Mergers, Innovation, and Entry-Exit Dynamics:

Mitsuru Igami* Kosuke Uetake†

March 26, 2015

Preliminary & incomplete

Abstract

We measure the impact of mergers on competition, innovation, and welfare. We develop a dynamic oligopoly model of mergers, R&D, and entry/exit, and estimate it using data from the hard disk drive industry. We find mergers became a dominant mode of exit in the later phase of industry consolidation and often generated productivity improvement (i.e., synergies). Our counterfactual simulation suggests a more restrictive antitrust policy may not necessarily increase welfare because a higher exit rate partially offsets its pro-competitive effect, and R&D does not fully make up for the forgone synergies.

Keywords: Dynamic Oligopoly, Entry and Exit, Innovation, Merger, Productivity, Shakeout.

*Yale Department of Economics. E-mail: mitsuru.igami@yale.edu.
†Yale School of Management. Email: kosuke.uetake@yale.edu.
1 Introduction

The welfare analysis of horizontal mergers has traditionally focused on the static tradeoff between market power and productivity. However, both of these factors are likely to change in the longer run, partially in response to the rules governing mergers. Mergers change market structure, and in turn, the expectations about market structure affect firms’ incentives to invest in continued operation, productivity improvement, as well as mergers and acquisitions. Thus a full understanding of the economic impact of mergers and competition policy requires an analytical framework that incorporates firms’ forward-looking behaviors with respect to entry/exit, R&D investment, and mergers.

For these purposes, we develop an empirical model of a dynamic oligopoly game with endogenous mergers, innovation, and entry/exit. Our model captures the conventional, static tradeoff between market power and productivity by a period game featuring Cournot competition among firms with heterogeneous productivity levels. That is, mergers reduce the number of firms but may potentially improve the productivity of merged entities, so that the net welfare contribution can be either positive or negative. Moreover, by explicitly incorporating the dynamics of endogenous mergers, R&D, and entry/exit, we allow both market power and productivity to change over time through multiple channels. Specifically, market structure changes in response to entry/exit and mergers, whereas the productivity profile of firms evolves reflecting their R&D investment and stochastic synergy from mergers. Thus the model can predict the equilibrium response of firms to the change in antitrust policy, and allows for a fine decomposition of welfare impact into competition effect and innovation effect.

We estimate this model using data from the hard disk drive (HDD) industry between 1976 and 2014, which has experienced a typical trajectory of markets for high-tech products in three phases (Figures 1 and 2). First, massive entry occurred during the first half of our sample period, when the demand grew fast as personal computers (PCs) were commercialized successfully. Second, the industry consoli-
Note: The number of firms counts only the major firms with market shares exceeding one percent at some point of time.

tion started around 1990 when new entry became rare and many fringe firms exited mostly through bankruptcy and liquidation: shakeout. Third, the final phase of consolidation began around 2000 when the nine major survivors started merging with each other, eventually down to three firms in the entire world.

Besides the availability of data that cover a long process of industry consolidation, we have two other reasons to study this market. One is that antitrust authorities across the globe have seriously investigated these mergers for concerns over their potential impact on competition and innovation, which makes the HDD mergers policy-relevant. For example, the U.S. Federal Trade Commission (FTC) questioned the merit of Seagate Technology’s takeover of Maxtor in 2006, mostly out of concerns over an allegedly negative effect of reduced competition on the incentives to innovate in the subsequent years. Likewise, the Ministry of Commerce (MOFCOM) of China approved the merger of Western Digital Corporation and Hitachi Global Storage Technologies in 2012 but demanded that their R&D groups be kept separate. The other reason to study the HDD industry is the magnitude of its contribution to general computing, which makes the case truly relevant for the economics of inno-
Note: The number of firms counts only the major firms with market shares exceeding one percent at some point of time.

Our empirical analysis proceeds as follows. First, we document the process of consolidation in the HDD industry, which was briefly described in the above. Second, we estimate each firm’s marginal cost in each time period (calendar quarter) by using data on HDD prices, quantities, market shares, and the HDD component prices, based on a static model of demand and Cournot competition among heterogeneous firms. Third, we embed the implied period profits into the dynamic oligopoly model, solve it by backward induction, and estimate its key parameters using a nested fixed-point (NFXP) algorithm. Finally, we use the estimated model to assess the welfare impact of a hypothetical antitrust policy in which five-to-four and four-to-three mergers are completely blocked, as opposed to the historical rule-of-thumb practice that has permitted mergers down to three firms.
The results suggest this counterfactual merger policy may not necessarily increase social welfare despite its pro-competitive effect, for three reasons. First, the reduction of merger opportunities decreases firms’ expected continuation values, thereby encouraging them to exit (by liquidation) more often: the value-destruction effect. This exit-inducing side effect partially offsets the pro-competitive effect of blocking mergers. Second, in response to the reduced synergy opportunities, firms try to increase in-house R&D investment as a substitute for merger. However, this substitution effect is also partially offset by the value-destruction effect mentioned above, which deflates the incentives to invest across the board. Consequently, the increased R&D does not fully make up for the forgone synergies, so that the counterfactual productivity growth underperforms the baseline outcome. Third, as a result of these countervailing forces, the pro-competitive effect of merger policy does not necessarily dominate its negative innovation effect, and its net impact on consumer surplus exhibits a nuanced, non-monotonic pattern over time. Our decomposition of the welfare impact highlights these (hitherto unknown or under-explored) economic forces, as well as the importance of incorporating these dynamic margins of firms’ response to a policy change, without which a merger analysis would appear to overestimate the merit of the restrictive policy.

1.1 Related Literature

This paper builds on a growing literature that studies endogenous mergers using dynamic models. Gowrisankaran’s (1997 and 1999) computational work spearheaded the efforts to understand mergers in a dynamic and strategic environment. Gowrisankaran and Holmes (2005) proposed an alternative modeling approach to focus on a dominant firm that engages in mergers.

More recently, Mermelstein, Nocke, Satterthwaite, and Whinston (2014, henceforth MNSW) propose a computational theory of dynamic duopoly to assess the role of antitrust policy, which is probably the most closely related paper to ours. Both
MNSW’s and our models feature endogenous mergers, investment, entry/exit, as well as Cournot competition in a stage game, and we share their focus on the evaluation of merger policy. Our paper departs from MNSW in two respects. First, we study an N-firm oligopoly (with $N > 2$) for its relevance to the practice of antitrust policy, in which authorities typically approve mergers to four or three firms but block mergers to duopoly or monopoly. Second, we estimate an empirical model of endogenous mergers using data from the high-tech industry in which antitrust authorities actually evaluated the merit of mergers with a strong emphasis on the likely impact on competition and innovation. Besides enhancing relevance to public policy, these two features of our research necessitate and entail nontrivial efforts to develop an empirical model that is sufficiently rich to capture the dynamics of mergers, innovation, and competition in a real industry while maintaining reasonable tractability and estimability.

Another important paper is Jeziorski’s (2014) empirical analysis of the radio industry, in which he proposes a continuous-time model of mergers and product repositioning, as well as a two-step estimation procedure. His work, along with Stahl’s (2011), is among the first to empirically study merger dynamics. Besides technical differences in the modeling and estimation approaches (which largely stem from the differences in data situations), our research differs substantively in that we focus on competition and innovation in a high-tech commodity industry, with endogenous entry/exit and investment, whereas his paper analyzes the dynamics of product-portfolio management in the canonical context of product differentiation among radio stations.

Because mergers come out of bargaining among firms, we also build on the empirical bargaining literature. In particular, our bargaining game is similar to those in Ho (2009) and Crawford and Yurukoglu (2012). Other related work includes Fong and Lee (2013) and Collard-Wexler, Gowrisankaran, and Lee (2014). Fong and Lee (2013) lay out a framework for a dynamic network-formation game and bargaining, whereas Collard-Wexler, Gowrisankaran, and Lee (2014) provide a theoretical foundation for
the use of Nash bargaining in empirical work, with emphasis on bilateral oligopoly of upstream and downstream industries.

2 Data: Consolidation of the HDD Industry

This section describes the process of industry consolidation. We have chosen to study the HDD industry because its fast pace of market structure evolution allows us to analyze the entire industry lifecycle. IBM manufactured prototypes of HDD in as early as 1956, but it was in the 1980s that its use became widespread with the arrival of personal computers (PCs). The first decade of our sample period witnessed the tripling of the number of HDD manufacturers (Figure 1). However, many of these firms failed to gain substantial market shares and lacked the capability or resources to keep up with competition and innovation, which led to a shakeout during the second decade. The number of HDD makers fell to nine by the end of the 20th century. In the final phase between 2000 and 2014, these nine major survivors merged with each other and the industry has consolidated into triopoly of Western Digital, Seagate Technology, and Toshiba.

Figure 2 shows the number of entry (right panel) and exit (left panel) to describe the patterns of firm turnover underlying Figure 1. The bar chart in the right panel is particularly important for the understanding of mergers, as it distinguishes two modes of exit, namely, plain exit by bankruptcy and liquidation (light color) and exit by mergers and acquisitions (dark color). Three patterns emerge. First, mergers have always accounted for a non-negligible fraction of exits since the first decade of the data. Second, plain exit occurred more frequently than exit by mergers during the first two decades, but it completely ceased since the mid 1990s. Third, as a result of these two patterns, mergers became the dominant mode of exit in the last 15 years of the data. Thus the early phase of industry consolidation proceeded mostly through the shakeout of fringe firms, whereas the late-stage consolidation proceeded through
mergers among major survivors.

Figure 3: Increasing Demand and Sunk Costs

Note: The right panel features the sum of expenditures at Western Digital and Seagate Technology.

What explains these patterns of entry, exit, and mergers? A thorough analysis requires a dynamic oligopoly model and therefore has to be postponed until section X, but some casual assessments are possible with descriptive analysis (Figure 3). Massive entry is characteristic to a market for new products in which the demand is growing, and hence the first decade of our data is not a mystery. By contrast, a shakeout could occur in both declining and growing industries. Demand is shrinking in a declining industry almost by definition, which reduces profits and leads firms to exit, but the demand for HDDs had been growing at least until 2011 and hence does not serve as an obvious explanation for the mass exits in the 1980s and 1990s. An industry with growing demand may still experience a shakeout when the fixed or sunk cost of investment increases over time, either exogenously as a deterministic trajectory of the technology or endogenously through competitive dynamics as in Sutton’s (1991 and 1998) models. This explanation seems to fit the HDD market better because the HDD makers’ R&D expenditures have increased over time. Our interviews with the industry participants suggest many firms could not keep up with such investments.

What was the antitrust implication of this industry consolidation? A full welfare analysis is the subject of the final sections of the paper, but our interviews with cur-
Figure 4: Evolution of Global Market Shares

Note: Labels indicate the names of parties to most of the mergers. See Table 1 and 3 for information on the specific cases.

Current and former practitioners of competition policy suggest the authorities typically do not completely block a merger that creates a four- or three-firm oligopoly, whereas one that leads to a duopoly is not tolerated in the absence of special justification. Consistent with this view, the mergers among HDD makers in the last decade faced some antitrust challenges but were eventually allowed to proceed, with some conditionalities such as asset divestiture, brand retention, and separate operation. Figure 4 depicts the evolution of market shares among all HDD makers, and Figure 5 overlays the Herfindahl-Hirschman Index (HHI) on the number of firms.

In summary, the HDD industry experienced phases of mass entry and exit, and has consolidated into triopoly mostly through mergers in the last two decades. The rising sunk cost of R&D investment, rather than a decline in demand, seems to underlie the overall tendency to consolidate. The antitrust authorities have made some limited interventions in recent cases but did not completely block any of the proposed mergers.

We thank Joseph Farrell, Orie Shelef, and Lawrence Wu for these insights.
Figure 5: Herfindahl-Hirschman Index (HHI) of the Global HDD Market

Note: The HHI is the sum of the squares of the firm’s market shares.

3 Static Structural Analysis

Before proceeding to develop a fully dynamic model of entry, exit, and mergers, let us pause and consider firms’ incentives for mergers in this section. In section 3.1 we review the theoretical literature on the incentives to merge, which will guide our subsequent empirical analysis based on a static model in section 3.2.

3.1 Incentives to Merge

By definition, a merger reduces the effective number of competitors by concentrating the ownership of productive assets, and hence standard models of oligopoly predict increases in market power, markups, and profits. This market-power effect certainly exists, for example, in the traditional Cournot oligopoly with homogeneous goods and N identical firms, each of which faces linear demand, $P = a - \sum_i q_i$, and chooses output, q_i, to maximize profit, $\pi_i \equiv (P - c_i)q_i$, where c_i is constant marginal cost ($c_i = c \, \forall i$). In a symmetric Nash equilibrium, each firm’s output and profit are $q_i = (a - c) / (N + 1)$ and $\pi_i = [(a - c) / (N + 1)]^2$, respectively, both of which will increase as N decreases. Thus the firms will enjoy increased market power, and this
effect should provide a basic incentive for mergers.

However, the gains from mergers will be shared unevenly between merging parties ("insiders") and the rest of the industry ("outsiders"). Stigler (1950) argued that the insiders’ combined market share may decrease after the merger, and that their joint profit may also decrease unless there exists a significant saving in fixed costs. Salant, Switzer, and Reynolds (1983) proved this conjecture in the symmetric Cournot setting (similar to the example in the above), showing that the outsiders will free-ride on the increased market power by expanding their outputs. Because outputs are strategic complements in a Cournot game, the insiders will have to best-respond by reducing their joint output, to the extent that mergers become unprofitable for the merging parties under most circumstances. The only exception is a merger that leads to a monopoly because there will be no outsider. They also show the insiders’ incentives to merge improves (i.e., become less negative) as N decreases because there will be less free-riders (outsiders). Qiu and Zhou (2007) articulate this intuition in a dynamic version of the Cournot game and discover that mergers are strategic complements.

Subsequent studies discovered that this free-riding effect does not necessarily dominate the market power effect in a Cournot game with heterogeneous firms (Perry and Porter 1985) and in a differentiated-good Bertrand game (Deneckere and Davidson 1985), but Stigler’s argument still carries a useful insight that outsiders may benefit from a merger more than insiders, which could be a relevant lesson when we proceed to a fully dynamic analysis in which firms choose to stay alone or merge.

Another lesson from these papers is the importance of cost-heterogeneity across firms, depending on which insiders may increase or decrease their joint profit after mergers. Farrell and Shapiro (1990) further investigated the implications of cost-heterogeneity by analyzing two different modes of efficiency gains. One is “rationalization” of productive assets upon merger, by which the merged entity’s marginal cost inherits the lowest of the two insiders’ pre-merger marginal costs (i.e., $c^{'N} = \min\{c^A, c^T\}$, where $c^{'N}$, c^A, and c^T denote marginal costs of the merged en-
tity, acquiring firm, and target firm, respectively). The other is “synergies” between the insiders, by which the merged entity achieves the level of efficiency that is superior to both of the pre-merger insiders’ (i.e., $c^{IN} < \min\{c^A, c^T\}$) either through scale economies, knowledge spillovers, or some other channels. Their paper shows consumers will benefit from a merger only if some synergies materialize. Thus both the private and public gains from mergers depend on the extent of cost-heterogeneity as well as how these costs change as a result of mergers.

From these theoretical inquiries, we could gain the following three insights. First, there exists a tug-of-war between the market power effect and the free-riding effect. The former could increase the profits of insiders as well as outsiders, but the latter could tilt the distribution of such incremental profits in favor of outsiders, to the extent that insiders may find a merger unprofitable. Second, the incentives to merge increase as the industry becomes more concentrated (i.e., as N decreases), because the market power effect grows larger and there will be less free-riders. Thus mergers are strategic complements, which explains some of the historical patterns in section 2 (see Figures 1 and 2) whereby mergers have become a dominant mode of exit over time. Third, the balance between the two forces critically depends on cost-heterogeneity across firms as well as how merged firms’ cost structure change after mergers. For an empirical analysis of merger incentives, the relevant cost structure includes both the variable or marginal costs of production (i.e., rationalization and synergies, as defined by Farrell and Shapiro) and the fixed or sunk costs of operation, R&D, and capital expenditures.

We may translate these conceptual lessons into guidelines for our subsequent empirical analysis as follows. First, potential gains from an increase in market power can be measured by estimating the elasticity of demand. Second, the extent of free-riding effect should be visible in the data on market shares. Specifically, an inspection of the merging firms’ combined market shares before and after mergers should provide a first indication of free-riding by outsiders. Third, we can estimate each firm’s mar-
ginal cost in each period to investigate these patterns of cost-heterogeneity as well as the extent of rationalization or synergies due to merger. The combination of the demand and marginal cost estimates provides a more structural foundation to measure various incentives. Fourth, a similar analysis of fixed or sunk costs of operation and investments should complete the picture on how firms’ cost structures change after mergers. Fifth, we may estimate the sunk costs of entry, exit, and merger, so that we can understand a full dynamics of merger incentives, including the option values and choice problems associated with entry/exit, staying alone, and merger. Most of the first four empirical objects are either directly observable in the data or estimable within a static model of demand and supply. The remainder of this section will engage in such a static analysis. By contrast, the last item in the above calls for a dynamic model, which will be the subject of section 4.

3.2 Findings from Static Analysis

Table 1 shows the combined market share of the acquiring firm and the target firm declined after merger in each of the 14 cases, which suggests the theoretical prediction of free-riding by the non-merging parties is a real phenomenon. At the same time, the acquiring firms managed to achieve expansions relative to their individual pre-merger market shares, which is consistent with our interviews with the industry participants, in which they explained gaining market shares as the primary motivation for mergers. Finally, a larger firm acquires a smaller firm in most of the cases, which seems intuitive.

To gain further insights into the incentives to merge, we structurally interpret these market share data in terms of marginal costs which are heterogeneous across firms and change over time. Specifically, we first estimate a logit demand model, and then recover the implied marginal cost of each firm in each period. This empirical approach is almost completely identical to Igami (2014) and hence omitted from this preliminary draft.

Table 3 shows the merging firms lowered their marginal costs at faster rates than
Table 1: Market Shares Before/After Mergers (%)

<table>
<thead>
<tr>
<th>Year</th>
<th>Target name</th>
<th>Acquiror name</th>
<th>ms^T Before</th>
<th>ms^A Before</th>
<th>$ms^T + ms^A$ Before</th>
<th>$ms^T + ms^A$ After</th>
</tr>
</thead>
<tbody>
<tr>
<td>1982</td>
<td>Burroughs</td>
<td>Memorex</td>
<td>1.85</td>
<td>7.83</td>
<td>9.68</td>
<td>2.73</td>
</tr>
<tr>
<td>1983</td>
<td>ISS/Univac</td>
<td>Control Data</td>
<td>0.75</td>
<td>27.08</td>
<td>27.83</td>
<td>19.85</td>
</tr>
<tr>
<td>1984</td>
<td>Vertex</td>
<td>Priam</td>
<td>0.93</td>
<td>2.52</td>
<td>3.45</td>
<td>2.78</td>
</tr>
<tr>
<td>1988</td>
<td>Plus Dev.</td>
<td>Quantum</td>
<td>0.89</td>
<td>1.41</td>
<td>2.30</td>
<td>4.64</td>
</tr>
<tr>
<td>1988</td>
<td>Imprimis</td>
<td>Seagate</td>
<td>13.92</td>
<td>18.16</td>
<td>32.08</td>
<td>29.23</td>
</tr>
<tr>
<td>1989</td>
<td>MiniScribe</td>
<td>Maxtor</td>
<td>5.68</td>
<td>4.99</td>
<td>10.68</td>
<td>8.53</td>
</tr>
<tr>
<td>1994</td>
<td>DEC</td>
<td>Quantum</td>
<td>1.65</td>
<td>18.60</td>
<td>20.25</td>
<td>20.68</td>
</tr>
<tr>
<td>1995</td>
<td>Conner</td>
<td>Seagate</td>
<td>11.94</td>
<td>27.65</td>
<td>39.58</td>
<td>35.41</td>
</tr>
<tr>
<td>2001</td>
<td>Quantum</td>
<td>Maxtor</td>
<td>13.87</td>
<td>13.87</td>
<td>27.74</td>
<td>26.84</td>
</tr>
<tr>
<td>2002</td>
<td>IBM</td>
<td>Hitachi</td>
<td>13.86</td>
<td>3.64</td>
<td>17.50</td>
<td>17.37</td>
</tr>
<tr>
<td>2006</td>
<td>Maxtor</td>
<td>Seagate</td>
<td>8.19</td>
<td>29.49</td>
<td>37.67</td>
<td>35.27</td>
</tr>
<tr>
<td>2009</td>
<td>Fujitsu</td>
<td>Toshiba</td>
<td>4.41</td>
<td>10.32</td>
<td>14.72</td>
<td>11.26</td>
</tr>
<tr>
<td>2011</td>
<td>Samsung</td>
<td>Seagate</td>
<td>6.89</td>
<td>39.00</td>
<td>45.89</td>
<td>42.82</td>
</tr>
<tr>
<td>2012</td>
<td>Hitachi</td>
<td>Western Digital</td>
<td>20.32</td>
<td>24.14</td>
<td>44.46</td>
<td>44.27</td>
</tr>
</tbody>
</table>

Note: ms^T and ms^A denote the target and the acquiring firms’ market shares, respectively. For each merger case, “before” refers to the last calendar quarter in which ms^T was recorded separately from ms^A, and “after” is four quarters after “before.” Alternative time windows including 1, 8, and 12 quarters lead to similar patterns. Source: DISK/TREND Reports (1977–99) and TRENDFOCUS Reports (1996–2014).

The average trend of the rest of the industry in all but two cases. This evidence suggests the existence of synergies. In our interviews, the industry participants indicated such synergies typically stem from more efficient uses of production facilities.

In Table 4, we analyze the firms’ incentives for merger in detail by decomposing the changes in their combined profit, with the Seagate-Maxtor merger in the second quarter of 2006 as an example. This exercise suggests Seagate substantially increased its profit by acquiring Maxtor regardless of the presence or absence of synergies, but the incremental joint profit for the two firms would have been negligible in the absence of synergies (i.e., if their marginal-cost reduction had not been greater than the rest of the industry). Thus synergies seem to be an important factor in explaining the HDD manufacturers’ incentives to merger.

We can extend this analysis of changes in combined profits to hypothetical mergers to gain further insights into the incentives to merge. That is, for all possible pairings
Table 2: Demand Estimates

<table>
<thead>
<tr>
<th>Estimation:</th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OLS</td>
<td>IV</td>
</tr>
<tr>
<td>Price (α)</td>
<td>-0.322^{***}</td>
<td>-0.351^{***}</td>
</tr>
<tr>
<td></td>
<td>(.0029)</td>
<td>(.0031)</td>
</tr>
<tr>
<td>Quality (β)</td>
<td>1.3109^{***}</td>
<td>1.4241^{***}</td>
</tr>
<tr>
<td></td>
<td>(.1214)</td>
<td>(.1287)</td>
</tr>
<tr>
<td>Year dummies</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Quarter dummies</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Num. of observations</td>
<td>476</td>
<td>476</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>.3687</td>
<td>.3667</td>
</tr>
</tbody>
</table>

First stage regression

F-value | 129.39 |
Adjusted R^2 | .9044 |

Note: Standard errors are in parentheses. ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively.

Table 3: Marginal Cost Estimates Before/After Mergers (US$)

<table>
<thead>
<tr>
<th>Year</th>
<th>Target name</th>
<th>Acquiror name</th>
<th>Target (c^T)</th>
<th>Acquiror (c^A)</th>
<th>Rivals</th>
<th>Relative change</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Before</td>
<td>After</td>
<td>∇c^{IN}</td>
<td>∇c^{OUT}</td>
</tr>
<tr>
<td>1982</td>
<td>Burroughs</td>
<td>Memorex</td>
<td>2068.21</td>
<td>2044.52</td>
<td>1469.62</td>
<td>-547.90</td>
</tr>
<tr>
<td>1983</td>
<td>ISS/Univac</td>
<td>Control Data</td>
<td>1475.65</td>
<td>1395.39</td>
<td>1024.25</td>
<td>-371.14</td>
</tr>
<tr>
<td>1984</td>
<td>Vertex</td>
<td>Priam</td>
<td>1081.94</td>
<td>1077.10</td>
<td>959.96</td>
<td>-117.14</td>
</tr>
<tr>
<td>1988</td>
<td>Imprimis</td>
<td>Seagate</td>
<td>470.79</td>
<td>457.88</td>
<td>352.52</td>
<td>-105.37</td>
</tr>
<tr>
<td>1989</td>
<td>MiniScribe</td>
<td>Maxtor</td>
<td>424.29</td>
<td>426.40</td>
<td>362.50</td>
<td>-63.91</td>
</tr>
<tr>
<td>1994</td>
<td>DEC</td>
<td>Quantum</td>
<td>239.96</td>
<td>188.30</td>
<td>165.19</td>
<td>-23.10</td>
</tr>
<tr>
<td>1995</td>
<td>Conner</td>
<td>Seagate</td>
<td>191.85</td>
<td>143.95</td>
<td>116.45</td>
<td>-27.51</td>
</tr>
<tr>
<td>2001</td>
<td>Quantum</td>
<td>Maxtor</td>
<td>91.81</td>
<td>91.81</td>
<td>70.61</td>
<td>-21.20</td>
</tr>
<tr>
<td>2002</td>
<td>IBM</td>
<td>Hitachi</td>
<td>67.35</td>
<td>70.27</td>
<td>59.53</td>
<td>-10.73</td>
</tr>
<tr>
<td>2006</td>
<td>Maxtor</td>
<td>Seagate</td>
<td>57.46</td>
<td>51.39</td>
<td>50.84</td>
<td>0.55</td>
</tr>
<tr>
<td>2009</td>
<td>Fujitsu</td>
<td>Toshiba</td>
<td>48.69</td>
<td>47.01</td>
<td>44.56</td>
<td>-2.44</td>
</tr>
<tr>
<td>2011</td>
<td>Samsung</td>
<td>Seagate</td>
<td>54.15</td>
<td>45.01</td>
<td>39.29</td>
<td>-5.72</td>
</tr>
<tr>
<td>2012</td>
<td>Hitachi</td>
<td>Western Digital</td>
<td>47.75</td>
<td>46.66</td>
<td>37.21</td>
<td>-9.45</td>
</tr>
</tbody>
</table>

Note: c^T and c^A denote the target and the acquiring firms’ marginal costs, respectively. The definitions of “before” and “after” are the same as in Table 1 (i.e., 4-quarter time window). ∇c^{IN} and ∇c^{OUT} denote the changes in the insiders’ and the outsiders’ marginal costs, respectively.

of firms in all periods in the data (between 2000 Q1 and 2014 Q2), we may recompute Cournot equilibria under hypothetical mergers and evaluate counterfactual profits. Of course, a precise prediction of synergies for these hypothetical pairs is unrealistic, and
Table 4: Decomposition of Changes in Joint Profit (The Case of Seagate-Maxtor Merger)

<table>
<thead>
<tr>
<th></th>
<th>(1) Without Synergy</th>
<th>(2) With Synergy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-merger profit of Seagate</td>
<td>246</td>
<td>246</td>
</tr>
<tr>
<td>(Acquiror)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-merger profit of Maxtor</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>(Target)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gains from rationalization</td>
<td>49</td>
<td>49</td>
</tr>
<tr>
<td>Gains from synergy</td>
<td>0</td>
<td>28</td>
</tr>
<tr>
<td>Gains from unilateral exercise</td>
<td>50</td>
<td>34</td>
</tr>
<tr>
<td>of market power</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Losses due to free-riding by</td>
<td>−97</td>
<td>−68</td>
</tr>
<tr>
<td>outsiders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post-merger joint profit</td>
<td>268</td>
<td>309</td>
</tr>
<tr>
<td>Net Change in Joint Profit</td>
<td>2</td>
<td>43</td>
</tr>
</tbody>
</table>

Note: The profits are calculated for 2006 Q2, in which Seagate’s acquisition of Maxtor was completed, and was also the last period in which Maxtor’s output was recorded independently. See the main text for the details of calculation.

hence we simply assume the merged entity will inherit the more productive party’s pre-merger marginal cost. Table 5 presents the descriptive statistics of such (static) merger simulations without synergies. The number of observations reflects the number of potential pairs in the data and reminds us of a relatively rare-event nature of mergers. There existed 985 potential pair-period combinations even after limiting our consideration to the actual firm-period observations in the data (i.e., conditional on the set of firms that actually existed in each period in the data). Only six of them materialized in the data, which suggests mergers are rare events with high sunk costs of transaction. Moreover, as the analysis of merger incentives for the Seagate-Maxtor case suggested, mergers and the resulting increase in the concentration of market shares do not necessarily increase the combined (variable) profits of merging firms in the absence of synergies. This observation seems to indicate the importance of either synergies (i.e., reduction of variable costs), the reduction of fixed costs (i.e., fixed cost of operation as well as that of R&D and capital expenditures), or both as an important factor in the incentives for merger.

These features of hypothetical merger analysis lead us to doubt the feasibility of predicting exactly who merges with whom and when. Nevertheless, the simulated
incremental profits from these hypothetical mergers exhibit one clear pattern with respect to market structure. Table 6 shows the regression of incremental profit (as a percentage of pre-merger joint profit) on concurrent market structure, which indicates mergers become more profitable as the industry consolidates. This is an empirical counterpart to the theoretical predictions of Salant, Switzer, and Reynolds (1983) and Qiu and Zhou (2007) and demonstrates the strategic complementarity between mergers. That is, a merger breeds subsequent mergers.

Table 5: Estimated Gains in 985 Hypothetical Merger Pairs (2000 Q1–2014 Q2)

<table>
<thead>
<tr>
<th>Net Change in Joint Profit ($ million)</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>–8.37</td>
<td>32.35</td>
<td>–243.50</td>
<td>138.01</td>
</tr>
<tr>
<td>Net Change in Joint Profit (%)</td>
<td>–8.23</td>
<td>11.18</td>
<td>–37.64</td>
<td>15.22</td>
</tr>
</tbody>
</table>

Note: The figures represent summary statistics for the 985 hypothetical mergers between 2000 Q1 and 2014 Q2. See the main text for the details of calculation.

Table 6: Gains from Merger Increase with Concentration

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net Change in Joint Profit (%)</td>
<td>–.0394***</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Number of Active Firms, (N_t)</td>
<td>–</td>
<td>(omitted)</td>
<td>(omitted)</td>
</tr>
<tr>
<td>Indicator for (N_t = 3)</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Indicator for (N_t = 4)</td>
<td>–</td>
<td>–.0824*</td>
<td>–.0824</td>
</tr>
<tr>
<td>Indicator for (N_t = 5)</td>
<td>–</td>
<td>–.1244***</td>
<td>–.1128</td>
</tr>
<tr>
<td>Indicator for (N_t = 6)</td>
<td>–</td>
<td>–.1424***</td>
<td>–.1319*</td>
</tr>
<tr>
<td>Indicator for (N_t = 7)</td>
<td>–</td>
<td>–.1816***</td>
<td>–.1886***</td>
</tr>
<tr>
<td>Indicator for (N_t = 8)</td>
<td>–</td>
<td>–.1691***</td>
<td>–.1718***</td>
</tr>
<tr>
<td>Indicator for (N_t = 9)</td>
<td>–</td>
<td>–.2033***</td>
<td>–.1980***</td>
</tr>
<tr>
<td>Time Trend (Calendar Quarter)</td>
<td>–.0017*</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Time Dummies</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Number of Observations</td>
<td>985</td>
<td>985</td>
<td>985</td>
</tr>
<tr>
<td>Adjusted (R^2)</td>
<td>.0827</td>
<td>.0995</td>
<td>.0577</td>
</tr>
</tbody>
</table>

Note: Standard errors are omitted to save space, but ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively.
4 Dynamic Structural Analysis

4.1 A Dynamic Model of Merger, Investment, and Entry/Exit

Setup Time is discrete with an infinite horizon, $t = 1, 2, \ldots, \infty$. There exist a finite number of firms, $i = 1, 2, \ldots, I$. Each firm’s individual state is its productivity level, $\omega_{it} \in \{\bar{\omega}_{00}, \bar{\omega}_0, \bar{\omega}_1, \bar{\omega}_2, \ldots, \bar{\omega}_M\}$, where $\bar{\omega}_{00}$ represents an absorbing state in which the firm is “dead” (upon exit or acquisition by a rival firm), $\bar{\omega}_0$ is a “potential entrant” state from which a firm may choose to become active in the product market, and $(\bar{\omega}_1, \bar{\omega}_2, \ldots, \bar{\omega}_M)$ indicate discrete productivity levels of active firms. The industry state is a collection of individual states across I firms, $\omega_t = \{\omega_{it}\}_{i=1}^I$. Payoffs depend on the profile of productivity levels but not on the identity of firms, and hence the distribution of the number of firms across productivity levels is a sufficient statistic for the industry state, $s_t = (n_{00}, n_0, n_1, n_2, \ldots, n_M)$. Because only active firms participate in the product-market competition and inactive firms (i.e., dead firms and potential entrants) do not, (n_1, n_2, \ldots, n_M) completely determine each firm’s period profit, $\pi_{it} = \pi(\omega_{it}, n_1, n_2, \ldots, n_M)$. This section focuses on the exposition of the dynamic part of the model and takes these period profits as given (i.e., as primitive inputs).

At the beginning of each period, nature randomly chooses one firm (say i) as a proposer of merger with the recognition probability $\rho_i(s_t) = 1/n_t$, where $n_t = \sum_{m \neq 00} n_m$ is the number of firms that have not exited (i.e., active firms plus potential entrants). If i is already active, it becomes the proposer and may choose to exit, stay alone, invest in R&D, or propose merger to one of the active rivals, j. That is, an active firm at its turn-to-move chooses its action, a_{it}, from the choice set $A_i(s_t) = \{\text{exit}, \text{stay, invest, merge (1)}, \text{merge (2)}, \ldots, \text{merge (M)}\}$, where merge (m) indicates proposing merger to a level-m rival firm, if such a firm exists in state s_t.

When i exits (by its own choice to liquidate and not by being acquired), it earns scrap value, κ^e, and exits forever (i.e., $\omega_{i,t+1} = \bar{\omega}_{00}$). When i stays alone, it pays the fixed cost of operation and equipment maintenance, κ^c, and its productivity remains
the same (i.e., \(\omega_{i,t+1} = \omega_{it} \)) with probability \(1 - \delta \), where \(\delta \in [0, 1] \) is the probability of stochastic depreciation of productive assets. With probability \(\delta \), productivity drops by one level (i.e., \(\omega_{i,t+1} = \omega_{it} - 1 \)) with \(\bar{\omega}_1 \) as the lower bound. When \(i \) invests in a better process, it pays the sunk cost of innovation, \(\kappa^i \), and its productivity increases by one level (i.e., \(\omega_{i,t+1} = \omega_{it} + 1 \)), with \(\bar{\omega}_M \) as the upper bound. When proposing merger, firm \(i \) (“acquirer”) makes a take-it-or-leave-it (TIOLI) offer to \(j \) (“target”), \(p_{ij}(s_t) \), which the latter may accept or reject. If the offer is accepted, acquirer \(i \)'s productivity may potentially improve by some increment, \(\Delta_{ijt} \), based on a draw from the Poisson distribution with mean \(\lambda > 0 \), which represents the realization of stochastic synergy from the combined assets (i.e., \(\omega_{i,t+1} = \max\{\omega_{it}, \omega_{jt}\} + \Delta_{ijt} \)), whereas target firm \(j \) collects the acquisition price, \(p_{ij}(s_t) \), and exits forever (i.e., \(\omega_{j,t+1} = \bar{\omega}_{00} \)). If \(j \) rejects the offer instead, both \(i \) and \(j \) will stay independent, with \(\omega_{i,t+1} = \omega_{it} \) and \(\omega_{j,t+1} = \omega_{jt} \).

We assume \(i \) sets \(p_{ij}(s_t) \) slightly above \(j \)'s outside option (i.e., \(j \)'s expected value of staying alone), so that \(j \) will strictly prefer accepting the offer. Each of the other non-proposers (i.e., \(k \neq i,j \)) pays \(\kappa^c \), and its productivity remains the same subject to stochastic depreciation with probability \(\delta \).

If nature chooses a potential entrant (i.e., \(\omega_{it} = \bar{\omega}_0 \)), this firm may choose to enter (or stay out of) the market: \(a^0_{it} \in A^0 = \{\text{enter, out}\} \). Entry requires a sunk cost of investment, \(\kappa^e \), to establish level-1 operation (i.e., \(\omega_{i,t+1} = \bar{\omega}_1 \) upon entry). Staying out does not cost anything, in which case the potential entrant remains outside the market (i.e., \(\omega_{i,t+1} = \omega_{it} = \bar{\omega}_0 \)).

These discrete alternatives are accompanied by private cost shocks. For an active firm, \(\varepsilon_{it} = (\varepsilon_{it}^x, \varepsilon_{it}^0, \varepsilon_{it}^i, \varepsilon_{it}^m_m{_{m=1}}) \), where \(\varepsilon_{it}^m \) corresponds to the choice of merging with a level-\(m \) rival. For a potential entrant, \(\varepsilon_{it}^0 = (\varepsilon_{it}^e, \varepsilon_{it}^0) \). We assume these shocks are i.i.d. extreme value. Along with the (public) state \(s_t \), these \(\varepsilon_{it}s \) constitute the payoff-relevant state of the proposer \(i \).
Equilibrium Each firm maximizes its present value of expected future profit stream discounted by a common factor, \(\beta \in (0, 1) \). We focus on a type-symmetric Markov perfect equilibrium (MPE) of this game, where a Markov strategy is a mapping from the firm’s public and private state variables, \((s_{it}, s_{-it}, \varepsilon_{it})\), to its action, \(a_{it}\). Because the game features a random proposer in each period, an equilibrium will be characterized by two sets of expected value functions, \(EV_{it}(s_t)\) and \(W^j_{it}(s_t)\), which correspond to periods in which nature chooses a focal firm \(i\) and someone else (i.e., \(j \neq i\)) as proposers, respectively. We will refer to \(EV_{it}(s_t)\) and \(W^j_{it}(s_t)\) as “proposer” and “non-proposer” value functions, and construct them as follows.

When nature picks an active firm \(i\) as a proposer at time \(t\), firm \(i\) earns its period profit, \(\pi_i(s_t)\), draws private cost shocks, \(\varepsilon_{it} = (\varepsilon^x_{it}, \varepsilon^c_{it}, \varepsilon^i_{it}, \varepsilon^m_{it}(s_t))\), and compares the following alternative-specific values,

\[
\begin{align*}
V^x_i(s_t, \varepsilon^x_{it}) &= -\kappa^x + \varepsilon^x_{it} + \beta E[\Lambda_{i,t+1}(s_{t+1}) | s_t, a_{it} = \text{exit}] , \\
V^c_i(s_t, \varepsilon^c_{it}) &= -\kappa^c + \varepsilon^c_{it} + \beta E[\Lambda_{i,t+1}(s_{t+1}) | s_t, a_{it} = \text{stay}] , \\
V^i_i(s_t, \varepsilon^i_{it}) &= -\kappa^c - \kappa^i + \varepsilon^i_{it} + \beta E[\Lambda_{i,t+1}(s_{t+1}) | s_t, a_{it} = \text{invest}] , \quad \text{and} \\
V^m_{ij}(s_t, \varepsilon^m_{ijt}) &= -\kappa^c - \kappa^m + \varepsilon^m_{ijt} - p_{ij}(s_t) \\
&\quad + \beta E[\Lambda_{i,t+1}(s_{t+1}) | s_t, a_{it} = \text{merge } j],
\end{align*}
\]

for exiting, staying alone, investing, and merging with each of the active rivals (generically denoted by \(j\)), respectively. \(\Lambda_{i,t+1}(s_{t+1})\) represents \(i\)’s expected value at time \(t + 1\) (with expectation as of time \(t\)), that is, \textit{before nature picks a proposer} for time \(t + 1\),

\[
\Lambda_{i,t+1}(s_{t+1}) = \lambda_i(s_{t+1}) EV_{i,t+1}(s_{t+1}) + \sum_{j \neq i} \lambda_j(s_{t+1}) W^j_{i,t+1}(s_{t+1}).
\]

As this equation clarifies, \(\Lambda_{it}(s_t)\) is an “umbrella” expected value function that nests both “proposer” and “non-proposer” values, which is why \(\Lambda_{it}(s_t)\) is a probability-
weighted sum of $EV_{it}(s_t)$ and $W_{it}^j(s_t)$s. Proposer i’s value after drawing ε_{it} is

$$V_{it}(s_t, \varepsilon_{it}) = \pi_i(s_t) + \max \left\{ \tilde{V}_{it}^x(s_t, \varepsilon_{it}^x), \tilde{V}_{it}^c(s_t, \varepsilon_{it}^c), \tilde{V}_{it}^d(s_t, \varepsilon_{it}^d), \tilde{V}_{ijit}^m(s_t, \varepsilon_{ijit}^m) \right\},$$

(6)

and its expected value before drawing ε_{it} is

$$EV_{it}(s_t) = E_{\varepsilon} [V_{it}(s_t, \varepsilon_{it})] = \pi_i(s_t) + \gamma + \ln \left[\exp \left(\tilde{V}_{it}^x \right) + \exp \left(\tilde{V}_{it}^c \right) + \exp \left(\tilde{V}_{it}^d \right) + \sum_{j \neq i} \exp \left(\tilde{V}_{ijit}^m \right) \right],$$

(7)

where γ is Euler’s constant and \tilde{V}_{it} is the deterministic part of $\tilde{V}_{i}(s_t, \varepsilon_{it}^c)$, that is, $\tilde{V}_{it} \equiv \tilde{V}_{i}(s_t, \varepsilon_{it}^c) - \varepsilon_{it}$.

Likewise, if nature picks a potential entrant i as a proposer, i draws $\varepsilon_{it}^0 = (\varepsilon_{it}^e, \varepsilon_{it}^o)$ and chooses to enter or stay out, which entail the following alternative-specific values,

$$\tilde{V}_{i}^e(s_t, \varepsilon_{it}^e) = -\kappa^e + \varepsilon_{it}^e + \beta E [\Lambda_{i,t+1}(s_{t+1}) | s_t, a_{it} = \text{enter}],$$

and

$$\tilde{V}_{i}^o(s_t, \varepsilon_{it}^o) = \varepsilon_{it}^o + \beta E [\Lambda_{i,t+1}(s_{t+1}) | s_t, a_{it} = \text{out}],$$

(8)

(9)

respectively. Thus the potential entrant’s “proposer” value after drawing ε_{it}^0 is

$$V_{it}^0(s_t, \varepsilon_{it}^0) = \max \left\{ \tilde{V}_{i}^e(s_t, \varepsilon_{it}^e), \tilde{V}_{i}^o(s_t, \varepsilon_{it}^o) \right\},$$

(10)

and its expected value before drawing ε_{it}^0 is

$$EV_{it}^0(s_t) = E_{\varepsilon} [V_{it}^0(s_t, \varepsilon_{it}^0)] = \gamma + \ln \left[\exp \left(\tilde{V}_{it}^e \right) + \exp \left(\tilde{V}_{it}^o \right) \right].$$

(11)

Next, we construct the “non-proposer” value functions, $W_{it}^j(s_t)$. When nature picks another active firm $j \neq i$ as a proposer, an active non-proposer i earns its period profit, $\pi_i(s_t)$ and waits for proposer j’s action, a_{jt}, which depends on the realization of j’s private cost shocks, ε_{jt}. Active non-proposer i’s expected value
before \(j \) draws \(\varepsilon_{jt} \) is

\[
W_{it}^j (s_t) = \pi_i(s_t) - \kappa^c + \sigma_{it} (a_{jt} = \text{exit}) \beta E [\Lambda_{i,t+1} (s_{t+1}) | s_t, a_{jt} = \text{exit}] \\
+ \sigma_{it} (a_{jt} = \text{stay}) \beta E [\Lambda_{i,t+1} (s_{t+1}) | s_t, a_{jt} = \text{stay}] \\
+ \sigma_{it} (a_{jt} = \text{invest}) \beta E [\Lambda_{i,t+1} (s_{t+1}) | s_t, a_{jt} = \text{invest}] \\
+ \sigma_{it} (a_{jt} = \text{merge} i) p_{ji} (s_t) \\
+ \sum_{k \neq i,j} \sigma_{it} (a_{jt} = \text{merge} k) \beta E [\Lambda_{i,t+1} (s_{t+1}) | s_t, a_{jt} = \text{merge} k],
\]

where \(\sigma_{it} (a_{jt} = \cdot) \) is \(i \)'s belief over \(j \)'s action (i.e., proposer \(j \)'s choice probability, \(\Pr (a_{jt} = \cdot) \), as perceived by non-proposer \(i \)). Our assumptions on the bargaining protocol simplifies the acquisition price as

\[
p_{ji} (s_t) = E [\Lambda_{i,t+1} (s_{t+1}) | s_t, a_{jt} = \text{stay}] .
\]

When the non-proposer is a potential entrant, this “non-proposer” expected value is simpler than (12),

\[
W_{it}^{0j} (s_t) = \sigma_{it} (a_{jt} = \text{exit}) \beta E [\Lambda_{i,t+1} (s_{t+1}) | s_t, a_{jt} = \text{exit}] \\
+ \sigma_{it} (a_{jt} = \text{stay}) \beta E [\Lambda_{i,t+1} (s_{t+1}) | s_t, a_{jt} = \text{stay}] \\
+ \sigma_{it} (a_{jt} = \text{invest}) \beta E [\Lambda_{i,t+1} (s_{t+1}) | s_t, a_{jt} = \text{invest}] \\
+ \sum_{k \neq i,j} \sigma_{it} (a_{jt} = \text{merge} k) \beta E [\Lambda_{i,t+1} (s_{t+1}) | s_t, a_{jt} = \text{merge} k],
\]

because it does not earn profit, pay fixed cost, or become a merger target. When
nature picks a potential entrant \(j \) as a “proposer,” (12) and (14) become

\[
W_{it}^j (s_t) = \pi_i (s_t) - \kappa^c \\
+ \sigma_{it} (a_{jt}^0 = \text{enter}) \beta E \left[\Lambda_{i,t+1} (s_{t+1}) | s_t, a_{jt}^0 = \text{enter} \right] \\
+ \sigma_{it} (a_{jt}^0 = \text{out}) \beta E \left[\Lambda_{i,t+1} (s_{t+1}) | s_t, a_{jt}^0 = \text{out} \right], \quad \text{and}
\]

\[
W_{it}^{0j} (s_t) = \sigma_{it} (a_{jt}^0 = \text{enter}) \beta E \left[\Lambda_{i,t+1} (s_{t+1}) | s_t, a_{jt}^0 = \text{enter} \right] \\
+ \sigma_{it} (a_{jt}^0 = \text{out}) \beta E \left[\Lambda_{i,t+1} (s_{t+1}) | s_t, a_{jt}^0 = \text{out} \right]
\]

for an active non-proposer and a potential entrant non-proposer, respectively.

These value functions entail the following optimal choice probabilities before proposer \(i \) draws \(\varepsilon_{it} \) (or \(\varepsilon_{it}^0 \) if \(i \) is a potential entrant),

\[
\Pr \left(a_{it} = \text{action} \right) = \frac{\exp \left(V_{it}^{\text{action}} \right)}{\exp \left(V_{it}^x \right) + \exp \left(V_{it}^e \right) + \exp \left(V_{it}^\lambda \right) + \sum_{j \neq i} \exp \left(V_{ijt}^m \right)}
\]

\[
\Pr \left(a_{it}^0 = \text{action} \right) = \frac{\exp \left(V_{it}^{0\text{action}} \right)}{\exp \left(V_{it}^x \right) + \exp \left(V_{it}^o \right)},
\]

for an active firm and a potential entrant, respectively. In equilibrium, these probabilities also constitute the non-proposers’ beliefs over the proposer’s actions (i.e., \(\sigma_{it} (a_{jt} = \text{action}) \) in equations 12, 14, 15, and 16), because of rational expectations. We will use these optimal choice probabilities to construct a likelihood function for estimation purposes.

4.2 Estimation

The parameters of the model include the discount factor \(\beta \) (which we set to .975 per calendar quarter, so that it is approximately .9 per year), the depreciation probability \(\delta \), the mean synergy \(\lambda \), and the sunk costs of entry \(\kappa^e \) (which is assumed to be prohibitively high in our current analysis of the period 2000–14), exit \(\kappa^x \) (which we
set to zero), staying alone κ^c (which we observe in our data), investment κ^i, and merger κ^m. Our data contain each firm’s state s_{it} and action a_{it}, as well as κ^c and period profit π_{it}. We can estimate δ and λ directly from the transition frequencies of ω_{it} in data as well. Thus our main econometric problem is to estimate κ^i and κ^m from the observations of states and actions.

The contribution of firm i at time t to the likelihood is

$$l_{it}(a_{it}|s_{it}; \kappa^m) = \rho_i(s_t) \prod_{action \in A_{it}(s_t)} \Pr(a_{it} = action)^{1\{a_{it} = action\}},$$ \hspace{1cm} (19)

where $1\{}$ is an indicator function. The maximum likelihood estimate (MLE) is

$$\hat{\kappa}^m = \arg \max_{\kappa^i,\kappa^m} \frac{1}{T I} \sum_t \sum_i \ln [l_{it}(a_{it}|s_{it}; \kappa^m)],$$ \hspace{1cm} (20)

where T is the number of sample periods and I is the number of firms.

The realizations of turns-to-move are not always evident in the data, and hence the implementation of MLE needs to distinguish “active” periods in which some firm took an action (such as exit, merger, or entry) and altered s_t, and “quiet” periods in which no such proactive moves were made by any firm. Specifically, we incorporate the random turns-to-move by setting

$$\hat{\rho}_i(s_{it}) = \begin{cases} 1 & \text{if } a_{it} \in \{exit, merger, enter\}, \text{ and} \\ 1/n_t & \text{if } a_{it} \in \{stay, out\}. \end{cases}$$ \hspace{1cm} (21)

That is, when exit, merge, or entry is recorded in the data, we may assign probability 1 to the turn-to-move of the firm that took the action, whereas in a “quiet” period, nature may have picked any one of the firms, who subsequently decided to stay alone (or stay out) and did not alter s_{it}.

We use the nested fixed-point (NFXP) algorithm as in Rust (1987), in which we calculate the optimal choice probabilities and the joint likelihood for each candidate
parameter value, until the maximum is reached. We solve the model from the end of our sample period, $T = 2014Q1$, by assuming the industry state will remain constant afterward and calculating the terminal (or continuation) values from period-T profits, $\pi_T(s_T)$. Backward induction allows us to solve the model for a unique equilibrium of (the non-stationary version of) this extensive-form game, because the game has an effective terminal period, only a single decision-maker exists in each period, and the private cost shocks break the tie between multiple discrete alternatives.

4.3 Results

We estimate the dynamic model using data for the sub-sample period between 2000 Q1 and 2014 Q1 (in the current version of the paper) because the data set is complete with calendar-quarter frequency of observation. This period also spans the entire phase of industry dynamics in which all recorded exits occurred through mergers, the main focus of the paper. We are currently in the process of extending the TRENDFOCUS’s quarterly data to the mid 1990s, and to combine it with the Disk/Trend’s 1976–98 data.

We set the exit cost or scrap value to zero (i.e., $\kappa^e = 0$) because productive assets for HDD manufacturing quickly depreciate due to fast obsolescence and fast turnover of key personnel, and because industry outsiders would find little use. We also set the fixed cost of continued operation to the sum of SGA (selling, general, and administrative) expenses and capital expenditure, which is in the range of 0.1 billion and 0.5 billion in each quarter (i.e., $\kappa^c \in (0.1, 0.5)$). The period 2000 Q1–2014 Q1 has not seen any new entry, and hence we do not use the entry part of our model and assume entry cost, κ^e, is prohibitively high (for now). The transition patterns of $\{\omega_{it}\}$ in data indicate $\delta = .0634$ and $\lambda = 1.1667$. Thus the costs of innovation and merger, κ^i and κ^m, will be the main dynamic parameters to be estimated.

Table 7 shows the innovation cost (κ^i) estimate of 3.5 billion. This cost estimate is close to the range of cumulative R&D expenditure in data over 12 calendar quarters.
Figure 6: Fit of the Estimated Model (Number of Firms)

Note: The model outcome is the average of 10,000 simulations based on the estimated model. The productivity categories in the bottom panels are originally defined on a discretized grid of levels 1 through 7, each step of which corresponds to a $2 reduction in marginal cost. For the purpose of visual illustration, we then aggregate these underlying productivity levels into three coarser categories as follows: low (levels 1 and 2), middle (levels 3 and 4), and high (levels 5, 6, and 7).

Table 7: ML Estimates of the Dynamic Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\kappa^i)</td>
<td>3.5250</td>
<td>[]</td>
</tr>
<tr>
<td>(\kappa^m)</td>
<td>6.4214</td>
<td>[]</td>
</tr>
</tbody>
</table>

Note: The confidence intervals are constructed from the likelihood-ratio tests.

(between $2 billion and $3 billion), which is the average frequency of productivity improvement due to in-house investment. The merger cost \((\kappa^m) \) estimate of $6.4 billion is comparable to the acquisition price for a medium-productivity firm, which suggests the actual economic cost of integrating two firms and reorganizing various activities is as big as the direct financial cost of acquisition. This finding is consistent with our interviews with industry veterans, who indicated the total economic cost of consolidating manufacturing facilities, product portfolios, R&D teams, intellectual properties, as well as forgone revenues due to glitches in reorganization could easily surpass a few billion dollars.

Figure 6 demonstrates the estimated model fits the data well in terms of reproduc-
ing the declining trajectory of the total number of firms, N_t. The composition of N_t by productivity level is also replicated with respect to both the gradual decline of less productive firms and the occasional emergence of more productive firms as a result of mergers and investments. Thus we regard the estimated model as a reasonable benchmark with which we may compare our counterfactual simulation to assess the impacts of a hypothetical merger policy, in the next section.

5 Impact of a More Restrictive Merger Policy

This section evaluates the welfare impact of a hypothetical competition policy in which the antitrust authorities block any merger proposal once the number of firms reaches five or less, instead of three or less, which the HDD industry participants have perceived as a historical rule of thumb. The motivation for this policy experiment is to understand how the explicit consideration of industry dynamics would alter the implications of antitrust interventions, which have traditionally been framed in static models.

Figure 7: Counterfactual Number of Firms by Productivity Level

Note: The model and counterfactual outcomes are the averages of 10,000 simulations based on the estimated model and the counterfactual model, respectively.
Figure 7 shows how the evolution of counterfactual (CF) market structure differs from the baseline model (BL), by dividing the CF number of firms, \(n^{CF} \), by the BL number of firms, \(n^{BL} \), in each of the seven productivity levels. Nuanced patterns emerge. First, the CF features more medium-productivity firms and less high-productivity firms than the BL. Second, \(n^{CF} \) of low-productivity firms is lower than \(n^{BL} \) for most of the sample period and then starts overshooting after 2010. These patterns suggest both the competition effect and the innovation effect of the CF policy may exhibit complicated dynamics.

Figure 8: Counterfactual Welfare Outcomes

![Graphs showing the evolution of consumer surplus, producer surplus, and social welfare over time.]

Note: The model and counterfactual outcomes are the averages of 10,000 simulations based on the estimated model and the counterfactual model, respectively.
5.1 Welfare Performance

Figure 8 summarizes the welfare impact. In terms of consumer surplus (CS), the CF policy slightly underperforms the BL policy until 2010 and then outperforms it. By contrast, the CF producer surplus (PS) is higher than the baseline until 2009, when it starts deteriorating precipitously. The rate of change of PS is an order of magnitude larger than that of CS because the CF features a reduced number of high-productivity firms, which accounted for a disproportionately large portion of industry-wide profits under the BL policy. The net impact on social welfare (SW) is slightly negative throughout the sample period, including the last few years in which the CF policy had a positive impact on CS. Although CS is a larger component of SW than PS, the latter decreased in a sufficiently drastic manner to offset the improvement in CS.

5.2 Why Reduction of Mergers May Not Improve Welfare

Let us investigate the changes of CS in greater detail because the antitrust agencies typically focus on CS rather than SW in practice. Both the BL and CF models share exactly the same demand structure, and hence the difference in prices completely determines the difference in CS. In other words, price is a sufficient statistic for us to judge whether the policy’s impact on CS is positive or negative.

Figure 9 plots the difference in prices (i.e., $\Delta p \equiv p^{CF} - p^{BL}$) and decomposes it into two factors: the changes in markup (i.e., $\Delta m \equiv m^{CF} - m^{BL} = (p^{CF} - m^{CF}) - (p^{BL} - m^{BL})$) and marginal cost (i.e., $\Delta mc \equiv mc^{CF} - mc^{BL}$).\footnote{We use the (un-weighted) average marginal cost across firms. Alternative summary statistics such as the minimum or market share-weighted average do not qualitatively alter the decomposition patterns.}

Negative Innovation Effect Partially Offsets Positive Competition Effect: Δm and Δmc reflect the changes in market power and productivity, respectively, and hence we refer to them as the “competition effect” and the “innovation effect” of the CF merger policy.
Figure 9: Decomposition of the Price Change into Competition and Innovation Effects

Note: We use the (un-weighted) average marginal cost across firms. Alternative summary statistics such as the minimum or market share-weighted average do not qualitatively alter the decomposition patterns.

The decomposition in Figure 9 conveys three messages. First, the magnitude of price changes appears relatively small, which explains the small impact of the CF policy on CS (in Figure 8). Second, this small difference in prices masks larger changes in the two underlying forces. The net change in price may be small, but that is because the competition effect and the innovation effect offset each other, with the former dominating the latter by a small margin most of the time. Third, each of these two forces evolves non-monotonically. The competition effect is “negative” from the perspective of CS-promotion until 2011, when it turns “positive.” That is, the CF markup first increases and then decreases relative to the BL trajectory. Likewise, the innovation effect is “positive” for the first eleven years and then turns “negative.”

This dual non-monotonicity is not a mere coincidence but a manifestation of the dynamic policy impact, the direction of which differs before and after the merger regulation becomes binding (i.e., when the number of firms reaches five). In the following, we analyze these underlying mechanisms in greater detail.
Exit-promotion Effect Attenuates Pro-competitive Impact: To understand the root causes of these patterns, let us further investigate the determinants of the two forces. Specifically, we can explain the competition effect (Δm) and the innovation effect (Δmc) by the changes in firms’ exit, investment, and merger.

A key determinant of markup (or the competition effect) is the number of firms, which is in turn driven by exits and mergers. Figure 10 (left) decomposes the change in the number of firms into the contributions of exits and mergers.

The contribution of exits is negative throughout the sample period because more firms choose to exit (and hence the number of firms decreases) under the CF policy. Exits (by liquidation) increase because the CF policy reduces the opportunities for mergers, and with them the possibilities of more profitable exit (for target firms) as well as gains from higher productivity and market power (for acquiring firms). That is, the reduction of potential mergers leads to the deflation of enterprise values across the board and the increase in exit rate.

This “exit promotion” effect grows stronger in later years as the merger regulation becomes binding, but more noteworthy from the industry viewpoint is that the anticipation effect is present from the beginning. Forward-looking firms tend to exit more often when they expect lower continuation values down the road.

By contrast, the contribution of mergers is positive because the CF policy reduces mergers by design. The effect grows stronger in later years, when the authorities actually start blocking mergers. This is the kind of policy impact that static merger simulations have traditionally focused on. However, the explicit consideration of industry dynamics suggests the existence of the countervailing “exit promotion” effect, which dominates until 2008 and continues attenuating the positive impact of merger reductions thereafter.

In-house Investment Substitutes for Synergy Only Imperfectly: Let us turn to the study of the innovation effect of the CF policy. The overall productivity of
Figure 10: Accounting for Competition and Innovation by Exit, Investment, and Merger

Note: These counts of firms and innovations do not distinguish the productivity levels of firms that engage in exit, investment, and merger, depending on which the eventual impact on welfare varies.

the industry is determined by individual firms’ productivity levels, which firms can improve through either in-house R&D investment or synergy from mergers. Thus we can decompose the changes in the count of innovation into the contributions of investments and mergers, as shown in Figure 10 (right). Because the CF policy reduces mergers, mergers’ contribution to productivity is negative, especially in the later years. By contrast, investments’ contribution is mostly positive because in-house R&D becomes the only way to achieve higher productivity and firms try to make up for the forgone synergy through this channel. That is, firms substitute investments for mergers.

This positive change in investments, however, does not completely offset reduced synergies. Moreover, investments’ contribution is slightly negative in the first few years. The underlying cause of these mediocre contributions from investments is the overall deflation of continuation values due to the reduced merger opportunities.

As a result of these competing forces, the CF merger policy affects the industry’s productivity in a nuanced, non-monotonic manner. The net impact on innovation counts begins in a slightly negative range, then turns slightly positive, and finally
negative again when the merger-blocking policy becomes binding and eliminates the possibilities of synergy.

6 Conclusion

Our counterfactual policy simulation highlights the importance of incorporating the dynamics of exit and investment in the analysis of mergers. We decomposed the impact of a more restrictive merger policy on prices (and hence consumer surplus) into the competition effect and the innovation effect. We further accounted for these two effects by the contributions of exit, investment, and mergers. These decomposition exercises clarify that the pro-competitive effect of the policy is partially offset by the negative contribution of increased exits, as well as the negative innovation effect of reduced synergies, which in-house R&D investment cannot entirely substitute for. Ignoring these dynamic margins of firms’ equilibrium responses would appear to overestimate the merit of blocking mergers.