Abstract

This paper provides a novel evidence (based on a new dataset) on bidding and subcontracting behavior of primary contractors participating in California highway procurement market. We develop a model of procurement auction with subcontracting stage which is capable of rationalizing the patterns documented in the data. Next, we use this framework to assess the implications of ex-ante subcontracting rule which is frequently imposed in government procurement.

Keywords: highway procurement, subcontracting

JEL Classification: C73, C63, D44, H57, L20
1 Introduction

Many infrastructure procurement markets have a two-tier structure with contractors routinely subcontracting parts of the projects they win in the primary auctions. This feature, however, remains relatively understudied in the literature. In this paper we present novel evidence on bidding and subcontracting activity in a large procurement market (California highway procurement market). We then construct a model consistent with the patterns documented in the data and use this model to study implications of ex-ante subcontracting requirement maintained in most government procurement markets in US.

The analysis in this paper is based on a new dataset which provides detailed information about bidding and subcontracting activity of individual contractors for a large number of projects auctioned in California highway procurement market. Specifically, for each project (represented as a list of items compiled by CalTrans engineers) and for each participating contractor, we observe the list of items this contractor subcontracts, with the names of associated subcontractors, and the itemized list of subcontractors’ prices.

The data analysis reveals that subcontracting is very prevalent in this market. Indeed, 95% of participating contractors subcontract at least one item on an average project. Interestingly, for most tasks contractors tend to subcontract items associated with this task on a fraction of projects. This indicates that subcontracting decisions do not reflect firms’ capability to perform a given task. Instead, contractors are likely to use subcontracting in order to modify their costs and improve their competitiveness in a given auction. Therefore, subcontracting decisions are likely to be influenced by the contractors’ own cost of performing the task as well as competitive conditions in the primary and subcontracting markets.

Further, we document that contractors competing for a given project frequently employ overlapping sets of subcontractors. In addition, while own subcontracting decision is not predictive of the own bid level (presumably contractor may subcontract because his own cost of completing the task is high or because he has been offered a low subcontracting price), the fact that two contractors share the same subcontractor is associated with lower bids submitted by these contractors. This indicates that subcontractors compete for the right to be listed on contractors’ bids. On the other hand, contractors bidding on the same project frequently hire different subcontractors, and the prices charged by a subcontractor tend to differ across contractors within the same project. This leads us to conclude that factors other than price must influence contractors’ choice of subcontractors and that these factors have to be contractor-subcontractor-specific.

We use the patterns documented in the descriptive analysis to guide our modeling choices.
Specifically, we develop a model of procurement auction with subcontracting which consists of two stages. In accordance with the rules of government procurement, in the first stage contractors develop a plan of how the work would be completed should they win the project. During this stage they run a subcontracting auction for each task listed on the project and on the basis of subcontractors’ quotes decide whether the task should be subcontracted and to whom. In the second stage, contractors submit their bids and the winner is determined. In accordance with the findings described in the previous paragraph, we assume that contractors rely on a discriminatory subcontracting auctions where they may engage a preferred subcontractor even if his price exceeds the lowest quote (but not more than by a certain margin). A contractor may give such a preference to subcontractor because of previous interaction, or due to reputation for quality – contractors may differ in their preference for quality which leads to contractor-subcontractor-specific preferences. There are, of course, other mechanism that may rationalize the patterns observed in the data. For example, subcontractor may have different costs for working with different contractors. While this is possible, such mechanism is not very appealing since, independent of who wins the main contract, subcontractor, if listed on the winning bid, will be facing the same scope of work. Further, the model where subcontractor’s costs differences associated with various contractors are private is intractable; whereas the model where these differences are public predicts behavior which is similar to the one implied by our model.

The model we consider in this paper differs from a standard model of procurement auction along several dimensions. First, participating contractors have an opportunity to modify their costs and thus improve their competitiveness in a given auction. Further, an access to subcontracting market gives contractors’ an opportunity to acquire valuable information about rivals’ costs. Second, subcontractors have to interact with multiple contractors. Given the differences in contractors’ preferences and possibly costs, subcontractors use different pricing strategies with different contractors. Nevertheless, the prices submitted by a given subcontractor to different contractors are related since they are based on the same underlying realization of subcontractor’s costs. In this game subcontractors internalize the fact that winning an engagement with a contractor results in them working on the project only with some probability. They also recognize that their price quotes are influencing the probabilities of primary contractors winning the project.

From the equilibrium characterization point of view, this model presents a number of challenges. First, the subcontractors’ pricing strategies have to account for simultaneity of subcontracting auctions as well as to take into account the dynamic consequences of subcontractors’
pricing decisions on allocation in the second stage. Discriminatory feature incorporated in subcontracting stage complicates subcontractors’ incentives at the high cost realizations since at high cost levels a subcontractor may prefer to target only the auctions where he has an advantage (due to contractor’s preference) rather than attempting to win a higher overall number of auctions. We believe that analysis of this feature is novel and constitutes a separate contribution of the paper.

Finally, we use this framework to assess the impact of the ex-ante subcontracting rule. We note that ex-ante subcontracting eliminates part of the inherent uncertainty about rivals’ costs since just obtaining subcontractors’ quotes enables contractors to narrow down their assessment of competitors’ costs which induces contractors to behave more aggressively. This is in contrast to the ex-post markets where the possibility of future subcontracting activity introduces additional common uncertainty which in turn promotes less aggressive behavior on the part of bidders. On the other hand, under ex-ante subcontracting rule, subcontracting prices are determined at the bidder rather than the winner level which diffuses risk of loosing from the subcontractors’ point of view and thus allows them to behave less aggressively. The balance of these two effects determines the impact of ex-ante subcontracting rule.

The structure of the paper is as follows. In Section 2 we summarize the highway procurement process in California. Section 3 describes construction of the data set and characterizes subcontracting patterns reflected in the data. Section 4 describes a simple procurement auction model with ex-ante subcontracting stage which is capable of rationalizing patterns documented in the previous section. In Section 5 we discuss the identification and estimation of the structural model.

2 Procurement Process

We study the market for highway procurement in the state of California which is supervised by California Department of Transportation (CalTrans). The projects transacted in this market deal with highway repairs, highway construction and associated work such as signing, striping and landscaping. These projects are allocated through a first-price sealed bid auction mechanism.

Procurement process proceeds through the following stages. First, the project is announced.
At this point only a short description of work with the time and location details is provided. The interested contractors may request a detailed project description compiled by government engineers which lists all the items included in the project with the engineer’s estimate of the size and the cost of each item. The list of tasks is fixed for the purpose of auction. Each contractor has to summarize his bid in the form which states the price for each item on this list. Second, contractors work on the plan for project completion, finding out their costs broken down by item. During this time contractors are approached by subcontractors who quote their prices for the items they are qualified to perform. CalTrans requires that all the details of project implementation including subcontracting agreements have to be settled before the bid is submitted. The finalized plan of work (who does what and at what price) has to be reflected in the bid documents. Third, at the previously announced date submitted bid documents are opened and the winner is determined on the basis of the total bid which is equal to the sum of the item-specific prices.

The subcontracting of work is strictly regulated. Specifically, the government imposes an upper bound of 40% of the project value for the amount that contractor is allowed to subcontract. The subcontractors have to be certified to do work for the government. Further, CalTrans pays subcontractors directly to ensure that they recieve their pay on time and possibly to enforce the rule that the subcontractor listed on the bid documents is the one who does the work.

3 Data

3.1 Data Construction

We have assembled a novel dataset which allows us to gain insights into the subcontracting activities in the California highway procurement market. Existing empirical research on highway procurement traditionally relies on the data collected from bid summaries which include the names and the bids of all participating contractors as well as engineers estimate, contract duration, location and the type of work. In contrast, our data set is constructed on the basis of the full bid documents which for each project contain the list of items involved, the item-specific bids for each participating contractor, and, for each participating contractor, the list of

1See, for example, Hong and Shum (2002), Porter and Zona (1993), Jofre-Bonet and Pesendorfer (2003), Krasnokutskaya (2011), etc. More recently, the researchers also used information on the identities of contractors who purchased bid documents for a specific project and thus seriously contemplated submitting a bid in a corresponding auction (see, for example, Krasnokutskaya and Seim (2011) and Balat (2014)); as well as more detailed information on the list of tasks involved, negotiated bid adjustments subsequent to the auction, and the details of the project supervision (as in Bajari, Houghton, and Tadelis (2014), Bajari and Lewis (2011)).
the subcontractors this firm plans to use and the items each subcontractor is hired to perform. We assembled this information for all the projects auctioned by CalTrans between January 2002 and December 2016.

In constructing this dataset we had to overcome several challenges. First, we had to match subcontractors to the items and thus the prices they were promised in connection with a given project. Specifically, subcontractors’ assignments in the bid documents are occasionally described verbally (instead of referring to the item number) and the verbal description was not always identical to the description used in the official CalTrans list of items. In order to reconcile the two pieces of data we designed and implemented a word recognition algorithm. The final dataset includes only the projects for which we were able to match the subcontracting assignments for all items and for all contractors with high degree of confidence. The matching algorithm is applied mostly to the earlier years in our data. In the later years (after 2010) contractors mostly provided item numbers rather than verbal descriptions to summarize the scope of subcontractors’ assignments. This feature additionally allowed us to verify performance of the matching algorithm by checking that the subcontractors’ areas of specialization as inferred from the data do not change over the years, and that the patterns of behavior documented on the basis of the whole dataset are similar to those documented from the more recent data.

The next issue we had to tackle was related to the fact that the number of distinct items recorded in our dataset is very large. This does not allow us to study patterns in subcontracting activity with any degree of statistical confidence. We used the state-issued document summarizing the state-approved cost for each item to aggregate items into larger classes (tasks). This document effectively lists every item which appeared on the bid documents in the previous ten years. The items are arranged by specialization and each item is assigned a six digit number. We aggregated these items into groups (tasks) such that all items associated with the same task share the first two digits in the number assigned to the item by CalTrans.

Focusing on the projects associated with road or bridge work, we identified 13 distinct tasks (types of work) which appear in our data. We performed various checks to verify that such grouping indeed makes sense. For example, we find that for any two items which appear on the same bid document, and which belong to the same task according to our grouping, the probability that both tasks are subcontracted (by the same contractor) if one of them is subcontracted is 89%. This number is only slightly lower from the one which obtains when the groups of tasks are formed on the basis of the first three digits of the task numbers (93%).

We use this final dataset where the bid information is arranged by project, by contractor
within project, and by item for each contractor and project, and where items are further charac-
terized by the type of work defined as explained above to study patterns in the subcontracting
behavior. We summarize our finding in the next section.

3.2 Descriptive Data Analysis

In this section we provide a number of statistics summarizing the data in general and the
subcontracting activity reflected in the data specifically.

3.2.1 General Summary Statistics

Table 1 provides general summary statistics. It indicates that the projects vary in size quite sub-
stantially: from $190,000 on a lower end to $10,670,000 on the upper end of the size distribution
with the median project’s value equal to $700,000. Projects further differ in the allowed duration
which ranges from one to eight months with the median duration equal to 50 days. Engineering
description breaks the project into items with the number of items ranging from 14 to 57 and
the median number of items given by 22. Our algorithm for aggregating items into tasks which is
described above indicates that the project on average consists of four tasks (the average number
of tasks is 3.77 and the median number is 4). Also, an auction on average attracts 5 bidders (the
median number of bidders is 4 with smaller projects attracting higher number of participants).

The table further reports statistics traditionally considered in auction markets. The variable
“money-left-on-the table” is constructed as the difference between the lowest and second lowest
bid divided by the lowest bid: \(\frac{\text{rank2} - \text{rank1}}{\text{rank1}} \). It reflects the level of uncertainty about contractors’
costs or informational asymmetries in the market. In our data, the second lowest bid is on average
9% higher than the winning bid. This is comparable to other datasets used to study highway
procurement market. Information asymmetries can also be seen from the relative difference of the
winning bid to the engineer’s estimate. The winning bid is on average 7% below the engineer’s
estimate.

3.2.2 Subcontracting Activity

Table 2 summarizes subcontracting activity recorded in our data. The table indicates that sub-
contracting is very prevalent in this market. Indeed, if we consider an indicator variable which
Table 1: General Summary Statistics

<table>
<thead>
<tr>
<th></th>
<th>Project Size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
</tr>
<tr>
<td>Engineer’s estimate (in mln)</td>
<td>Mean</td>
</tr>
<tr>
<td></td>
<td>Median</td>
</tr>
<tr>
<td></td>
<td>S.D.</td>
</tr>
<tr>
<td>Working days</td>
<td>Mean</td>
</tr>
<tr>
<td></td>
<td>Median</td>
</tr>
<tr>
<td></td>
<td>S.D.</td>
</tr>
<tr>
<td># items</td>
<td>Mean</td>
</tr>
<tr>
<td></td>
<td>Median</td>
</tr>
<tr>
<td></td>
<td>S.D.</td>
</tr>
<tr>
<td># tasks</td>
<td>Mean</td>
</tr>
<tr>
<td></td>
<td>Median</td>
</tr>
<tr>
<td></td>
<td>S.D.</td>
</tr>
<tr>
<td># contractors</td>
<td>Mean</td>
</tr>
<tr>
<td></td>
<td>Median</td>
</tr>
<tr>
<td></td>
<td>S.D.</td>
</tr>
<tr>
<td>Money-left-on-the-table (%)</td>
<td>Mean</td>
</tr>
<tr>
<td></td>
<td>Median</td>
</tr>
<tr>
<td></td>
<td>S.D.</td>
</tr>
<tr>
<td>(estimate-bid1)/estimate (%)</td>
<td>Mean</td>
</tr>
<tr>
<td></td>
<td>Median</td>
</tr>
<tr>
<td></td>
<td>S.D.</td>
</tr>
</tbody>
</table>

Notes: This table reports statistics summarizing general features of the data.
Table 2: Summary Statistics on Subcontracting

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>Small</th>
<th>Medium</th>
<th>Large</th>
</tr>
</thead>
<tbody>
<tr>
<td># contractors</td>
<td>mean</td>
<td>4.94</td>
<td>5.18</td>
<td>4.83</td>
</tr>
<tr>
<td>(per project)</td>
<td>median</td>
<td>4.00</td>
<td>4.00</td>
<td>4.00</td>
</tr>
<tr>
<td></td>
<td>s.d.</td>
<td>2.68</td>
<td>3.18</td>
<td>2.68</td>
</tr>
<tr>
<td>Instance of subcontracting</td>
<td>mean</td>
<td>0.95</td>
<td>0.88</td>
<td>0.94</td>
</tr>
<tr>
<td>(per contractor×project)</td>
<td>median</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>s.d.</td>
<td>0.21</td>
<td>0.33</td>
<td>0.23</td>
</tr>
<tr>
<td>% subcontracted items</td>
<td>mean</td>
<td>0.38</td>
<td>0.38</td>
<td>0.40</td>
</tr>
<tr>
<td>(per contractor×project)</td>
<td>median</td>
<td>0.35</td>
<td>0.35</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td>s.d.</td>
<td>0.21</td>
<td>0.25</td>
<td>0.22</td>
</tr>
<tr>
<td>% value subcontracted</td>
<td>mean</td>
<td>0.29</td>
<td>0.24</td>
<td>0.28</td>
</tr>
<tr>
<td>(per contractor×project)</td>
<td>median</td>
<td>0.22</td>
<td>0.20</td>
<td>0.19</td>
</tr>
<tr>
<td></td>
<td>s.d.</td>
<td>0.27</td>
<td>0.23</td>
<td>0.26</td>
</tr>
<tr>
<td>% subcontracted tasks</td>
<td>mean</td>
<td>0.43</td>
<td>0.41</td>
<td>0.44</td>
</tr>
<tr>
<td>(per contractor×project)</td>
<td>median</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>s.d.</td>
<td>0.31</td>
<td>0.34</td>
<td>0.31</td>
</tr>
<tr>
<td>% value subcontracted (task)</td>
<td>mean</td>
<td>0.08</td>
<td>0.12</td>
<td>0.10</td>
</tr>
<tr>
<td>(per contractor×project)</td>
<td>median</td>
<td>0.04</td>
<td>0.06</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>s.d.</td>
<td>0.12</td>
<td>0.15</td>
<td>0.13</td>
</tr>
<tr>
<td># subcontractors</td>
<td>mean</td>
<td>12.60</td>
<td>7.95</td>
<td>9.56</td>
</tr>
<tr>
<td>(per project)</td>
<td>median</td>
<td>10.00</td>
<td>7.00</td>
<td>9.00</td>
</tr>
<tr>
<td></td>
<td>s.d.</td>
<td>7.84</td>
<td>4.01</td>
<td>4.35</td>
</tr>
<tr>
<td># subcontractors</td>
<td>mean</td>
<td>4.68</td>
<td>2.77</td>
<td>3.38</td>
</tr>
<tr>
<td>(per contractor×project)</td>
<td>median</td>
<td>4.00</td>
<td>3.00</td>
<td>3.00</td>
</tr>
<tr>
<td></td>
<td>s.d.</td>
<td>3.07</td>
<td>1.39</td>
<td>1.68</td>
</tr>
<tr>
<td># contractors</td>
<td>mean</td>
<td>1.90</td>
<td>1.83</td>
<td>1.82</td>
</tr>
<tr>
<td>(per subcontractor×project)</td>
<td>median</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>s.d.</td>
<td>1.40</td>
<td>1.58</td>
<td>1.32</td>
</tr>
</tbody>
</table>

Notes: This table reports statistics characterizing subcontracting activity in this market.
Table 3: Subcontracting Activity by Task

<table>
<thead>
<tr>
<th></th>
<th>Electrical and Marking</th>
<th>Area Signs</th>
<th>Traffic Control System</th>
<th>Water Pollution Control</th>
</tr>
</thead>
<tbody>
<tr>
<td># unique items</td>
<td>813</td>
<td>335</td>
<td>4</td>
<td>130</td>
</tr>
<tr>
<td># unique items mean (per project)</td>
<td>2.76</td>
<td>6.63</td>
<td>1.00</td>
<td>1.16</td>
</tr>
<tr>
<td>(per project) s.d.</td>
<td>3.82</td>
<td>3.90</td>
<td>0.04</td>
<td>0.76</td>
</tr>
<tr>
<td>% subcontracted mean (per contractor)</td>
<td>0.31</td>
<td>0.48</td>
<td>0.52</td>
<td>0.30</td>
</tr>
<tr>
<td>(per contractor) s.d.</td>
<td>0.46</td>
<td>0.50</td>
<td>0.50</td>
<td>0.46</td>
</tr>
</tbody>
</table>

Notes: This table summarizes several specialized tasks which we construct using our item aggregation method.

is equal to one if a given contractor subcontracts at least one item for a given project then an average value of this variable across contractors and across projects is 0.95 whereas a median value of within project average of such variable is one. This means that in a median project every contractor subcontracts at least one item. Further, the analysis indicates that contractors tend to subcontract close to 40% of items (30% of project value) when bidding for a project on average.

Interestingly, when we compute, for a given task, a fraction of projects with this task that a given contractor subcontracts, and then study the value of this variable across contractors, we find that an average contractor subcontracts a given task roughly 40% of the time. This indicates that subcontracting decisions are not driven by firm’s capability to perform this task. Rather, it appears to be a more flexible decision which reflects contractors’ incentives to modify their costs given the economic conditions associated with a given project. Table 3 investigates subcontracting activity for several specialized tasks. The results indicate that the intensity of subcontracting activity varies across task with some tasks subcontracted more frequently than others.

Returning to Table 2. The table indicates that the average number of distinct subcontractors appearing on the bid documents for a given project is on average equal to 13 (median number is 10) whereas an average number of contractors on a given project is 5 (median number is 4). This indicates that some contractors employ the same subcontractor. Indeed, such occurrence is very prevalent is the data. As the table shows, on average a given subcontractor appears on the bid documents of the two distinct contractors participating in the same auction.

We now look at the differences in item-level bids across bidders. Table 4 shows summary statistics for the difference in item-level bids (in absolute value) across pair of bidders who are
Table 4: Item-Level Bid Difference

<table>
<thead>
<tr>
<th></th>
<th>all</th>
<th>both do not subcontract</th>
<th>only one subcontract</th>
<th>both subcontract</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observations</td>
<td>46330</td>
<td>27657</td>
<td>9836</td>
<td>8837</td>
</tr>
<tr>
<td>mean</td>
<td>0.58</td>
<td>0.66</td>
<td>0.54</td>
<td>0.38</td>
</tr>
<tr>
<td>s.d.</td>
<td>0.98</td>
<td>1.06</td>
<td>0.90</td>
<td>0.72</td>
</tr>
<tr>
<td>25th percentile</td>
<td>0.11</td>
<td>0.14</td>
<td>0.10</td>
<td>0.06</td>
</tr>
<tr>
<td>50th percentile</td>
<td>0.32</td>
<td>0.38</td>
<td>0.30</td>
<td>0.18</td>
</tr>
<tr>
<td>75th percentile</td>
<td>0.65</td>
<td>0.71</td>
<td>0.61</td>
<td>0.44</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.33</td>
</tr>
</tbody>
</table>

Notes: The difference is computed as the difference in item-level bids (in absolute value) across pair of bidders who are randomly chosen from a set of participants for each auction. The difference is reported as a fraction of the lowest among the two item-level bids.

randomly chosen from the set of participants for each auction. We observe that median difference between the item-level bids from two different bidders is 32%. The difference is the biggest when the two bidders do not subcontract the item (median equal to 38%), and the smallest when the two subcontract the item using the same subcontractor (median is equal to 12%). Conditional on both contractors subcontracting the item, 60% share the same subcontractor. Of those who subcontract the item using the same subcontractor, 14% have a difference of 0 and 45% have a difference of less than 10%.

3.3 Preliminary Regression Analysis

Here we explore the relationship between the bids and subcontracting decisions in a regression analysis. The data analysis summarized in the previous sections indicates that contractors are likely to use subcontracting in order to improve competitiveness of their bids. While we expect the presence of subcontracting opportunities to lower the contractor’s cost, and therefore his bid, the correlation between the prime contractor’s final bid and the decision to subcontract part of the project, in theory, can go either way. Indeed, a contractor may subcontract because his own cost realization is high or because he is presented with an attractive subcontracting offer. To fix ideas, consider the following simple example. Say the project involves only one task and that bidders have the option to subcontract it. Bidders subcontract the task
<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>constant</td>
<td>1.098***</td>
<td>1.110***</td>
<td>1.101***</td>
<td>1.175***</td>
<td>1.191***</td>
<td>1.180***</td>
<td>1.274***</td>
<td>1.277***</td>
<td>1.264***</td>
</tr>
<tr>
<td></td>
<td>(0.015)</td>
<td>(0.012)</td>
<td>(0.015)</td>
<td>(0.028)</td>
<td>(0.026)</td>
<td>(0.028)</td>
<td>(0.123)</td>
<td>(0.122)</td>
<td>(0.123)</td>
</tr>
<tr>
<td>eng. estimate</td>
<td>0.189</td>
<td>0.167</td>
<td>0.178</td>
<td>−0.011</td>
<td>−0.047</td>
<td>−0.040</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.473)</td>
<td>(0.472)</td>
<td>(0.472)</td>
<td>(0.501)</td>
<td>(0.500)</td>
<td>(0.500)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>days</td>
<td>0.148***</td>
<td>0.141***</td>
<td>0.144***</td>
<td>0.189**</td>
<td>0.195***</td>
<td>0.196***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.054)</td>
<td>(0.054)</td>
<td>(0.054)</td>
<td>(0.075)</td>
<td>(0.075)</td>
<td>(0.075)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>num. items</td>
<td>−0.001**</td>
<td>−0.001*</td>
<td>−0.001*</td>
<td>−0.001</td>
<td>−0.000</td>
<td>−0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>num. bidders</td>
<td>−0.015***</td>
<td>−0.016***</td>
<td>−0.016***</td>
<td>−0.012***</td>
<td>−0.013***</td>
<td>−0.013***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.004)</td>
<td>(0.004)</td>
<td>(0.004)</td>
<td>(0.004)</td>
<td>(0.004)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% value subcontracted</td>
<td>0.001</td>
<td>0.049</td>
<td>0.001</td>
<td>0.051</td>
<td>0.000</td>
<td>0.044</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.044)</td>
<td>(0.049)</td>
<td>(0.044)</td>
<td>(0.049)</td>
<td>(0.044)</td>
<td>(0.049)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% value same subcontractor</td>
<td>−0.157*</td>
<td>−0.199**</td>
<td>−0.170**</td>
<td>−0.211**</td>
<td>−0.158*</td>
<td>−0.193**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.082)</td>
<td>(0.092)</td>
<td>(0.082)</td>
<td>(0.092)</td>
<td>(0.083)</td>
<td>(0.092)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>time FE</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>region FE</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>work type FE</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>observations</td>
<td>1160</td>
<td>1160</td>
<td>1160</td>
<td>1160</td>
<td>1160</td>
<td>1160</td>
<td>1160</td>
<td>1160</td>
<td>1160</td>
</tr>
</tbody>
</table>

Notes: The dependent variable is the normalized bid: bid/estimate. Standard errors in parenthesis. ***, **, * denote significance at the 1%, 5% and 10% level.
if the subcontracting price is below the bidders’ own cost of performing the task. Furthermore, suppose there are two contractors and only one subcontractor. Let \(i = A, B \) denote contractors. Let \(c^i \) and \(c_s \) be independent random variables denoting contractor \(i \)'s own cost and the subcontractor’s quote for the task, respectively. Let \(\text{subc}^i = 1\{c_s < c^i\} \) denote contractor \(i \)'s subcontracting decision. Then, bidder \(i \)'s project cost is given by

\[
c^i = \text{subc}^i \cdot c_s + (1 - \text{subc}^i) \cdot c^i.
\]

It is straightforward to show that the sign (and magnitude) of the correlation between the final cost, \(c^i \), and the subcontracting decision, \(\text{subc}^i \), depends on the shapes of distributions of \(c^i \) and \(c_s \). As an illustration consider the following three cases: (i) \(c^i \sim U[0, 1], c_s \sim U[0, 1] \); (ii) \(c^i \sim U[0, 1], c_s \sim U[0, 2] \); and, (iii) \(c^i \sim U[0, 2], c_s \sim U[0, 1] \). We can then show that \(\text{corr}(c^i, \text{subc}^i) = 0 \) under case (i); \(\text{corr}(c^i, \text{subc}^i) < 0 \) under (ii); and \(\text{corr}(c^i, \text{subc}^i) > 0 \) under (iii). The intuition is simple. In the data, it is difficult to distinguish between \(i \)'s subcontracting decision resulting from \(i \) receiving a high cost draw or a low subcontracting quote. While, on the one hand, we cannot make a prediction on the sign of \(\text{corr}(c^i, \text{subc}^i) \), on the other, the correlation between bidder \(i \)'s final cost, \(c^i \), and the subcontracting decision of \(i \)'s rival who is using the same subcontractor is expected to be negative if subcontractors compete for the right to appear on the bid document.\(^2\) The intuition, again, is simple. Indeed, the fact that \(i \)'s rival is subcontracting and is using this specific subcontractor increases the likelihood that \(i \) is facing a low subcontracting quote.

To investigate the relationship between bids and subcontracting decisions, we run reduced-form regressions in which the dependent variable is the bid normalized by the engineer’s estimate (i.e., bid/estimate) and our measure of subcontracting is the fraction of the contractor’s bid that is subcontracted.\(^3\) Additionally, to capture the fact that bidders sometimes share the same subcontractor we construct a variable that measures the fraction of the bid that is being subcontracted with subcontractors also listed by the bidder’s rivals.\(^4\) We report the results in Table 5. We see that subcontracting has a positive, but not significant, effect on bids. On the other hand, as expected, a contractor’s bid is negatively related to the fraction of the project’s value that subcontracted with shared subcontractors. The previous results are robust across different specifications in which we incrementally control for project characteristics, the number of

\(^{2}\)In the three cases considered above, it is straightforward to show that \(\text{corr}(c^i, \text{subc}^{-i}) < 0 \).

\(^{3}\)In the regressions we only use one (randomly selected) bid per auction and thus, the sample size equals the number auctions. Results don’t change when we use all bids.

\(^{4}\)The match is done on an item-level basis, and the value then is aggregated at the project-bidder level.
Table 6: Item-Level Bids and Subcontracting

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>constant</td>
<td>0.906***</td>
<td>0.905***</td>
<td>0.904***</td>
<td>0.902***</td>
<td>0.902***</td>
</tr>
<tr>
<td></td>
<td>(0.072)</td>
<td>(0.072)</td>
<td>(0.072)</td>
<td>(0.073)</td>
<td>(0.073)</td>
</tr>
<tr>
<td>eng. estimate</td>
<td>0.095</td>
<td>0.097</td>
<td>0.096</td>
<td>0.110</td>
<td>0.109</td>
</tr>
<tr>
<td></td>
<td>(0.131)</td>
<td>(0.131)</td>
<td>(0.131)</td>
<td>(0.132)</td>
<td>(0.132)</td>
</tr>
<tr>
<td>days</td>
<td>0.019</td>
<td>0.019</td>
<td>0.019</td>
<td>0.019</td>
<td>0.019</td>
</tr>
<tr>
<td></td>
<td>(0.030)</td>
<td>(0.029)</td>
<td>(0.030)</td>
<td>(0.029)</td>
<td>(0.029)</td>
</tr>
<tr>
<td>num. items</td>
<td>−0.000</td>
<td>−0.000</td>
<td>−0.000</td>
<td>−0.000</td>
<td>−0.000</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>num. bidders</td>
<td>0.005**</td>
<td>0.005**</td>
<td>0.005**</td>
<td>0.005*</td>
<td>0.005*</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>subcontracted</td>
<td>−0.002</td>
<td>0.005</td>
<td>0.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.007)</td>
<td>(0.006)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>same subcontractor</td>
<td>−0.014*</td>
<td>−0.018**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td>(0.008)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% items same subcontractor</td>
<td></td>
<td></td>
<td>−0.079**</td>
<td>−0.081**</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.034)</td>
<td>(0.034)</td>
<td></td>
</tr>
<tr>
<td>time FE</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>region FE</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>work type FE</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>observations</td>
<td>46756</td>
<td>46756</td>
<td>46756</td>
<td>46756</td>
<td>46756</td>
</tr>
</tbody>
</table>

Notes: Dependent variable is normalized item-level bids. Standard errors in parenthesis. Standard errors clustered at the auction level. ***, **, * denote significance at the 1%, 5% and 10% level.
bidders, and time, region, and work type fixed effects.

We also explore the relationship between bids and subcontracting decisions at a item level. The results are shown in Table 6. The left-hand-side variable is the item-level normalized bid, where the normalization is done on an item-by-item basis. The variable ‘subcontracted’ is a dummy variable that equals 1 if the contractor has chosen to subcontract the item. To capture common subcontractors across bidders we use a dummy variable that equals 1 if there is another bidder in the auction that is listing the same subcontractor for the same item. Alternatively, we also use the fraction of items for which the bidder lists a subcontractor also listed by his rivals. In all the regressions we cluster the standard errors at the auction-bidder level. Similarly to what we found in the previous regressions, there is no effect of the bidder’s choice to subcontract an item on the submitted bid for that item; but when the subcontractor is also listed by one of the contractor’s rivals, we find that the effect is negative and significant, as expected. We find similar results if we instead use the fraction of items that feature a common subcontractor.

3.4 Summary and Modeling Implications

The descriptive analysis summarized above highlights several patterns which guide our modeling of subcontracting process in this market. Specifically, on the basis of this analysis we conclude that

1. For each task, contractors choose to subcontract or not on the project-by-project basis. The decision most likely depends on contractor’s own cost of performing the task in house as well as economic conditions associated with a given project and a subcontracting market for a given task.

2. Subcontractors compete for the opportunity to work with a given contractor (this is indicated by regression analysis). We therefore model subcontracting stage as a secondary auction run by each contractor and for each task. At this stage we abstract away from subcontractors’ participation decisions and assume that all subcontractors qualified for a given task (available during the time of project for which project is scheduled) participate in all subcontracting auctions for this task.

3. The subcontracting decisions are not based on straightforward comparison of price quotes such as we would see in the first price auction. It they were, we would observe (a) the same subcontractor being employed by all subcontracting contractors. Also, we would tend to see (b) the same subcontractor charging the same price to different contractors (for this
we would also need main contractors to be symmetric in their cost distributions). The regularities (a) and (b) do not hold in the data. Different prices could potentially be rationalized by asymmetries between primary contractors. However, even in this case the same contractor would be engaged by all subcontracting contractors. Notice that this regularity cannot be driven by subcontractor’s capacity constraints since only one contractor will eventually win the project. To account for this regularity we model subcontracting auction as an auction with preferential treatment where primary contractor may accept a bid which is higher by a certain margin than the lowest bid in the subcontracting auction if this bid is submitted by a preferred subcontractor (more details on this are provided in the model section). Such a preference may be given if a subcontractor has better reputation or if contractor has previous experience of working with this subcontractor. Of course, the features we observe in the data could be rationalized in a different way. For example, it is possible that the subcontractor’s cost for the task differs across contractors. However, if the model where contractor-subcontractor differences in costs are private information is intractable whereas the model where such differences are commonly known is equivalent to our setting. We therefore believe that our approach represent a reasonable first approximation of this environment.

4 Auction Model with Subcontracting

In this section we present a first-price (procurement) auction model in which bidders are allowed to subcontract part of the project. We analyze both the optimal bidding strategies for contractors in the primary market, and the optimal pricing strategies for subcontractors in the secondary market. The auction consists of two stages. In the first stage the contractors draw their costs for task one and simultaneously hold subcontracting auctions for task two. At the end of this stage contractors’ costs are realized. Then in stage two contractors construct their bids, submit them to auctioneer and the winner of the primary auction is determined. Notice that here we maintain the rule imposed in most US government procurement auctions that the subcontracting decisions have to finalized prior to the main auction.

The interrelationship between the primary and subcontracting markets adds several key features that differentiate our model from a standard first-price auction model. On the one hand, subcontractors: (i) internalize the fact that their quotes affect the contractors’ likelihood of winning the project; and (ii) take into account that winning an engagement with a given contractor
does not necessary result in them working on the project. On the other hand, primary contractors: (i) use subcontracting to modify their costs realizations, and (ii) take into account the information about rivals’ costs contained in subcontractors’ prices.

We begin with a simplified setting (two tasks, two main contractors, two subcontractors) in order to highlight the new issues introduced by allowing for subcontracting. The simple model can be generalized in a straightforward way to allow for the number of tasks, the number of primary contractors and/or the number of subcontractors to be greater than two.

4.1 A Simple Model

To fix ideas, consider a special case where task one is always performed in house whereas task two is always subcontracted. The equilibrium characterization we present below generalizes to the case when contractor may choose to subcontract or not for both tasks. We’ll present the details for this more general setting in the future drafts of the paper.

Two ex-ante symmetric contractors (A and B) compete for the project. The letting process consists of two stages. In the first stage contractors prepare their bids. As part of this process they solicit quotes from subcontractors and decide which subcontractor to hire. We assume that both contractors interact with the same set of subcontractors (subcontractor R and T in this simplified example) and that contractors choose among subcontractors by implementing a discriminatory auction (details below). At this stage contractors also learn the realization of their own cost of implementing task one. In the second stage primary contractors prepare and submit their bids which reflect their subcontracting decisions, and the winner is determined.

We use \(c_{1,A} \) and \(c_{1,B} \) to denote contractors’ private costs for completing task one. We assume that \(c_{1,A}, c_{1,B} \) are drawn from the distribution \(F_{1}(\cdot) \) (with the associated density \(f_{1} > 0 \) and the support of \([c_{s}, c_{1}])\). Further, \(c_{s,R} \) and \(c_{s,T} \) denote private costs of subcontractors \(R \) and \(T \) for completing task two which are drawn from \(F_{s}(\cdot) \) (with associated density \(f_{s} > 0 \) and the support of \([c_{s}, c_{s}])\). We assume that the cost draws are independent across tasks, contractors, and subcontractors and that the distributions \(F_{1}(\cdot) \) and \(F_{s}(\cdot) \) are common knowledge to both contractors and subcontractors.

A pure strategy equilibrium of this auction game is summarized by two pairs of subcontracting pricing functions, \((Q_{AR}(\cdot), Q_{BR}(\cdot))\) and \((Q_{AT}(\cdot), Q_{BT}(\cdot))\), and two families of contractors’ bidding functions that are indexed by realized subcontracting prices, \(\{\beta(\cdot|q_{A}, q_{B}), \beta(\cdot, q_{B}, q_{A})\}_{(q_{A}, q_{B})} \). Here, \(Q_{i,j}(\cdot) : [c_{s}, c_{s}] \to R_{+} \) for \(j \in \{R, T\} \) and \(i \in \{A, B\} \) are the functions which map subcontracting costs realizations into the price a subcontractor
chooses to submit to a given contractor; \(\beta_i(\cdot) = \beta_i(\cdot | q_i, q_{-i}) : [c, \bar{c}] \to R^+ \) for \(i \in \{A, B\} \) are the function which map the points from the support of contractor \(i \)'s cost distribution into positive real numbers. We use \(q_i \) to denote the price quoted by the subcontractor that contractor \(i \) choses to hire. Bidding functions of contractors are indexed by the vector of subcontracting prices since own subcontracting price is an important determinant of contractor’s costs and since all subcontracting prices are known to all contractors.

Primary Auction. At the time of the primary auction the contractors’ costs of completing the project are realized. Specifically, contractor A’s cost of completing task one is \(c_{1,A} \); the costs of task two is given by \(q_A \) which is the price quoted by the subcontractor that contractor B chose to hire. Similarly, contractor B’s cost of completing task one is \(c_{1,B} \); the costs of task two is given by \(q_B \) which is the price quoted by the subcontractor that contractor B chose to hire. We assume that both contractors know \(q_A \) and \(q_B \) – we will clarify this point below. Due to this feature and because the realized cost of task two is potentially different across contractors, the contractors have asymmetric costs in the primary auction stage: \(c_A = c_{1,A} + q_A \) with \(c_A \propto F_1(c_A - q_A) \) and \(c_B = c_{1,B} + q_B \) with \(c_B \propto F_1(c_B - q_B) \).

Similar to the case of a first price auction, given that his rival contractor plays a strictly increasing pure strategy \(\beta_{-i}(\cdot) \), contractor \(i \) chooses his bidding strategy in such a way that for every possible cost draw from the support of \(F_1, \tilde{c} \in [c_1, \bar{c}] \), he chooses \(\beta_i(\tilde{c}) = \tilde{b} \) where

\[
\tilde{b} = \arg \max_b (b - \tilde{c} - q_i) \Pr(b \leq \beta_{-i}(c_1 + q_{-i})) \quad \text{or} \quad (1)
\]

\[
\tilde{b} = \arg \max_b (b - \tilde{c} - q_i) \int_{\tilde{c}} (1 - F_1(\beta_{-i}^{-1}(b) - q_{-i})) dF_1(c_1).
\]

The expression in (1) clarifies how own and rival subcontracting prices affect contractors’ bidding strategies. Specifically, for a given own bid \(\tilde{b} \) the rival’s subcontracting price shifts the contractor’s probability of winning. In contrast, own subcontracting price shifts own cost of completing the job and thus ex-post profitability conditional on winning and on own bid. To summarize, in this this subgame, contractors play a BNE in strictly increasing strategies.

For the purpose of characterizing subcontracting pricing decisions let \(p(q_i, q_{-i}) \) denote the probability of contractor \(i \) winning the primary auction in the BNE for a given vector of realized subcontracting prices \((q_i, q_{-i}) \):

\[
p(q_i, q_{-i}) = \Pr(\beta_i(c_{1,i} + q_i) < \beta_{-i}(c_{1,-i} + q_{-i})).
\]
Due to contractors being ex-ante symmetric in their costs of completing task one, it is straightforward to establish that

- \(p(q_i, q_{-i}) \) in fact depends only on the difference \(q_i - q_{-i} \),
- \(p(q_i, q_{-i}) > 0.5 \) if \(q_i < q_{-i} \) and \(p(q_i, q_{-i}) \leq 0.5 \) if \(q_i \geq q_{-i} \),
- \(p(q_i, q_{-i}) \) is 1 when \(q_i - q_{-i} \) is small enough, and \(p(q_i, q_{-i}) \) is 0 when \(q_i - q_{-i} \) is large enough,
- \(p(q_i, q_{-i}) \) is non-increasing in \(q_i \) and is non-decreasing in \(q_{-i} \); when \(0 < p(q_i, q_{-i}) < 1 \), the probability \(p(q_i, q_{-i}) \) is strictly decreasing in \(q_i \) and is strictly increasing in \(q_{-i} \),
- \(p(q, \tilde{q}) + p(\tilde{q}, q) = 1 \).

These probabilities will be taken into account by subcontractors when they make their decision about submitting quotes.

Sometimes it will be convenient for us to use two separate notations for the probability of contractor \(i \) winning primary auction for a given vector of realized subcontracting prices \((q_i, q_{-i})\). Specifically, let \(p_1(q_i, q_{-i}) \) be the probability that contractor \(i \) wins when \(q_i \leq q_{-i} \) and \(p_2(q_i, q_{-i}) \) be the probability that contractor \(i \) wins when \(q_i > q_{-i} \). Obviously,

\[
p(q_i, q_{-i}) = p_1(q_i, q_{-i}) \cdot 1(q_i \leq q_{-i}) + p_2(q_i, q_{-i}) \cdot 1(i > q_{-i}).
\]

Subcontracting Stage. The search for subcontractor is implemented through a discriminatory auction by each contractor. Specifically, we allow for contractor A to have some preference for subcontractor T – at this point, we do not clarify the reasons for such preference but it may arise due to reputation or quality considerations, or because of prior interactions with a given subcontractor. We assume that the preference of contractor A for subcontractor T is captured by the discount \(\delta_{AT} \) such that when considering two quotes, \(q_{AT} \) and \(q_{AR} \), contractor A will choose subcontractor T if \(q_{AT} \) (the quote from subcontractor T) does not exceed \(q_{AR} \) (the quote from subcontractor R) by more than \(\delta_{AT} \), i.e. \(q_{AT} \leq q_{AR} + \delta_{AT} \). Notice that contractor’s preferences can be summarized by a single number \(\delta_{AT} \) since \(\delta_{AR} \) should be equal to \(-\delta_{AT}\) given the rule described above. In this example, we further simplify the situation by assuming that contractor A prefers subcontractor T (meaning that \(\delta_{AT} > 0 \)) whereas contractor B prefers subcontractor R (meaning that \(\delta_{BR} > 0 \)) and that \(\delta_{AT} = \delta_{BR} = \delta > 0 \).

Further, as was mentioned before we maintain that all qualified subcontractors submit quotes to all primary contractors’ secondary auctions. The subcontracting stage is thus consists of two
simultaneous discriminatory auctions (run by contractors A and B correspondingly). In this stage each subcontractor prepares two price quotes: one for the auction run by contractor A, \((Q_{A,j}(\cdot))\), and the other one for the auction run by contractor B, \((Q_{B,j}(\cdot))\). Quotes submitted in these auctions by any given subcontractor \(j\) are based on the same cost realization \(c_{s,j}\) which he draws from the distribution \(F_S(\cdot)\), \((q_{A,j} = Q_{A,j}(c_{s,j}), q_{B,j} = Q_{B,j}(c_{s,j})\)). These quotes are therefore related. However, they are not necessarily identical due to the difference in main contractors’ preferences. Recall that \(q_i\) denotes the subcontracting quotes chosen by contractor A. Therefore, \(q_A = q_{AT}\) if \(q_{AT} \leq q_{AR} + \delta_{AT}\) and \(q_A = q_{AR}\) otherwise. Similarly, \(q_B = q_{BR}\) if \(q_{BR} \leq q_{BT} + \delta_{BR}\) and \(q_B = q_{BT}\) otherwise.

Characterizing Equilibrium Subcontracting Price Functions. In this analysis we assume that contractors’ preferences are common knowledge. This means that in monotone pricing equilibrium each contractor is informed about the subcontracting quotes that his rival receives since he can invert the quotes which are submitted to him to learn subcontractors’ costs and then use the costs to compute subcontracting quotes submitted to his rival. This is related to our earlier comment that in the primary auction \(q_A\) and \(q_B\) can be considered common knowledge.

Notice that contractors and subcontractors are ex-ante symmetric in this setting (given the assumption \(\delta_{AT} = \delta_{BR} = \delta\)). Thus, subcontractors are using symmetric pricing strategies in the equilibrium. We use \(Q_+(\cdot)\) and \(Q_-(\cdot)\) to denote subcontractor’s pricing strategies in the auction where he is a preferred and where is not a preferred participant correspondingly, so that \(Q_{AT}(\cdot) = Q_+(\cdot), Q_{BT}(\cdot) = Q_-(\cdot)\) and \(Q_{AR}(\cdot) = Q_-(\cdot), Q_{BR}(\cdot) = Q_+(\cdot)\).

It is easy to show that subcontractor will not submit quotes such that he would win an auction where he is not preferred and lose an auction where he is preferred (indeed, he can do improve the outcome by submitting in the auction where he is preferred by contractor the quote he submitted in the auction where he is not preferred by contractor plus \(\delta\).) For example, it easy to show that in a symmetric Bayesian Nash equilibrium \(q_{AR} \leq q_{BR} \leq q_{AR} + \delta\) and \(q_{BT} \leq q_{AT} \leq q_{BT} + \delta\).

We describe the interim profit function and the necessary first order conditions for subcontractor R below. The profit function for subcontractor T could be characterized in a similar
\[\Pi_R(c_{s,R}, q_{AR}, q_{BR}) = (q_{AR} - c_{s,R}) Pr(R \text{ wins } A \text{ and } B; A \text{ wins over } B) \]
\[+ (q_{BR} - c_{s,R}) Pr(R \text{ wins } A \text{ and } B; B \text{ wins over } A) \]
\[+ (q_{BR} - c_{s,R}) Pr(R \text{ wins } B \text{ and loses } A; B \text{ wins over } A). \]

Here we already accounted for the fact that in the equilibrium that we consider subcontractor \(R \) may not win secondary auction \(A \) (where \(R \) is less preferred) and lose auction \(B \) (where \(R \) is more preferred).

Taking that subcontractor \(T \) plays pure strategy \((Q_{AT}(\cdot), Q_{BT}(\cdot))\) with both functions being strictly increasing, this can be re-written as

\[\Pi_R(c_{s,R}, q_{AR}, q_{BR}) = \pi_1(c_{s,R}, q_{AR}, q_{BR}) (1 - F_s(\xi_{AT}(q_{AR} + \delta))) \]
\[+ (q_{BR} - c_{s,R}) \cdot \int_{\xi_{BT}(q_{BR}-\delta)}^{\xi_{AT}(q_{AR}+\delta)} p(q_{BR}, Q_{AT}(c_{s,T})) f_s(c_{s,T}) dc_{s,T} \]

Here \(\xi_{A,j}(\cdot) \) and \(\xi_{B,j}(\cdot) \) denote the inverses of pricing functions used by subcontractor \(j \); \(\pi_1(c_{s,R}, q_{AR}, q_{BR}) \) is the expected profit of \(R \) conditional on winning both subcontracting auctions with quotes \(q_{AR} \) and \(q_{BR} \):

\[\pi_1(c_{s,R}, q_{AR}, q_{BR}) \equiv (q_{AR} - c_{s,R})p(q_{AR}, q_{BR}) + (q_{BR} - c_{s,R})p(q_{BR}, q_{AR}), \]

or taking into account that in the best response behavior we consider \(q_{AR} \leq q_{BR} \), we can write that \(\pi_1(c_{s,R}, q_{AR}, q_{BR}) = (q_{AR} - c_{s,R})p(q_{AR}, q_{BR}) + (q_{BR} - c_{s,R})p(q_{BR}, q_{AR}) \). The term \((1 - F_s(\xi_{AT}(q_{AR} + \delta)))\) in \(\Pi_R \) reflects the probability that \(R \) wins the subcontracting auction where he is less preferred which means that in this case he wins both auctions (see the discussion above) – in other words, this is the probability of the event that \(\{c_{s,T} : q_{AR} + \delta \leq Q_{AT}(c_{s,T})\} = \{c_{s,T} : \xi_{AT}(q_{AR} + \delta) \leq c_{s,T}\} \). The second term in \(\Pi_R \) represent the case when subcontractor \(R \) only wins secondary auction \(B \), where he is preferred. This is the event \(\{c_{s,T} : q_{AR} + \delta > Q_{AT}(c_{s,T}) \text{ and } q_{BR} \leq Q_{BT}(c_{s,T}) + \delta\} = \{c_{s,T} : \xi_{BT}(q_{BR} - \delta) \leq c_{s,T} < \xi_{AT}(q_{AR} + \delta)\} \). Note that if \(0 \leq Q_{AT}(\cdot) - Q_{BT}(\cdot) \leq \delta \), then in the best response behavior by \(R \) we necessarily have that \(0 \leq q_{BR} - q_{AR} \leq \delta \) and thus, \(q_{AR} + \delta - (q_{BR} - \delta) \geq \delta \), which implies that \(\xi_{AT}(q_{AR} + \delta) \geq \xi_{BT}(q_{BR} - \delta) \). If \(0 \leq q_{BR} - q_{AR} < \delta \), then we have the strict inequality \(\xi_{AT}(q_{AR} + \delta) > \xi_{BT}(q_{BR} - \delta) \). Thus, in the equilibrium that we consider the integral in the second term in \(\Pi_R \) the lower integration limit does not in fact exceed
the upper integration limit. The integrand in that term captures the probability of B winning in the primary auction against A with the quote $Q_{AT}(c_{s,T})$.

It is also worth mentioning that in circumstances when subcontractor R only wins secondary auction B, two cases are possible: (i) subcontractor R quote in auction B is lower than the winning quote of subcontractor T in auction A; (ii) subcontractor R quote in auction B is higher than the winning quote of subcontractor T in auction A. Both cases are possible since both subcontractors are preferred in the secondary auctions which they win. To reflect these two possibilities, we can rewrite the second term in the expression for Π_R as follows:

$$
(q_{BR} - c_{s,R}) \cdot \int_{\xi_{BT}(q_{BR}-\delta)}^{\xi_{AT}(q_{BR}+\delta)} p(q_{BR}, Q_{AT}(c_{s,T})) f_s(c_{s,T}) \, dc_{s,T} = \int_{\xi_{AT}(q_{BR}+\delta)}^{\xi_{AT}(q_{BR})} p_2(q_{BR}, Q_{AT}(c_{s,T})) f_s(c_{s,T}) \, dc_{s,T} + \int_{\xi_{AT}(q_{BR})}^{\xi_{AT}(q_{BR}-\delta)} p_1(q_{BR}, Q_{AT}(c_{s,T})) f_s(c_{s,T}) \, dc_{s,T}.
$$

The price quotes chosen by subcontractor R should satisfy the following first order necessary conditions. The function π_1 defined above depends on three arguments. Let us use generic notations x_1, x_2 and x_3 when writing the expressions for partial derivatives of this function.

Fist, we differentiate $\Pi(c_{s,R}, q_{AR}, q_{BR})$ with respect to q_{BR} and obtain the first F.O.C. equation:

$$
\frac{\partial \pi_1(c_{s,R}, q_{AR}, x_3)}{\partial x_3} \bigg|_{x_3=q_{BR}} \cdot (1 - F_s(\xi_{AT}(q_{AR}+\delta))) + \int_{\xi_{AT}(q_{AR}+\delta)}^{\xi_{AT}(q_{AR})} p(q_{BR}, Q_{AT}(c_{s,T})) f_s(c_{s,T}) \, dc_{s,T} + (q_{BR} - c_{s,R}) \cdot \int_{\xi_{BT}(q_{BR}-\delta)}^{\xi_{AT}(q_{AR}+\delta)} \frac{\partial p(q_i, Q_{AT}(c_{s,T}))}{\partial q_i} \bigg|_{q_i=q_{BR}} f_s(c_{s,T}) \, dc_{s,T}
$$

$$
- (q_{BR} - c_{s,R}) \cdot p(q_{BR}, Q_{AT}(\xi_{BT}(q_{BR}-\delta))) \cdot f_s(\xi_{BT}(q_{BR}-\delta)) \cdot \frac{d\xi_{BT}(q_{BR}-\delta)}{dq} = 0.
$$

Differentiating $\Pi_R(c_{s,R}, q_{AR}, q_{BR})$ with respect to q_{AR} obtains the second F.O.C. equation:

$$
\frac{\partial \pi_1(c_{s,R}, x_2, q_{BR})}{\partial x_2} \bigg|_{x_2=q_{AR}} \cdot (1 - F_s(\xi_{AT}(q_{AR}+\delta))) - (\pi_1(c_{s,R}, q_{AR}, q_{BR}) - (q_{BR} - c_{s,R}) \cdot p(q_{BR}, q_{AR}+\delta)) \cdot f_s(\xi_{AT}(q_{AR}+\delta)) \cdot \frac{d\xi_{AT}(q_{AR}+\delta)}{dq} = 0.
$$

Further, in the case of no simultaneity and no dynamics, it is known (see Mares and Swinkels (2014)) that there is an equilibrium in strictly monotone strategies such that the contractor who
is less preferred cannot win for costs high enough and at the threshold point the bid is equal to the cost. In our setting the situation is somewhat different. Suppose subcontractor R submits two quotes, \((q_{AR}, q_{BR})\), in auction A (where R is less preferred) and B (where R is more preferred), respectively; and suppose that the quotes are such that given the strategies of the rivals the situation when R loses B but wins A never happens and that \(q_{BR} > q_{AR}\). What if quotes are such that R wins B but loses A. To subcontractor R, this is both a bad and a good news: (a) this is a bad news because R will work on the project only if B wins the main auction; (b) this is a good news because, first, if R does end up working on the project, it is at a higher price and second, because A with the price \(Q_{AT}(c_{ST})\) is a weaker competitor part of the time, relative to the situation when he would have chosen quote \(q_{AR}\), because of the preferential treatment.

It is our conjecture that, as a result of the good news, the subcontractors bid less aggressively in the auctions where they are less preferred (relative to the case of no simultaneity and no dynamics) and, thus, in the equilibrium the quotes \(q_{AR}\) and \(q_{BR}\) are closer to each other than in the case with no dynamics and no simultaneity. Another consequence of the good news bit is that R’s bid at the cost value where he stops winning in auction A (threshold costs) is strictly higher than the cost. The threshold cost level and the corresponding price are such that R is indifferent between the bad news and the good news described above. With cost realization above the threshold R only can win subcontracting auction B. These findings are summarized in Theorem 3 presented below. This theorem is established under the following conditions related to the primary auction stage of the game.

Condition 1 is about the monotonicity of the interim revenue function in each quote conditional on the subcontractor winning both auctions.

Condition 1 The interim revenue function in each quote conditional on subcontractor \(j\) winning both auctions with quotes \(q_{Aj}\) and \(q_{Bj}\) respectively, which is

\[
q_{Aj}p(q_{Aj}, q_{Bj}) + q_{Bj}p(q_{Bj}, q_{Aj})
\]

is increasing in \(q_{Aj}\) and is increasing in \(q_{Bj}\).

Moreover,

- if \(p(q_{Aj}, q_{Bj}) > 0\), then this interim revenue function is locally strictly increasing in \(q_{Aj}\);
- if \(p(q_{Bj}, q_{Aj}) > 0\), then this interim revenue function is locally strictly increasing in \(q_{Bj}\).

Condition 1 is definitely satisfied when the distribution of costs for main contractors are uniform.
and will most likely hold for general distributions of those costs (this is something we are in the process of verifying).

Condition 2 Suppose the feasible quotes \(q_i, q'_i \) and \(q_{-i}, q'_{-i} \) for the primary contractors \(i \) and \(-i \), respectively, are such that

\[
q_i \leq q'_i, \quad q_{-i} \leq q'_{-i}, \quad q'_i \leq q_{-i}.
\]

Then

\[
(q'_i - q'_{-i})p(q'_i, q'_{-i}) - (q'_i - q_{-i})p(q_i, q_{-i}) \geq (q_i - q'_{-i})p(q_i, q'_{-i}) - (q_i - q_{-i})p(q_i, q_{-i}). \tag{4}
\]

Condition 2 is the condition on increasing differences of the function \((q_i - q_{-i})p(q_i, q_{-i})\). It definitely holds when primary contractors have uniform distribution for conducting task one as in this case we have a closed form for \(p(\cdot, \cdot) \). We are still working to see whether (4) will hold always or only under some properties on distribution \(F_1 \).

Theorem 3 Suppose Conditions 1 and 2 hold. Then there is a symmetric BNE in pure monotone strategies with the following properties:

(a) Strategy functions \(Q_{BR} \) and \(Q_{AT} \) are the same. Let us denote them as \(Q_+(\cdot) \) (strategy when preferred). \(Q_+(\cdot) \) is continuous and strictly increasing.

(b) Strategy functions \(Q_{BT} \) and \(Q_{AR} \) are the same. Let us denote them as \(Q_-(\cdot) \) (strategy when not preferred). \(Q_-(\cdot) \) is continuous and strictly increasing.

(c) For \(\delta > 0 \) small enough we have \(c^* \in (\underline{c}_s, \overline{c}_s) \) such that \(Q_-(c^*) = Q_+(\overline{c}_s) - \delta \). Thus, with cost realizations above \(c^* \) the less preferred bidder has no chance of winning the subcontracting auction.

(d) \(q = Q_+(\overline{c}_s) \) is the solution to the following optimization problem:

\[
\max_q (q - \overline{c}_s) \cdot \Pr\left(c^S_j > c^*, \text{contractor with quote } q \text{ wins over contractor with quote } Q_+(c^S_j) \right),
\]

which can be equivalently written as

\[
\max_q (q - \overline{c}_s) \cdot \int_{c^*}^{\overline{c}_s} p(q, Q_+(c^S_j)) \, dF_S(c^S_j),
\]
(e) The values c^*, $Q_+(c^*)$ and $Q_-(c^*)$ are such that

$$(Q_-(c^*)-c^*)p(Q_-(c^*),Q_+(c^*))+ (Q_+(c^*)-c^*)p(Q_+(c^*),Q_-(c^*)) = (Q_+(c^*)-c^*)p(Q_+(c^*),\bar{\eta})$$

(f) $0 \leq Q_+(c) - Q_-(c) \leq \delta$ for any $c \in [\underline{c}, \bar{c}]$.

Note that even within the framework of Theorem 3, the strategy function Q_- is not uniquely defined for the costs above the threshold value c^*. In fact, on $[c^*, \bar{c}]$ we can take Q_- to be any measurable function such that $Q_-(.) \geq Q_-(c^*)$ on that interval since the subcontractor has no chance of winning the auction where he is less preferred. Without a loss of generality, we can take Q_- on $[c^*, \bar{c}]$ to be strictly increasing and continuous (and even differentiable everywhere there on that interval in a way that its derivative at c^* coincides with the left derivative of Q_- determined from the system of F.O.C.s).

It is also worth mentioning that in the equilibrium Theorem 3 the quote the subcontractor (say, R) submits in the auction where he is more preferred is the quote determining the probability of the event that R wins at least one subcontracting auction. The quote that R submits in the auction where he is less preferred splits that event into two subevents – when R wins only one subcontracting auction and when he wins both of them, – and determines the probabilities of these subevents (also accounting for the fact that the winning quotes affect the primary contractors chances at the main auction).

4.2 Option of not subcontracting

Let us briefly discuss how our analysis will change if we allow the option of each contractors to complete task himself.

Primary auction Now contractor i has cost draw $c_{2,i}$ and receives quotes q_{iR} and q_{iT}. Preferential treatment only applies if both quotes are below i’s cost:

$$\max\{q_{iR}, q_{iT}\} \leq c_{2,i}$$

If only one quote (or both) are above $c_{2,i}$ then no preferential treatment applies. We suppose that $c_{2,A}, c_{2,B}$ are drawn from the distribution $F_2(.)$ (with the associated density $f_2 > 0$ and the support of $[\underline{c}_2, \bar{c}_2]$). We assume that $c_{2,A}, c_{2,B}$ are independent from each other and any other

25
costs by contractors or subcontractors. Also, $F_2(\cdot)$ is common knowledge to both contractors and subcontractors.

Let c_i denote contractor i's total cost. Hence

$$c_i = c_{1,i} + \tilde{c}_{2,i}(c_{2,i}, q_{iR}, q_{iT})$$

where

$$\tilde{c}_{2,i}(c_{2,i}, q_{iR}, q_{iT}) = \begin{cases}
 c_{2,i} & \text{if } \min\{q_{iR}, q_{iT}\} > c_{2,i} \\
 q_{iR} & \text{if } q_{iR} \leq c_{2,i} < q_{iT} \\
 q_{iT} & \text{if } q_{iT} \leq c_{2,i} < q_{iR} \\
 q_{iR} & \text{if } q_{iT} > q_{iR} + \delta_{IT} \text{ and } \max\{q_{iR}, q_{iT}\} \leq c_{2,i} \\
 q_{iT} & \text{if } q_{iT} \leq q_{iR} + \delta_{IT} \text{ and } \max\{q_{iR}, q_{iT}\} \leq c_{2,i}
\end{cases}$$

We continue to focus on the case $\delta_{BR} = \delta_{AT} = -\delta$ and $\delta_{BT} = \delta_{AR} = \delta > 0$.

Again, we are looking at a BNE in strictly increasing strategies in the primary auction. Such a strategy for i is a function of c_i. Similar to the case of a first price auction, given that his rival contractor plays a strictly increasing pure strategy $\beta_{-i}(\cdot)$, contractor i chooses his bidding strategy in such a way that for every possible cost draw from the support of F_1, $c_{1,i} \in [c_1, c_2]$, and a cost draw from the support of F_2, $c_{2,i} \in [c_2, \tilde{c}_2]$ he chooses $\beta_i(c_{1,i} + \tilde{c}_{2,i}(c_{2,i}, q_{iR}, q_{iT})) = \tilde{b}$ where

$$\tilde{b} = \arg \max_b \left(b - c_{1,i} - \tilde{c}_{2,i}(c_{2,i}, q_{iR}, q_{iT}) \right) \Pr(b \leq \beta_{-i}(c_{1,-i} + \tilde{c}_{2,-i}(c_{2,-i}, q_{-i,R}, q_{-i,T})))$$

Subcontracting stage As for the subcontractors, they will be taking into account the rule the main contractors use to determine whether to subcontract task 2 and who to hire in case of subcontracting. Thus, from the perspective of subcontractor j, given that his subcontracting rival $-j$ is playing strategies $Q_{A,-j}$ and $Q_{B,-j}$, the relevant events are

$$\{j \text{ is hireable by } i \mid q_{ij}\} = \{(c_{2,i}, c_{s,-j}) : q_{ij} \leq c_{2,i} < Q_{i,-j}(c_{s,-j})\} \cup \{(c_{2,i}, c_{s,-j}) : q_{ij} \leq Q_{i,-j}(c_{s,-j}) + \delta_{ij}, \max\{q_{ij}, Q_{i,-j}(c_{s,-j})\} \leq c_{2,i}\}.$$

If $\{j \text{ is hireable by } i \mid q_{ij}\}$ event is realized, it means that if contractor i wins in the main auction, then subcontractor j will be hired by i to complete the task.

26
Analogously,

\[\{ j \text{ hireable by } A \text{ and } B | q_{A_j}, q_{B_j} \} = \{ j \text{ hireable by } A | q_{A_j} \} \cap \{ j \text{ hireable by } B | q_{B_j} \}. \]

The event \(\{ j \text{ not hireable by } i | q_{ij} \} \) is of course just a complement of the event \(\{ j \text{ hireable by } i | q_{ij} \} \).

In addition to these events, subcontractor \(i \) will be taking into account the following events:

\[\{ i \text{ wins } | j \text{ is hireable by } i \text{ and } -i, q_{ij}, q_{-ij} \} = \Pr (\beta_i(c_{1,i} + q_{ij}) < \beta_{-i}(c_{1,-i} + q_{-ij})) \quad i \in \{A, B\}, \]

\[\{ i \text{ wins } | j \text{ is hireable by } i, \text{ not hireable by } -i, q_{ij} \} = \Pr (\beta_i(c_{1,i} + q_{ij}) < \beta_{-i}(c_{1,-i} + \min\{c_{2,-i}, Q_{-i,j}(c_{s,-j})\})) \quad i \in \{A, B\}. \]

Suppose that subcontractor \(T \) plays some strategies \(Q_{AT} \) and \(Q_{BT} \). The interim profit function for subcontractor \(R \) is

\[\Pi_R(c_{s,R}, q_{AR}, q_{BR}) = (q_{AR} - c_{s,R})Pr (R \text{ is hireable by } A \text{ and } B; A \text{ wins over } B) \]
\[+ (q_{BR} - c_{s,R})Pr (R \text{ is hireable by } A \text{ and } B; B \text{ wins over } A) \]
\[+ (q_{AR} - c_{s,R})Pr (R \text{ is hireable by } A \text{ and not hireable by } B; A \text{ wins over } B) \]
\[+ (q_{BR} - c_{s,R})Pr (R \text{ is not hireable by } A \text{ and is hireable by } B; B \text{ wins over } A). \]

We can expect somewhat different properties of the equilibrium here. For simplicity consider the case \([c_2, \tau_2] = [c_s, \tau_s]\). There will still be a symmetric BNE in the subcontracting stage in strictly increasing strategies. In that equilibrium, similarly to the case of of compulsory subcontracting, the following condition will hold:

- For each realization of subcontracting cost, the value of the strategy in the auction where a given subcontractor is more preferred will always be greater (or equal) the strategy in the auction where a given subcontractor is less preferred: \(Q_+ (c_{s,j}) \geq Q_- (c_{s,j}) \).

- The gap between these two strategies will not exceed \(\delta \): \(Q_+ (c_{s,j}) - Q_- (c_{s,j}) \leq \delta \).

- There will not be strategic underbidding: any subcontractor will always submit quotes that are greater or equal that his cost.

The following are the main differences from the compulsory subcontracting case:
• At the upper boundary the values of both strategies will coincide and will be equal to the cost value \bar{c}_s: $Q_+(\bar{c}_s) = Q_-(\bar{c}_s) = \bar{c}_s$.

• At each $c_{s,j} \in [\underline{c}_s, \bar{c}_s)$ subcontractor j submitting the quote $Q_-(c_{s,j})$ in the auction where he is preferred less will have a strictly positive probability of being hired by the respective contractor and will have a strictly positive probability of doing the task.

Suppose that subcontractor T plays strictly increasing strategies $Q_{AT}(.)$ (where he is more preferred) and $Q_{BT}(.)$ (where he is less preferred) such that $0 \leq Q_{AT}(.) - Q_{BT}(.) \leq \delta$. Then we expect R to best respond to these with monotone strategies $Q_{AR}(.)$ and $Q_{BR}(.)$ such that $0 \leq Q_{BR}(.) - Q_{AR}(.) \leq \delta$.

5 Identification of Model Primitives

The model primitives that need to be recovered in the case of the simple model are the distribution of contractors’ costs for task one, F_1, the distribution of subcontractors’ costs for task two, F_s, and the factor reflecting preferential treatment, δ. We exploit the structure on our data which reports the bids by task, the identity of subcontractor and the price at which the task two is subcontracted by each of the contractors.

The identification is straightforward when $\delta_{i,j}$ are observed at the level of contractor-subcontractor pair or when many observations per pair are observed (alternatively, δ can be parameterized). Indeed, the standard GPV argument can be used to recover the distribution of costs for task one; similarly, the first order conditions associated with subcontractors’ pricing problem could be used to recover the distribution of subcontractors’ costs.

The identification is somewhat more complicated when contractors may decide whether or not to subcontract a given task or not. The identification in that case resemble identification argument for Roy’s model.

References

6 Appendix

6.1 Proof of Theorem 3

Theorem 3 is proven in a sequence of lemmas. We start by supposing that subcontractor T plays a strategy $Q_{AT}(\cdot)$ in auction A and plays a strategy $Q_{BT}(\cdot)$ in auction B.

We start with Lemma 1 that establishes that we can take it that subcontractor R will never submit quotes lower than costs.

Lemma 1 (No strategic underbidding) Let $c_{s,R}$ be the realization of R’s cost. Then there are best responses q_{AR}^* and q_{BR}^* at $c_{s,R}$ such that

\begin{align}
q_{AR}^* & \geq c_{s,R}, \\
q_{BR}^* & \geq c_{s,R}.
\end{align}

If $Pr(R$ wins A and B, A wins $|q_{AR}^*, q_{BR}^*) + Pr(R$ wins A, R loses B, A wins $|q_{AR}^*, q_{BR}^*) > 0$, then any best response quote q_{AR}^* must satisfy (5).

If $Pr(R$ wins A and B, B wins $|q_{AR}^*, q_{BR}^*) + Pr(R$ loses A, R wins B, A wins $|q_{AR}^*, q_{BR}^*) > 0$, then any best response q_{BR}^* must satisfy (6).

Proof. R’ interim profit function at quotes (q_{AR}, q_{BR}) is

$$\Pi_R(c_{s,R}, q_{AR}, q_{BR}) = (q_{AR} - c_{s,R})Pr(R$ wins A, R loses B, A wins $|q_{AR}, q_{BR}) + (q_{AR} - c_{s,R})Pr(R$ wins A and B, A wins $|q_{AR}, q_{BR}) + (q_{BR} - c_{s,R})Pr(R$ loses A, R wins B, B wins $|q_{AR}, q_{BR}) + (q_{BR} - c_{s,R})Pr(R$ wins A and B, B wins $|q_{AR}, q_{BR})$$.

If q_{AR} and q_{BR} are R’s best responses at $c_{s,R}$, then $q_{AR}^* = \max\{q_{AR}, c_{s,R}\}$ and $q_{BR}^* = \max\{q_{BR}, c_{s,R}\}$ are best responses as well since clearly $\Pi_R(c_{s,R}, q_{AR}^*, q_{BR}^*) \geq \Pi_R(c_{s,R}, q_{AR}, q_{BR})$.

Having the situation of $Pr(R$ wins A and B, A wins $|q_{AR}, q_{BR}) + Pr(R$ wins A, R loses B, A wins $|q_{AR}, q_{BR}) > 0$ and $q_{AR} < c_{s,R}$ clearly contradicts the
best response behavior as R can strictly improve by just submitting in A the quote equal to $c_{s,R}$.

Analogously, having the situation of $\Pr (R \text{ wins } A \text{ and } B, B \text{ wins } | q_{AR}^*, q_{BR}^*) + \Pr (R \text{ loses } A, R \text{ wins } B, A \text{ wins } | q_{AR}^*, q_{BR}^*) > 0$ and $q_{BR}^* < c_{s,R}$ clearly contradicts the best response behavior as R can strictly improve by just submitting in B the quote equal to $c_{s,R}$. □

The result of Lemma 1 is due to the fact that even though R submits quotes to several simultaneous auctions, there is no genuine ex-post simultaneity – R can end up working for at most one contractor.

Definition 1 Given T’s strategies we will say that the cost value $c_{s,R}$ is RELEVANT for R if there is a pair of quotes (q_{AR}, q_{BR}) such that $\Pi_R(c_{s,R}, q_{AR}, q_{BR}) > 0$.

Lemma 2 Let $c_{s,R}$ and $\tilde{c}_{s,R}$ be such that $\tilde{c}_{s,R} > c_{s,R}$. Let (q_{AR}^*, q_{BR}^*) and $(\tilde{q}_{AR}^*, q_{BR}^*)$ be R’s best response quotes $c_{s,R}$ and $\tilde{c}_{s,R}$, respectively. Suppose that the cost value $\tilde{c}_{s,R}$ is relevant for R. Then the cost value $c_{s,R}$ is relevant for R as well, and moreover,

$$\Pi_R(c_{s,R}, q_{AR}^*, q_{BR}^*) > \Pi_R(\tilde{c}_{s,R}, \tilde{q}_{AR}^*, q_{BR}^*).$$

Proof. Using the representation of R’s interim profit function as in 1 and the relevance of the cost value $\tilde{c}_{s,R}$, we note that at least one of the following four values has to be strictly positive (while the other values are non-negative):

$$ (\tilde{q}_{AR}^* - \tilde{c}_{s,R}) \Pr (R \text{ wins } A, R \text{ loses } B, A \text{ wins } | \tilde{q}_{AR}^*, \tilde{q}_{BR}^*) ,$$

$$ (q_{AR}^* - c_{s,R}) \Pr (R \text{ wins } A \text{ and } B, A \text{ wins } | \tilde{q}_{AR}^*, \tilde{q}_{BR}^*) ,$$

$$ (\tilde{q}_{BR}^* - \tilde{c}_{s,R}) \Pr (R \text{ loses } A, R \text{ wins } B, B \text{ wins } | \tilde{q}_{AR}^*, \tilde{q}_{BR}^*) ,$$

$$ (\tilde{q}_{BR}^* - \tilde{c}_{s,R}) \Pr (R \text{ wins } A \text{ and } B, B \text{ wins } | \tilde{q}_{AR}^*, \tilde{q}_{BR}^*) .$$

For simplicity, suppose the first one is strictly positive. This implies that $\tilde{q}_{AR}^*- \tilde{c}_{s,R} > 0$ and $\Pr (R \text{ wins } A, R \text{ loses } B, A \text{ wins } | \tilde{q}_{AR}^*, \tilde{q}_{BR}^*) > 0$. Since $\tilde{q}_{AR}^* - c_{s,R} > \tilde{q}_{AR}^* - \tilde{c}_{s,R}$ and $\tilde{q}_{BR}^* - c_{s,R} > \tilde{q}_{BR}^* - \tilde{c}_{s,R}$, then we immediately obtain that even at the same quotes

$$\Pi_R(c_{s,R}, q_{AR}^*, \tilde{q}_{BR}^*) > \Pi_R(\tilde{c}_{s,R}, \tilde{q}_{AR}^*, \tilde{q}_{BR}^*).$$
It can only get better at best responses, therefore,
\[\Pi_R(c_{s,R}, q^*_{AR}, q^*_{BR}) > \Pi_R(\tilde{c}_{s,R}, \tilde{q}^*_{AR}, \tilde{q}^*_{BR}). \]

□

Let us introduce the following notation:
\[L(q_{AR}, q_{BR}) \equiv \Pr(W_{11}(q_{AR}, q_{BR})) + \Pr(R \text{ loses } A, R \text{ wins } B, B \text{ wins } \mid q_{AR}, q_{BR}) \]
\[+ \Pr(R \text{ wins } A, R \text{ loses } B, A \text{ wins } \mid q_{AR}, q_{BR}) \]

This is the probability that upon the submission of quotes \((q_{AR}, q_{BR})\), subcontractor \(R\) will end up working on the task.

Lemma 3 (Some implications of the best response behavior) Let \(c_{s,R}\) and \(\tilde{c}_{s,R}\) be such that \(\tilde{c}_{s,R} > c_{s,R}\). Let \((q^*_{AR}, q^*_{BR})\) and \((\tilde{q}^*_{AR}, \tilde{q}^*_{BR})\) be \(R\)'s best response quotes at \(c_{s,R}\) and \(\tilde{c}_{s,R}\), respectively. Then
\[L(\tilde{q}^*_{AR}, \tilde{q}^*_{BR}) \leq L(q^*_{AR}, q^*_{BR}). \]

Proof. The fact that \((\tilde{q}^*_{AR}, \tilde{q}^*_{BR})\) is a best response at \(\tilde{c}_{s,R}\) implies that
\[\Pi_R(\tilde{c}_{s,R}, \tilde{q}^*_{AR}, \tilde{q}^*_{BR}) \geq \Pi_R(\tilde{c}_{s,R}, q^*_{AR}, q^*_{BR}). \] \(\text{(7)}\)

The fact that \((q^*_{AR}, q^*_{BR})\) is a best response at \(c_{s,R}\) implies that
\[\Pi_R(c_{s,R}, q^*_{AR}, q^*_{BR}) \geq \Pi_R(c_{s,R}, \tilde{q}^*_{AR}, \tilde{q}^*_{BR}). \] \(\text{(8)}\)

Summing up these two inequalities gives us that
\[(c_{s,R} - \tilde{c}_{s,R}) \left(L(\tilde{q}^*_{AR}, \tilde{q}^*_{BR}) - L(q^*_{AR}, q^*_{BR}) \right) \geq 0, \]
which immediately gives
\[L(\tilde{q}^*_{AR}, \tilde{q}^*_{BR}) \leq L(q^*_{AR}, q^*_{BR}). \]

For technical convenience, suppose that \(T\)'s strategies do not have flat parts (which is, e.g., the case when \(T\) strategies satisfy condition (T1) below). Then the probability of ties is equal
to zero and we can write:

\[
L(q_{AR}, q_{BR}) = \int 1(q_{AR} + \delta \leq Q_{AT}(c_{s,T})) 1(q_{BR} - \delta \leq Q_{BT}(c_{s,T})) \ dF_s(c_{s,T}) \\
+ \int 1(q_{AR} + \delta > Q_{AT}(c_{s,T})) 1(q_{BR} - \delta \leq Q_{BT}(c_{s,T})) p(q_{BR}, Q_{AT}(c_{s,T})) \ dF_s(c_{s,T}) \\
+ \int 1(q_{AR} + \delta \leq Q_{AT}(c_{s,T})) 1(q_{BR} - \delta > Q_{BT}(c_{s,T})) p(q_{AR}, Q_{BT}(c_{s,T})) \ dF_s(c_{s,T})
\]

(9)

This leads us to noticing the properties of \(L(q_{AR}, q_{BR}) \) stated in Lemma ?? below.

Lemma 4 Suppose \(T \)'s strategies are fixed.

Function \(L(\cdot, \cdot) \) as defined in (9) is decreasing in \(q_{AR} \) and is decreasing in \(q_{BR} \).

Proof. Let’s look at the representation (9) of function \(L(\cdot, \cdot) \) and note that when \(q_{AR} \) increases, the event \(\{q_{AR} + \delta \leq Q_{AT}(c_{s,T})\} \) becomes (weakly) smaller: for \(\tilde{q}_{AR} > q_{AR} \),

\[
1(\tilde{q}_{AR} + \delta \leq Q_{AT}(c_{s,T})) \geq 1(q_{AR} + \delta \leq Q_{AT}(c_{s,T})).
\]

Therefore, we effectively reassign some mass of \(c_{s,T} \) from the integral with integrand 1 to the integral with the (weakly) smaller integrand \(p(q_{BR}, Q_{AT}(c_{s,T})) \leq 1 \).

Similarly, when \(q_{BR} \) increases, the event \(\{q_{BR} - \delta \leq Q_{BT}(c_{s,T})\} \) becomes (weakly) smaller: for \(\tilde{q}_{BR} > q_{BR} \),

\[
1(q_{BR} - \delta \leq Q_{BT}(c_{s,T})) \geq 1(\tilde{q}_{BR} - \delta \leq Q_{BT}(c_{s,T})).
\]

Therefore, we effectively reassign some mass of \(c_{s,T} \) from the integral with integrand 1 to the integral with the (weakly) smaller integrand \(p(q_{AR}, Q_{BT}(c_{s,T})) \leq 1 \).

Lemma 4 allows us to establish a partial monotonicity result for the best response quotes by subcontractor \(R \).

Lemma 5 *(At least one quote strictly increases)* Let \(c_{s,R} \) and \(\tilde{c}_{s,R} \) be such that \(\tilde{c}_{s,R} > c_{s,R} \). Let \((q_{AR}^*, q_{BR}^*) \) and \((\tilde{q}_{AR}^*, \tilde{q}_{BR}^*) \) be \(R \)'s best response quotes at \(c_{s,R} \) and \(\tilde{c}_{s,R} \), respectively. Suppose that at least at one of these cost values the best response is unique. Then

\[
L(\tilde{q}_{AR}^*, \tilde{q}_{BR}^*) < L(q_{AR}^*, q_{BR}^*),
\]

\footnote{We could easily adjust our formulas to allow for flat parts in \(T \)'s strategies and a random tie-breaking rule but want to avoid this for expositional simplicity.}
and therefore, at least on of the following inequalities has to be satisfied:

\[\tilde{q}_{AR}^* > q_{AR}^*, \]
\[\tilde{q}_{BR}^* > q_{BR}^*. \]

Proof. The condition that the best response is unique at least at one of the cost values implies that at least one of the inequalities (7), (8) is strict. Summing up these two inequalities gives us that

\[(c_{s,R} - \tilde{c}_{s,R}) (L (\tilde{q}_{AR}^*, \tilde{q}_{BR}^*) - L (q_{AR}^*, q_{BR}^*)) > 0, \]

which immediately gives

\[L (\tilde{q}_{AR}^*, \tilde{q}_{BR}^*) < L (q_{AR}^*, q_{BR}^*). \]

Taking into account the properties of function $L(\cdot, \cdot)$ in Lemma 4, we conclude that at least on the components in $(\tilde{q}_{AR}^*, \tilde{q}_{BR}^*)$ has to be strictly greater than the respective component in (q_{AR}^*, q_{BR}^*). □

Remark on Lemma 5. In Lemma 5 the condition of the uniqueness of best response at least at one of the cost values can be replaced by a weaker condition. A weaker condition that gives the same result is that either (q_{AR}^*, q_{BR}^*) is not a best response at $\tilde{c}_{s,R}$, or $(\tilde{q}_{AR}^*, \tilde{q}_{BR}^*)$ is not a best response at $c_{s,R}$ (or, of course, both). □

In what follows we will be imposing some of the following properties on the strategies played by T:

- Q_{AT}, Q_{BT} are strictly increasing on $[c_s, \hat{c}_s]$ \hspace{1cm} (T1)
- Q_{AT}, Q_{BT} are continuous on $[c_s, \hat{c}_s]$ \hspace{1cm} (T2)
- $0 \leq Q_{AT} (c_{s,T}) - Q_{BT} (c_{s,T})$ \hspace{1cm} (T3)
- $Q_{AT} (c_{s,T}) - Q_{BT} (c_{s,T}) \leq \delta$ \hspace{1cm} (T4)

We also find it convenient to use the following notations for events corresponding to R winning various combinations of subcontracting auctions. For given rival strategies Q_{AT}, Q_{BT}, we denote the event of R winning both subcontracting auctions with quotes (q_{AR}, q_{BR}) as

\[W_{11}(q_{AR}, q_{BR}) = \{ c_{s,T} : q_{AR} + \delta \leq Q_{AT} (c_{s,T}), q_{BR} \leq Q_{BT} (c_{s,T}) + \delta \}. \]
The event of R winning only subcontracting auction A (where R is less preferred) with quotes (q_{AR}, q_{BR}) is denotes as

$$W_{10}(q_{AR}, q_{BR}) = \{c_{s,T} : q_{AR} + \delta \leq Q_{AT}(c_{s,T}), q_{BR} > Q_{BT}(c_{s,T}) + \delta\}.$$

The event of R winning only subcontracting auction B (where R is more preferred) with quotes (q_{AR}, q_{BR}) is denoted as

$$W_{01}(q_{AR}, q_{BR}) = \{c_{s,T} : q_{AR} + \delta > Q_{AT}(c_{s,T}), q_{BR} \leq Q_{BT}(c_{s,T}) + \delta\}.$$

Lemma 6 shows that the best response quote in the auction where R is preferred more cannot exceed the best response quote in the auction where R is preferred less by more than δ.

Lemma 6 (Gap between bids) Suppose that T’s strategies satisfy conditions (T2) and (T4). Let $c_{s,R}$ be the realization of R’s cost. Then any pair (q_{AR}^*, q_{BR}^*) of best responses at $c_{s,R}$ must satisfy

$$q_{AR}^* \geq q_{BR}^* - \delta.$$ \hspace{1cm} (10)

Proof. Suppose that to the contrary of the statement of the lemmas the best responses satisfy $q_{AR}^* < q_{BR}^* - \delta$. Together with (T4) this implies that $\Pr(W_{01}(q_{AR}^*, q_{BR}^*)) = 0$, or in other words, R may not win only the auction where he is more preferred.

Then the value of the R’ interim payoff function at $(c_{s,R}, q_{AR}^*, q_{BR}^*)$ is

$$\Pi_R(c_{s,R}, q_{AR}^*, q_{BR}^*) = (q_{AR}^* - c_{s,R})\Pr(R \text{ wins } A, R \text{ loses } B, A \text{ wins } |q_{AR}^*, q_{BR}^*) + (q_{AR}^* - c_{s,R})\Pr(R \text{ wins } A \text{ and } B, A \text{ wins } |q_{AR}^*, q_{BR}^*) + (q_{BR}^* - c_{s,R})\Pr(R \text{ wins } A \text{ and } B, B \text{ wins } |q_{AR}^*, q_{BR}^*).$$

Note that for the condition $q_{AR}^* < q_{BR}^* - \delta$ to hold and for q_{AR}^*, q_{BR}^* to be best responses, it has to hold that $\Pr(W_{11}(q_{AR}^*, q_{BR}^*)) < 1$ and $\Pr(W_{10}(q_{AR}^*, q_{BR}^*)) > 0$ (otherwise, very slightly raising q_{AR}^* would strictly improve the outcome).
Rewrite the value of the R' interim payoff function as

$$
\Pi_R (c_{s,R}, q_{AR}^*, q_{BR}^*) = (q_{AR}^* - c_{s,R}) (\Pr (W_{11}(q_{AR}^*, q_{BR}^*)) + \Pr (R \text{ wins } A, R \text{ loses } B, A \text{ wins } |q_{AR}^*, q_{BR}^*|) \\
+ (q_{BR}^* - q_{AR}^*) \Pr (R \text{ wins } A \text{ and } B, B \text{ wins } |q_{AR}^*, q_{BR}^*|) \\
= (q_{AR}^* - c_{s,R}) (\Pr (W_{11}(q_{AR}^*, q_{BR}^*)) + \Pr (R \text{ wins } A, R \text{ loses } B, A \text{ wins } |q_{AR}^*, q_{BR}^*|) \\
+ (q_{BR}^* - q_{AR}^*) p(q_{BR}^*, q_{AR}^*) \Pr (W_{11}(q_{AR}^*, q_{BR}^*)) .
$$

Note that condition (T4) and inequality $q_{AR}^* < q_{BR}^* - \delta$ imply that the probability $\Pr (W_{11}(q_{AR}^*, q_{BR}^*))$ locally depends on the quote q_{BR}^* only. Therefore, if we choose $q_{BR}^* < q_{BR}^*$ and $q_{AR}^* > q_{AR}^*$ close enough to q_{BR}^* and q_{AR}^* to guarantee the inequality $q_{AR}^* < q_{BR}^* - \delta$, then we necessarily have that

$$
\Pr (W_{11}(q_{AR}^*, q_{BR}^*)) \geq \Pr (W_{11}(q_{AR}^*, q_{BR}^*)) \quad \text{locally does not depend on } q_{AR}^*, \quad \text{locally does not depend on } q_{AR}^* .
$$

Condition (T2), the fact $\Pr (W_{11}(q_{AR}^*, q_{BR}^*)) < 1$ and the fact that the support of $c_{s,T}$ is a connected interval, we will have

$$
\Pr (W_{11}(q_{AR}^*, q_{BR}^*)) > \Pr (W_{11}(q_{AR}^*, q_{BR}^*)) \quad \text{locally does not depend on } q_{AR}^*, \quad \text{locally does not depend on } q_{AR}^* . \quad (11)
$$

Also, before we start considering different situations notice that if quotes q_{AR} and q_{BR} are such that $q_{AR} < q_{BR} - \delta$, then

$$
\Pr (W_{11}(q_{AR}, q_{BR})) + \Pr (R \text{ wins } A, R \text{ loses } B, A \text{ wins } |q_{AR}, q_{BR}|) \\
= \int_1 (q_{BR} - \delta \leq Q_{BT}(c_{s,T})) dF_s(c_{s,T}) \\
+ \int_1 (q_{AR} + \delta \leq Q_{AT}(c_{s,T}), q_{BR} - \delta > Q_{BT}(c_{s,T})) p(q_{AR}, Q_{AT}(c_{s,T})) dF_s(c_{s,T}) \\
= \int_1 (q_{BR} - \delta \leq Q_{BT}(c_{s,T})) (1 - p(q_{AR}, Q_{AT}(c_{s,T})) 1(q_{AR} + \delta \leq Q_{AT}(c_{s,T})) dF_s(c_{s,T}) \\
+ \int_1 (q_{AR} + \delta \leq Q_{AT}(c_{s,T})) p(q_{AR}, Q_{AT}(c_{s,T})) dF_s(c_{s,T})
$$

is locally decreasing in q_{BR} – that is, choosing q_{BR} close enough to q_{BR} and such that $q_{BR} < q_{BR}$,
we have

\[\Pr(W_{11}(q_{AR}, q_{BR})) + \Pr(R \text{ wins } A, R \text{ loses } B, A \text{ wins } |q_{AR}, q_{BR}) \]
\[\geq \Pr(W_{11}(q_{AR}, q_{BR})) + \Pr(R \text{ wins } A, R \text{ loses } B, A \text{ wins } |q_{AR}, q_{BR}). \]

If, in addition, if condition (T2) is satisfied and \(0 < \Pr(q_{BR} - \delta \leq Q_{BT}(c_{s,T})) < 1\) (i.e., the probability of \(R\) winning auction \(B\) with the quote \(q_{BR}\) is strictly between zero and one), then \(\Pr(W_{11}(q_{AR}, q_{BR})) + \Pr(R \text{ wins } A, R \text{ loses } B, A \text{ wins } |q_{AR}, q_{BR})\) is locally strictly decreasing in \(q_{BR}\) (because of the condition \(q_{AR} < q_{BR} - \delta\) the constraint \(q_{BR} - \delta \leq Q_{BT}(c_{s,T})\) is binding while the constraint \(q_{AR} + \delta \leq Q_{AT}(c_{s,T})\) is not binding), which implies that \(\tilde{q}_{BR}\) close enough to \(q_{BR}\) and such that \(\tilde{q}_{BR} < q_{BR}\), we have

\[\Pr(W_{11}(q_{AR}, q_{BR})) + \Pr(R \text{ wins } A, R \text{ loses } B, A \text{ wins } |q_{AR}, q_{BR}) > \Pr(W_{11}(q_{AR}, q_{BR})) + \Pr(R \text{ wins } A, R \text{ loses } B, A \text{ wins } |q_{AR}, q_{BR}). \]

Now recall that \(p(q_{BR}, q_{AR})\) depends on \(q_{BR}, q_{AR}\) only through the difference \(q_{BR} - q_{AR}\) and, thus, with a slight abuse of notation we can write \((q_{BR} - q_{AR})p(q_{BR}, q_{AR}) = (q_{BR} - q_{AR})p(q_{BR} - q_{AR})\).

Situation 1. First, consider a scenario when

\[\frac{d}{d\Delta} \left(\Delta p(\Delta) \right) \bigg|_{\Delta = q_{BR} - q_{AR}} > 0. \]

This immediately implies that

\[\frac{\partial}{\partial q_{AR}} \left((q_{BR} - q_{AR})p(q_{BR} - q_{AR}) \right) \bigg|_{q_{AR} = q_{AR}^*} < 0. \]

The fact that \(\Pr(W_{11}(q_{AR}, q_{BR}))\) locally (in a neighborhood of \(q_{AR}^*\)) does not depend on \(q_{AR}\) gives us that

\[\frac{\partial}{\partial q_{AR}} \left((q_{BR} - q_{AR})p(q_{BR} - q_{AR})\Pr(W_{11}(q_{AR}, q_{BR})) \right) \bigg|_{q_{AR} = q_{AR}^*} < 0. \]

The best response behavior then implies that we should necessarily have that

\[\frac{\partial}{\partial q_{AR}} \left((q_{AR} - c_{s,R}) (\Pr(W_{11}(q_{AR}, q_{BR}^*)) + \Pr(R \text{ wins } A, R \text{ loses } B, A \text{ wins } |q_{AR}, q_{BR}^*)) \right) \bigg|_{q_{AR} = q_{AR}^*} > 0 \]

(12)
(otherwise, there would have been an obvious profitable deviation by slightly decreasing q_{AR}^\star).

Also note that we can choose $q_{BR}^\star < q_{BR}^\star$ and $q_{AR}^\star > q_{AR}^\star$ close enough to q_{BR}^\star and q_{AR}^\star such that $q_{AR}^\star < q_{BR}^\star - \delta$ (i.e., the inequality that holds for best responses is preserved) and

$$(q_{BR}^\star - q_{AR}^\star)p(q_{BR}^\star, q_{AR}^\star)Pr(W_{11}(q_{AR}^\star, q_{BR}^\star)) = (q_{BR}^\star - q_{AR}^\star)p(q_{BR}^\star, q_{AR}^\star)Pr(W_{11}(q_{AR}^\star, q_{BR}^\star)).$$

Indeed, we can think about it as choosing the values of Δ^\star, $\delta < \Delta^\star < q_{BR}^\star - q_{AR}^\star$ (close enough to $q_{BR}^\star - q_{AR}^\star$) and the quote q_{BR}^\star such that $q_{BR}^\star < q_{BR}^\star$ and

$$(q_{BR}^\star - q_{AR}^\star)p(q_{BR}^\star - q_{AR}^\star)Pr(W_{11}(q_{AR}^\star, q_{BR}^\star)) = \Delta^\star p(\Delta^\star)Pr(W_{11}(q_{AR}^\star, q_{BR}^\star)).$$

(13)

even though in the assumed scenario $\Delta^\star p(\Delta^\star) < (q_{BR}^\star - q_{AR}^\star)p(q_{BR}^\star - q_{AR}^\star)$, but due to the continuity of function $p(\Delta)$ this decreases is continuous (i.e., it gets arbitrarily small as Δ^\star approaches $\Delta^\star = q_{BR}^\star - q_{AR}^\star$ from the left) and we choose we can choose $q_{BR}^\star < q_{BR}^\star$ to compensate for this decrease and ensure that (13) holds (here we also use (11)). Then we define $q_{AR}^\star = q_{BR}^\star - \Delta^\star$.

At the same time, since $q_{AR}^\star > q_{AR}^\star$ and we can consider q_{AR}^\star to be close enough to q_{AR}^\star, from (12) we have that

$$(q_{AR}^\star - c_{s,R})\Pr(W_{11}(q_{AR}^\star, q_{BR}^\star)) + \Pr(R \text{ wins } A, R \text{ loses } B, A \text{ wins } |q_{AR}^\star, q_{BR}^\star|)$$

$$> (q_{AR}^\star - c_{s,R})\Pr(W_{11}(q_{AR}^\star, q_{BR}^\star)) + \Pr(R \text{ wins } A, R \text{ loses } B, A \text{ wins } |q_{AR}^\star, q_{BR}^\star|).$$

Inequality $q_{AR}^\star < q_{BR}^\star - \delta$ implies that $q_{AR}^\star < q_{BR}^\star - \delta$ and, thus, in light of a discussion earlier in the proof,

$$\Pr(W_{11}(q_{AR}^\star, q_{BR}^\star)) + \Pr(R \text{ wins } A, R \text{ loses } B, A \text{ wins } |q_{AR}^\star, q_{BR}^\star|)$$

$$> \Pr(W_{11}(q_{AR}^\star, q_{BR}^\star)) + \Pr(R \text{ wins } A, R \text{ loses } B, A \text{ wins } |q_{AR}^\star, q_{BR}^\star|).$$

Employing the last inequality, we conclude that

$$(q_{AR}^\star - c_{s,R})\Pr(W_{11}(q_{AR}^\star, q_{BR}^\star)) + \Pr(R \text{ wins } A, R \text{ loses } B, A \text{ wins } |q_{AR}^\star, q_{BR}^\star|)$$

$$> (q_{AR}^\star - c_{s,R})\Pr(W_{11}(q_{AR}^\star, q_{BR}^\star)) + \Pr(R \text{ wins } A, R \text{ loses } B, A \text{ wins } |q_{AR}^\star, q_{BR}^\star|).$$

To summarize, when choosing $(q_{AR}^\star, q_{BR}^\star)$ in the way described above, subcontractor R has
\(\Pi_R(c_s,R,q^*_{AR},q^*_{BR}) > \Pi_R(c_s,R,q^*_{AR},q^*_{BR}) \). This contradicts \((q^*_{AR},q^*_{BR})\) being best responses.

Situation 2. Now, consider a scenario when

\[
\frac{d}{d\Delta} \frac{\Delta p(\Delta)}{d\Delta} \Big|_{\Delta=q^*_{BR}-q^*_{AR}} \leq 0.
\]

If \(\frac{d}{d\Delta} \frac{\Delta p(\Delta)}{d\Delta} \Big|_{\Delta=q^*_{BR}-q^*_{AR}} < 0\), then both \((q_{BR}-q^*_{AR})p(q_{BR}-q^*_{AR})\) and \(\text{Pr}(W_{11}(q^*_{AR},q_{BR}))\) are locally strictly decreasing in \(q_{BR}\). As they both take strictly positive values at \(q^*_{BR}\) and are continuous at \(q^*_{BR}\), then we can conclude that their product will be locally (in a neighborhood of \(q^*_{BR}\)) strictly decreasing in \(q_{BR}\).

If \(\frac{d}{d\Delta} \frac{\Delta p(\Delta)}{d\Delta} \Big|_{\Delta=q^*_{BR}-q^*_{AR}} = 0\), then it is possible that \((q_{BR}-q^*_{AR})p(q_{BR}-q^*_{AR})\) can strictly decrease as we decrease \(q_{BR}\) and strictly increase as we increase \(q_{BR}\), the fact that \(\text{Pr}(W_{11}(q^*_{AR},q_{BR}))\) is strictly decreasing in \(q_{BR}\) in a neighborhood of \(q^*_{BR}\), will give us that the property of \(\text{Pr}(W_{11}(q^*_{AR},q_{BR}))\) will dominate when we consider the product \((q_{BR}-q^*_{AR})p(q_{BR}-q^*_{AR})\text{Pr}(W_{11}(q^*_{AR},q_{BR}))\) and this product will be strictly decreasing in \(q_{BR}\) in a neighborhood of \(q^*_{BR}\).

In light of this observation, we conclude that the second part \((q^*_{BR}-q^*_{AR})p(q^*_{BR}-q^*_{AR})\text{Pr}(W_{11}(q^*_{AR},q_{BR}))\) of the interim payoff function will strictly increase if we slightly decrease \(q^*_{BR}\). Using the discussion preceding the description of situation 1, we note that the first part \(\text{Pr}(W_{11}(q^*_{AR},q_{BR})) + \text{Pr}(R\text{ wins } A,R\text{ loses } B,A\text{ wins } |q^*_{AR},q_{BR})\) of \(R\)’s interim payoff function is also decreasing in \(q_{BR}\) a neighbourhood of \(q^*_{BR}\). Therefore, by slightly lowering \(q^*_{BR}\) we will end with the value that is not smaller than at \(q^*_{BR}\).

Combining these results for both parts of the interim payoff function, we obtain a contradiction with \(q^*_{BR}\) being the best response quote as \(R\) can strictly improve by slightly lowering \(q^*_{BR}\).

This completes the discussion of both situations and we can conclude that in the best response behavior it should hold that \(q^*_{AR} \geq q^*_{BR} - \delta\). □

Remark on Lemma 6. The result of Lemma 6 implies that under the stated properties of \(T\)’s strategies, subcontractor \(R\) will always best respond in such a way that he won’t be able to win auction \(A\), where he is less preferred, without also winning auction \(B\), where he is more preferred. In other words, at the best response quotes \((q^*_{AR},q^*_{BR})\) it has to hold that

6To illustrate our idea, consider two univariate functions \(\phi_1(\cdot)\) and \(\phi_2(\cdot)\) taking strictly positive values in a neighborhood of \(x_0\). Suppose that \(\frac{d\phi_1(x_0)}{dx} = 0\) and \(\frac{d\phi_2(x_0)}{dx} < 0\) then clearly \(\frac{d(\phi_1\phi_2)(x_0)}{dx} < 0\).
Pr(W10(q_{AR}^*, q_{BR}^*)) = 0. Also note that if q_{AR}^* > q_{BR}^* - \delta, then in the event W11(q_{AR}^*, q_{BR}^*) the inequality q_{AR}^* \leq Q_{AT}(c_s, T) - \delta is binding while the inequality q_{BR}^* \leq Q_{BT}(c_s, T) + \delta is not. This implies that locally Pr(W11(q_{AR}^*, q_{BR}^*)) is determined by quote q_{AR}^* only. Then if we take q_{BR}^{**} such that q_{AR}^* > q_{BR}^{**} - \delta, then

Pr(W11(q_{AR}^*, q_{BR}^*)) = Pr(W11(q_{AR}^*, q_{BR}^{**})) and is locally decreasing in q_{AR}^*.

□

If we only consider quotes (q_{AR}, q_{BR}) such that q_{BR} - q_{AR} \leq \delta, then we can rewrite the interim payoff function of subcontractor R in the following way:

\[\Pi_R(c_s, q_{AR}, q_{BR}) = (q_{BR} - c_s, R)L(q_{AR}, q_{BR}) + E(q_{AR}, q_{BR}), \] (14)

where

\[E(q_{AR}, q_{BR}) \equiv (q_{AR} - q_{BR})p(q_{AR}, q_{BR})Pr(W11(q_{AR}, q_{BR})), \] (15)

and, taking into account that Pr(W10(q_{AR}, q_{BR})) = 0, function L(\cdot, \cdot) takes the following form:

\[L(q_{AR}, q_{BR}) = Pr(W11(q_{AR}, q_{BR})) + Pr(R \text{ loses } A, R \text{ wins } B, B \text{ wins } |q_{AR}, q_{BR}). \]

This representation will also turn out to be very useful when we establish monotonicity of best responses.

Lemma 7 below shows that the best response quote in auction B, where R is more preferred, should be greater than the best response quote in auction A, where R is less preferred.

Lemma 7 (Order of bids) Suppose that T’s strategies satisfy conditions (T2) and (T4). Let c_{s,R} be the realization of R’s cost. If Pr(W11(q_{AR}^*, q_{BR}^*)) > 0, then the best responses q_{AR}^* and q_{BR}^* at c_{s,R} are such that

q_{AR}^* \leq q_{BR}^*.

Proof. Suppose that contrary to the statement of the lemma it did happen in the best response behavior that q_{AR}^* > q_{BR}^*. In this situation due to the preferential treatment R may not win auction A and lose auction B, i.e. Pr(W10(q_{AR}^*, q_{BR}^*)) = 0. In other words, the relevant form of the interim payoff function in this case is as in (14).

As in Lemma 6, note that p(q_{AR}, q_{BR}) depends on q_{AR}, q_{BR} only through the difference q_{AR} - q_{BR} and, thus, with a slight abuse of notation we can write (q_{AR} - q_{BR})p(q_{AR}, q_{BR}) =
\((q_{AR} - q_{BR}) p(q_{AR} - q_{BR})\).

I) For now suppose that it is true, in addition to the condition of the Lemma, that \(\Pr(W_{11}(q_{AR}^*, q_{BR}^*)) < 1\).

Situation (a). First, consider a scenario when

\[
\frac{d}{d \Delta} \left. \frac{\Delta p(\Delta)}{\Delta = q_{AR}^* - q_{BR}^*} \right. > 0.
\]

This immediately implies that

\[
\left. \frac{\partial ((q_{AR}^* - q_{BR}) p(q_{AR}^* - q_{BR}))}{\partial q_{BR}} \right|_{q_{BR} = q_{BR}^*} < 0.
\]

The fact that \(\Pr(W_{11}(q_{AR}^*, q_{BR}^*))\) locally (in a neighborhood of \(q_{BR}^*\)) does not depend on \(q_{BR}^*\) gives us that

\[
\left. \frac{\partial ((q_{AR}^* - q_{BR}) p(q_{AR}^* - q_{BR}) \Pr(W_{11}(q_{AR}^*, q_{BR}^*)))}{\partial q_{BR}} \right|_{q_{BR} = q_{BR}^*} < 0.
\]

The best response behavior then implies that we should necessarily have that

\[
\left. \frac{\partial ((q_{BR} - c_{AR} R)(q_{AR}^*, q_{BR}^*))}{\partial q_{BR}} \right|_{q_{BR} = q_{BR}^*} > 0 \quad (16)
\]

(otherwise, there would have been an obvious profitable deviation by slightly decreasing \(q_{BR}^*\)).

Also note that we can choose \(q_{AR}^{**} < q_{AR}^*\) and \(q_{BR}^{**} > q_{BR}^*\) close enough to \(q_{BR}^*\) and \(q_{AR}^*\) such that \(q_{AR}^{**} > q_{BR}^{**}\) (i.e., the order of quotes is preserved) and

\[
(q_{AR}^* - q_{BR}^*) p(q_{AR}^*, q_{BR}^*) \Pr(W_{11}(q_{AR}^*, q_{BR}^*)) = (q_{AR}^{**} - q_{BR}^{**}) p(q_{AR}^{**}, q_{BR}^{**}) \Pr(W_{11}(q_{AR}^{**}, q_{BR}^{**})).
\]

Indeed, we can think about it as choosing the values of \(\Delta^{**}, 0 < \Delta^{**} < q_{AR}^* - q_{BR}^*\) (close enough to \(q_{AR}^* - q_{BR}^*\)) and the quote \(q_{AR}^{**}\) such that \(q_{AR}^{**} < q_{AR}^*\) and

\[
(q_{AR}^* - q_{BR}^*) p(q_{AR}^* - q_{BR}^*) \Pr(W_{11}(q_{AR}^*, q_{BR}^*)) = \Delta^{**} p(\Delta^{**}) \Pr(W_{11}(q_{AR}^{**}, q_{BR}^{**})). \quad (17)
\]

even though in this scenario \(\Delta^{**} p(\Delta^{**}) < (q_{AR}^* - q_{AR}^*) p(q_{AR}^* - q_{BR}^*)\), but due to the continuity of function \(p(\Delta)\) this decrease is continuous (i.e., it gets arbitrarily small as \(\Delta^{**}\) approaches \(\Delta^* = q_{AR}^* - q_{BR}^*\) from the left) and we choose we can choose \(q_{AR}^{**} < q_{AR}^*\) to compensate for this decrease and ensure that (17) holds (here we also use the assumption that \(T^t\)’s strategies satisfy
(T2) and the properties of $\Pr(W_{11}(q_{AR}^*, q_{BR}^*))$ discussed in the Remark after Lemma 6). Then we define $q_{AR}^{**} = q_{BR}^{**} - \Delta^{**}$.

At the same time, since $q_{BR}^{**} > q_{BR}^*$ and we can consider q_{BR}^{**} to be close enough to q_{BR}^*, from (16) we have that

$$(q_{BR}^{**} - c_{s,R}) L(q_{AR}^*, q_{BR}^{**}) > (q_{BR}^* - c_{s,R}) L(q_{AR}^*, q_{BR}^*).$$

In light of Lemma 4,

$$L(q_{AR}^*, q_{BR}^*) \geq L(q_{AR}^{**}, q_{BR}^{**}).$$

Employing the last inequality, we conclude that (note that $q_{BR}^{**} - c_{s,R} > q_{BR}^* - c_{s,R} \geq 0$),

$$(q_{BR}^{**} - c_{s,R}) L(q_{AR}^*, q_{BR}^{**}) > (q_{BR}^* - c_{s,R}) L(q_{AR}^*, q_{BR}^*).$$

To summarize, when choosing $(q_{AR}^{**}, q_{BR}^{**})$ in the way described above, subcontractor R has $\Pi_R(c_{s,R}, q_{AR}^*, q_{BR}^*) > \Pi_R(c_{s,R}, q_{AR}^*, q_{BR}^*)$. This contradicts (q_{AR}^*, q_{BR}^*) being best responses.

Situation (b). Now, consider a scenario when

$$\frac{d}{d\Delta} \frac{d(p(\Delta))}{d\Delta} \bigg|_{\Delta = q_{AR}^*-q_{BR}^*} \leq 0.$$
part \((q_{BR}^* - c_{s,R})L(q_{AR}^*, q_{BR}^*)\) of \(R\)'s interim payoff function is also decreasing in \(q_{AR}\). Therefore, by slightly lowering \(q_{AR}^*\) we will end with the value that is not smaller than at \(q_{BR}^*\).

Combining these results for both parts of the interim payoff function, we obtain a contradiction with \(q_{AR}^*\) being the best response quote as \(R\) can strictly improve by slightly lowering \(q_{AR}^*\).

II) Now also consider the case \(\Pr(W_{11}(q_{AR}^*, q_{BR}^*)) = 1\).

In this case \(L(q_{AR}^*, q_{BR}^*) = \Pr(W_{11}(q_{AR}^*, q_{BR}^*)) = 1\) and we rewrite the value of \(R\)'s interim payoff function at such \((q_{AR}^*, q_{BR}^*)\) as

\[
\Pi_R(c_{s,R}, q_{AR}^*, q_{BR}^*) = (q_{BR}^* - c_{s,R})p(q_{BR}^*, q_{AR}^*) + (q_{AR}^* - c_{s,R})p(q_{AR}^*, q_{BR}^*)
\]

\[
= q_{BR}^*p(q_{BR}^*, q_{AR}^*) + q_{AR}^*p(q_{AR}^*, q_{BR}^*) - c_{s,R}.
\]

Since \(q_{AR}^* > q_{BR}^*\) and \(T\)'s strategies satisfy (T4), then \(\Pr(W_{11}(q_{AR}^*, q_{BR}^*))\) depends on \(q_{AR}^*\) even if we increase \(q_{BR}^*\) all the way up to \(q_{AR}^* + \delta\). Thus, for any \(q_{BR}^{**}\) such that \(q_{BR}^* < q_{BR}^{**} < q_{AR}^* + \delta\) it will continue to hold that \(\Pr(W_{11}(q_{AR}^*, q_{BR}^{**})) = 1\) and, hence, the value of \(R\)'s interim payoff function at such \((q_{AR}^*, q_{BR}^{**})\) is

\[
\Pi_R(c_{s,R}, q_{AR}^*, q_{BR}^{**}) = (q_{BR}^{**} - c_{s,R})p(q_{BR}^{**}, q_{AR}^*) + (q_{AR}^* - c_{s,R})p(q_{AR}^*, q_{BR}^{**})
\]

\[
= q_{BR}^{**}p(q_{BR}^{**}, q_{AR}^*) + q_{AR}^*p(q_{AR}^*, q_{BR}^{**}) - c_{s,R}.
\]

We note that \(\Pi_R(c_{s,R}, q_{AR}^*, q_{BR}^{**}) > \Pi_R(c_{s,R}, q_{AR}^*, q_{BR}^*)\) because \(p(q_{BR}^*, q_{AR}^*) > \frac{1}{2} > 0\) and therefore, as implied by Condition 1, the value of interim revenue function conditional on winning both auctions will strictly increase if we increase \(q_{BR}^*\) to \(q_{BR}^{**}\) even slightly.

Thus, we get a contradiction with \(q_{AR}^*, q_{BR}^*\) being best responses as \(R\) can do strictly better than submitting \(q_{AR}^*, q_{BR}^*\).

\(\square\)

Remark on Lemma 7. Lemma 7 establishes that given certain properties of \(T\)'s strategies, \(R\)'s quote in auction \(B\) will not be smaller than his quote in auction \(A\) whenever these quotes give a positive probability of winning both auctions. Later, when we consider the equilibrium of interest, not only this condition will be satisfied but also in the equilibrium the gap between \(R\)'s quote in \(B\) and \(R\)'s quote in \(A\) will always be bounded away from zero in cases a positive probability of winning both auctions. \(\square\)

Our next step is to establish condition when function \(L(\cdot, \cdot)\) is strictly decreasing with respect
to each quote. We will focus on the case when the gap between R’s quotes in auctions B and A does not exceed δ.

Lemma 8 Suppose T’s strategies satisfy condition (T4). Consider (q^*_A, q^*_B) such that $q^*_A \geq q^*_B - \delta$.

(i) If, $0 < \Pr(R \text{ loses } A, R \text{ wins } B, B \text{ wins } | q^*_A, q^*_B) < 1$, then $L(\cdot, \cdot)$ is locally strictly decreasing in q_B (if $q^*_A = q^*_B - \delta$, then we consider only a left-hand side neighborhood of q^*_B).

(ii) If, $0 < \Pr(R \text{ loses } A, R \text{ wins } B, B \text{ wins } | q^*_A, q^*_B) < 1$ and T’s strategies satisfy condition (T2), then $L(\cdot, \cdot)$ is locally strictly decreasing in q_A (if $q^*_A = q^*_B - \delta$, then we consider only a right-hand side neighborhood of q^*_A).

Proof. For expositional simplicity here we work with the following expression of $L(q_A, q_B)$ for $q_B - q_A \leq \delta$ that suppose that no ties happen with a positive probability (but it is straightforward to extend our discussion here to the random tie-breaking rule in the event of ties occurring with a positive probability):

\[
L(q_A, q_B) = \int 1 (q_A + \delta \leq Q_{AT}(c_{s,T})) \, dF_s(c_{s,T}) \\
+ \int 1 (q_A + \delta > Q_{AT}(c_{s,T})) (1 - p(q_B, Q_{AT}(c_{s,T})) \, dF_s(c_{s,T})
\]

Equivalently, we can write

\[
L(q_A, q_B) = 1 \\
- \int 1 (q_A + \delta > Q_{AT}(c_{s,T})) (1 - p(q_B, Q_{AT}(c_{s,T})) \cdot 1 (q_B - \delta \leq Q_{BT}(c_{s,T}))) \, dF_s(c_{s,T})
\]

(18)

(i) Now suppose that $0 < \Pr(R \text{ loses } A, R \text{ wins } B, B \text{ wins } | q^*_A, q^*_B) < 1$. This that there is a positive (but strictly less than full) measure of $c_{s,T}$ such that

\[
1 (q_A + \delta > Q_{AT}(c_{s,T})) 1 (q_B - \delta \leq Q_{BT}(c_{s,T})) p(q_B, Q_{AT}(c_{s,T})) = p(q_B, Q_{AT}(c_{s,T})) \in (0, 1).
\]

For each $c_{s,T}$ that satisfies this property, the integrand will *strictly increase* once we move from q^*_B to $\tilde{q}_B < q^*_B$ (since $p(q_B, q_A)$ is locally strictly decreasing in the first component when
$p(q_{BR}, q_{AR}) \in (0, 1))$. For all the other $c_{s,T}$ the integrand will also be greater at \tilde{q}_{BR} than at q_{BR}^* (but possibly non-strictly). Therefore, $L(q_{AR}^*, q_{BR}^*) < L(q_{AR}, \tilde{q}_{BR})$ and, thus, we can conclude that $L(q_{AR}^*, \cdot)$ is strictly decreasing in q_{BR} in a left-hand side neighborhood of q_{BR}^*. If $q_{AR} > q_{BR}^* - \delta$, then we can also consider the situation when R’s quote slightly increases from q_{BR}^* to $\tilde{q}_{BR} > q_{BR}^*$ and show that in this case $L(q_{AR}^*, \cdot)$ will strictly decrease: $L(q_{AR}^*, q_{BR}^*) > L(q_{AR}^*, \tilde{q}_{BR})$, thus concluding that $L(q_{AR}^*, \cdot)$ is strictly decreasing in q_{BR} in a right-hand side neighborhood of q_{BR}^*.

(ii) Continue to consider the situation $0 < \Pr (R$ loses A, R wins B, B wins $|q_{AR}^*, q_{BR}^*| < 1$ and in addition assume that T’s strategies satisfy (T2). Let us look at what happens when we change R’s quote in auction A. Use the representation (18) and obtain

$$L(\tilde{q}_{AR}, q_{BR}^*) - L(q_{AR}^*, q_{BR}^*) = - \int 1 (\tilde{q}_{AR} + \delta > Q_{AT} (c_{s,T}) \geq q_{AR}^* + \delta) \times$$

$$\times (1 - p(q_{BR}, Q_{AT} (c_{s,T})) 1 (q_{BR} - \delta \leq Q_{BT} (c_{s,T})) \ dF_s (c_{s,T}).$$

Since T’s strategy Q_{AT} is continuous, then the measure of $c_{s,T}$ such that $1 (\tilde{q}_{AR} + \delta > Q_{AT} (c_{s,T}))$ will be strictly greater than the measure of $c_{s,T}$ such that $1 (q_{AR}^* + \delta > Q_{AT} (c_{s,T}))$. Therefore, there is a positive measure of $c_{s,T}$ such that $1 (\tilde{q}_{AR} + \delta > Q_{AT} (c_{s,T}) \geq q_{AR}^* + \delta) = 1$.

Note that the condition $0 < \Pr (R$ loses A, R wins B, B wins $|q_{AR}^*, q_{BR}^*| < 1$ implies that there is a positive (but strictly less than full) measure of $c_{s,T}$ such that

$$1 (q_{AR} + \delta > Q_{AT} (c_{s,T})) (1 - p(q_{BR}, Q_{AT} (c_{s,T})) 1 (q_{BR} - \delta \leq Q_{BT} (c_{s,T}))) = 1 - p(q_{BR}, Q_{AT} (c_{s,T})) \in (0, 1).$$

Using this fact, we note that if $\tilde{q}_{AR} - q_{AR}^* > 0$ is small enough, then for any $c_{s,T}$ such that $\tilde{q}_{AR} + \delta > Q_{AT} (c_{s,T}) \geq q_{AR}^* + \delta$ we will also have that

$$1 - p(q_{BR}, Q_{AT} (c_{s,T})) 1 (q_{BR} - \delta \leq Q_{BT} (c_{s,T})) > 0.$$

All this implies that

$$\int 1 (\tilde{q}_{AR} + \delta > Q_{AT} (c_{s,T}) \geq q_{AR}^* + \delta) (1 - p(q_{BR}, Q_{AT} (c_{s,T})) \times 1 (q_{BR} - \delta \leq Q_{BT} (c_{s,T})) dF_s (c_{s,T}) > 0,$n

and, thus, $L(\tilde{q}_{AR}, q_{BR}^*) < L(q_{AR}^*, q_{BR}^*)$. This allows us to conclude $L(\cdot, q_{BR}^*)$ is strictly decreasing in q_{AR} in a right-hand side neighborhood of q_{AR}^*.

If $q_{AR}^* > q_{BR}^* - \delta$, then we can also consider the situation when R’s quote in A slightly decreases from q_{AR}^* to $\tilde{q}_{AR} < q_{AR}^*$ and show that in this case $L(\cdot, q_{BR}^*)$ will strictly increases:
\(L(\tilde{q}_{AR}, q_{BR}) > L(q_{AR}^*, q_{BR}^*) \), thus concluding that \(L(\cdot, q_{BR}^*) \) is also strictly decreasing in \(q_{AR} \) in a left-hand side neighborhood of \(q_{AR}^* \). \(\square \)

Our next step is to establish some properties of function \(E(\cdot, \cdot) \) defined in (15) on the domain

\[
Q \equiv \{ (q_{AR}, q_{BR}) : q_{BR} - \delta \leq q_{AR} \leq q_{BR}, \Pr \left(W_{11}(q_{AR}, q_{BR}) \right) > 0 \}.
\]

Note that if \(T \)'s strategies satisfy condition (T4), then due to \(q_{AR} \leq q_{BR} - \delta \) be satisfied on \(Q \), we can rewrite

\[
E(q_{AR}, q_{BR}) = (q_{AR} - q_{BR}) p(q_{AR}, q_{BR}) \int 1 (q_{AR} + \delta \leq Q_{AT}(c_{s,T})) \, dF_s(c_{s,T}).
\] (19)

Lemma 9 Suppose \(T \)'s strategies satisfy condition(T4). Function \(E(\cdot, \cdot) \) has the following properties.

(i) On domain \(Q \) function \(E(q_{AR}, q_{BR}) \) is strictly increasing in \(q_{AR} \).

(ii) On domain \(Q \) function \(E(q_{AR}, q_{BR}) \) is strictly decreasing in \(q_{BR} \).

(iii) TO ADD.

Proof. (i) If \(q_{AR} = q_{BR} \), then we can only decreases \(q_{AR} \) to remain in \(Q \). In this case \(E(q_{AR}, q_{BR}) = 0 \) and moving from \(q_{AR} \) to \(\tilde{q}_{AR} < q_{AR} \) (in such a way that \((\tilde{q}_{AR}, q_{BR}) \in Q \)) will result in \(E(\tilde{q}_{AR}, q_{BR}) < 0 \) as \((\tilde{q}_{AR} - q_{BR}) p(\tilde{q}_{AR}, q_{BR}) < 0 \) and \(\Pr \left(W_{11}(\tilde{q}_{AR}, q_{BR}) \right) > 0 \).

Suppose that \(q_{AR} < q_{BR} \). Then changing \(q_{AR} \) to \(\tilde{q}_{AR} \) in such a way that \(q_{BR} - \delta \leq \tilde{q}_{AR} < q_{AR} \) (so that \((\tilde{q}_{AR}, q_{BR}) \in Q \)) will result in

\[
p(\tilde{q}_{AR}, q_{BR}) \int 1 (\tilde{q}_{AR} + \delta \leq Q_{AT}(c_{s,T})) \, dF_s(c_{s,T}) > p(q_{AR}, q_{BR}) \int 1 (q_{AR} + \delta \leq Q_{AT}(c_{s,T})) \, dF_s(c_{s,T}) > 0.
\]

At the same time

\[
\tilde{q}_{AR} - q_{BR} < q_{AR} - q_{BR} < 0.
\]

Therefore,

\[
E(\tilde{q}_{AR}, q_{BR}) < E(q_{AR}, q_{BR}).
\]

Alternatively, changing \(q_{AR} \) to \(\tilde{q}_{AR} \) in such a way that \(q_{AR} < \tilde{q}_{AR} \leq q_{BR} \) (so that \((\tilde{q}_{AR}, q_{BR}) \in Q \)) will result in

\[
p(\tilde{q}_{AR}, q_{BR}) \int 1 (\tilde{q}_{AR} + \delta \leq Q_{AT}(c_{s,T})) \, dF_s(c_{s,T}) < p(q_{AR}, q_{BR}) \int 1 (q_{AR} + \delta \leq Q_{AT}(c_{s,T})) \, dF_s(c_{s,T}) > 0.
\]
At the same time

\[0 \geq \tilde{q}_{AR} - q_{BR} > q_{AR} - q_{BR}. \]

Therefore,

\[E(\tilde{q}_{AR}, q_{BR}) > E(q_{AR}, q_{BR}). \]

(ii) Analogous to (i)

(iii) TO ADD

Lemma 10 below establishes that ...

Lemma 10