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Abstract

We examine welfare effects of real-time pricing in electricity mar-
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meters. After demand is realized, two electricity generators compete
in a uniform price auction to satisfy demand from retailers acting on
behalf of subscribed customers and from consumers with real-time
meters. Increasing the number of consumers on real-time pricing does
not always increase welfare since risk-averse consumers dislike uncer-
tain and high prices arising through market power. In the Bertrand
case, welfare is the same with all or no consumers on smart meters.
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1 Introduction

Real-time pricing of electricity for residential households and small businesses

was for a long time technologically and economically not viable. Tradition-

ally, final consumers had a meter that simply measured the total amount

of electricity consumed without keeping track of when consumers actually

consumed what amounts of electricity. For this reason it was not possible to

differentiate prices to reflect the scarcity of electricity at each point in time,

which made consumers unable to react to price signals. This lack of con-

sumer response translates into highly inelastic market demand in electricity

wholesale markets, which facilitates the exercise of market power especially

in peak times, (see, e.g., Stoft, 2002, p.78f). In addition the absence of price

signals prevents any consumption smoothing over time and thus aggravates

the system operator’s problem to constantly balance supply and demand.

Since electricity is hardly storable, not achieving a balance results in costly

blackouts and consumer rationing.

Recent technological developments and the rising need for more efficient

power grids have however increased the attention on exploiting efficiency po-

tentials through smarter metering. A number of firms have invented new me-

ter technologies to reap such efficiency gains, which led to a drastic increase

in venture capital for smart meter technologies.1 This new development of

smart grids and smart meters aims at allowing electricity providers to trans-

mit time varying price signals, that in turn enable even residential households

and small businesses to adjust their consumption over the day accordingly.2

However, the installation of smart meters and smart grids changes the design

of all current transmission networks and is extremely costly. Thus, there is

considerable uncertainty in the welfare effects and the profitability of real-

time metering technology. We ask how the introduction of real-time metering

will benefit consumers, producers and overall welfare.

1See The Economist (2009b).
2See The Economist (2009a).
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That prices should fluctuate if capacities cannot easily be adapted to

fluctuating and uncertain demand is an insight gained from the peak-load

pricing literature that started already in the fifties (for a survey see Crew

et al. (1995)). More recently, Borenstein and Holland (2005) developed a

model where firms invest in electricity generating capacity in the first stage

and then compete in a perfectly competitive electricity market for a certain

number of periods with a time-varying demand. They show that the market

outcome is not efficient if not all consumers are on real time pricing schedules.

Furthermore, the market outcome is less than second-best efficient, even if

one takes into account that some consumers are priced only according to the

average wholesale costs of serving them with a time-invariant price instead

of paying the time-variant wholesale price in each single period. However,

increasing the number of customers on real-time pricing does not necessarily

increase social welfare, although having all customers on real-time pricing is

always Pareto superior to having some of them on time-invariant rates.3

We derive efficiency effects of real-time pricing when generating firms

have market power in the electricity wholesale market and consumers are

risk-averse. We explicitly distinguish between the wholesale and the retail

market of electricity, and assume market power in the wholesale market with

only two firms generating and selling electricity. The retail sector is per-

fectly competitive. Like in Borenstein and Holland (2005), we assume that

consumers who are on real-time pricing schedules can express their demand

on the wholesale market either directly or indirectly via their competitive

retailer. The consumers who are not on real-time meters need to contract

with retailers before their own and the aggregate level of demand is known.

Therefore they will finally pay the same price no matter what the level of de-

mand will be. Joskow and Tirole (2006) and Joskow and Tirole (2007) both

3Holland and Mansur (2006) simulate the short-run efficiency gains without capacity
investments from increasing the share of customers on real-time pricing in a model close
to Borenstein and Holland (2005) for the PJM market and can only identify moderate
efficiency increases for this case.
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mainly focus on the retail market without taking into account repercussions

to the potentially non-competitive wholesale market.4 Contrary to the for-

mer and in line with the latter we abstract from monopoly distribution and

assume that all retailers compete on a level playing field. Like Borenstein and

Holland (2005), we model uniform retail prices whereas Joskow and Tirole

(2006) and Joskow and Tirole (2007) allow for two-part tariffs.

Neither Borenstein and Holland (2005) nor the empirical studies that

try to estimate the welfare effects of existing real-time pricing initiatives

for large industrial customers (see Taylor et al. (2005)) take into account

the insurance effect of fixed prices. Most analyses implicitly assume that

the volatile demand is certain and therefore sum up the consumer surplus

for all different time periods to determine consumer welfare. We instead

assume demand uncertainty and consider concave surplus functions for our

costumers when deriving welfare statements. Taking this risk aversion into

account explicitly allows us to check whether the positive efficiency effects of

real-time electricity pricing are potentially counteracted by the increase in

price risks that risk-averse consumers dislike.

Our model is based on Boom and Buehler (2007). We introduce real

time pricing and differentiated consumers, that is, each consumer demands

a different quantity of electricity although they are all exposed to the same

demand shock. Motivated by the observation that in most electricity mar-

kets larger consumers, e.g. private businesses, installed smart meters before

smaller customers such as private households did, we assume that consumers

with the highest demand will be served with real-time metering and pricing

first.5 As the degree of real-time pricing increases, the consumers that enter

4Joskow and Tirole (2007) derive optimal retail prices, rationing rules and capacity
investments with price-sensitive and price-insensitive consumers.

5Empirical studies of existing real time pricing programs with the exception of Allcott
(2009) focus only on large industrial customers (see Patrick and Wolak (2001), Taylor
et al. (2005), Boisvert et al. (2007), and Zarnikau and Hallett (2008)). Allcott (2009) is
the only one who reports on a small scale real-time pricing experiment with residential
households in Chicago in 2003.
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real-time pricing in our model will have a lower demand than those already

in the program. Hence, our model set up also allows us to conclude whether

real-time pricing is more beneficial for large or small customers.

The next section presents the modeling framework. Section three derives

the model outcome and presents wholesale and retail market equilibria. In

section four, we present comparative statics in the level of real-time pricing

and derive welfare statements. Section five concludes.

2 The model

In a mass of N consumers with N = 1, each consumer can be of a different

type α which is drawn from a uniform distribution on
[

1
2
, 3

2

]
. The preferences

of a consumer of type α are represented by the consumer surplus function

V (x, α, ε, p) = α(x− ε)− (x− ε)2

2
− px, (1)

where p is the electricity price, x the electricity consumed and ε a shock that

affects all consumers alike and is drawn from a uniform distribution on [0, 1].

Maximizing the surplus with respect to the consumed electricity x yields the

consumer’s individual demand6

x(p, α, ε) = max{α + ε− p, 0}. (2)

We assume that the consumers with small demand, meaning α ≤ α̃, do

not have a smart meter and need to contract with one of the retailers and pay

the retail price p = r. Consumers with a relatively large demand, defined by

α > α̃ are on real-time meters and purchase their electricity directly on the

wholesale market at the wholesale price p = p∗.7 The threshold separating

6The demand is modeled similarly to Boom and Buehler (2007) and Boom (2009).
However, there all consumers have α = 1 and thus identical demand.

7Note that it does not matter whether customers on real-time meters bid their demand
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large and small consumers, i.e. consumers with and without real-time meters,

has to lie within the support of α, that is, 1
2
≤ α̃ ≤ 3

2
.

There are n ≥ 2 retailers who compete à la Bertrand. Consumers without

a smart meter subscribe to the retailer with the lowest retail price r while

their actual level of demand is still uncertain. For the sake of simplicity we

assume zero retail costs. Retailers’ marginal costs then equal the wholesale

price for which they buy electricity. The retailers announce their customers’

demand for electricity to the wholesale auction after they have observed the

actual level of demand, that is the realization of ε. Retailers with supply

obligations go out of business as soon as their marginal costs, the wholesale

market price p∗, exceeds the retail price r. Then their customers will not

be served with electricity, but the system operator is able to ration retail

consumers and a blackout does not occur.8

Electricity is only produced by two electricity generating firms A and B.

Each generator i = A,B is capacity constrained and owns capacity Ki. Both

generators use an identical technology with constant marginal costs c which

are normalized to zero. Generating firms can produce up to their capacity

Ki but not beyond that quantity. They can sell their electricity only via the

wholesale market, run by the system operator as a uniform price auction.

Before each firm submits its supply bid to the wholesale market, the total

demand, meaning the level of ε, is publicly known. In the auction each firm

only announces a price pi at and above which they are willing to produce up

to their total capacity. Fabra and von der Fehr (2006) show in their analysis

that despite different optimal bidding strategies the market outcome would

not change if we allowed for a finite but larger number of steps in the bidding

directly into the wholesale auction or whether they have a contract with a perfectly com-
petitive retailer without retail costs. Borenstein and Holland (2005), Joskow and Tirole
(2006) and (2007) also assume that consumers on real-time pricing pay the wholesale price.

8The latter assumption means that the system operator has perfect control over the
grid and can selectively take customers off-line. This assumption is in line with Joskow
and Tirole (2007) and will finally lead to efficient rationing. In the perfect smart grid
scenario, efficient rationing is possible. However, today it is not implementable.
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function of the generators.

The system operator runs a uniform price auction.9 To clear the auction,

the system operator first aggregates all submitted capacity at each price bid,

and then finds the market clearing price, that equates supply and the level

of demand stemming from the consumers on smart-meters and the ones that

contract with a retailer and pay the retail price r. Three situations can occur:

1. The capacity of the low-bidding generator is sufficient to satisfy all

demand at this low price. The wholesale price p∗ = pi with pi ≤ pj

and i, j = A,B and only the low bidding firm is called to generate the

amount of electricity necessary to satisfy demand D(p∗, r, α̃, ε).

2. The capacity of the low-bidding firm is insufficient to satisfy demand

at this low price, but the total capacity of both firms is sufficient to

satisfy the demand at the higher of the two prices. The wholesale price

is p∗ = pj with pi ≤ pj and i, j = A,B. The low-bidding firm can

deliver its total capacity Ki whereas the high-bidding firm is rationed

to the amount of electricity that is necessary to satisfy residual demand

(D(p∗, r, α̃, ε)−Ki).

3. The capacity of the low-bidding firm is insufficient to satisfy demand

at this low price and total capacity is also insufficient to satisfy the

demand at the higher of the two prices. The wholesale price p∗ is the

price at which total demand satisfies total capacity (D(p∗, r, α̃, ε) =

KA +KB). Both firms generate electricity at their capacity constraint.

All generators are paid the equilibrium price p∗ for all the electricity they

deliver no matter what their price bid was. Before this wholesale auction

9Multi-unit uniform price auctions are used in most major electricity markets in Europe
and the US. The other alternative is a discriminatory auction format, to which the UK
market switched in 2001 when introducing the New Electricity Trading Arrangements
(NETA). For a theoretical comparison of both auction formats see Fabra and von der Fehr
(2006).
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is held, retailers contract with the final consumers. Figure 1 illustrates the

timing of the model.

-

Retailers

compete
in retail

Consumers

RTM

subscribe
to the

cheapest

Nature

draws
demand

ε

Consumers
on RTM

and
retailers

bid their
demand

Generators
A and B

bid their
prices

pA and pB

System
Operator

determines
wholesale price

prices

not on

retailer
shock p∗

Figure 1: Timing of the model

In the first stage of the game before the level of demand is known re-

tailers set their retail prices for customers without real time meters. These

customers contract with the retailer who offers the lowest price.10 Then, na-

ture draws the demand shock ε and demand is known to the generators, the

retailers, the consumers with real-time metering and the system operator.

Consumers with real-time metering bid their demand, and non-bankrupt re-

tailers the demand of their contracted customers. The two generators bid

the prices at which they are willing to produce up to their total capacity,

and finally the system operator determines the wholesale electricity price p∗

as described above. We search for the subgame perfect equilibrium of this

game.

3 Analysis of the model

Since we are looking for a subgame-perfect equilibrium of this game we start

the analysis with the last stage of the game, the wholesale market. After

10The contract is a service contract and implies that the costumers are provided with as
much electricity as they want as long as the retailer does not go out of business. Rationing
rules as discussed in Joskow and Tirole (2007) are not part of the contract and are also
not very common for residential households.
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deriving the market outcome of the wholesale market for given retail prices,

capacities and levels of smart metering we determine the retail price for those

customers who do not have a smart meter for given capacities and levels of

smart metering.

3.1 The wholesale market

By the time the wholesale market clears, the demand shock ε ∈ [0, 1] is

known to all market participants. The threshold α̃ ∈ [1
2
, 3

2
] defines the mass

of consumers who are on pre-determined fixed retail prices and the mass

of consumers who have a smart meter and can directly participate in the

wholesale market. This threshold is exogenous and known to all market

participants.

The group with α ≤ α̃ buys electricity via their retailers and pays the pre-

determined retail price r. Given r, their retailers demand a fixed volume of

electricity which is derived from aggregating their individual demand, given

in (2). The retailers’ demand from consumers without a smart meter is

represented by

DR(r, α̃, ε, p∗) =



∫ α̃
1
2
α + ε− rdα if p∗ ≤ r ≤ 1

2
+ ε,∫ α̃

r−ε α + ε− rdα if max
{
p∗, 1

2
+ ε
}
≤ r ≤

α̃ + ε,

0 if either r < p∗ or r > α̃ + ε.

(3)

Retail demand is completely inelastic in the wholesale price p∗. As soon as

the wholesale price exceeds the retail price, r > p∗, retailers stop demanding

and serving their retail customers, because otherwise retailers suffer losses.

The level of fixed retail demand depends on the pre-determined retail price

r. For the retail price, we have to distinguish three cases: In the first case
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the retail price is small enough such that all customers with α < α̃ have a

positive demand r ≤ 1
2

+ ε. With 1
2

+ ε < r ≤ α̃+ ε some consumers without

smart metering do not buy any electricity anymore because it is too costly

and with r > α̃ + ε no customer on traditional meters demands electricity.

Consumers with smart meters directly take part in the wholesale market.

Aggregating their individual demand from (2) yields

DW (p∗, α̃, ε) =


∫ 3

2

α̃
α + ε− p∗dα if 0 ≤ p∗ ≤ α̃ + ε,∫ 3

2

p∗−ε α + ε− p∗dα if α̃ + ε < p∗ ≤ 3
2

+ ε,

0 if 3
2

+ ε < p∗.

(4)

Demand from consumers with smart meters is elastic in the wholesale

price p∗. Again, we have to distinguish the three cases where all smart meter

customers have a positive demand (0 ≤ p∗ ≤ α̃ + ε), where some of them

stop buying (α̃+ε < p∗ ≤ 3
2

+ε), and where the price exceeds the reservation

price and all of them stop buying electricity (p∗ > 3
2

+ ε).

Aggregate total demand then is the sum of the demand from the con-

sumers with a predetermined retail price and from those on smart metering

and is given by

D(p∗, r, α̃, ε) = DR(r, α̃, ε, p∗) +DW (p∗, α̃, ε). (5)

Total demand in the wholesale market is sketched in figure 2.

Total demand is discontinuous at p∗ = r if r < α̃ + ε, has the same

constant slope for 0 ≤ p∗ < r and for r < p∗ < α̃ + ε and is convexly

decreasing for α̃ + ε ≤ p∗ ≤ 3
2

+ ε.

The two generators A and B know the total realized demand when they

bid their price into the market. Their optimal bidding strategies depend on

their own and their rival’s capacity KA and KB, on the retail price r, on

the level of smart metering determined by α̃ and on the level of the demand

shock ε.
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-

3
2

+ ε

α̃ + ε

r

p∗

D(p∗, r, α̃, ε)

Figure 2: Total Demand in the Wholesale Market with r < α̃+ ε

Proposition 1 With regard to the market equilibria on the wholesale market

we can distinguish five cases.

(i) If Ki ≥ D(0, r, α̃, ε) and Kj ≥ D(0, r, α̃, ε) with i, j = A,B the firms

bid in the unique equilibrium pi = 0 and pj = 0 resulting in the uniform

auction price of p∗ = 0.

(ii) If 0 ≤ Ki < D(0, r, α̃, ε) and Kj > D(0, r, α̃, ε) with i, j = A,B there

are multiple equilibria. In all these equilibria the firms bid pj = p∗j with

p∗j = arg max
p
{p[D(p, r, α̃, ε)−Ki]}

and 0 ≤ pi < p̄i < p∗j where p̄i is implicitly defined by (17). The unique

auction price is p∗ = p∗j .

(iii) If 0 ≤ Ki ≤ Kj < D(0, r, α̃, ε) and D(p∗j , r, α̃, ε) − Kj ≤ Ki < Ki we
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have the same equilibria as in (ii). Ki is either defined in equation

(34), (35) or (36).

(iv) If Ki ≤ Kj < D(0, r, α̃, ε) and Ki < Ki ≤ Kj with i, j = A,B the

uniform price auction has two types of equilibria, one type is identical

with the one in (ii), in the other one the firms bid pi = p∗i with

p∗i = arg max
p
{p[D(p, r, α̃, ε)−Kj]} ≤ p∗j

and 0 ≤ pj < p̄j < p∗i where p̄j is implicitly defined by the equivalent to

(17). The auction price in the latter type of equilibrium is p∗ = p∗i .

(v) If Ki < Kj and Ki + Kj < D(p∗j , r, α̃, ε) with i, j = A,B there are

multiple equilibria in which the two firms bid pi ≤ p̂ and pj ≤ p̂ with

p̂ = {p|Ki +Kj = D(p, r, α̃, ε)} > p∗j ≥ p∗i .

The auction price is nevertheless unique and given by p∗ = p̂.

Proof: See Appendix A. �

Note that multiple equilibria occur as soon as firms are capacity con-

strained (cases (ii)-(v) of proposition 1). The multiplicity only leads to dif-

ferent equilibrium wholesale prices and different profits for the two generators

if their capacities are of a relatively similar size and satisfy case (iv) of propo-

sition 1. In this case there exist two types of equilibria where either the high

capacity firm or the low capacity firm bids the high price in equilibrium.

The high price maximizes the monopoly profit on the residual demand. If

the firms’ capacities differ more (cases (ii) and (iii)) it is always the firm with

the larger capacity that bids high and serves the residual demand whereas

the small firm bids low and sells its total capacity. In case (v) the market

does not clear at the monopoly price on the residual demand. The demand

cannot be served by the two firms at this price. The low capacity firm never
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has an incentive to bid a higher price than the large capacity firm and the

system operator needs to increase the large capacity firm’s bid to balance the

market.

Whenever multiple equilibria occur, we select the equilibrium in which

the larger firm is bidding the high price. For completely inelastic demand

Boom (2008) argues that the equilibria with the large firm bidding the high

price and the small firm undercutting it, risk-dominate the equilibria where

the roles are reversed. It is beyond the scope of this paper to verify whether

this selection can also be supported with elastic demand. Empirical findings

by Wolfram (1998), however, show that for the UK electricity market it

indeed is the larger firm that is the pivotal bidder and submits the market

clearing price. With identical capacities we assume that each of the two firms

is equally likely to choose the high price in equilibrium.

Figure 3 illustrates all equilibria of proposition 1. For a given demand

shock ε, a given level of real time pricing α̃ and a given retail price r the equi-

librium auction price is a function of the capacity levels of the two firms. The

equilibrium prices depend on each firm’s capacities. As derived in Appendix

A, the borders for which the large and high pricing firm finds it optimal to

price above, at or below the retail price are denoted as K1 and K2, respec-

tively. Whenever both firms can serve the entire market on their own and

have capacities larger than D0 the equilibrium price equals zero which is the

Bertrand outcome. Figure 3 is drawn for relatively low retail prices because

there exist capacity combinations 0 < min{KA, KB} < K1 for which the

equilibrium prices are above the retail price level r. For this case to be true

K1 as defined in (20) in Appendix A.2 needs to be positive which is equiva-

lent to 0 < r < r1, where r1 = {r|K1 = 0} is depicted in figure 4. If K1 < 0,

wholesale prices above the retail price cannot be an equilibrium, unless the

system operator has to set the wholesale price. In the south west corner of

figure 3 we always find an area where the system operator needs to set the
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p∗A > r
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r

p̂ > r

r

r
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p∗B < r

p∗B < r

p∗A < r

p∗A < r

0

r

-

Figure 3: The Auction Prices in the Wholesale Market for Low Retail Prices

price above the highest price bid to clear the market.11 The discontinuity of

the system operator price regions at min{KA, KB} = K1 is due to the jump

of the potential wholesale price from p∗ > r to p∗ = r, which is induced by

the kink in the demand curve due to the sudden inclusion of the customers

without real time pricing (see the demand in figure 2). The overall pricing

pattern described in figure 3 is intuitive. The larger the capacities the smaller

is the wholesale price.

Considering the specific equilibrium prices, given in (19), (24) and (28)

Appendix A.2, it becomes clear that the wholesale price depends only on

the capacity of the smaller firm. This is because the smaller firm’s capacity

11Borders for these areas are given by Si in (31), (32) or (33) in Appendix A.3. As the
retail price increases these borders shift inward for those areas with min{KA,KB} > K1.
Higher retail prices reduce demand and therefore the system operator needs to interfere
less often to ensure market clearing. When the market outcome is determined by capac-
ities that satisfy min{KA,KB} < K1, increases in the retail price are irrelevant, because
retailers have left the market.
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determines the residual demand for the larger and pivotal firm that decides on

the wholesale price in all cases where at least one firm is capacity constrained.

For higher demand shocks capacities are relatively scarcer and hence the

borders defining the equilibrium prices shift outwards. On the contrary for

increasing retail prices, the borders shift inwards. Figure 4 shows which

wholesale price regimes are relevant given the retail price and the level of

smart metering. For r < r1 all three wholesale price regimes depicted in figure

3 exist. For intermediate retail prices r1 < r < r2 figure 3 would simplify

and wholesale prices above the retail price would no longer be possible. For

r2 < r < α̃ + ε the critical capacity level K2 or K ′2, as defined in equation

(21) or (25), respectively, are no longer positive.12 In that case figure 3

simplifies even further and 0 ≤ p∗ < r must hold in equilibrium. Note that

for r > α̃ + ε the retail price does not matter any more for the level of

the wholesale price because at these retail prices no retail customer has a

positive demand. Figure 3 would have only one horizontal and vertical line,

which would no longer be defined by min{KA, Kb} = D′0 with D′0 defined in

(26), but by min{KA, Kb} = D′′0 with D′′0 defined in (29) in Appendix A.2.

Depending on whether 0 < min{KA, Kb} < D′′0 holds or min{KA, Kb} > D′′0

we would either have p∗ > 0 or p∗ = 0.13

3.2 The retail market

Retailers compete in prices and do not have any other retail costs than the

price they need to pay for electricity on the wholesale market. Therefore

all retailers compete the price down to a level where they do not generate

positive profits any more. Retailers have zero profits if they find themselves

12The critical retail price r2 is defined by either r2 = {r|K2 = 0} or r2 = {r|K ′2 = 0}
depending on whether it exceeds the level r = ε + 1

2 or not, so on whether all retail
customers have still a positive demand or not. The critical retail price r2 increases and is
continuous in α̃ as is sketched in figure 4.

13With completely inelastic demand, as in Boom and Buehler (2007), p∗ > 0 or p∗ = 0
always are the only possible outcomes.
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Figure 4: Critical Retail Price Levels

for every potential demand induced by ε in a situation where the wholesale

price satisfies p∗ ≥ r. Looking at the lattice pattern in figure 3 it becomes

obvious that this condition is satisfied if K2 > min{KA, KB} or, if it becomes

relevant, K ′2 > min{KA, KB} for all ε ∈ [0, 1]. Retailers compete in the

retail price until the generating firms’ capacities ensure a wholesale price

that equals the retail price at a demand shock of ε = 0. This condition

guarantees zero profits for retailers for all ε ∈ [0, 1] and all p∗ ≥ r. From this

idea we can derive the following proposition which describes the retail price

in equilibrium.

Proposition 2 Assume Ki ≤ Kj, then there is a unique subgame perfect

equilibrium in which all retailers set r = r̄ = 0, if Ki > 1. If Ki ≤ 1 then

there are multiple subgame perfect Nash equilibria. In all these equilibria the
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retailers charge their customers retail prices which satisfy 0 ≤ r ≤ r̄. The

level of r̄ depends on the capacity levels Ki and Kj and on the level of smart

metering reflected in α̃. The definition of r̄ is given by

r̄ =



3
2
−
√

2(Ki +Kj) if 0 ≤ Ki <

min
{

9
8
− 2Kj(9−(9−2α̃)α̃−Kj)

(3−2α̃)2
,

1−2Kj
2

}
,

3− α̃− 1
2

√
27− 4α̃(6− α̃) + 8Ki if max

{
9
8
− 2Kj(9−(9−2α̃)α̃−Kj)

(3−2α̃)2
, 0
}

≤ Ki < min
{

1
2
(α̃− 1

2
), Kj

}
,

1−Ki −Kj if
1−2Kj

2
≤ Ki ≤ min{1− (5−2α̃)Kj

3−2α̃
,

Kj},
2(1−Ki)

5−2α̃
if max

{
1
2

(
α̃− 1

2

)
, 1− (5−2α̃)Kj

3−2α̃

}
≤ Ki < min{1, Kj},

0 if 1 ≤ Ki ≤ Kj.

Proof: See Appendix B. �

Note that we potentially have multiple equilibria. We follow the conven-

tion in economics that we assume that firms stop undercutting each others

prices as soon as they generate zero profits. For retailers this condition trans-

lates into all retailers setting r = r̄ if 0 ≤ min{KA, KB} < 1 and r = r̄ = 0

otherwise. The relationship between the different capacity levels and the

retail price is characterized in figure 5.

From proposition 2 it becomes clear that the retail price r̄ only changes

marginally in the level of smart metering if we are in the cases represented

by the second and fourth line of its definition. These are the cases where

the generating firms’ capacities are sufficient such that the system operator

does not need to interfere with the generators’ price bidding on the electricity

wholesale market for the smallest demand shock ε = 0. For these cases the

retail price decreases if the level of smart metering increases because ∂r̄
∂α̃
> 0

and a lower α̃ means more customers with smart meters. A larger number of
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Figure 5: Retail Price with Different Capacities for Ki ≤ Kj

smart meters decreases the retail demand and hence the retail price is low-

ered. In addition, because of the lower retail demand the retail market is now

for more combinations of KA and KB fully covered instead of only partially

covered. Thus, for the capacities for which ∂r̄
∂α̃
> 0 holds consumers without

smart meters will always benefit from more (other) consumers having a smart

meter and taking part directly in the wholesale market. The same effect has

been found by Borenstein and Holland (2005). Since in their analysis all

consumers were identical and more smart metering did not imply reducing

the willingness to pay of the customers without a smart meter, this result is

not simply driven by the lower willingness to pay of the customers without

real time prices. Retail prices are determined by fierce price competition by

the retailers who cannot just expropriate the consumers’ rent.

If the capacities of the electricity generating firms are so low that the

system operator needs to interfere with the price bidding of the generators

for all possible levels of the demand shock ε ∈ [0, 1] then the retail price does

marginally not respond to a higher degree of metering. The main reason for

this is that how consumers are split and how price responsive the wholesale

demand is on the margin, does not influence the wholesale prices. Instead,
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wholesale prices are always determined by equalizing total demand with to-

tal capacity. Then, given that the retail price is determined by the lowest

possible wholesale price being below or equal to the retail price, also the re-

tail price solely depends on the firms’ capacities. The higher the firms’ total

capacity is, the lower is the lowest possible wholesale and the resale price.

4 Comparative statics in the level of smart

metering

Retailers always have zero profits and therefore do not have an impact on

welfare as the level of smart metering changes. Only their competitive retail

price and the wholesale market price effect welfare. Thus, we consider how

a change in the level of smart metering changes retail and wholesale prices

for all possible states of demand realizations. We use these prices to derive

expected profits, consumer surplus and welfare ex ante of the demand real-

ization. For the sake of tractability we only look at the cases in which the

retail prices are indeed determined by α̃ and the SO does not have to inter-

vene in the market. This in turn assumes that the firms are always investing

sufficiently in their capacity endowments and the market always clears at the

residual monopoly price of the high bidding firm.

We use the consumer surplus function and the three equilibrium retail

prices in proposition 2 that depend on α̃ (cases (i), (ii) and (iv)) to calculate

expected welfare. From the consumer surplus function in equation (1) we

know that those consumers who are served will achieve a surplus of

V (α + ε− p, α, ε, p) = α(α− p)− (α− p)2

2
− p(α + ε− p), (6)

where due to our assumption that the SO never has to intervene p is either

the wholesale price p∗ = p∗j > r that varies according to the state of demand

ε or the predetermined retail price r that does not change with the demand
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realization. Those consumers who are either not served or who decide them-

selves that they do not want to consume realize a surplus of

V (0, α, ε, p) = −αε− ε2

2
. (7)

Customers on traditional meters always pay their contracted retail price

and hence we have p = r in equation (6) for all 1
2
< α < α̃. The wholesale

price that consumers with smart meters pay can be either p∗ = p∗j or p∗ = r.

We can have both prices for consumers with α̃ < α < 3
2
. The level of

the wholesale price depends on whether Ki is smaller or greater than K1.

If Ki ≥ K1 the residual monopoly price equals the retail price, while for

Ki < K1 the residual monopoly price lies on the linear downward sloping

part of the demand curve above the retail price. To account for the different

wholesale market prices in the welfare calculations we define a critical demand

shock, ε∗. Whenever the demand shock is larger than

ε∗ = {ε | Ki = K1} (8)

the low bidding firm’s capacity is relatively scarce and the wholesale price

becomes p∗ = p∗j . For lower demand shocks than ε∗ the wholesale market

price remains equal to the retail price. The critical shock ε∗ depends on the

retail price. In the following we distinguish between equilibrium retail prices

of zero (case (i) in proposition 2), intermediate equilibrium retail prices (case

(ii)) and high equilibrium retail prices (case (iv)).

4.1 Equilibrium retail prices of zero

When capacities satisfy 1 ≤ Ki ≤ Kj the retail price is zero. In this scenario

the SO never has to intervene, because Ki +Kj ≥ 2 ≥ D0 holds and the two

firms can cover all demand at each price for all demand realizations. Figure

3 simplifies because K2 = D0, and the wholesale price can be either p∗ = p∗j
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or p∗ = r = 0. For r = 0 the critical demand shock in equation (8) becomes

ε∗z =
8Ki + 4α̃2 − 9

12− 8α̃
. (9)

In Appendix C.1 we derive ε∗z. If the demand shock is larger than ε∗z the

wholesale price becomes p∗ = p∗j , while for lower demand shocks the wholesale

market price is zero. Wholesale prices of p∗ = p∗j never occur as long as ε∗z > 1,

which holds as long as Ki > max{1, 1
8
(3 − 2α̃)(7 + 2α̃)}. If Ki exceeds this

threshold the highest demand shock cannot be so large to make it optimal

for the high bidding firm to price above the retail price. Then all consumers

always pay a price of zero no matter whether they have a smart meter and

participate in the wholesale market or whether they have a retail contract

with a predetermined price. Therefore welfare is identical with aggregate

consumer surplus which is defined by

CS = W =

∫ 1

0

∫ 3
2

1
2

α2

2
dαdε =

13

24
. (10)

Generators do not earn any profits. If however 1 < Ki ≤ 1
8
(3− 2α̃)(7 + 2α̃)

and ε∗z ≤ 1 then wholesale customers have to pay a positive price for some

states of demand. In these states retail customers are not served because

p∗ > r. This happens if ε∗ = ε∗z ≤ ε ≤ 1. The consumer surplus is now

CS =

∫ ε∗

0

∫ 3
2

1
2

α2

2
dαdε+

∫ 1

ε∗

∫ α̃

1
2

−αε− ε2

2
dαdε (11)

+

∫ 1

ε∗

∫ 3
2

α̃

α(α− p∗)− (α− p∗)2

2
− p∗(α + ε− p∗)dαdε.

Substituting the relevant price which is always given by p∗j from (19) we

can show that ∂CS
∂α̃

> 0 holds. Aggregate consumer surplus decreases if

the level of smart metering increases (meaning that α̃ decreases). While

wholesale costumers face price risks in potentially having to pay positive
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duopoly prices, retail customers are not served for some demand realizations.

By increasing the number of wholesale customers the first effect aggravates,

whereas the second is softened. Since consumer surplus is reduced the first

effect dominates the second. The producer surplus is given by

PS = πi + πj =

∫ 1

ε1

∫ 3
2

α̃

p∗(α + ε− p∗)dαdε. (12)

The producer surplus increases with the level of smart metering since ∂PS
∂α̃

<

0 holds. This is not surprising because more smart metering means more

demand situations in which wholesale customers pay a positive price and,

on top of it, there are more wholesale customers who have to pay the higher

price. Because of the opposing nature of consumer and producer surplus,

welfare is U-shaped in the level of smart metering. For small α̃ we have
∂W
∂α̃

< 0 while for larger we have ∂W
∂α̃

> 0. Obviously the effect on the profits

dominates welfare for small α̃, whereas for large α̃ the effect on consumer

surplus dominates. Figure 6 depicts the welfare results for retail prices of

zero and a given capacity of the low bidding firm.

Figure 6: Welfare depending on α̃ for retail prices of zero.

An increase in the level of smart metering from no smart metering at all

(α̃ = 3
2
) does first not have an effect on welfare, consumer surplus or profits.
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Welfare is constant as long as the degree of smart metering is low enough

and α̃ is above a certain threshold (α̃ >
√

25−8Ki
2
−1) that ensures that ε∗z > 1

and p∗ = r = 0 always hold. Above this threshold the retail market is so

large that the residual monopoly profit is always maximized at the retail

price. For degrees of smart metering below this threshold the high bidding

firm maximizes its profits by clearing the market above the retail price for at

least some states of demand realization. Then consumer surplus and welfare

decrease. The loss of consumer surplus due to uncertain prices above the

marginal cost level cannot be compensated by the larger producer surplus

and by the fact that fewer retail customers are sometimes not served. When

smart metering is further extended, the two latter effects start dominating

the first and finally, if all customers are on smart meters the wholesale price

is approaching zero again. In the Bertrand case, when Kj > Ki > 2 = D0,

welfare is the same with all consumers on smart meters or none at all.

4.2 Intermediate equilibrium retail prices

When the two firms’ capacities become scarcer the retail price is 2(1−Ki)
5−2α̃

,

as described in proposition 2. This retail price is always lower than 1
2

+ ε,

and hence all retail customers demand electricity. The SO might have to

intervene, because Ki +Kj < D(r) is possible for some states of the demand

realization. To focus on the case where firms clear the market at their bid

and the wholesale price can be either p∗ = p∗j or p∗ = 2(1−Ki)
5−2α̃

we introduce

the following condition. As long as

Ki ≥ D(r | ε = 1)−Kj =
8 + 2α̃(Kj − 2)− 5Kj

3− 2α̃
(13)

holds, the SO never has to set the price at p̂ > r. Equation (13) ensures that

the two firms can cover the market at the retail price even for the highest

demand shock. We derive this condition in Appendix C.2 and show that

under this condition firms are also able to cover all possible states of demand

23



at the optimal price above the retail price, p∗ = p∗j . Similarly to the case

of zero retail prices we can now argue that whenever the demand shock is

larger than ε∗i the wholesale price becomes p∗ = p∗j , while for lower demand

shocks the wholesale market price is p∗ = r = 2(1−Ki)
5−2α̃

. For the derivation of

the critical shock with intermediate retail prices, ε∗i , see Appendix C.1. Con-

sumer surplus and profits can then be calculated equivalently to equations

(11) and (12) respectively. Figure 7 illustrates the welfare results for a given

capacity of the low bidding firm.

Figure 7: Welfare depending on α̃ for intermediate retail prices.

Again, for a large enough α̃ such that only p∗ = r applies, all consumers

are always served and pay the same price no matter whether they are on

smart metering or not. In this case all effects of a variation of α̃ are driven

by the change in the price. Due to ∂r̄
∂α̃
> 0, contrary to the case for zero retail

prices, consumers like an increase in smart metering because they consume

more and pay less (∂CS
∂α̃

< 0). We find that ∂PS
∂α̃

> 0 and that producer

surplus reduces as the level of smart metering increases because despite their

increased electricity consumption consumers pay less. More smart metering

increases welfare (∂W
∂α̃

< 0) because it reduces market power without any con-

sumer being forced to leave the market. When the degree of smart metering

is above the threshold the pivotal firm, depending on the demand shock,

clears the market at or above the retail price. In this case more smart me-
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tering means a decrease in the consumer surplus (∂CS
∂α̃

> 0) and an increase

in the producer surplus (∂PS
∂α̃

< 0). The level of welfare is U-shaped again.

The same arguments that explain the U-shaped effect for zero retail prices

also apply for intermediate retail prices.

4.3 High equilibrium retail prices

The retail price becomes 3−α̃− 1
2

√
27− 4α̃(6− α̃) + 8Ki for relatively scarce

capacities. Again, if Ki ≥ D(r | ε = 1) − Kj holds, the wholesale market

always clears at the optimal bid of the pivotal firm. We only have wholesale

prices equal to the retail price for low shocks that satisfy ε < ε∗h. For demand

shocks ε∗h < ε < 1 the wholesale price is above the retail price. In Appendix

C.1 and C.2 we derive ε∗h and the functional form of the market clearing

condition Ki ≥ D(r | ε = 1) − Kj, for which the SO does not have to

intervene and set scarcity prices. Opposing to the case of intermediate retail

prices, for high retail prices we can have r > 1
2

+ε and some retail consumers

do not demand electricity. Given the retail price, whether all or only some

retail customers demand electricity depends on the demand shock. Hence for

ε < ε∗h we now derive consumer surplus as

CS =

∫ εf

0

∫ r−ε

1
2

−αε− ε2

2
dαdε (14)

+

∫ εf

0

∫ α̃

r−ε
α(α− r)− (α− r)2

2
− r(α + ε− r)dαdε

+

∫ 1

εf

∫ α̃

1
2

α(α− r)− (α− r)2

2
− r(α + ε− r)dαdε

+

∫ 1

0

∫ 3
2

α̃

α(α− r)− (α− r)2

2
− r(α + ε− r)dαdε,
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where εf decides on wheter r > 1
2

+ ε or r < 1
2

+ ε, so on whether the retail

market is partially or fully covered. Since ε < ε∗h and p∗ = r for all demand

shocks, only the effects of ∂r̄
∂α̃

determine welfare. We again find ∂CS
∂α̃

< 0

and ∂W
∂α̃

< 0. More smart metering lowers the market price and increases

consumer surplus and welfare. Producer surplus, that is derived within the

same integrals as in equation (14), decreases as smart metering increases,

however only if the negative effect on profits of the lowered retail price is

offset by the positive effect that for lower retail prices the retail market is

fully covered for more demand realizations. For high Ki, that lead to high

retail prices and relatively greater losses if the retail market is not fully

covered, the latter effect starts dominating and producer surplus becomes

inverted U-shaped in the level of smart metering.

Whenever ε∗h < ε < 1 and the wholesale price changes with the demand

shock we derive consumer surplus as

CS =

∫ εf

0

∫ r−ε

1
2

−αε− ε2

2
dαdε (15)

+

∫ εf

0

∫ α̃

r−ε
α(α− r)− (α− r)2

2
− r(α + ε− r)dαdε

+

∫ ε∗h

εf

∫ α̃

1
2

α(α− r)− (α− r)2

2
− r(α + ε− r)dαdε

+

∫ 1

ε∗h

∫ α̃

1
2

−αε− ε2

2
dαdε

+

∫ 1

0

∫ 3
2

α̃

α(α− p∗)− (α− p∗)2

2
− p∗(α + ε− p∗)dαdε.

Then like for intermediate retail prices ∂CS
∂α̃

> 0 holds and consumers dislike

smart metering. Producer surplus is increasing in the amount of smart me-

tering, unless the retail price is very high (for low Ki). If Ki is very low,

the retail price is very high and producer surplus becomes slightly U-shaped,
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because a sufficient number of customers have to be on smart meters to level

out the losses of retailers that pay high prices whenever p = r but leave the

market whenever the demand shock is high and p > r holds. In line with the

case of intermediate retail prices we find that welfare is U-shaped whenever

the market outcome changes with the demand realization, while welfare is

increasing if the wholesale market price equals the retail price for all demand

shocks. Overall, the comparative statics of smart metering on welfare for

high retail prices follow the patterns for intermediate retail prices.

5 Conclusion

This paper derives welfare effects of real-time pricing in electricity markets.

When electricity generating firms have market power in the wholesale market

and consumers are risk-averse, we show that real-time pricing does not have

to be efficiency enhancing. Overall welfare implications depend on the level

of firms’ capacities and on the magnitude of stochastic demand shocks. With

large capacities that always lead to Bertrand prices, we find no difference in

welfare when all or no consumers are on smart meters. When firms’ capacities

are smaller such that market power arises, firms can price relatively high in

times of high demand shocks. When this is the case, we show that for the

main cases in which the system operator does not need to intervene and

set prices, real-time pricing decreases consumer surplus, because risk-averse

consumers dislike high and uncertain prices. At the same time real-time

metering increases producer surplus, because more smart metering means

more demand situations in which more wholesale customers pay a price above

marginal costs. These two opposing effects lead to a U-shaped welfare in

smart metering whenever the demand shock can change equilibrium prices.

If however firms capacities are relatively large and the demand shock does

not change the wholesale price, smart metering can increase consumer surplus

and welfare. Our findings suggest that, before investing in smart meters and
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smart grids, dominant firm behavior and the welfare gain of fixed retail prices

that insure risk-averse consumers against price fluctuations should be taken

into consideration.

Appendix

A Proof or proposition 1

A.1 Case (i): Ki > D(0, r, α̃, ε), Kj > D(0, r, α̃, ε)

This is the usual Bertrand case because non of the firms is effectively capacity constrained.
If firm i bids pi = 0 and firm j bids pj = 0 with i, j = A,B, none of the two firms has an
incentive to deviate because they could not improve on their profit of 0. If the firms bid
pi = pj = p > 0 firm i’s and firm j’s profit would be identical and given by πi = πj =
1
2pD(p, r, α̃, ε). Then each firm has an incentive to slightly undercut its rival because then
it could realize instead πi,j = (p−ε)D(p−ε, r, α̃, ε) with ε→ 0. If the firms bid pi > pj ≥ 0
then firm i’s profit is zero and firm j’s profit is πj = pjD(pj , r, α̃, ε). Here firm i has again
an incentive to slightly undercut firm j in order to realize πi = (pj − ε)D(pj − ε, r, α̃, ε)
with ε→ 0 instead. Thus pi = pj = 0 is the only Nash equilibrium.

A.2 Case (ii): Ki < D(0, r, α̃, ε), Kj > D(0, r, α̃, ε)

Here only firm i is capacity constrained. Suppose both firms bid pi = pj = 0 and have
therefore zero profits, then only firm j has an incentive to deviate to a higher price pj > 0.
If it deviates it would serve the residual demand and would realize πj = pj(D(pj , r, α̃, ε)−
Ki) > 0 if pj were not too high. The optimal deviation would be to choose

p∗j = arg max
p
{p[D(p, r, α̃, ε)−Ki]} . (16)

The same price p∗j would also be a best response of firm j if firm i chooses pi with
0 ≤ pi < p∗j such that

(pi − ε) min{D(pi − ε, r, α̃, ε),Kj} ≤ p∗j [D(p∗j , r, α̃, ε)−Ki] (17)

with ε→ 0. The capacity constrained firm i does never want to deviate to pi > pj because
it could not generate any positive demand for itself this way. The low-bidding firm j would
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serve the whole market and firm i would not increase its profits.
In order to determine p∗j we need to take into account the different cases of the demand

in equation (5) resulting from the situation on the retail market. We need to distinguish
three cases:

Fully Covered Retail Market (0 ≤ r ≤ 1
2 + ε): All consumers without real-time pric-

ing have a positive demand. The demand function is

D(p∗, r, α̃, ε) =



1 + ε− ( 3
2 − α̃)p∗ − (α̃− 1

2 )r if 0 ≤ p∗ ≤ r,

( 3
2 − α̃)( 1

2 ( 3
2 + α̃) + ε− p∗) if r < p∗ ≤ α̃+ ε,

1
2 (ε− p∗ + 3

2 )2 if α̃+ ε ≤ p∗ ≤ ε+ 3
2 ,

0 if p∗ > ε+ 3
2 .

(18)

Solving for p∗j yields the following solution

p∗j =


3+2α̃+4ε

8 − Ki
3−2α̃ if 0 ≤ Ki < K1,

r if max{0,K1} ≤ Ki < K2,

2+2ε−2Ki−r(2α̃−1)
6−4α̃ if max{0,K2} < Ki < D0,

(19)

where K1, K2 and D0 are defined as

K1 =
(

3
2
− α̃

)(
3 + 2α̃

4
+ ε− 2r

)
(20)

−
√
r(4(2− α̃)α̃− 3)(1 + 2α̃+ 4ε− 4r)

2
,

K2 = 1 + ε−
(

5
2
− α̃

)
r and (21)

D0 = D(0, r, α̃, ε) = 1 + ε−
(
α̃− 1

2

)
r. (22)

Partially Covered Retail Market ( 1
2 + ε < r ≤ α̃+ ε): Some of the consumers with-
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out real-time pricing are priced out of the market. The demand function is

D(p∗, r, α̃, ε) =



( 3
2 − α̃)( 1

2 ( 3
2 + α̃) + ε− p∗)

+ 1
2 (α̃+ ε− r)2 if 0 ≤ p∗ ≤ r,

( 3
2 − α̃)( 1

2 ( 3
2 + α̃) + ε− p∗) if r < p∗ ≤ α̃+ ε,

1
2 (ε− p∗ + 3

2 )2 if α̃+ ε ≤ p∗ ≤ ε+ 3
2 ,

0 if p∗ > ε+ 3
2 .

(23)

Solving for p∗j here yields the following

p∗j =


r if 0 ≤ Ki < K ′2,

1
2

(
1
2

(
3
2 + α̃

)
+ ε+ (α̃+ε−r)2−2Ki

3−2α̃

)
if max{0,K ′2} < Ki

< D′0,

(24)

where K ′2 and D′0 are defined as

K ′2 =
1
2

((
3
2

+ ε

)2

− 2r(3− α̃+ ε) + r2

)
and (25)

D′0 = D(0, r, α̃, ε) =
1
2

(
3
2
− α̃

)(
3
2

+ α̃+ 2ε
)

+ (α̃+ e− r)2. (26)

Uncovered Retail Market (r > α̃+ ε): All consumers without real-time prices are priced
out of the market. The Demand function is

D(p∗, r, α̃, ε) =


( 3
2 − α̃)( 1

2 ( 3
2 + α̃) + ε− p∗) if 0 < p∗ ≤ α̃+ ε,

1
2 (ε− p∗ + 3

2 )2 if α̃+ ε ≤ p∗ ≤ ε+ 3
2

0 if p∗ > ε+ 3
2 .

(27)

Solving for the the optimal p∗j yields

p∗j =
3 + 2α̃+ 4ε

8
− Ki

3− 2α̃
if 0 < Ki < D′′0 , (28)

with p∗j < α̃+ ε < r. D′′0 is defined as

D′′0 = D(0, r, α̃, ε) =
1
8

(3− 2α̃)(3 + 2α̃+ 4ε). (29)
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Note that independent of the specific case that we are looking at p∗j < ã+ ε and ∂p∗j
∂Ki

< 0
always holds. Thus, all consumers with real-time pricing have a positive demand at p∗j
and it is never located at the non-linear part of the demand function, see figure 2. The
equilibrium (pi, pj) = (0, p∗j ) does always exist for this case. In addition condition (17)
is usually satisfied for a range of 0 ≤ pi ≤ p̄i where pi = p̄i satisfies the condition with
equality. p̄i is unique because one can show that the left-hand side of (17) is a convex
increasing or single peaked function with at most one point of discontinuity at pi = r for
all pi < p∗j . Given that the condition is never satisfied for pi = p∗j and always for pi = 0
there exists a unique 0 ≤ p̄i < p∗j such that condition (17) is satisfied for all 0 ≤ pi ≤ p̄i.
Thus we have multiple Nash equilibria with (pi, pj) = (pi, p∗j ) and 0 ≤ pi ≤ p̄i. They are
all pay-off equivalent and result in a unique auction price p∗ = p∗j .

A.3 Case (iii), (iv) and (v): Ki ≤ Kj < D(0, r, α̃, ε)

Here both firms are capacity constrained and both firms have an incentive to deviate from
pi = pj = 0 because both firm can benefit from a positive residual demand. Given that
the rival sticks to a price of zero each firm has an incentive to set

p∗j = arg max
p
{p[D(p, r, α̃, ε)−Ki]} or p∗i = arg max

p
{p[D(p, r, α̃, ε)−Kj ]} . (30)

Like in case (ii) in subsection A.2 this might even be a best response for a positive price
of one’s rival as long as (17) or the equivalent condition for firm i choosing p∗i holds.
Since both firms are capacity constrained, bidding a price above p∗j or p∗i is potentially
profitable for both firms. Therefore the Nash equilibria with either (pi, pj) = (pi, p∗j ) with
pi ≤ p̄i < p∗j and p̄i implicitly defined in (17) or (pi, pj) = (p∗i , pj) with pj ≤ p̄j < p∗i and
p̄j implicitly defined in the equivalent to (17) can only exist as long as the low-bidding
firm does not have an incentive to bid above the high-bidding firms price level.

Note that p∗j and p∗i are still defined by either (19), (24), or (28) or the equivalent
equations for p∗i depending on the retail price level. And no matter which definition applies
we can show that p∗j ≥ p∗i as long as Kj ≥ Ki. If (pi, pj) = (pi, p∗j ) with pi ≤ p̄i < p∗j holds
and the total capacity in the market is sufficient to satisfy D(p∗j , r, α̃, ε), the best pi > p∗j
would be pi = p∗j + ε with ε→ 0 for the low-capacity firm. Then firm i’s profit would be
(p∗j + ε)[D(p∗j + ε, r, α̃, ε) −Kj ] and this does never exceed the profit p∗jKi that it would
achieve with pi ≤ p̄i < p∗j . Thus the equilibrium with the low-capacity firm bidding low
with pi ≤ p̄i and the high-capacity firm bidding high with pj = p∗j > p̄i always exist for
Ki ≤ Kj < D(0, r, α̃, ε) as long as Ki +Kj ≥ D(p∗j , r, α̃, ε) holds. The latter condition is
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equivalent to Ki > Si with

Si =


1
4 ( 3

2 − α̃)(3 + 2α̃+ 4ε)− 2Kj if 0 ≤ Kj < K1,

1 + ε− r −Kj if max{0,K1} ≤ Kj < K2,

1 + ε−
(
α̃− 1

2

)
r − 2Kj if max{0,K2} ≤ Kj < D0,

(31)

if 0 ≤ r ≤ 1
2 + ε,

Si =



(3+2ε−2r)2

8 −Kj if 0 ≤ Kj < K ′2,

1
8

(
9 + 12ε+ 4ε2 + 4r2 − 8(α̃+ ε)r

)
−2Kj if max{0,K ′2} ≤ Kj

< D′0,

(32)

if the retail price fulfills 1
2 + ε < r ≤ α̃+ ε and

Si =
1
8

(
3
2
− α̃

)
(3 + 2α̃+ 4ε)− 2Kj if 0 ≤ Kj < D′′0 , (33)

if α̃+ ε < r.
If we now consider the other potential equilibrium with (pi, pj) = (p∗i , pj) with pj ≤

p̄j < p∗i , this equilibrium only exists if the high capacity firm j does not have an incentive
to deviate to a price with pj > p∗i . Since p∗j ≥ p∗i holds, the optimal deviation for the
high capacity firm is given by its p∗j that is defined in (19), (24), or (28), depending on
the relevant retail price level. Checking the profits from choosing p∗j > p∗i reveals that this
deviation is not beneficial if Ki ≥ Ki with

Ki =



1
8 (9 + 12ε− 4α̃(α̃+ 2ε)

−4
√
Kj(9 + 12ε− 8Kj − 4α̃(α̃+ 2ε))

)
if 0 ≤ Kj < K1

max
{

1
8 (9 + 12ε− 4α̃(α̃+ 2ε)

−8
√

2Kjr(3− 2α̃)
)
, 1 + ε−Kj − r

}
if min{0,K1}

≤ Kj < K2

max
{

1
8 (3− 2α̃)(3 + 2α̃+ 4ε)

−
√
Kj(2 + 2ε− 2Kj − r(2α̃− 1)),

2K2
j+2(3−2α̃)(1+ε−r)r−Kj(2+2ε−r(α̃−1))

2r(3−2α̃)

}
if min{0,K2}

≤ Kj < D0

(34)
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if 0 ≤ r < 1
2 + ε,

Ki =



3+2ε−2r
8 −Kj if 0 ≤ Kj < K ′2

8K2
j+(3−2α̃)(3+2ε−2r)2r−Kj((3+2ε)2−8r(α̃+ε)+4r2)

2r(3−2α̃) if K ′2 ≤ Kj < K3

1
8

{
9− 8α̃r + 4[ε(3 + ε)− 2εr + r2]

+4
√
Kj

(
9 + 12ε+ 4ε2 − 8Kj + 4r2

−8(α̃+ ε)r)1/2
}

if max{K ′2,K3}

≤ Kj < D′0

(35)

if 1
2 + ε ≤ r < α̃+ ε and

Ki =
1
8

(9 + 12ε− 4α̃(α̃+ 2ε) (36)

−4
√
Kj(9 + 12ε− 8Kj − 4α̃(α̃+ 2ε))

)
if 0 ≤ Kj < D′′0 ,

if r > α̃ + ε. The parameter K3 in (35) is only relevant as long as K2 > K3 > D′0 holds
and is defined as

K3 =
1
16
(
9 + 12ε+ 4ε2 − 8α̃r − 8εr + 4r2 (37)

+
√
−128(3− 2α̃)2r2 + ((3 + 2ε)2 − 8(α̃+ ε)r + 4r2)2

)
. (38)

One can also show that Si ≤ Ki for the relevant ranges of Kj . Thus, the two types
of equilibrium with either (pi, pj) = (pi, p∗j ) and pi ≤ p̄i < p∗j or (pi, pj) = (p∗i , pj) and
pj ≤ p̄j < p∗i exist for Kj ≥ Ki ≥ Ki. For min{Kj ,Ki} > Ki ≥ Si only the equilibria
with (pi, pj) = (pi, p∗j ) and pi ≤ p̄i < p∗j exist. For Ki < Si the total capacity in the
market does not satisfy the total demand at p∗j any more. The system operator will set
the market clearing price p̂. Both firms bid a price that does not exceed the anticipated
market clearing price because this would reduce their profit.

B Proof of proposition 2

The retailers will always compete the retail price down to a level where r ≤ p∗ is ensured
for all ε ∈ [0, 1] due to the Bertrand competition among them. From equations (19), (24)
and (28) and the definition of p̂ from case (v) in Proposition 1 it is obvious that ∂p∗

∂ε ≥ 0
for all ε ∈ [0, 1] if p∗ ≥ 0. Thus r ≤ p∗ for all ε implies that r ≤ p∗ for ε = 0.
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If Ki < K2 or Ki < K ′2 holds for ε = 0, then the retail price will always satisfy r ≤ p∗.
Alternatively, r ≤ p∗ might also occur for either K2 ≤ Ki < Si, or K ′2 ≤ Ki < Si, if the
system operator needs to set the price p̂ such that it exceeds the retail price for ε = 0.

Let us first assume that Ki and Kj are large enough that the system operator does
not need to set a price p̂ for Ki > K2 or Ki > K ′2 such that it exceeds the retail price,
then Ki ≤ K2 or Ki ≤ K ′2 for the smallest ε = 0 is sufficient to ensure that r ≤ p∗ for all
ε ∈ [0, 1]. Taking into account p∗ from either (19) or (24) and solving these inequalities
for r yields

r < r′ =

3− α̃− 1
2

√
27− 4α̃(6− α̃) + 8Ki if 0 ≤ Ki <

1
2 (α̃− 1

2 ),
2(1−Ki)

5−2α̃ if 1
2

(
α̃− 1

2

)
≤ Ki < 1.

(39)

The split occurs because for Ki <
1
2 (α̃− 1

2 ) the retail price threshold r1 exceeds 1
2 where,

given ε = 0, the retail market is no longer fully covered and the parameter K ′2 instead of K2

becomes relevant. For Kj ≥ Ki ≥ 1 the only possible outcome for the retail competition
is r = 0.

Let us now assume that Ki and Kj are not large enough to avoid the case that the
system operator needs to set a price p̂ ≥ r for some K2 < Ki ≤ Kj or K ′2 < Ki ≤ Kj if
ε = 0. The system operator price, given a fully covered retail market, is

p̂ =
2
(
1−Ki −Kj − r(α̃− 1

2 )
)

3− 2α̃
. (40)

The system operator price, given a partially covered retail market, is

p̂ =
9− 8Ki − 8Kj − 8α̃r + 4r2

12− 8α̃
. (41)

In order to ensure p̂ ≥ r

r ≤ r′′ =

 3
2 −

√
2(Ki +Kj) if 0 ≤ Ki <

1
2 −Kj ,

1−Ki −Kj if 1
2 −Kj ≤ Ki < 1−Kj ,

(42)

must hold.
Note that we do not need to consider the case where the retail market is uncovered

for ε = 0 because this implies that the retail price is too high for a positive demand of the
retail consumers and would be competed downward by the retail firms. In addition r′′ is
only relevant if r′ < r′′ for the given Ki ≤ Kj . Checking for which Ki ≤ Kj the inequality
holds yields the definition of r̄ in Proposition 2.
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C Welfare derivation

C.1 Critical shocks

The critical demand shock, ε∗, that decides on whether the wholesale price is at or above
the retail price can de derived as follows. Because ε∗ determines if Ki is smaller or larger
than K1, we set K1 from equation (20) equal to Ki and solve for ε. This yields

ε∗ = − α̃
2

+
2(Ki + 2r)

3− 2α̃
+
√

2
√

(3− 2α̃)2(2α̃− 1)r(2α̃+ 4Ki + 4r − 3)
(3− 2α̃)2

− 3
4
. (43)

For zero retail prices the critical shock is then

ε∗z =
8Ki + 4α̃2 − 9

12− 8α̃
. (44)

Inserting the intermediate and the high retail prices from proposition 2 in equation (43)
yields the respective critical shocks ε∗i and ε∗h.

C.2 Conditions for market clearing

For the welfare analysis to be tractable, we assume that the firms can always clear the
market and the SO never has to intervene. For retail prices of zero this is given through
the capacity requirements that have to hold for the retail prices to be zero.

For intermediate and high retail prices capacities can be too low and the SO has to set
the market clearing price for some demand shocks. To calculate welfare when the firms
clear the market at their bids we define minimum capacity endowments such that the firms
are able to play p∗ = r or p∗ = p∗j .

Intermediate retail price are always below 1
2 and hence below 1

2 + ε and therefore the
retail market is always fully covered. Capacities have to fulfill Ki + Kj ≥ D(r | ε = 1),
where r < 1

2 + ε, and Ki +Kj ≥ D(p∗j | ε = 1). Rearranging the first condition yields

Ki ≥
8 + 2α̃(Kj − 2)− 5Kj

3− 2α̃
. (45)

Because r < p∗j and hence D(r | ε = 1) > D(p∗j | ε = 1), whenever equation (45) is
satisfied, the firms can also cover the market at all optimal prices higher than the retail
price.

Likewise, for high retail prices, capacities have to fulfill Ki + Kj ≥ D(r | ε = 1) and
Ki + Kj ≥ D(p∗j | ε = 1). When ε = 1, r < 1

2 + ε = 3
2 always holds for high retail prices

35



and the retail market is always fully covered. When r < 1
2 + ε and all retail customers

demand electricity the firms capacities have to satisfy Ki+Kj ≥ D(r | ε = 1) what implies

Ki

{
≥ α̃−Kj + 1

2

√
4(α̃− 4)α̃− 8Kj + 23 if Ki > − 1

2 (α̃− 6)α̃− 23
8

≤ α̃−Kj − 1
2

√
4(α̃− 4)α̃− 8Kj + 23 if Ki < − 1

2 (α̃− 6)α̃− 23
8

(46)

If the firms can cover all demand at the retail price when the retail market is fully covered,
they can also cover the reduced demand for a partially covered retail market and the
wholesale market at optimal prices above the retail price. Figure 8 illustrates the area
that equations (45) and (46) define.
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1

1
2

(
α̃− 1

2

)

r = 0

45◦

r = 3− α̃− 1
2
√
·

r =
2(1−Ki)

5−2α̃

Figure 8: Combinations of Ki and Kj that ensure p = r or p = p∗j .
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