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ABSTRACT 

 

While most economists are convinced that public basic research is a fundamental driver of 

industry innovation and economic growth, our understanding of this relationship is surprisingly 

limited.  Using data on basic research investments by the U.S. National Institutes of Health 

(NIH), this paper investigates the timing and significance of the contribution of public basic 

research to pharmaceutical innovation.  The analysis finds that public basic research makes its 

primary contribution in the earliest part of the drug discovery stage of industry research, a period 

called the “drug concept” phase.  NIH investments in basic research influence pharmaceutical 

innovation fourteen to twenty-one years prior to new drug application to the FDA.  In terms of 

magnitude, the analysis finds that a 10% increase in public investment in basic research 

ultimately leads to a 6.4% increase in the number of new drugs on the market. 
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1 Introduction 
This paper examines the relationship between publicly funded basic research and product 

innovation in the pharmaceutical industry.  In 2004, the United States invested $26.1 billion in 

basic research (NSF 2007).  Historically, federal sources have financed over half of all U.S. 

national expenditure on basic research and more than double the amount spent by for-profit 

industry.  In the life sciences, the U.S. National Institutes of Health (NIH) is the world's largest 

public enterprise supporting basic research.  In 2004, NIH obligations for basic research were 

$14.8 billion, which represents about 83% of total federal obligations for basic research in the 

life sciences.  Surprisingly, especially in light of the magnitude of public support for basic 

research, there are very few empirical studies evaluating the contribution of this research to 

industrial innovation. 

Part of the explanation for this paucity of economic research is related to the fact that 

academic institutions such as universities, colleges, and other not-for-profit institutions perform 

the bulk of federally funded basic research, not industry.2  This fact is recognized in a new 

generation of models introduced by Jaffe (1989) in which industrial invention or productivity is 

related to academic research.  Working within the production function framework, Jaffe made a 

fundamental change in the traditional specification by grouping industries and academic 

departments into technological areas.  This is critically important because research externalities 

are poorly captured using firm or industry boundaries as opposed to technological or scientific 

areas.  Jaffe's analysis found that academic research makes a significant contribution to corporate 

                                                 
2 According to the NSF (2003, Table 27), industrial firms and industry administered federally funded research and 
development centers (FFRDCs) have performed about 11% of federally sponsored extramural basic research 
between 1970 and 2000.  Universities, colleges, not-for-profit institutions, and the FFRDCs these institutions 
manage have performed about 88% of this research.  
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patenting.  Adams (1990) and Acs et al. (1991) subsequently contributed to this line of research.3  

Adams explored the relationship between fundamental knowledge stocks and manufacturing 

productivity growth.  Acs et al. used Jaffe's model to explore how academic research affects an 

indicator of small business innovation. 

This paper complements and extends existing research in two distinct ways.  First, the 

analysis focuses on the pharmaceutical industry. "Drugs and Medical Technology" is one of the 

technological areas explored in Jaffe's (1989) research.  This focus allowed the model to more 

closely match the innovative process as well as control for specific characteristics that are not 

shared by other industries.  The pharmaceutical industry is a natural choice for analysis because 

its innovative process is relatively structured and science oriented.  The regulatory requirements 

imposed by the U.S. Food and Drug Administration (FDA) formalize the pharmaceutical 

innovative process and provide both a common structure across firms and a good measure of 

product innovation. 

Second, the analysis uses new micro-level data on NIH basic research investments that 

allow pharmaceutical innovation as well as private and public R&D investments to be matched 

by medical areas.  This approach groups drugs and research according to the biological system in 

question.  For example, an antihypertensive drug would be grouped in the cardiovascular area 

along with private and public research related to the cardiovascular system.  Similar to Jaffe 

(1989), these data make it possible to analyze the relationship between innovation and R&D 

investments within technology areas over time. 

Using a panel database of new drugs observed by medical areas over eighteen years, the 

results indicate that NIH funded basic research makes a positive and significant contribution to 

                                                 
3 See McMillan and Hamilton (2003) and Cockburn and Henderson (2001) for a broader literature review.  Also, see 
Branstetter and Ogura (2005) for a recent analysis using patent citation data.  
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pharmaceutical product innovation.  The elasticity estimate in the preferred model implies that a 

permanent 10% increase in NIH public basic research investment ultimately leads to a 6.4% 

increase in the number new molecular entities (NMEs), an important category of new drug 

therapies defined by the FDA.  The results also support the hypothesis that publicly funded basic 

research has its impact in the “drug concept” stage of industry research – the earliest stage of 

drug discovery preceding compound synthesis.  In other words, NIH investments in basic 

research influence pharmaceutical innovation fourteen to twenty-one years prior to new drug 

application to the FDA.  Further, as argued by Romer (1990) in the endogenous growth 

literature, there are aggregate long-run increasing returns to scale in pharmaceutical innovation.  

When both private and public investments are increased proportionately by 1%, there is a 1.44% 

increase in the number of NMEs after the appropriate time lags. 

The rest of the paper adopts the following organization.  Section 2 outlines the 

pharmaceutical innovative process and reviews the research relationships within this process.  

Section 3 presents the empirical model used in the analysis.  This is followed by a description of 

the data sources and measures in section 4.  Section 5 presents the empirical results and 

discussion.  Concluding remarks are found in section 6. 

2 Pharmaceutical Product Innovation and Public Basic Research 
 

Innovation in the pharmaceutical industry takes place when private firms introduce new 

drug therapies into the marketplace.  Before any private firm is allowed to sell a new drug 

therapy in the United States, it must receive approval from the U.S. Food and Drug 

Administration (FDA).  As such, FDA policies and requirements have a fundamental impact on 

the nature and structure of the pharmaceutical innovative process.  The FDA also classifies new 

pharmaceutical products.  One important category is labeled new molecular entities (NMEs).  
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These new products have never been previously approved for the treatment of disease and are 

expected to have the largest therapeutic and economic potential.4  The pharmaceutical 

innovations analyzed in this paper come from the group of NMEs.5  This is important to keep in 

mind.  One should not confuse NMEs with other pharmaceutical products that are discovered 

through long-term experience or post-market clinical observation.  While these other products, 

such as Upjohn’s Rogaine cream for hair growth, may be therapeutically and economically 

important, new indications or uses of approved drugs do not qualify as new additions to the 

group of new molecular entities. 

To understand the role and contribution of public basic research to new drug innovation it 

is necessary to recognize that the stage of industry research determines the nature of the research 

problems faced by industry scientists and the nature of the external knowledge relevant to these 

problems.  The structure of the pharmaceutical innovative process is typically described as 

beginning with drug discovery, progressing to pre-clinical studies, then to human clinical 

development, and eventually to application to the FDA for approval.  This process is relatively 

uniform and “linear” compared to most other industries due in part to the regulatory 

requirements imposed by the FDA.   

Figure 1 shows a simplified “chain-linked” depiction of the pharmaceutical innovative 

process (Kline and Rosenberg 1986).  Unlike standard depictions, this figure explicitly 

recognizes the “drug concept” phase of industry research as the very first point in the innovative 

                                                 
4 Even within this group of potentially important innovations, there are significant differences in actual or realized 
therapeutic and economic impact.  See Scherer and Harhoff (2000) and Grabowski and Vernon (1996) for an 
analysis of the distribution of sales revenue from NMEs.  Cockburn (2005) provides a good overview of the issues.   
5 See Appendix A for a precise description of the NMEs used in the analysis.  Because new dosage formulations, 
diagnostics and so forth are excluded from this analysis but are included in the FDA’s category of NMEs, some 
researchers refer to the innovations analyzed in this paper as “new chemical entities.”  
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process.6  Evidence from case studies and discussions with industry scientists suggest new drug 

concepts are a combination of publicly available biomedical knowledge and the firm’s own basic 

research.  Public basic research provides a foundation of knowledge which creates both new 

opportunities for addressing therapeutic outcomes and new information for chemical screening.  

The new opportunities stem mainly from advances in our understanding of metabolic processes 

in normal and disease states while, in the chemical screening step, more clearly defined 

therapeutic targets are combined with structural design methods that utilize computers and 

automated screening technologies.  By monitoring the advances in public basic research, the 

pharmaceutical industry absorbs and extends public knowledge with an eye toward the ultimate 

commercial products that may be produced (see Cockburn and Henderson 2001, Gambardella 

1995 fro more background). 

While there are a number of fascinating examples, the story of captopril illustrates nicely 

how public basic research can contribute to pharmaceutical innovation.  Captopril prevents high 

blood pressure by inhibiting the conversion of angiotensin I to angiotensin II and it was the first 

compound in a new class of drugs called angiotensin-converting-enzyme inhibitors or “ACE 

inhibitors.”  Its discovery built on two lines of publicly funded research performed in academic 

settings.  The first line involved the identification and description of the renin-angiotensin 

system.  While this public research dates back to at least 1934, the key scientific papers that 

identified angiotensin I and angiotensin II were published in the mid 1950s.  The second line of 

public research originated in Brazil.  Here, research into the cause of death from snake venom 

identified a natural substance which acts on its victim by fatally lowering blood pressure.  In 

1965, it was shown that this natural substance blocks the conversion of angiotensin I to 

                                                 
6 This phase is usually implicit in the drug discovery phase or is sometimes recognized as the “basic research” phase 
of drug discovery. 
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angiotensin II.  Armed with this public knowledge, the scientists at Squibb were able to 

synthesize the first ACE inhibitor in the early 1970s.  Captopril was subsequently approved for 

marketing by the FDA in 1981 (for additional cases and discussion see Maxwell and Eckhardt 

1990; Scolnick 1990; OTA 1993; Henderson 1994; Cockburn and Henderson 1998, 2001; 

Gambardella 1995; Silverstein et al. 1995; Dustan et al. 1996).   

Captopril was one of twenty-one case histories of important drugs examined by Cockburn 

and Henderson (1998).  Based on their qualitative research, they point out that drug discovery is 

characterized by a high degree of public and private interaction in research.  Figure 1 shows the 

pharmaceutical innovative process as is a learning process with multiple points of public-private 

interaction as well as information feedback taking place along the whole innovative chain from 

drug concept to market and back to drug concept.  However, describing and documenting the 

number, frequency, and modes of interaction is quite difficult.  Aside from individual case 

histories, the Carnegie Mellon Survey on Industrial R&D provides the best insight into how 

pharmaceutical scientists access and use public research.  From their survey of pharmaceutical 

R&D managers, Cohen et al. (2002) report that public research is quite important as a source for 

new R&D projects and project completion.  In terms of how public knowledge is accessed, the 

top four mechanisms were publications and reports, meetings and conferences, informal 

interactions, and consulting.  In light of the dynamic interaction and feedback within the 

pharmaceutical innovative process, the basic research underlying new drug concepts almost 

certainly involves bi-directional flows of knowledge between public and private research 

scientists.  Since estimating the magnitude of the contribution of public basic research to 

pharmaceutical innovation is one of the objectives of this research, it is appropriate to interpret 
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the empirical estimates as capturing a “net flow” of knowledge from public sector research to 

industry innovation.  

Another important aspect of the pharmaceutical innovative process is the length of time 

from drug concept to FDA application.  Since public basic research is expected to make its 

contribution in the drug concept stage of industry research, the empirical analysis will need to 

incorporate time lags.  DiMasi (2001) provides estimates of the average phase lengths between 

major milestones based on the detailed data held by the Tufts Center for the Study of Drug 

Development.  These average time lags are shown at the bottom of Figure 1.  The average “pre-

human testing phase” is three to four years and covers the period from drug synthesis to first 

testing in humans.  The average clinical development period is eight to nine years and covers the 

period from first testing in humans to the application date to the FDA.  Based on these lags, 

public basic research should influence pharmaceutical drug concept development thirteen years 

or more before the date of application to the FDA.  The empirical analysis will examine the 

relevant lag between public basic research and NME application.  Based on case histories and the 

structure of the pharmaceutical innovative process, the main hypothesis examined in this paper 

is: 

Hypothesis: Public basic research makes a positive and significant contribution to NME 
innovation with its primary contribution coming in the drug concept stage of 
industry research.  

 

3 An Empirical Model of Pharmaceutical Innovation 
 

The empirical objective is to estimate the timing, statistical significance, and magnitude 

of the contribution of public basic research to pharmaceutical innovation.  The modeling 

approach taken here uses a modified version of the knowledge production function first 
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implemented by Pakes and Griliches (1984) and used to study knowledge spillovers from 

academic research to corporate patenting by Jaffe (1989) and to manufacturing innovation by 

Acs et al. (1991).7  Following Jaffe (1989), the pharmaceutical production function is specified 

by technology area instead of by firm.  This is an attractive specification because inter-sectoral 

R&D relationships occur predominantly, albeit not exclusively, between researchers working in 

the same technology area.  To a first approximation, one would expect industry scientists 

working on cardiovascular drug concepts to interact with academic cardiologists and draw on 

public biomedical knowledge in cardiology as opposed to other technology areas such as 

neurology or gastroenterology.  This is essentially a technology mapping that, as Griliches 

(1992) points out, avoids having to make additional assumptions about the "technology distance" 

between alternative research performers (i.e. industrial and academic scientists). 

The technology-level pharmaceutical production relation has the following form: 

 

(1)  
12 25

0 1
1 9

exp ln( ) ln( ) ln( )it t k it k t j it j it i t it
k j
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where i represents one of seven broad medical areas and t represents time over an eighteen year 

period from 1980 through 1997.8   NMEit is a count of pharmaceutical product innovations in 

medical area i and FDA application year t.  IndRDit-k are aggregate R&D investment flows by 

private pharmaceutical firms into medical area i beginning in the year before FDA application 

and extending twelve years back in time.  PubBasit-j are public basic research investment flows 

 
7 The production function framework has been applied to the pharmaceutical industry by Baily (1972), Wiggins 
(1981), Henderson and Cockburn (1996), and several others. 
8 Equation (1) is a reduced-form representation.  This analysis does not attempt to posit a structural model 
incorporating the particular modes and frequency of interaction between public basic research performers and 
industry scientists.   
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into medical area i starting nine years prior to FDA application (the mean date of first testing in 

humans) and extending back twenty-five years prior to application date.  Mit is a measure of the 

potential market size in medical area i at time t based on demographic information; the iς ’s are 

time-constant medical area intercepts capturing heterogeneity; tμ ’s are annual time dummy 

variables capturing shocks common to all areas; and itε is a random disturbance term.  For those 

explanatory variables appearing in log form, the parameters estimates have a constant elasticity 

interpretation. 

The innovation counts of NMEs by application year and medial area are assumed to 

follow a Poisson process.  However, the Poisson property requiring the conditional mean to 

equal the conditional variance is overly restrictive.  Instead, the analysis draws from the 

generalized linear models (GLM) literature and assumes a proportional relationship between the 

conditional mean and conditional variance.9  This formulation is implemented using the Poisson 

quasi-maximum likelihood estimator (QMLE).  As Wooldridge (2002) describes, the Poisson 

QMLE has attractive robustness properties.  For equation (1), the Poisson QMLE is consistent 

and efficient as long as the conditional mean is correctly specified, the GLM variance 

assumption holds, and the model is dynamically complete.10 

As discussed in section II, interaction and feedback are intrinsic parts of the 

pharmaceutical innovative process.  Feedback in equation (1) takes place when shocks to NME 

applications at time t (changes in itε ) influence industry and public basic research investment at 

                                                 
9 This assumption implies that the ratio 2[ | ]

[ | ]
it it

it it

Var NME
E NME

σ=X
X

 is constant, but allowed to differ by a positive 

“dispersion” parameter, 2σ (see Wooldridge 2002 for further details). 
10 Throughout the analysis the time series processes are assumed to be essentially stationary and weakly dependent 
as defined in Wooldridge (1994).  Specification tests show that all three of these assumptions hold for equation (1).  
The test results are available from the author.  
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future dates (t+1 and beyond).  For the lag structure given in equation (1), shocks to NME 

applications in 1980 could influence industry and public research investment in 1981, and affect 

subsequent innovation in 1992 and beyond.  When feedback is present, it invalidates the strict 

exogeneity assumption required for consistency of standard panel data estimators.  This means 

the usual fixed and random effects count data estimators are not appropriately applied to 

equation (1).  An appropriate estimator will allow for feedback as well as address the time-

constant unobserved heterogeneity across medical areas represented by the iς ’s in equation (1). 

The approach taken here is to allow for feedback by using the pooled Poisson QMLE and 

to account for correlated heterogeneity using pre-sample information as suggested by Blundell, 

Griffith and Van Reenen (1995).11  Blundell, Griffith and Windmeijer (2002) present theoretical 

and Monte Carlo results showing this approach works well in count data models when the 

sample size is small and the explanatory variables are highly persistent.12   The sample available 

for this analysis is quite small (126 observations) and both the industry and public basic research 

investment flows are very persistent.  This approach exploits the fact that there is a long pre-

sample history of pharmaceutical NME innovation.  In the empirical analysis, the pre-sample 

averages of NMEs for each medical area are calculated using data from 1964 to 1979.  The 

central nervous system medical area has the highest pre-sample mean of 4.94 drugs per year 

while the dermatologic area has the lowest with 0.44 drugs per year.  

Holding industry R&D investment constant, the pre-sample mean of NMEs captures the 

industry’s unobserved heterogeneity across medical areas affecting future NME innovation.  

                                                 
11 Pooled Poisson QMLE does not require strict exogeneity for consistency, but allows for arbitrary feedback over 
time. 
12 A quasi-differenced GMM approach is another alternative.  However, their Monte Carlo evidence shows this 
approach performs poorly in small samples with highly persistent regressors.  That result was confirmed with the 
data used in this paper.  See Blundell, Griffith, Van Reenen (1999) for another application of the “pre-sample mean 
estimator” to account for correlated fixed effects. 
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Successful past innovation is likely to fuel the development of “capabilities” or “competencies” 

which influence future innovation.  Typically, these competencies are seen as productive 

resources that stimulate successful innovation in the future.  However, in a series of papers, 

Rebecca Henderson and Iain Cockburn have argued that the pharmaceutical industry underwent 

a fundamental shift in the late 1970s from a “random” screening mode to a “rational” drug 

design mode of innovation (Henderson 1994, Henderson and Cockburn 1994, 1996).  To the 

extent that rational drug design methods required the industry to develop new competencies to 

facilitate innovation, past competencies may be negatively related to future innovation.  Given 

that pre-sample NMEs capture unobserved competencies through 1979 in equation (1), the sign 

of the coefficient estimate will reflect the net influence of these separate possibilities. 

The burden of disease, captured in this analysis using pre-sample mortality rates across 

medical areas, plays an important and somewhat complicated role in the pharmaceutical 

innovative process.13  First, it is a source of heterogeneity because each of the medical areas in 

equation (1) is an aggregate over a different number of unobserved research programs addressing 

specific disease conditions.14  Since both public and private R&D investments are allocated 

across disease conditions based (in part) on mortality rates, those medical areas with greater 

mortality rates will also be the medical areas with a greater number of active research programs.  

Consequently, heterogeneity in mortality rates across medical areas will reflect differences in the 

“complexity” of research in these areas since aggregating over a larger number of interconnected 

research programs creates a more diverse knowledge base that is harder to navigate. 

Second, heterogeneity in mortality rates is correlated with the key explanatory variables 

                                                 
13 The empirical specification includes pre-sample mortality rates observed in 1979 to account for heterogeneity in 
the burden of disease.  In 1979, the cardiovascular medical area had the highest mortality rate of 4.24 deaths per 
thousand people and dermatologic had lowest rate of 0.010 deaths per thousand people. 
14 See Henderson and Cockburn (1996) for an analysis of industry patenting and R&D at the research program level. 
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in equation (1).  Greater mortality from disease in a medical area signals greater social need and 

(presumably) a greater willingness to pay for new drug therapies.  All else constant, this should 

stimulate more private and public R&D investment.  Prior research shows that both industry 

R&D investment and public biomedical research investment are positively associated with 

mortality rates (Toole 2007, Gross et al. 1999).   

The relationship between mortality and potential market size is more complicated.  

Lichtenberg (2003) finds that pharmaceutical innovation is associated with reduced mortality.  If 

new drug therapies lower mortality, successful innovation will reduce future market size for 

NMEs as long as greater life expectancy does not lead to greater need for NMEs drug therapies 

going forward.  Here the distinction between NMEs and other drugs products is important to 

keep in mind because longer life expectancy could increase the demand for non-NME drug 

therapies while simultaneously reducing the demand for NMEs.  On the other hand, if extending 

life creates future need for NMEs, lowering mortality could increase the future market size and 

re-enforce any beneficial demographic changes.  In any case, the complex interaction between 

mortality rates and the potential market for pharmaceutical innovation highlights the importance 

of controlling pre-sample heterogeneity in mortality rates.  Holding mortality rates constant will 

also help identify the influence of demographic changes in market size as highlighted by 

Acemoglu and Linn (2004).   

The specification of equation (1) incorporates the characteristic lags in the 

pharmaceutical innovative process.  Industry research investment flows extend over twelve 

years, which is the mean period from compound synthesis to FDA application.  For the 

regression results presented in section V, these flows are aggregated into an industry stock dated 

one year prior to application (t-1).  The stock is constructed using the perpetual inventory method 
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described by Hall et al. (1988) assuming a twenty percent depreciation rate (δ=0.20).15  The 

R&D industry stock for NMEs applications at time t is given by: 

11

1 1
1
(1 ) j

t t
j

IndStk IndRD IndRDδ− −
=

= + −∑ 1t j− −

                                                

 

The time period over which public basic research is allowed to influence NME 

innovation is closely tied to the lag structure of the pharmaceutical innovative process.  The 

mean lag from the first testing of a compound in humans to the FDA application date is eight to 

nine years.  Since the drug candidate is already “in hand” at this point and the conduct of clinical 

trials is already determined in clinical trial protocols, the influence of public basic research on 

NME innovation must come before this point in time.  Equation (1) allows public basic research 

to influence innovation from nine years prior to application to twenty-five years prior to 

application.16  Since no prior information on the form of the lag between public basic research 

and NME innovation is available, the empirical specification leaves the public investment flows 

completely unrestricted.  While this approach avoids mis-specifying the structure of the lag 

distribution, it does suffer from the common problems associated with multicollinearity in 

knowledge production function style models, namely unappealing sign changes on the 

coefficients across years and low precision due to inflated standard errors.17  However, as 

Wooldridge points out, even when individual lag coefficients are not precisely estimated, the 

estimate of the long-run impact is often quite good (Wooldridge 2009, p 345).  To test the 

hypothesis about the contribution of public basic research, the analysis will rely mainly on the 

 
15 This is a geometric form of deprecation for industry investment that assumes it loses its “productive capacity” at a 
constant rate of 20% per year.  The results are robust to using the annual flows of industry R&D which do not 
impose any structure on the lag distribution.   
16 An earlier version of this research specified public basic research as a stock using the perpetual inventory method 
(Toole 2000).  That alternative works fine, however, identifying the lag between public basic research and 
pharmaceutical innovation required a different approach.  The earlier version also imposed the strict exogeneity 
assumption by using the fixed effects Poisson estimator. 
17 See Cincera (1997), Hall, Griliches and Hausman (1986), Pakes and Griliches (1984) for further background. 
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statistical significance of the long-run impact as measured by the sum of the annual elasticity 

estimates over the lag distribution.  

The annual time dummy variables capture shocks common to all the medical areas in the 

pharmaceutical innovative process.  For instance, over the sample period from 1980 to 1997, 

there were several legislative changes that may have affected pharmaceutical innovation such as 

the Orphan Drug Act of 1983, the 1984 Patent Term Restoration and Competition Act, the 

Prescription Drug User Fee Act of 1992, and the 1997 FDA Modernization Act.  These 

legislative changes may have influenced when firms submitted their new drug applications to the 

FDA.  The annual dummy variables will account for the common influence of these events 

across medical areas on NME innovation.  

4 Data Sources and Measurement 
 

In order to estimate the timing and significance of the contribution of public basic 

research to pharmaceutical innovation, I gathered data from six sources:  the Food and Drug 

Administration (FDA), the Pharmaceutical Research and Manufacturers Association, the 

National Institutes of Health, the Centers for Disease Control (CDC), the U.S. Census Bureau, 

and the Current Population Survey.  These data are organized into a panel dataset comprised of 

seven medical areas observed over an eighteen year period.  A medical area is a technological 

area that groups compounds and research related to similar biological systems.  The 

pharmaceutical industry has reported its R&D expenditure by medical areas since the early 

1960s.  The seven medical areas considered in this study are:  endocrine/neoplasm (cancer), 

central nervous system, cardiovascular, gastro-intestinal/genito-urinary, anti-infective, 

dermatologic, and respiratory.  The remainder of this section provides an overview of the data 

used in the analysis while the details about the database construction are provided in Appendix 
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A.  Table 1 presents descriptive statistics of the variables used in the regression analysis. 

As described earlier, pharmaceutical innovation is measured as a count of approved new 

molecular entities (NMEs) based on the data obtained from the FDA.  The NMEs analyzed in 

this paper are a subgroup of all approved NMEs and are sometimes referred to as “new chemical 

entities.”  This is a category of unique therapeutic products introduced by the industry each year 

and includes the captopril compound discussed in section 2.  Approved NMEs are also a measure 

of important patents since they are the subset of all patented pharmaceutical compounds that 

have met the FDA standards for safety and efficacy.  Using a measure of important patents 

addresses one of the criticisms of using patent counts as an indicator of innovative output - the 

wide variation in the economic value of individual patents.18  

Public data on pharmaceutical industry R&D investment were collected from the 

Pharmaceutical Research and Manufacturers Association's (PhRMA) Annual Survey Reports 

(various years).  These public data are only available by medical area after aggregation across 

individual PhRMA member firms.  The investment figures are also aggregated across both the 

drug discovery/pre-clinical and the clinical development phases.  These figures include 

expenditure of research failures as well as successes and cover all pharmaceutical investment 

whether directed toward an NME or toward a non-NME drug product (roughly 80% of these 

funds go toward NMEs).  These figures are a composite measure of industry R&D investment 

including physical capital, labor costs, manufacturing costs, and a fair share of overhead.  The 

industry investment flows were adjusted for inflation using the Biomedical Research and 

Development Price Index with 2000 as the base year.  For the regression model, the flows are 

cumulated into a twelve year stock as described in section 3.   

                                                 
18 There is still significant variation in the therapeutic and economic impact of these NMEs.  Refer to the references 
in footnote #1 for more background.  
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Proxy variables for public basic research knowledge were constructed using data on 

extramural funding by the U.S. National Institutes of Health (NIH).  Comprehensive award level 

data allowed the construction of basic research flows by medical area from 1955 through 1996.  

The NIH funds a large and diverse body of construction, education, training, research, and 

development activities.  Detailed activity and program codes, scientific review group codes, and 

funding agency identifiers are used to isolate the relevant basic research funding.  To facilitate 

this process, I asked industry scientists to describe the nature of the basic research relevant to the 

pharmaceutical innovative process.  They identified research directed at the discovery and 

characterizations of physiologically active substances and the definition of metabolic pathways 

related to normal and disease function.  This definition covers only discovery/pre-clinical 

research.  While some important new drugs are discovered through casual observation or 

directed clinical research, these are not the drug products considered in this analysis since new 

uses of post-approval drugs do not quality as new molecular entities.  The NIH investment flows 

were adjusted for inflation using the Biomedical Research and Development Price Index with 

2000 as the base year. 

The variable measuring the potential market size for NME innovation was constructed 

based on the methodology used in Acemoglu and Linn (2005).  Data on U.S. mortality and 

hospital admissions were obtained from the U.S. Centers for Disease Control for the pre-sample 

year 1979 and grouped into medical areas based on the International Classification of Diseases, 

9th Clinical Modification.  The 1979 data identified an “at risk” group in the U.S. population by 

age and gender for each of these medical areas.  The medical area shares of the “at risk” group 

were fixed at the 1979 levels.  Using data from the U.S. Census and the Current Population 

Survey, population and income data were collected by age and gender for each year in the 
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sample (1980-1997) and apportioned across medical areas using the 1979 shares.  The main 

advantage of this method is that the market size variable is arguably strictly exogenous since 

NME innovations cannot feedback to change the size of the at risk group by affecting the burden 

of disease, at least as it is measured by mortality and hospital admissions.  One disadvantage of 

this method is that there is very little cross-sectional variation and identifying the influence of 

demographic changes requires the pre-sample heterogeneity in the “at risk” shares to be held 

constant.   

5 Estimation Results 
 

This section presents the Poisson QMLE estimation results for equation (1).  The 

discussion is organized into four parts.  The first part examines the time lag between public basic 

research investment and pharmaceutical innovation.  As discussed in Section 2, public basic 

research is expected to influence the drug concept stage of the pharmaceutical innovative 

process, which takes place in the earliest part of drug discovery.  As such, public basic research 

should impact pharmaceutical innovation sometime earlier than twelve years prior to NME 

application – before compound synthesis takes place.  The second part examines the statistical 

results from the regression models in greater detail.  The third part examines the economic 

importance of public basic research based on the magnitude of its long-run contribution as given 

by the sum of the annual elasticity estimates over the full length of the lag distribution.  The final 

part presents some alternative specifications as robustness checks. 

Table 2 presents the main findings for the analysis.  The table shows three versions of 

equation (1) which only differ in the number of public basic research lags included in the 

specifications.  Since these annual flows are highly collinear and enter the specification in logs, 

the individual coefficient estimates generally show sign changes and low individual statistical 
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significance.  Nevertheless, in all three specifications public basic research investment nineteen 

years prior to NME application is statistically significant.  The preferred model, which tightens 

the lag specification using robust Wald tests, appears in model (3) in column 4.19  This 

specification identifies a range of eight years over which public basic influences pharmaceutical 

innovation.  This group of years is highly significant with a robust Wald statistic of 

Χ2(6)=468.53 and a p-value<0.0000.  The estimates suggest that NIH public basic research 

investment fourteen to twenty-one years prior to NME application contribute to pharmaceutical 

innovation.  This period is consistent with the hypothesis that public basic research contributes to 

the drug concept stage of pharmaceutical innovation as described in section 2.  It is also 

consistent with available evidence from individual drug case histories.  The average lag between 

the initial public sector “enabling discovery” and FDA application was 20.5 years for the 

fourteen drugs studied by Cockburn and Henderson (1998).20  

Notwithstanding the well known difficulties of estimating precise lag relationships, it is 

still informative to probe the lag structure a little deeper in order to gain suggestive insights into 

the interaction between public basic research and private pharmaceutical innovation.  Figure 2 

plots the lag coefficient estimates for public basic research found in model (3).21  The lag 

distribution shows that the number of NME applications in year t depends on two “peaks” of 

public basic research influence occurring at fifteen and nineteen years before NME application.  

This pattern is consistent with two related facts.  First, the period of time separating the peaks at 

                                                 
19 Moving from model (1) to model (2) imposes exclusion restrictions on public basic research lags PubBas(t-9) 
through PubBas(t-13).  The robust Wald statistic for joint significance is Χ2(5)=0.39 with a p-value<0.9955.  
Moving from model (2) to model (3) imposes exclusion restrictions on public basic research lag PubBas(t-22) 
through PubBas(t-25).  The robust Wald statistic for joint significance is Χ2(4)=4.94 with a p-value<0.2037. 
20 Cockburn and Henderson (1998) report the average lag from enabling discovery to FDA approval to be 23.3 
years.  The 20.5 year period ends at FDA application, not approval.  This estimate was calculated by subtracting the 
average FDA review period for drugs approved in the 1980s, which was 2.8 years as reported by DiMasi (2001).  
21 This is the mean lag distribution from pooling all medical areas.  While it is likely that public basic research in 
each medical area has a somewhat different lag relationship with pharmaceutical innovation, the small sample size 
necessitates restricting the lag coefficients across medical areas in the empirical analysis.    
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fifteen and nineteen years is consistent with the average duration of NIH competing research 

project grants, which is four years.  Second, prior research analyzing how industry R&D 

investment responds to NIH basic research funding also found a U-shaped time profile (Toole 

2007).  Because equation (1) characterizes a dynamic relationship, this lag profile gets shifted 

forward for NME applications in year t+1 and so forth.  Consequently, a dynamic view across a 

number of NME application years suggests overlapping “waves” of influence in which private 

industry scientists are monitoring, responding, and interacting with academic basic researchers 

and/or their research findings on a continuous basis.     

Although the empirical results presented here cannot pin down the shape of the lag 

distribution precisely, the peaks in the lag distribution may represent points in time when public 

basic research contributes significant information to industry innovation, especially since the 

underlying flows are quite smooth.  If these are real effects, one would expect to see a consistent 

relationship over time between the public basic research investment and the NME applications.  

Figures 3 and 4 illustrate this relationship over the sample period with the number of NME 

applications on the right-hand axis and lagged real NIH investment into basic research on the 

left-hand axis.  Figure 3 shows a striking similarity in the co-movements of the trends in NIH 

funding lagged fifteen years prior to NME application and the observed number of NME 

applications.  For Figure 4, which uses NIH funding lagged nineteen years, the co-movements in 

these trends are not as tight, but are still suggestive.  So, while the nature of the interaction 

between public and private researchers remains complex and largely unknown, these exploratory 

results provide some suggestive insights into the time profile of the interaction between public 

basic research and private pharmaceutical innovation. 

For the statistical results, all three regression models in Table 2 show similar findings.  
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The long-run contribution of public basic research, which is given by the sum of the annual 

elasticity estimates over the full length of the lag distribution, is positive and highly significant in 

all three regression models (p-values<0.000 as reported at the bottom of Table 2).  The public 

basic research flows are also jointly significant in model (3) once the specification of the lag 

distribution is tightened.  Among the other covariates, the elasticity of NMEs with respect to the 

stock of industry R&D is highly significant with a p-value<0.000 in all models.  The potential 

market size variable, which accounts for income and population changes within medical areas, is 

positive and significant in all the regression models in Table 1.    Both pre-sample heterogeneity 

in mortality rates and NMEs are negative and significant.22  As described in section 2, 

heterogeneity in mortality rates is likely capturing differences in “complexity” across medical 

areas stemming from aggregation over different numbers of interconnected research programs.  

The negative effect of past NMEs supports the view elaborated by Henderson (1994) and 

Henderson and Cockburn (1994) that the shift to a rational drug design mode of drug discovery 

in the late 1970s required the development of new “integrative competences” for successful 

pharmaceutical innovation. 

Regarding the estimated magnitude of private R&D investment, model (3) shows the 

elasticity of NME applications with respect to the stock of industry R&D is about 0.81.  Holding 

all else constant and using the sample averages, this estimate implies a marginal physical product 

of 0.0027 NMEs per $1 million and a marginal cost per NME of $370 million in real 2000 

dollars.23  In the literature, DiMasi et al. (1991, 2003) found the average out-of-pocket cost per 

                                                 
22 The control for pre-sample heterogeneity in hospital admission rates across medical areas was always 
insignificant.  
23 The marginal product calculated as:  mp = elasticity x (avg. NME / avg. industry flows).  The industry R&D flows 
assume a twelve year investment period and are adjusted by a proportionality factor of 0.80 to account for industry 
investment directed at NMEs as opposed to product extensions.  The proportionality factor is taken from the 
PhRMA annual survey reports. 
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NME increased from $251 to $405 million (real 2000 dollars) between the two sample periods 

they analyzed.24  Although their sample periods do not exactly match the sample period used 

here, the $370 million marginal cost figure falls within the expected range. 

Notwithstanding the appreciable lag, public basic research makes an economically 

significant contribution to pharmaceutical product innovation.   The long-run elasticity of NMEs 

with respect to public basic research ranges from 0.72 down to 0.64 as the lag distribution is 

tightened across the models in Table 2.  Based on model (3), a permanent 10% increase in NIH 

public basic research funding will lead to a 6.4% increase in NME applications after twenty-one 

years.  Holding all else constant and using the sample average of the NIH investment flows over 

the lag period, this estimate implies a marginal physical product of 0.008 NMEs per $1 million in 

real 2000 dollars.25  Interestingly, this is the same marginal physical product (rounded to three 

decimals) found in earlier work which used a stock specification for public basic research and a 

nineteen year lag (Toole 2000). 

Because the new ideas derived from public basic research are largely non-rivalrous and 

non-excludable, the magnitude of its contribution to pharmaceutical innovation has an important 

implication – there are increasing returns scale in NME innovation.  Romer (1990) highlights 

how externalities in research and development can lead to increasing returns to scale in the 

context of endogenous growth models.  Holding all else constant, the parameter estimates 

indicate that a proportional increase in both private R&D and public basic research leads to a 

more than proportionate increase in NME applications (that are ultimately approved).  From 

                                                 
24 In both studies, the authors define the population for their sample based on when the NMEs entered clinical trials.  
In their earlier study, which covers the period 1970 to 1982, the average out-of-pocket cost was given as $114 
million in real 1987 dollars.  The figure in the text was calculated by readjusting the base to the year 2000 using the 
Bureau of Labor Statistics producer price index (series ID WPU035).  Their second study covered the period from 
1983 to 2000.   
25 The marginal product calculated as:  mp = elasticity x (avg. NME / avg. NIH flows).  The NIH basic research 
flows correspond to the years in the lag distribution, fourteen to twenty-one years prior to NME application. 
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model (3) in Table 1, the sum of the coefficient estimates is 1.44 with a standard error of 0.168, 

with a p-value<0.000.   

Table 3 reports four alternative specifications as robustness checks.26  The specifications 

in columns (1) and (2) drop the medical areas with the smallest and largest NME applications, 

respectively.  As seen in column (1), there are no notable changes due to dropping the smallest 

area (dermatologic NMEs).  However, as seen in column (2), dropping the largest area (anti-

infective NMEs) leads to three notable changes.  First, the lag distribution for public basic 

research is different and begins later at seventeen years prior to NME application.  The earlier 

years, lags 14-16, became jointly insignificant with a robust Wald statistic of Χ2(3)=1.01 and a p-

value<0.7999.  The remaining lag coefficients are jointly significant with a robust Wald statistic 

of Χ2(5)=11.97 and a p-value<0.0352.  Drug innovations in the anti-infective medical area 

appear to have a shorter lag relationship with public basic research.  This highlights the fact that 

the lag distribution found in Table 2 is not uniform across medical areas, but represents the mean 

lag across these areas.  Second, the long-run elasticity of public basic research is no longer 

statistically significant.  This is not especially surprising since dropping the anti-infective class 

amounts to dropping the medical area with the greatest variation in the dependent variable.  The 

sample size for this analysis is too small to be robust to deleting one of the major medical areas.  

Third, heterogeneity as captured by the pre-sample mortality rates and average NMEs are no 

longer statistically significant. 

The regression results in columns (3) and (4) of Table 2 show a test for endogeneity of 

industry R&D investment and report an OLS version of equation (1) based on the approach 

introduced by Pakes and Griliches (1980) for estimating a log-linear model when the dependent 

                                                 
26 The specifications shown in Toole (2000) are additional robustness checks. 
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variable has zero values.27  The number of hospital admissions and average length of hospital 

stay are used as instruments for industry R&D.  As seen by the t-statistic on the first stage 

residuals in column (3), there is no evidence of endogeneity (see Wooldridge 2002 for details on 

the test).28  For the OLS model in column (4), the public basic research coefficients are jointly 

significant with an F(6,6)=23.53 and a p-value<0.006.  The long-run elasticity, however, is not 

significant in the OLS version.  

6 Conclusion 
 
 This paper analyzed the relationship between publicly funded basic research and product 

innovation in the pharmaceutical industry.  The empirical results are based on a panel data set of 

FDA approved new molecular entities grouped by medical area over the period 1980-1997.  The 

analysis found that public basic research contributes to the drug concept stage of pharmaceutical 

drug discovery drug, which necessarily precedes compound synthesis.  NIH investments in basic 

research influence pharmaceutical innovation fourteen to twenty-one years prior to new drug 

application to the FDA.  The findings also suggest that a permanent 10% increase in public basic 

research investment leads to a 6.4% increase in the number of NMEs after the appropriate lags.  

This impact is economically significant and the combination of both public and private R&D 

investment leads to increasing returns to scale in the pharmaceutical innovative process. 

Because of the unique structure of the pharmaceutical innovative process, it is difficult to 

generalize these findings to the other technological areas.  However, future research should be 

                                                 
27 This approach sets the log of NMEs equal to zero when there are no NME applications in a particular medical area 
and year and includes a dummy variable for these observations on the right-hand side of the equation.  While this 
method is not efficient and is likely to be biased by the functional relationship between NMEs and the dummy 
variable, it provides a check on the significance of public basic research. 
28 Both of these instruments are insignificant when included in equation (1), but are individually and jointly 
significant in the first stage with an F(2,6)= 9.40 an a p-value<0.0142.   
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directed at improving our understanding of innovation and R&D investment in these other areas.  

Jaffe's (1989) research using multiple technology areas identifies some promising candidates.   
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Appendix A: Database Construction 
 
Innovation Measure: Approved New Molecular Entities (NMEs) 
Using the Freedom of Information Act, information on all approved new molecular entities (NMEs) was obtained 
from the U.S. Food and Drug Administration (FDA) for the period 1964 to 2000.  Because the FDA defines this 
product category more broadly than the focus of this study, the definition of NMEs used here excludes diagnostic 
agents, certain biological agents, new dosage formulations, surgical and other materials such as contact lenses and 
devices.  Some researchers, such as DiMasi et al. (1991, 2003), refer to this more narrowly defined group as new 
chemical entities.  The remaining approved products were grouped by year of application and medical area.  
Although the year of application was supplied by the FDA, the compounds needed to be assigned to one of the seven 
medical therapeutic areas.  This was accomplished by using the clinical pharmacology and treatment indication 
descriptions from the Physician's Desk Reference, Merck Index, and Martindale The Extra Pharmacopoeia.  The 
final group of pharmaceutical innovations includes both self-originated and in-licensed compounds.  In cases where 
empirical observation has revealed additional uses of a compound, such as Upjohn’s Loniten (minoxidil) having the 
beneficial effect of hair growth, the compound was classified in its original therapeutic area (cardiovascular in the 
case of minoxidil).  
 
Public Life Science Basic Research Investment 
The National Science Foundation identifies the U.S. National Institutes of Health (NIH) as the primary funding 
agency for U.S. basic research investment into the life sciences (83% in 2004).  Two data sources on NIH funded 
grants and contracts were obtained to estimate public basic research investment into each of the seven medical areas 
over time.  First, an extract from the NIH IMPAC database provided data covering the years 1955 to 1985.  Second, 
the NIH CRISP database provided data covering the years 1972 to 1996.  For each grant and contract award, the 
data includes:  the title, the identification number (activity code, institute code, and grant or contract number), the 
fiscal year of award, the award amount, and the scientific review group that recommended its approval.  Beginning 
with the total set of awards for an individual year, the annual basic research flows were estimated using several data 
filters.  The filters were designed to isolate basic research that is relevant to the pharmaceutical industry as defined 
in the text.  Four main filter levels were defined and used.  The first eliminated awards based on activity code.  
Generally speaking, this filter purged activities such as training, education, construction, demonstration, and 
institutional block grants from the data.  The second filter eliminated awards based on institute code.  All institutes 
and divisions were analyzed, however, there turned out to be several that contributed nothing or only a negligible 
amount to basic science relevant to the pharmaceutical industry.  Examples of eliminated institutes include the 
National Institute on Dental Research, the National Institute on Environmental Health Sciences, the National Library 
of Medicine, and several others. The third filter eliminated scientific review groups that consider research that did 
not fit the definition of basic research.  These groups were reviewed in every year and the filter is modified to be 
year specific.  (This was necessary due to the splitting, adding, and discontinuance of scientific review groups over 
time.)  The fourth filter level, which is really a group of filters, analyzed awards based on medical keywords - but 
not simply disease names - contained in the title of the grant or contract.  The keyword filters were defined using the 
prefixes and suffixes commonly found in medical vocabulary.  This was done to avoid the pitfalls encountered when 
one simply searches titles and abstracts that mention specific diseases.  Overall, the four main filter levels separated 
the total universe of NIH grants and contracts into seven therapeutic areas of basic research, one group of 
unclassifiable basic research, and a remainder covering all other funded activities.  The unclassifiable but relevant 
research was allocated using the shares of total counted research in each category.  For a medical area total, the 
awards are summed across all grants.  Annual totals were adjusted for price changes by using the Biomedical 
Research and Development Price Index maintained by the Bureau of Labor Statistics (base year 2000). 
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Figure 1:  Simplified “Chain-linked” Depiction of the Pharmaceutical Innovative Process 
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Figure 2:  Estimated Lag Coefficients of NIH Funded Basic 
Research on Pharmaceutical NME Innovation
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Figure 3: NME Applications and NIH Basic Research funding 
Lagged Fifteen Years Prior to Application
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Figure 4:  NME Applications and NIH Basic Research Funding 
Lagged Ninetten Years Prior to Application
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Table 1:  Descriptive Statistics 
Variable Mean Std. Dev. Min Max 
NME applications(t) 3.127 2.638 0.000 10.000 
Ind R&D stock(t-1) 8.609 0.838 6.949 9.884 
PubBas(t-14) 5.184 1.300 2.044 6.881 
PubBas(t-15) 5.150 1.297 2.044 6.881 
PubBas(t-16) 5.118 1.297 2.044 6.881 
PubBas(t-17) 5.080 1.292 2.044 6.881 
PubBas(t-18) 5.036 1.288 2.044 6.868 
PubBas(t-19) 4.982 1.283 2.044 6.791 
PubBas(t-20) 4.923 1.282 2.044 6.791 
PubBas(t-21) 4.852 1.292 1.883 6.791 
Market Size(t) 4.217 0.884 2.303 5.332 
Pre-sample Mortality -1.094 1.810 -4.631 1.447 
Pre-sample Avg. NMEs 0.483 0.844 -0.827 1.597 
Seven medical areas observed over eighteen years (obs = 126) 
All variables are in logs, except the count of NME applications.  
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Table 2: Pooled Poisson QMLE Regression Models of Pharmaceutical Innovation 
  (1) (2) (3) 
  NME Applications(t) NME Applications(t) NME Applications(t) 
           
Ind R&D stock(t) 0.786 (0.076)*** 0.799 (0.057)*** 0.805 (0.058)*** 
           
PubBas(t-9) 0.179 (0.538)       
PubBas(t-10) -0.379 (0.792)       
PubBas(t-11) 0.545 (1.23)       
PubBas(t-12) -0.104 (1.263)       
PubBas(t-13) -0.010 (0.592)       
PubBas(t-14) -1.141 (1.022) -0.943 (0.726) -0.999 (0.686) 
PubBas(t-15) 1.392 (1.329) 1.348 (1.303) 1.471 (1.306) 
PubBas(t-16) -0.026 (1.621) 0.016 (1.61) -0.114 (1.386) 
PubBas(t-17) -0.433 (0.569) -0.487 (0.621) -0.385 (0.365) 
PubBas(t-18) -0.299 (0.402) -0.252 (0.486) -0.277 (0.596) 
PubBas(t-19) 1.327 (0.809)* 1.312 (0.727)* 1.253 (0.522)** 
PubBas(t-20) -0.092 (1.034) -0.104 (1.095) -0.017 (1.148) 
PubBas(t-21) -1.211 (1.03) -1.217 (1.001) -0.288 (0.952) 
PubBas(t-22) 0.907 (1.431) 0.935 (1.439)    
PubBas(t-23) 0.414 (1.222) 0.446 (1.178)    
PubBas(t-24) -0.262 (0.975) -0.285 (1.055)    
PubBas(t-25) -0.092 (0.481) -0.100 (0.468)    
           
Market Size(t) 0.120 (0.04)*** 0.115 (0.048)*** 0.096 (0.034)*** 
Pre-sample Mortality -0.277 (0.045)*** -0.264 (0.071)*** -0.252 (0.058)*** 
Pre-sample Avg. NMEs -0.412 (0.106)*** -0.367 (0.166)*** -0.343 (0.144)*** 
Constant -9.392 (1.081)*** -9.223 (1.497)*** -9.124 (1.293)*** 
Yearly Dummy 
Variables Significant Significant Significant 
           
Sum coeff. PubBAS 0.715 (0.119)*** 0.667 (0.175)*** 0.644 (0.138)*** 
Joint Sig. PubBAS(a) Χ2(6)=3.79, p <0.7049 Χ2(6)=4.86, p <0.5622 Χ2(6)=468.5, p <0.0000 
           
Dispersion parameter 1.06 1.04 1.02 
Log Likelihood -213.132 -213.357 -214.204 
Observations 126 126 126 

*** indicates significance at a 1% level (**, *) for 5% and 10% levels for two-sided tests. 
Standard errors are clustered by medical area and robust to heteroscedasticity. 
(a) some constraints were dropped due to collinearity. 
 



Table 3:  Pooled Poisson QMLE Regression Models of Pharmaceutical Innovation: Robustness Checks 
  (1) (2) (3) (4) 
  NME Applications(t) NME Applications(t) NME Applications(t) NME Applications(t) 
  Drop Smallest NME Area Drop Largest NME Area Instrument for Ind R&D Linear Model 
               
Ind R&D stock(t) 0.815 (0.059)*** 0.656 (0.137)*** 0.743 (0.102)*** 0.698 (0.078)*** 
               
PubBas(t-14) -1.435 (0.633)**    -1.006 (0.722) -0.816 (0.765) 
PubBas(t-15) 1.545 (1.442)    1.468 (1.325) 0.743 (1.129) 
PubBas(t-16) 0.038 (1.618)    -0.085 (1.421) 0.315 (0.815) 
PubBas(t-17) -0.213 (0.443) -0.122 (0.672) -0.411 (0.377) -1.079 (0.542)* 
PubBas(t-18) -0.271 (0.542) -0.273 (0.816) -0.287 (0.601) 0.745 (0.462) 
PubBas(t-19) 1.341 (0.569)** 0.637 (0.459) 1.243 (0.505)** 0.332 (0.56) 
PubBas(t-20) -0.348 (1.244) -0.104 (1.298) 0.006 (1.162) -0.246 (1.094) 
PubBas(t-21) -0.003 (1.017) 0.211 (0.699) -0.266 (0.921) 0.161 (0.855) 
              
Market Size(t) 0.103 (0.062)* 0.203 (0.122)* 0.084 (0.037)** 0.027 (0.033) 
Pre-sample Mortality -0.262 (0.079)*** -0.136 (0.18) -0.243 (0.05)*** -0.158 (0.052)** 
Pre-sample Avg. NMEs -0.363 (0.21)* -0.063 (0.466) -0.332 (0.134)*** -0.055 (0.138) 
Constant -9.092 (2.153)*** -7.106 (2.873)** -8.642 (0.956)*** -5.433 (1.185)*** 
Yearly Dummy Variables Significant Significant Not Significant Not Significant 
               
First Stage Residual       0.125 (0.317)    
NME=0 Dummy            -0.300 (0.196) 
               
Sum coeff. PubBAS 0.656 (0.248)*** 0.350 (0.507) 0.662 (0.151)*** 0.115 (0.105) 
Joint Sig. PubBAS(a) Χ2(5)=20.82, p <0.0009 Χ2(5)=11.97, p <0.0352 Χ2(6)=644.2, p<0.0000 F(6,6)=23.53, p <0.0006 
               
R-Squared           0.6399 
Log Likelihood -196.968 -172.19 -214.098  
Observations 108 108 126 126 
*** indicates significance at a 1% level (**, *) for 5% and 10% levels for two-sided tests. 
Standard errors are clustered by medical area and robust to heteroscedasticity. 
(a) some constraints were dropped due to collinearity. 
Anti-infectives is the largest NME medical area, dermatologic is the smallest. 
Instruments for the stock if industry R&D are the number of hospital admissions and average length of hospital stays. 
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