What is the X-Factor in the German Electricity Industry?

Andreas Kuhlmann
Ifo Institute for Economic Research at the University of Munich
Poschingerstr. 5
81679 Munich, Germany
Phone: (+49) 89-9224 1370
E-mail: kuhlmann@ifo.de
Internet: www.cesifo.de/link/kuhlmann_a.htm

March, 2006

Preliminary –
Do not quote nor circulate without author’s explicit permission
Comments welcome

Abstract
In Germany, the largest European electricity market, a new energy law has been implemented in 2005 in order to satisfy the aggravated EU standards. This new legislation requires the implementation of incentive-based-(RPI-X) regulation within the next years. In this paper I derive an X-factor for the German electricity industry using a new productivity database and applying the Growth Accounting methodology. Considering several market imperfections and accordingly violated assumptions the estimated X-factor rises from a calculated value of 0.84 to a modified magnitude of 2.64.

JEL-classification: D24, G38, L43, L5
Keywords: Electricity, Productivity Analysis, Price Cap Regulation
1 Introduction

The European electricity industry, one major guarantor for the efficiency and functioning of mainly all other economic sectors, is under reconstruction. EU-regulation has made sure that electricity markets all over the EU, which were monopolistically organized for decades, are about to be liberalized and set up for competition. In Germany, the largest European electricity market, the market for electricity has been opened up for competition in 1998 – in theory a liberalization to 100 percent– meaning that all (industry and private) customers can choose their individual provider freely. At that time this went far beyond the EU guidelines and Germany seemed to be a precursor as regards electricity liberalization. However, whether competition in the electricity sector of an economy can emerge or not critically depends on the design of the market rules and this design has not at all been favorable for competition – at least in the first seven years of the so-called liberalization.

The critical element in this industry (with regards to competition) is the access to the transport and distribution network – still an essential facility with natural monopoly characteristics. Every potential energy provider willing to sell electricity needs access to the grid. In Germany at that time the rules concerning this access have been designed (or at least strongly been influenced) by the former monopolists themselves – in a so-called association agreement between energy producers and industrial consumers. Germany was the only country to choose negotiated third party access (nTPA) instead of a regulated one (rTPA). In these proceedings not a single stakeholder of the potential competitors was involved. It is therefore not surprising that after an enthusiastic kick off period most new market entrants have in the meantime left the stage. Retail electricity prices have also gone up again, after an initial decline.¹

In June 2003 the European Commission finally abolished the possibility of nTPA and decided that in all member states a national regulator has to be established until July 2004 (Directive 2003/54/EC). The new law came with a nine-month-delay, but it brought actually a couple of significant modifications to the German electricity market.² Beside a legal and operational (but no

¹ This price increase is certainly not only due to a lack in competition - energy taxes and resource prices also play an important role in this context - but it can still serve as an indicator for the effectiveness of all these agreements.
² For a more detailed description of the German electricity market and an assessment of the recent changes see Kuhlmann and Vogelsang (2005).
ownership) unbundling of generation and transmission, a regulatory agency was charged with the supervision of the electricity sector. The new duties for the regulatory agency include the supervision of network access charges and the introduction of an incentive based regulatory regime. Such a regime is typically known as “price cap” or RPI-X regulation, where every regulated firm has a strong incentive to improve its productivity more than the average firm does.

The implementation of such a regime necessitates detailed productivity measures on the sectoral and aggregate level in order to set an appropriate price cap. Parametric or non-parametric methods, which are most commonly used for a detailed productivity assessment on the firm level, require large datasets covering company-specific data. Those are not available yet, as the German regulatory authority just began monitoring the electricity sector and started only recently to collect detailed firm-level data. But a different methodology allows a sector specific productivity measurement without relying on company specific data, namely Growth Accounting.

This paper analyses the productivity development of the German electricity sector relative to the total economy (allowing an estimate for the X-factor – the crucial variable for any incentive based regulatory regime) using a newly constructed productivity database for the German economy, which is unique in its coverage. This database contains sector and asset specific capital stock and capital services data for the German economy, relies on survey data and provides (in contrast to official data) information on sector specific asset investments according to the user concept (the relevant concept for sectoral capital analyses). Thereby it is possible to measure sector specific Total Factor Productivity (TFP) values using a Growth Accounting methodology as used in Jorgenson and Stiroh (2000).

The paper is structured as follows. In section 2 I present the general framework of RPI-X regulation as well as the Growth Accounting methodology, which is used to measure productivity in the relevant sector and in the total economy. Section 3 presents the dataset, which is used, followed by the productivity analysis in section 4. Subsequently in section 5 I correct the computed X-factor for several market imperfections and accordingly violated assumptions (following Bern-

3 The already existing agency for the regulation of telecommunications and postal markets (RegTP) got an extended scope of duties and took over the supervision of the electricity, gas, and railway sector and was consequently renamed to “Federal Network Agency” (“Bundesnetzagentur”).

2
stein and Sappington (2000) – the imperfections include a limited span of regulatory control, structural changes in the industry, imperfect competition in the rest of the economy, and endogeneity in the economy wide inflation rate). Section 6 concludes.

2 Framework

This chapter describes the methodology of an incentive-based RPI-X regulation as well as the Growth Accounting methodology, which is used for the productivity measurement.

2.1 The RPI-X Regulation

The purpose of price-cap or RPI-X regulation, like many forms of regulation, is to replicate the discipline that market forces would impose on the regulated firm if they were present, which limits the rate of growth of a firm's profit. It provides stronger incentives for cost reduction and technological innovation than rate-of-return regulation does. Price-cap regulation typically specifies a rate at which the prices (P) that a regulated firm charges for its services must decline (X), on average, after adjusting for inflation (RPI), and with an adjustment for exogenous cost changes (Z), as depicted in Equation (1).

$$P_t = P_{t-1}(1 + \text{RPI}_{t-1} - X) + Z$$

A separation of the required rate of price decline from the firm’s production costs and earning has the effect that reduced operating costs result in direct financial benefits for the firm. This is not the case under a rate of-return regulation plan that consistently links authorized prices to realized costs. The rate at which the firm's inflation-adjusted output prices must decline under price-cap regulation is commonly referred to as the X factor, which is typically the sectoral productivity margin with respect to the total economy.

But why is a relative and no absolute productivity measure used? If the regulated firm were just like the typical firm in a competitive economy, competition would limit the rate of growth of the firm's prices to the economy-wide rate of price inflation. This requires the regulated industry to realize the same productivity improvements as in other sectors of the economy, to adjust for the input price inflation and to pass the remaining gains on to consumers. As a result, the X-factor should reflect on the one hand the extent to which the regulated firm is capable of increasing its productivity more rapidly than are other firms in the economy, and on the other hand it should re-
fect whether the prices of inputs employed by the regulated firm grow less rapidly than the input prices faced by other firms in the economy.4 This does not necessarily mean that regulated industries always realize higher efficiency gains than competitive industries (whereas in the early years of liberalization there are often high efficiency potentials)5.

If the regulated industry is able to realize more rapid productivity growth than other industries or if it can realize lower input price inflation, then the industry should be forced to pass the associated gains to customers in the form of lower prices. This is reflected in a positive X-factor, which is the relative productivity advantage compared to the total economy.

An obvious method to calculate an appropriate X-factor is to compute historical values and to take an average of these values as a proxy for the current X-factor. But the sole adoption of the historical productivity differential entails some difficulties, in particular if the incentive based regulatory regime shall be introduced for the first time. It is therefore necessary to modify the X-factor, which results from the analysis of the historical productivity data, according to several criteria that are discussed in section 5.

As regards the price inflation, I follow the suggestion of Armstrong, Cowan, and Vickers (1994) to use a retail price index for the price cap rather than an industry-specific cost index. This is useful as it cannot be manipulated by the regulated firm, and it gives consumers clear and predictable signals about prices.

2.2 Productivity Analysis

Growth accounting involves breaking down growth of GDP (on the aggregate level or gross value added at the sectoral level) into the contributions of labor input, capital input and total-factor productivity. The growth accounting model is based on the microeconomic theory of production and rests on a number of assumptions.6 The methodology is based on the production possibility frontier concept introduced by Jorgenson (1966) and used by various researchers, among others

4 See Bernstein and Sappington (2000).
5 In the water industry for example the system is called RPI + K (instead of RPI – X), reflecting a negative X-factor, where real prices are scheduled to increase. See Armstrong, Cowan, Vickers (1994), Ch.6
Jorgenson and Stiroh (2000) who analyze aggregate and industry productivity (with a focus on information and communication technology) in a similar way as it is done here.

Within the production possibility frontier concept, which can be represented as $Y = A \cdot X (K, M, L)$, production inputs can be decomposed by capital services (K), intermediate inputs (M), and labor input (L), capturing a substitutability among these inputs. Assuming competitive product and factor markets and constant returns to scale this expression can be transformed into an equation that accounts for the sources of economic growth:

$$
\Delta \ln Y = \bar{v}_K \Delta \ln K + \bar{v}_M \Delta \ln M + \bar{v}_L \Delta \ln L + \Delta \ln A
$$

where \bar{v} denotes the average input shares, $\bar{v}_K + \bar{v}_M + \bar{v}_L = 1$, that are calculated as the respective share in capital services, intermediate inputs and the wage sum (WS): $\bar{v}_i = \frac{i}{K + M + WS}$ with $i = K$, or M, or WS. The share-weighted growth rates in Equation (2) represent contributions of the inputs to the sectoral output. Total factor productivity (TFP) – $\Delta \ln A$ – is then calculated as a residual. It represents efficiency gains, technological progress, scale economies, and measurement errors that allow more measured gross output to be produced from the same set of measured inputs. Labor input is the product of hours worked (H) and labor quality (LQ) as proposed in Jorgenson, Ho, and Stiroh (2003).

Equation (2) displays the output growth decomposition according to the gross output concept, which includes intermediate inputs in the analysis and delivers widely unbiased estimates of industry-level TFP growth. Such a decomposition of growth components can also be done according to the value added concept, which is most appropriate for productivity comparisons at the aggregate level (as it avoids double counts of intermediate products). However, at the industry level the latter concept won’t deliver unbiased results unless very restrictive assumptions are satisfied. The value added concept is therefore optimal for an aggregate analysis; for industry specific analyses the gross output concept should be the preferred one. In the case of an X-factor determination both a sectoral and an aggregate TFP-value have to be determined and related to each other. In order to avoid a mixture of inconsistent approaches both TFP values are calculated according to the gross

6 The production function exhibits constant returns to scale and product and factor markets are characterized by per-
output concept. This is at the industry level the obvious choice and for the total economy analysis it is for two reasons also appropriate in the current context. Aggregation of sectoral gross output values results in a total value larger than GDP due to double counts of intermediate products. This eliminates the comparability between different countries, but this is not relevant for the current approach. On the other hand such a bottom-up approach, where sectoral data are added up to an aggregate picture, allows to calculate a \textit{TFP-value for the total economy excluding the energy sector} – and this is exactly what is needed for the analysis.

3 Data

3.1 Capital Stocks and Capital Services

Capital stocks data are derived from the Ifo Capital Stock and Investment Database (Ifo Investorenrechnung), which relies on official and on survey data, and provides industry- and asset-specific capital stocks data for 1970 until 1990 for West Germany. From 1991 onwards, industry- and asset-specific capital stocks for unified Germany are calculated according to the perpetual inventory method using investment data:

\begin{equation}
S_{i,j,t} = S_{i,j,t-1}(1-\delta_{i,j}) + I_{i,j,t}
\end{equation}

\(S_{i,j,t}\) is the capital stock in industry \(i\) of the investment asset \(j\) in period \(t\). \(I_{i,j,t}\) is the corresponding investment in industry \(i\) of investment asset \(j\) in period \(t\) and \(\delta_{i,j}\) is the industry and asset specific depreciation rate. For the capital services calculations, the Ifo Productivity Database parallels the method in Jorgenson and Stiroh (2000). These data can be found in the Ifo Productivity Database\(^7\).

3.2 Output and Labor

The main data source for the remaining data requirements is the German Federal Statistical Office (GFSO) with its time series database Genesis. These are Value added at the sectoral (VA) and aggregate (Y) level, intermediate inputs (M), the wage sum (WS), and total hours worked (H). Labor quality (LQ) is taken from the Groningen Growth and Development Center (GGDC) that provides data on growth in labor quality from 1980 to 2001.

\(^7\) This database is currently restricted for internal use, but will presumably be accessible for external researchers in 2007. The Ifo Capital Stock and Investment Data are already accessible in the Ifo Data Pool (under specific security precautions). For more detailed descriptions of the computation method and other data sources see Kuhlmann (2005).
4 Productivity Analysis

The Growth Accounting analysis of the German electricity sector reveals a relatively high volatility in the sectoral output in the period 1992-2003 that can only partly be explained by changes in capital, intermediates and labor input. Exogenous output shocks are predominantly captured by high TFP-changes as Figure 1 demonstrates.

Figure 1 Sources of Economic Growth in the German Electricity Industry (1992-2002)

![Sources of Economic Growth in the German Electricity Industry (1992-2003)](chart)

Source: own calculations based on Ifo Productivity Database, German Statistical Office, GGDC

In the early years of liberalization (1998-1999) the noticeable consolidation and corresponding reduction of jobs is associated with positive output growth. This might be an indication of efficiency gains in the early years of liberalization where competition was (at least partially) still working. The subsequent decline in output and TFP is on the one hand induced by economic decline and on the other hand by the fact that the incumbent players were finally able to drive most new entrants out of the market, which meant less competition and less pressure on efficiency improvements.
Table 1 lists the annual and average figures on output growth and TFP within the energy sector. The fourth column shows TFP values for the total economy. The fifth column lists the difference of TFP in the energy sector to TFP in the total economy or the productivity margin of the energy sector with respect to the total economy. This is nothing else than an ex-post annual X-factor.

Table 1 Annual X-Factors from 1992-2002 – Value Added Concept

<table>
<thead>
<tr>
<th>Year</th>
<th>Output Growth Energy Sector</th>
<th>TFP Growth Energy Sector</th>
<th>TFP Growth Total Economy</th>
<th>X-Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1992</td>
<td>1.38%</td>
<td>-0.47%</td>
<td>-0.48%</td>
<td>0.01%</td>
</tr>
<tr>
<td>1993</td>
<td>0.97%</td>
<td>-0.59%</td>
<td>-0.22%</td>
<td>-0.37%</td>
</tr>
<tr>
<td>1994</td>
<td>-0.70%</td>
<td>-0.93%</td>
<td>0.77%</td>
<td>-1.70%</td>
</tr>
<tr>
<td>1995</td>
<td>1.86%</td>
<td>2.74%</td>
<td>0.46%</td>
<td>2.28%</td>
</tr>
<tr>
<td>1996</td>
<td>6.35%</td>
<td>7.19%</td>
<td>0.24%</td>
<td>6.95%</td>
</tr>
<tr>
<td>1997</td>
<td>-3.29%</td>
<td>-2.26%</td>
<td>0.69%</td>
<td>-2.95%</td>
</tr>
<tr>
<td>1998</td>
<td>5.61%</td>
<td>1.30%</td>
<td>-0.13%</td>
<td>1.43%</td>
</tr>
<tr>
<td>1999</td>
<td>2.81%</td>
<td>1.66%</td>
<td>0.22%</td>
<td>1.44%</td>
</tr>
<tr>
<td>2000</td>
<td>-1.13%</td>
<td>2.99%</td>
<td>1.11%</td>
<td>1.89%</td>
</tr>
<tr>
<td>2001</td>
<td>2.17%</td>
<td>-0.94%</td>
<td>0.57%</td>
<td>-1.51%</td>
</tr>
<tr>
<td>2002</td>
<td>5.29%</td>
<td>-0.57%</td>
<td>0.33%</td>
<td>0.24%</td>
</tr>
<tr>
<td>2003</td>
<td>3.97%</td>
<td>2.46%</td>
<td>0.14%</td>
<td>2.32%</td>
</tr>
<tr>
<td>Ø 92-02</td>
<td>2.11%</td>
<td>1.14%</td>
<td>0.31%</td>
<td>0.84%</td>
</tr>
</tbody>
</table>

Taking the average of this whole period one gets an ex-post X-factor of 0.84% for 1992-2003. This value could in principle be used as an X-factor for the first regulatory period for the coming incentive regulation. The problem is that such a calculation depends on a couple of assumptions that are typically violated in practice. This requires a modification of the result.
5 Modification of estimated X-factor

The calculated productivity difference is only an appropriate measure for the X-factor if several conditions are satisfied\(^8\). It is necessary that (1) all services of the regulated firm are subject to price cap regulation, (2) structural changes (as a shift in the regulatory regime) do not occur, (3) the economy-wide inflation rate is not affected by the prices set in the regulated industry, and (4) the economy outside of the regulated industry is competitive. The following subsections will discuss to what extent these assumptions are violated (in the German context) and how the result of the preceding section has hence to be modified.

5.1 Accounting for a limited span of regulatory control

If prices of uncapped services grow faster than the difference in growth rates of input prices and productivity, then the X-factor should be increased in a magnitude corresponding to the fraction of the firm’s revenue derived from uncapped services. The reason is that the firm passes fewer benefits on to customers of uncapped services than price cap regulation of the firm’s entire operations would dictate. Bernstein and Sappington (1999) derive a modified price cap formula in order to account for such a limited span of regulatory control:

\[
\Delta \ln P_i = RPI_{t+1} - \left[x^b + x^l \right]
\]

with a composite x-factor, which is composed of \(x^b\), the basic x-factor, and \(x^l\), an additional factor, which is computed in the following way:

\[
x^l = -\left[\frac{1 - \alpha^c}{\alpha^c} \right] [RPI - x^b - \Delta \ln P^U] \]

with \(\alpha^c\) as the fraction of revenue derived from the sale of capped services, which is approximately 0.4 in Germany, and \(P^U\) as the price of uncapped services. Assuming an average growth rate of uncapped services of 4 percent\(^9\) and a retail price index of 2.1 percent (which is the average value of 1991-2003) yields an additional X-factor component \((x^l)\) of 4.11.

\(^8\) See Bernstein, Sappington (2000).

\(^9\) This is a quite conservative estimate - retail electricity prices for households grew with an average rate of 4.07 percent during the years 2000-2005. Industry prices grew much stronger with an average rate of 9.65 percent in the period 2000-2003 (later years are not available yet). Source: Bundesministerium für Wirtschaft und Technologie, Energie- daten, update 07-02-2006
5.2 Accounting for structural changes in the regulated industry

Absent structural changes in the industry, historic productivity and input price growth rates can serve as reasonable estimates of corresponding future growth rates, which can be used to derive a reasonable value for the basic X factor that is imposed in price-cap regulation plans. A structural change means in this context primarily a shift from rate-of-return regulation to performance-based regulation and a corresponding introduction (or intensification) of competition. Such a regime shift can have two possible implications for the future productivity development, which cannot be derived from historical data. Both effects are working in opposite directions.

When a new regulatory regime becomes effective and competitive pressures increase in the respective market, it can reasonably be expected that these circumstances motivate the regulated firm to enhance its realized productivity. Therefore historic growth rates typically understate a reasonable X factor, which has to be imposed on the regulated firm. To account for this fact, the basic X factor can be (and often is) augmented by what is called a customer productivity dividend (CPD) or a stretch factor. As stretch factors are designed to reflect the enhanced incentives that a new regulatory regime provides, it is appropriate to implement a stretch factor that declines in magnitude over time.\(^\text{10}\)

On the other hand there is also an indirect effect of increased competition. Due to a higher number of competitors some of the sales are likely to be shifted from an incumbent supplier to new entrants and this reduces the incumbent supplier's scale economies. This is particularly the case in the short run when the presence of fixed inputs limits the incumbent supplier's ability to reduce inputs at the same rate that outputs decline. The reduction of the scale economies reduces TFP and thereby the X-factor, which thwarts (to a certain extend) the need for a customer dividend, but in case of network access regulation this indirect effect is negligible. The reason is that in the current German context only network access is subject to incentive regulation and the net-

\(^{10}\) The productivity stretch factor can also be used to tailor the regulatory regime to the circumstances of each particular firm. If the regulated firms differ to a large extend in productivity levels, it might be necessary to use a firm specific stretch factor to account for these level-differences. Laggard firms normally have low productivity levels but are potentially capable of high productivity growth rates. In a regulatory context, where a firm is a long way from best practice, a positive stretch factor may be applied to allow for the fact that the firm should be able to make some easy ‘catch up’ gains and exceed the average industry productivity growth rate.
work is still a natural monopoly. Therefore it is unlikely that new network providers will appear, built up a new infrastructure, and compete with the network of the respective regional incumbent.

Unfortunately there is little conceptual and empirical basis for choosing appropriate customer dividend levels. In the UK, where such a regime shift already happened in 1990, the relevance of a stretch factor has been underestimated (in telecommunications as well as) in electricity.11 One example of a positive stretch factor gave the U.S. Federal Communications Commission, which imposed a customer productivity dividend of 0.5 percent annually in its price-cap plan for AT&T. For the North American gas industry (Canada and the United States) Kaufman (2004) computed a similar average CPD of 0.56 percent for nine gas providers – all within a narrow range.

Due to the lack of a reliable empirical CPD-value within the electricity sector (or a clear theoretical approach for the computation of this value), I do assume that the best practice examples from telecommunication and gas are a good proxy for the electricity sector. As a result the computed X-factor should (for the first regulatory period) be increased by 0.5 percent due to structural changes in the industry.

5.3 \textbf{Accounting for imperfect competition in the economy}

A modification to the basic X-factor is also necessary, when some of the industries outside the regulated sector are not competitive – even if output price inflation in these industries is not affected by the prices set in the regulated industry. In such a case price inflation outside of the regulated sector typically exceeds the rate of price inflation in a competitive environment. In order to account for this market failure, the X-factor has to be increased accordingly.

Here (as well as in the case of a regime shift) there is little conceptual and empirical basis for a clear procedure to address this problem. It is not only conceptually unclear how a measure for

11 In the first regulatory period Ofgem (the UK Office of Gas and Electricity Markets) set negative X-factors for the majority of distribution companies (RECs) and an X-factor of zero for transmission companies (see Armstrong, Cowan, Vickers (1994), p.177). This step was justified by the need for investment in the sector and ignored the scope for cost-cutting. As a result pre-tax operating profits for distribution more than doubled in the proximate four years. The X-factor therefore had to be readjusted in 1993 to a (positive) value of 3. In the telecommunication sector the British Office of Telecommunications (“Oftel”, in the meantime “Ofcom”) even had to correct the first X-factor of 3 percent to a magnitude of 7.5 in the second regulatory period due to enormous efficiency improvements and excess profits. Both cases reveal an ex-post correction of at least 3 percentage points.
the economy-wide deviation from perfect competition should be seized. It is also from a data-perspective quite unrealistic to get a comprehensive, sector-overlapping measure for this. Therefore it should only be remarked that the overall X-factor tends to be slightly higher than the result of the current analysis would suggest.

5.4 Accounting for endogeneity in the economy-wide inflation rate

The logic that underlies the simple X-factor calculation presumes that the economy-wide rate of price inflation is not affected directly by the prices set in the regulated industry. This is in particular the case if the output of the regulated sector is not an intermediate good for the rest of the economy, as firms typically adjust their output prices in response to changes in the input price they face. In practice this assumption is violated for many network industries; for electricity this is all the more the case. Therefore an increase in the economy-wide inflation rate should not authorize a full one to one increase in the inflation rate of the regulated industry. The difference between the two inflation rates should generally be greater the larger is the regulated sector relative to the economy as a whole and the larger is the fraction of regulated revenues derived from the sale of intermediate goods (that are used as inputs for other goods). Hence a central modification is necessary to weaken the link between the realized rate of price inflation in the economy and the authorized rate of price increase in the regulated industry:

Equation (1) can be rearranged to

\[\dot{P} = RPI_{t-1} - X \]

with

\[\dot{P} = \frac{P_t - P_{t-1}}{P_t} \]

and Bernstein and Sapplington (1999) show that this expression can (under the assumption that the regulated services are intermediate goods, which is the case for network access charges) be transformed to the following expression:

\[\dot{P} = \beta^{NR} [RPI - X] - [1 - \beta^{NR}] \dot{Q} \]

with \(\beta^{NR} \) as share of revenues (or gross output) of the non-regulated sector on total output and with \(\dot{Q} \) as the growth in output (of the regulated sector). Thus, when regulated services are intermediate goods, a unit increase in the economy-wide inflation rate authorizes less than a unit increase in the growth rate of regulated prices, ceteris paribus. Since \(\beta^{NR} \) decreases as the output of the regulated sector increases, the reduction in the sensitivity of \(\dot{P} \) to \(RPI \) is more pronounced the greater is the
ratio of regulated revenue to total revenue in the economy. For Germany the average \(\beta_{NR} \) for the years 1991-2003 is 0.98 and the average \(\hat{Q} \) is 2.1 percent. This implies for an X-factor of 5.45 (which results from the base X-factor of 0.84 and the other modifications that add up an additional markup of 4.61 percentage points) and an average RPI of 2.1 percent an annual approved price increase of -3.325 percent (or in other words an annual price reduction of 3.325 percent - the adjustment for exogenous cost changes is not included here).

6 Conclusions

Germany is supposed to form the centre of a common European electricity market, but the network usage costs are currently still 70 percent above the EU average and electricity retail prices are among the highest in the whole EU. A new energy law should now perform the balancing act between the retention of a stable and sustainable system and the containment of excessive market power on the part of the incumbent players. Particularly the latter task has not been accomplished by the previous regulatory regime. In the context of rising prices for primary energy carriers and high environmental taxes the need for competitive pressure on energy prices and the need for productivity improvements within the energy sector is urging.

The German regulatory authority is supposed to come up with a new system of incentive based regulation in the course of this year. This new regime might indeed achieve both: a non-discriminatory access to the electricity network for new energy providers at lower prices (which is a precondition for functioning competition), and a regulatory framework that favors or rewards firms which achieve above-average productivity improvements.

The aim of this paper is to compute a reasonable value for the x-factor, which is needed for the introduction of an incentive-based RPI-X regulation. The associated productivity analysis is pursued within the Growth Accounting framework, resorts to a newly constructed database and provides results on the sectoral (and not on the company) level. The main reason for this approach is that data on the firm level are not available yet. The regulatory authority has started to collect firm specific data only recently, which might rule out any parametric approach within the first years. The analysis reveals that the average productivity margin with respect to the rest of the economy (the x-factor) was 0.84 within the preceding decade. Several modifications were neces-
sary to account for a limited span of regulatory control, anticipated structural changes in the industry, the endogeneity of the economy-wide inflation rate, and imperfect competition outside the regulated sector. These modifications resulted in a modified X-value of 5.45, which seems a reasonable value for the first regulatory period in the new German electricity regime that will arise soon (in particular as exogenous cost changes are not included in the X-factor). When accounting for endogeneity in the economy-wide inflation rate this would imply an average annual decline for network access charges of 3.3 percent.

Despite the obvious policy conclusion that can be drawn from this result (in terms of a clear efficiency goal for the first regulatory period) this result can only be a rough indicator for the real efficiency differential of the network operators. Even if the data that are used for this analysis exhibit more details than official national accounts data, they are still on an aggregate level. Therefore the findings of this study are indeed useful for an adoption in the first regulatory period where detailed firm-level-data are not available. However, this cannot belie the necessity of a detailed multi-dimensional data collection on the firm level, which can be used for future parametric analyses, which provide a more accurate and reliable efficiency estimate than aggregate capital data ever can do. Further research will also be necessary to improve the conceptual approach towards the two modifications that are necessary due to a lack of competition in the rest of the economy and due to the regime shift.

Last but not least a short remark should be made that the sole focus on cost-cutting is not unambiguous as it raises legitimate concerns for the quality of service. It therefore seems to be a good option for the German regulator to review the British experience with a new aspect in the price regulation that has been introduced in 2003. By measuring the quality of service in terms of the number of interruptions of supply, the duration of these interruptions and the information service provided in connection with these interruptions, failures to perform according to acceptable standards could lead to a reduction of prices of up to 1.75%\(^\text{12}\). Such an extension to standard RPI-X-regulation could achieve noticeable efficiency improvements without the risk of infrastructure-deterioration, which is the main reproach against incentive-based regulatory regimes.

\(^{12}\) See OECD (2005) Annex 1
References

KUHLMANN, A. (2005), “Growth Accounting in Germany - A Productivity Reassessment via the new Ifo Productivity Database”, *Unpublished manuscript*
