh|

∑
d∈Dh

[Kd(θ0) + γ′0Ad] + 1
|Dh|

∑
d∈Dh

td(ηobs) ≥ 0,
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can be approximated by
1
|Dh|

∑
d∈Dh

[Kd(θ0) + γ′0Ad] ≥ 0, (A.7)

for D large. By considering (A.7) for each h ∈ H, we obtain H inequalities that allow us to
partially identify γ0.
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