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Abstract

This paper develops techniques of estimation and inference in a prototypical macroe-

conomic adaptive learning model with slowly decreasing gains. A sequential three-step

procedure based on a ‘super-consistent’ estimator of the rational expectations equilibrium

parameter is proposed. It is shown that this procedure is asymptotically equivalent to first

estimating the structural parameters jointly via ordinary least-squares (OLS) and then

using the so-obtained estimates to form a plug-in estimator of the rational expectations

equilibrium parameter. In spite of failing Grenander’s conditions for well-behaved data, a

limiting normal distribution of the estimators centered at the true parameters is derived.

Although this distribution is singular, it can nevertheless be used to draw inferences about

joint restrictions by applying results from Andrews (1987) to show that Wald-type statis-

tics remain valid when equipped with a pseudo-inverse. Monte-Carlo evidence confirms

the accuracy of the asymptotic theory for the finite sample behaviour of estimators and

test statistics discussed here.
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1 Introduction

This paper is concerned with estimation and inference procedures for a stylized macroeconomic

learning model

yt = βyet|t−1 + δxt + εt for t = 1, 2, . . . , T, (1)

where yet|t−1 represents agents’ (potentially non-rational) expectation of yt formed in period t−1,

xt is a strictly exogenous regressor and εt represents the disturbance term, with properties to

be discussed below. Furthermore, it is assumed that |β|< 1 while δ is allowed to be any real

number. Various economic models, like the classical cobweb model or the New Keynesian

Phillips curve, can be cast in form of (1); for a more detailed account of examples encompassed

by (1) see Christopeit and Massmann (2018).

The crucial feature of model (1) is the expectation term yet|t−1. Under rational expectations

(RE), economic agents are presumed to incorporate the information Ft−1 := σ(ys, s < t; xs, s ≤
t) in an optimal manner so that

yet|t−1 = E(yt | Ft−1), (2)

thereby yielding the RE equilibrium

yt = αxt + εt with α := δ/(1− β). (3)

The plausibility of the traditional RE approach to modeling expectations has, however, been

contested in recent years (see e.g. Evans and Honkapohja (2001)). According to the macroe-

conomic learning literature, economic agents depart in many situations from RE by behav-

ing ‘boundedly rational’: rather than presupposing complete knowledge of E (yt | Ft−1), the

economic agent acts like an econometrician forecasting α recursively. Specifically, the agent

updates her expectations according to the adaptive scheme

yet|t−1 = at−1xt, (4)

where the point forecast at of α is obtained via stochastic approximation algorithms (see e.g.

Sargent (1993) or Evans and Honkapohja (2001)). Motivated by the idea of economic agents

aiming at minimizing the expected forecast error recursively, the learning scheme is assumed

to take the form of a least-squares type stochastic approximation algorithm

at = at−1 + γt
xt
rt

(yt − xtat−1)

rt = rt−1 + γt(x
2
t − rt−1),

(5)
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whereby, in addition to estimating α by at, a further ‘normalization’ step based on rt is used to

estimate the regressor second moment. The so-called ‘gain’ γt reflects the agent’s responsive-

ness to previous forecast errors. Empirical applications confirm the plausibility of (5) for the

formation of expectations (see, e.g., Chakraborty and Evans (2008), Berardi and Galimberti

(2014), Berardi and Galimberti (2017) or Markiewicz and Pick (2017)).

Christopeit and Massmann (2018) thoroughly study the statistical properties of the joint OLS

estimator of λ := (β, δ)′ for constant gains (γt = γ) and recursive least-squares (γt = 1/t).

The present paper adds to their findings in four important aspects: First, while Christopeit

and Massmann (2018) consider a deterministic and constant regressor, the current exposition

treats xt as a time-varying random variable. Second, the asymptotic properties of estimators

of the equilibrium parameter α are established. Third, the question of hypothesis testing in

the presence of a singular variance-covariance matrix is examined. Finally, the agent, in this

case, tries to learn the RE equilibrium parameter α using a sequence of gains that decreases

more slowly than t−1, an idea formalized by assumption 1 below. In this paper, it can be shown

that estimators of the structural parameters β and δ converge at a polynomial rate to its joint

normal distribution, with the rate of convergence being inversely related to the degeneration

rate of the gain. Similar to estimating co-integrating relations, a linear combination of the joint

estimator of the ‘short-run’ coefficients β and δ, which govern the actual law of motion

yt = βat−1xt + δxt + εt, (6)

converges at a faster rate to the ‘long-run’ RE equilibrium parameter α. Finally, single hy-

potheses about β and δ as well as joint restrictions placed upon λ can be tested when suitable

test statistics are used.

The remainder of the paper is organized as follows. Section 2 lays out assumptions and discusses

estimation and inference procedures. Monte Carlo evidence is reported in section 3 while section

4 concludes. All proofs are provided in the appendix.

2 Estimation and inference

2.1 Assumptions

The first assumption specifies the nature of the gain sequence used by the agent in her updating

scheme (5). Specifically, γt is assumed to be of polynomial form:
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Assumption 1. The sequence (γt)t≥ 1 of positive real numbers satisfies

γt = γ/tη,

where η ∈ (0, 1) and |cγ|< 1 with c := 1− β.

Hence, the present specification of the gain sequence covers the intermediate case lying on a

continuum between least-squares learning (η = 1) and constant-gain learning (η = 0) consid-

ered by Christopeit and Massmann (2018). Following the terminology used in the stochastic

approximation literature, this polynomial gain with η ∈ (0, 1) considered here will be henceforth

referred to as slowly decreasing (cf. Polyak and Juditsky (1992), Kushner and Yan (1993) or

Chen (1993)).

The next assumption requires vt := (xt, εt)
′ to be independent, identically distributed (i.i.d.).

Assumption 2. q The elements of the random vector vt are mutually independent and identi-

cally distributed with finite variances so that

vt
i.i.d.∼

([
µx

0

]
,

[
σ2
x 0

0 σ2

])
.

Under assumption 2, the recursion (5) can be viewed as a perturbed Robbins-Monro algorithm,

with a small approximation error resulting from the estimation of the regressor second moment.

Robbins-Monro algorithms have a long tradition in the stochastic approximation literature,

where they are usually analyzed in terms of associated ordinary-differential equations; for more

details see, for example, Benveniste et al. (1990, chap. 1.10.1), Evans and Honkapohja (2001,

pp. 125) or Kushner and Yin (2010, pp. 6).

The small sample experiment in section 3 indicates that the asymptotic approximations derived

below continue to hold when the regressor is serially correlated. Serial uncorrelatedness of the

error term is, however, a necessary condition for consistent estimatability of the least-squares

estimators of β and δ discussed below. The reason is that their estimation involves empirical

moment conditions of the form

T∑
t=1

(at−1 − α)xtεt. (7)

Since at contains the complete history of the innovation at time t, the population analog of (7)

is non-zero whenever εt exhibits serially correlation.

Finally, the distributional characteristics of vt are sharpened in order to develop an appropriate

asymptotic theory.
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Assumption 3. Let κ(`)

ε and κ(`)

x denote the `th non-central moment of εt and xt, respectively.

(a) θt := (at, rt)
′ is bounded almost surely on a compact subset of R× R+.

(b) κ(16)

x <∞ and κ(8)

ε <∞.

A note on assumption 3 seems warranted. Though clearly strong, part (a) is not uncommon

in the stochastic approximation literature where many authors restrict θt to a compact neigh-

borhood of (α, κ(2)

x )′ by the use of so-called ‘projection-facilities’: see, e.g., the discussion in

Kushner and Yin (2010) on constrained algorithms. Although this assumption might be re-

garded as overly restrictive (see, e.g., Evans and Honkapohja (1997)), it will nevertheless be

retained for reasons of analytical tractability. The reason for imposing relatively1 high moment

conditions on vt is the need for controlling the approximation error stemming from replacing

κ(2)

x by rt; with the added difficulty that rt appears in the denominator of at. Note that for the

mere almost sure convergence of rt to κ(2)

x , finite fourth moments of the regressor are sufficient,

c.f. lemma F.1 of appendix F. In fact, if, like in Evans and Honkapohja (1998), the update

scheme (5) takes the form of the so-called stochastic-gradient algorithm

bt = bt−1 + γtxt(yt − xtbt−1), (SG)

i.e. rt = 1 for all t, then assumption 3 might be replaced by the following:

Assumption 3-SG. q Let κ(`)

b denote the `th non-central moment of b0 − α and assume that

κ(2)

b <∞, κ(4)

ε <∞ and κ(6)

x <∞.

2.2 Joint estimation of β, δ and a plug-in estimator for α

Consider the OLS estimator for λ = (β, δ)′

λ̂ :=

(
T∑
t=1

wtw
′
t

)−1 T∑
t=1

wtyt with wt := (at−1xt, xt)
′. (8)

As a starting point for a discussion of the statistical properties of λ̂, observe that the regressor

wt fails Grenander’s conditions (see, for example, Hannan (1970, p. 215)) for well-behaved data

as both the sample second moment matrix of the regressor

MT :=
T∑
t=1

wtw
′
t (9)

1Even stronger moment conditions are imposed by, for example, Kuan and White (1994) who require their

counterpart of vt to be bounded almost surely.
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as well as its inverse, both suitably normalized, are asymptotically singular, i.e.

MT/T
p−→ κ(2)

x

[
α2 α

α 1

]
and T bM−1

T

p−→ 2cb

γσ2

[
1 −α
−α α2

]
, (10)

where b := 1 − η is smaller the more quickly the gain parameter γt = γ/tη approaches zero

as t → ∞; cf. appendix D. Intuitively, the singularity of the empirical second moment matrix

stems from the fact that the entries of wt are asymptotically collinear, since at ∼ α for large

t. The other crucial aspect of (10) is the slower convergence rate of the inverse as compared

to the regressor sample moment matrix. This behavior might seem surprising but is analogous

to that of regression models with slowly varying trends as discussed in Phillips (2007) and can

best be understood by noting that the determinant of MT has to be rescaled by T 1+b in order

to achieve convergence, i.e.

detMT

T 1+b

p−→ κ(2)

x γσ
2

2cb
; (11)

cf. appendix D. As a consequence, the suitably normalized deviation of λ̂ from the true vector

λ obeys the approximate asymptotic representation

T b/2(λ̂− λ)
a∼ 2cb

γσ2

[
1

−α

]
1

T b/2

T∑
t=1

a∗
t−1xtεt, (12)

with a∗
t := at − α. An intriguing feature of the partial sum

∑
t a

∗
t−1xtεt is that the variances of

its sequence coordinates are proportional to γt. In order to deliver the asymptotic distribution

of the estimator, one has thus to appeal to a CLT which allows for potentially degenerate

variances. This can be achieved by resorting to a result of Davidson (1993, corollary 2.2),

thereby yielding the following singular limiting distribution:

Proposition 2.1. Suppose assumptions 1, 2 and 3 hold. Then

T b/2(λ̂− λ)
d−→ N (02, V ) with V :=

2cb

γ

[
1 −α
−α α2

]
,

where 0k denotes a k−dimensional column vector of zeros. V can be estimated consistently by

T bVT , where VT := σ̂ 2M−1
T with

σ̂ 2 :=
1

T

T∑
t=1

ε̂ 2
t and ε̂t := yt − λ̂′wt.

Proof. See appendix D.

6



As in the context of a linear regression model, one would expect the asymptotic distribution

of the preceding display to depend on the error variance and/or the regressor second moment.

Interestingly, neither is the case here with λ, γ and η completely determining the limiting

variance-covariance matrix V . This raises the question of whether its consistent estimability

requires a priori knowledge of these model parameters. As shown by proposition 2.1 however,

the classical estimator of V is consistent, i.e. given a sample of (yt, w
′
t)
′ is at hand, one does

not need to know the aforementioned model parameters for estimation purposes.

Using a different approach and imposing the assumption that xt = 1, Christopeit and Massmann

(2018) establish a similar result in their theorem 4 for the case of recursive-least squares learning

(i.e. η = 1). The (singular) variance covariance matrix in Christopeit and Massmann (2018) is

equivalent to that stated above up to a factor of proportionality which stems from the different

specification of the gain; see also the discussion in Christopeit and Massmann (2015, pp. 19).

The crucial difference between their result and proposition 2.1 is the rate of convergence: while

Christopeit and Massmann (2018) show that λ̂ converges at a logarithmic rate, it is seen that

for slowly decreasing gains λ̂ converges at a faster, polynomial rate. A trade-off between the

rate at which the agent learns α (increasing in η) and the convergence rate of λ̂ (decreasing in

η) becomes thus apparent–with the limiting case of η = 1 treated by Christopeit and Massmann

(2018).

The singularity of the limiting distribution of λ̂ means that a linear combination of its entries,

namely, ι′αλ̂ with ια := (α, 1)′, converges at a rate higher than T b/2.2 As summarized by

corollary 2.1 below, this linear combination converges at the ‘standard’ rate of T 1/2 to the RE

equilibrium parameter (note that ι′αλ = α).

Corollary 2.1. Let the conditions of proposition 2.1 hold. Define τ 2 := σ2/κ(2)

x and the multi-

variate normalization

GT :=

[
T b/2I2 02

0′2 T 1/2

]
,

where Ik denotes the k−dimensional identity matrix. Then

GTDα(λ̂− λ)
d−→ N

(
03,

[
V 02

0′2 τ 2

])
, with Dα :=

[
I2

ι′α

]
.

Proof. See appendix E.

2For another example from the econometric literature where the singularity of the limiting distribution arises

due to the super-consistency of a linear-combination of the joint estimator, see remark 2.4 below or the discussion

in Lütkepohl and Burda (1997) on testing noncausality restrictions using vector autoregressions.
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Remark 2.2. In certain cases, the learning literature suggests the plausibility of constant gain

sequences instead of decreasing gains, i.e. η = 0 so that γt = γ > 0. It follows that the

preceding results continue to hold without material differences as long as γ is ‘sufficiently’

small. Specifically, the asymptotic theory in this case is based on a limiting expansion of γ and

T , whereby γ ↘ 0 and T → ∞ so that γ2T 6→ 0. Similar ‘small-γ’ asymptotics for analyzing

constant gain algorithms are commonly used in the literature on stochastic approximation (e.g.

Kushner and Huang (1981)) and macroeconomic learning (e.g. Evans and Honkapohja (2001,

chapter 7.4)).3 Again, it follows that the joint OLS estimator λ̂ is asymptotically normal while

the linear combination ι′αλ̂ is ‘super-consistent’. To see this, let

GγT :=

[
(γT )1/2I2 02

0′2 T 1/2

]
,

denote the three-dimensional normalizing matrix and assume for simplicity that rt = κ(2)

x for all

t. Then, given the assumptions of proposition 2.3 hold and γ ↘ 0, T → ∞ so that γ2T 6→ 0,

it follows that

GγTDα(λ̂− λ)
d−→ N

(
03,

[
V 02

0′2 τ 2

])
with V := 2c

[
1 −α
−α α2

]
.

Remark 2.3. The limiting theory also extends naturally from the single variable case to a more

general setting in which xt represents a column vector of k ≥ 1 regressors. In this case, the

agent’s updating scheme for the k dimensional RE equilibrium vector α is given by

at = at−1 + γtR
−1
t xt(yt − a′t−1xt)

Rt =Rt−1 + γt(xtx
′
t −Rt−1).

(13)

Consider the k + 1 dimensional OLS estimator λ̂ of λ := (β, δ′)′ based on the actual law of

motion

yt = βa′t−1xt + δ′xt + εt for t = 1, 2, . . . , T. (14)

Just as in the scalar case treated above, it follows that T b/2(λ̂ − λ) is asymptotically normal

while the linear combination Iα(λ̂ − λ), with Iα := (α, Ik), converges to its limiting normal

distribution at the faster rate T 1/2 (note that Iαλ = α). Specifically, let Dα := (Ik+1, I
′
α)′ and

define the multivariate scaling matrix of dimension (2k + 1)× (2k + 1)

GT :=

[
T b/2Ik+1 O

O′ T 1/2Ik

]
, (15)

3Note that this approach differs from the one in Christopeit and Massmann (2018), who assume γ to be

constant in their asymptotic analysis.
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where the O block represents a (k+ 1)× k matrix of zeros. Under the additional condition that

Q := E(xtx
′
t) has full rank and assuming, for simplicity, that Rt = Q for all t, it can be shown

that4

GTDα(λ̂− λ)
d−→ N

(
02k+1,

[
V O

O′ σ2Q−1

])
with V :=

2cb

kγ
`α`
′
α,

where `α := (1,−α′)′.

The RE equilibrium is in general unknown, so that the corollary 2.1 cannot be used in order to

estimate α. Instead, consider the simple plug-in estimator

λ̂α :=
λ̂δ

1− λ̂β
, (16)

where λ̂β and λ̂δ denote respectively the two components of λ̂.5 Since λ̂α−α = ι′α(λ̂α−λ)/(1−
λ̂β), the asymptotic normality of (16) follows as a by-product of the preceding corollary, i.e.

T 1/2(λ̂α − α)
d−→ N

(
0, (τ/c)2

)
. (17)

The limiting variance (τ/c)2 coincides with the lower bound established in the literature on

stochastic approximation for the averaged iterates estimator for α (see e.g. Polyak and Juditsky

(1992), Kushner and Yan (1993) or Chen (1993)). Clearly, the typical limiting variance of the

OLS estimator for homoskedastic linear regressions is recovered if the expectation term in (1)

is absent (i.e. β = 0 so that c = 1). Note, furthermore, that the asymptotic variance of λ̂α is

strictly larger than that of the infeasible linear combination ι′αλ̂ of corollary 2.1 as β < 1.

Remark 2.4. Concerning the different convergence rates of λ̂ on the one hand and λ̂α on the

other, one is reminded of estimating co-integrating vectors based on autoregressive distributed

lag (ADL) models. Specifically, consider the ADL(1,0) model

yt = βyt−1 + δxt + ut, (ADL)

where xt ∼ I(1), yt − αxt ∼ I(0) for some α, and ut is white noise. An error-correction

reparametrization of equation (ADL), namely,

∆yt = −(1− β)(yt−1 − αxt−1) + δ∆xt + ut with α = δ/(1− β), (ECM)

4. . .
5A simple calculation shows that λ̂α = (λ̂α, 1)λ̂.
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suggests the following two-step approach: first estimate the coefficients of the short-run dynam-

ics (β, δ)′ based on equation (ADL) and then use these estimates, β̂ and δ̂, say, to form the

plug-in estimator α̂ = δ̂/(1 − β̂) of the co-integrating coefficient α. Pesaran and Shin (1998)

have shown that the joint OLS estimator of the short-run dynamics is root−T consistent with

(singular) asymptotic normal distribution, while the estimator of the co-integrating coefficient

converges in distribution when scaled by T ; see also Wickens and Breusch (1988), Banerjee

et al. (1993) and Hassler and Wolters (2006). This approach to estimating co-integrating vec-

tors bears thus considerable similarity to the estimation procedure described before: in order to

estimate the parameter α governing the long-run RE equilibrium (3), one first estimates the

parameters of the actual law-of-motion, prescribing the short-run deviations from this equilib-

rium:

yt = βat−1xt + δxt + εt,

and then uses the so-obtained estimates to form a (‘super-consistent’) plug-in estimator of the

long-run coefficient.

2.3 Hypothesis testing

Suppose you are interested in testing single hypotheses of the form H0: β = β0 or H0: δ = δ0

for suitable values λ0 := (β0, δ0)
′ using the joint OLS estimator λ̂. As a natural starting-point,

consider the textbook t statistics

tβ :=
λ̂β − β0√
m11 σ̂ 2

and tδ :=
λ̂δ − δ0√
m22 σ̂ 2

, (18)

where mii represents the ith diagonal element of M−1
T (with MT being defined in (9)). As shown

in the appendix, tβ and tδ are asymptotically standard normally distributed, which allows us

to draw inferences from λ̂ about the true structural parameters β and δ. The t statistic for

α based on λ̂α is similarly defined via tα := (λ̂α − α0)/SE(λ̂α) with a modified standard error

given by

SE(λ̂α) :=

√
σ̂2/
∑T

t=1 x
2
t

1− λ̂β
. (19)

Note that tα does not approach a standard normal null-distribution at the standard rate T 1/2,

even though T 1/2(λ̂α − α0) is asymptotically normal under the null H0 : α = α0 for some

hypothetical value α0 ∈ R, cf. equation (17). The reason is that T 1/2SE(λ̂α) converges at
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the slower rate T b/2 to the true standard deviation τ/c due to the appearance of λ̂β in the

denominator of (19).

The case of joint hypotheses about λ is slightly more involved, since the suitably normalized

estimator λ̂ has been shown to be asymptotically normal with singular variance-covariance

matrix

V := (2cb/γ)Q with Q :=

[
1 −α
−α α2

]
, (20)

cf. proposition 2.1. As forcefully argued in Andrews (1987), even though the usual variance-

covariance estimator VT consistently estimates V (cf. proposition 2.1), inferences drawn from

the classical Wald statistic equipped with VT is misleading for testing joint restrictions of the

form

H0: r(λ) = 0, (21)

where r(λ) := Rλ−q with q ∈ R2 and R represents a suitable 2×2 matrix of linear restrictions.

The null (21) can nevertheless be tested using a Wald-type statistic when based on a generalized

inverse of a suitable variance-covariance estimator, provided a certain rank-condition is satisfied,

see Andrews (1987, theorem 2). To be more specific, recall that for any two-dimensional,

singular matrix B the (Moore-Penrose) generalized inverse is defined via

B+ := A

[
1/ξ 0

0 0

]
A′, (22)

with A and ξ denoting respectively the 2× 2 matrix of eigenvectors and the largest eigenvalue

of B, see, e.g., Seber (2008, chapter 7). Since the pseudo-inverse (22) is not continuous and

VT violates Andrews’ (1987) rank condition, namely, rk(T bVT ) > rk(V ) so that (T bVT )+ =

(T bVT )−1 does not converge in probability to V +, an alternative variance-covariance estimator

is needed. Taking (17) into account, a consistent alternative is given by T b ṼT with

ṼT := m11 σ̂ 2

[
1 −λ̂α
−λ̂α λ̂2α

]
. (23)

Since rk(ṼT ) = rk(V ) by construction, Andrews’ (1987) theorem 1 applies and inference can be

carried out using

W := r(λ̂)′(RṼTR
′)+r(λ̂). (24)
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Note that the singularity of V results in W behaving under the null asymptotically like a χ2

distributed random variable with one degree of freedom. Moreover, it can be inferred from the

discussion in Andrews (1987) and Lütkepohl and Burda (1997) that W has non-trivial against

local alternatives in a 1/T b/2−neighborhood of the null; a question pursued further in section

3.

2.4 An asymptotically equivalent three-step estimator

This section presents an asymptotically equivalent approach to the estimation procedure for

(α, β, δ) discussed at the beginning of this paragraph. Suppose, to begin, the true RE equilib-

rium parameter α is known and the interest lies in estimating β. Then, with a little rearrange-

ment, the actual law of motion yt = βat−1xt + δxt + εt is rewritten as

yt − αxt = βa∗
t−1xt + εt. (25)

It is thus intuitively appealing to estimate β using the OLS estimator

β̂0 =

∑T
t=1(yt − αxt)a∗

t−1xt∑T
t=1(a

∗
t−1xt)

2
, (26)

which, indeed, is asymptotically equivalent to λ̂β:

Proposition 2.2. Suppose that assumption 1, 2 and 3 hold. Then

T b/2(β̂0 − β)
d−→ N (0, 2cb/γ) .

Proof. See appendix B.

Since β̂0 depends on the unknown RE equilibrium parameter, this approach is infeasible unless

a suitable estimator for α is available. Under RE, one would resort to

α̂ =

∑T
t=1 ytxt∑T
t=1 x

2
t

. (27)

However, with agents’ beliefs departing from RE, it is not clear from the outset why α̂ should

possess any desirable statistical properties. Fortunately, the misspecification error from neglect-

ing the expectation yet|t−1 is minor and the limiting distribution of (27) is normal when suitably

scaled.
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Proposition 2.3. Let the conditions of proposition 2.2 hold. Then

T 1/2(α̂− α)
d−→ N

(
0, (τ/c)2

)
.

Proof. See appendix C.

Again, the limiting distributions of λ̂α (cf. corollary 2.1) and α̂ coincide while the normalization

of T 1/2 implies a faster convergence rate than that of β̂0. This ‘super-consistency’ of α̂ allows

to estimate β in a second step by

β̂ =

∑T
t=1 ỹtx̃t∑T
t=1 x̃

2
t

, (28)

where ỹt = yt− α̂xt and x̃t = (at−1− α̂)xt. Returning thus to the co-integration analogy drawn

in remark 2.4, this estimation procedure is clearly reminiscent of Engle and Granger’s (1987)

two-step approach to estimating co-integrating vectors and associated error correction models.

Specifically, knowledge of α does not improve estimation of β; see Stock (1987) for an analogous

discussion of the co-integration case. This means, in particular, that estimation and inference

is not contaminated by a ‘generated regressor’ problem as discussed in Pagan (1984), i.e. the

limiting distribution of T b/2(β̂ − β) is (asymptotically) unaffected by the first-step estimation

of α and equivalent to that stated in proposition 2.2.

Finally, consider the ‘three-step’ estimator

δ̂ = α̂(1− β̂). (29)

Exploiting the different convergence rates of α̂ and β̂ (cf. proposition 2.2 and 2.3), it is readily

verified that

T b/2(δ̂ − δ) =T b/2(α(1− β̂)− δ) + T b/2(α̂− α)(1− β̂)

= − αT b/2(β̂ − β) +Op

(
T−η/2

)
(30)

and thus

T b/2

[
β̂ − β
δ̂ − δ

]
a∼

[
1

−α

]
T b/2(β̂ − β)

d−→ N

(
02,

2cb

γ

[
1 −α
−α α2

])
, (31)

thereby yielding the exact same limiting distribution as the one stated in proposition 2.1.6

6As a result of a purely algebraic exercise, the joint OLS estimator λ̂ can be recovered by using λ̂α instead

of α̂ in order to make the regression based on (25) feasible.
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3 Monte-Carlo results

Consider a data generating process given by model (1) with δ = 1 and β = 1/3 so that α = 3/2.

The regressor evolves over time according to the first-order autoregression

xt = 1 + (1/2)xt−1 + ut, (32)

where ut
i.i.d.∼ (0, 1/2) is drawn from a t distribution with eight degrees of freedom while the

innovation εt is i.i.d. distributed as a standardized χ2 random variable with one degree of

freedom. The recursion (5) is initialized at θ0 = (1, 1)′ and the gain sequence is given by

γt = (3/2)t−η, η ∈ {1/5, 3/5}. The (Monte-Carlo analogue of the) asymptotic variance, bias

and size of a two-sided t test at the 5% significance level is evaluated for the joint OLS (jOLS)

approach (cf. section 2.2) and the three-step (3STEP) procedure (cf. section 2.4). Results for

T ∈ {200, 2000, 20000} using 10, 000 Monte Carlo repetitions are summarized by table 1.

Table 1: Simulation Resultsa

η = 1/5 η = 3/5

T asy.var 100bias(b) size asy.var 100bias(b) size

jOLS 200 0.400 -1.512 4.396 0.332 -10.167 4.684
3STEP 0.398 -1.606 4.448 0.327 -10.348 4.674

β 2,000 0.512 -0.319 4.632 0.348 -4.580 5.160
0.512 -0.328 4.620 0.347 -4.604 5.164

20,000 0.696 -0.053 5.068 0.354 -1.849 5.182
0.696 -0.054 5.066 0.354 -1.852 5.180

jOLS 200 0.972 2.244 4.462 0.757 15.252 4.788
3STEP 1.188 2.329 6.648 0.748 15.450 4.922

δ 2,000 1.198 0.482 4.722 0.784 6.871 5.188
1.301 0.496 5.652 0.783 6.901 5.230

20,000 1.473 0.081 5.142 0.797 2.773 5.160
1.475 0.081 5.502 0.796 2.777 5.162

jOLS 200 0.469 -0.036 6.784 0.474 0.003 10.496
3STEP 1.799 -0.117 6.510 0.469 -0.092 10.652

α 2,000 0.465 0.006 5.358 0.463 0.001 7.432
0.523 0.005 5.122 0.465 -0.008 7.472

20,000 0.476 0.002 5.384 0.464 0.000 6.068
0.509 0.000 5.142 0.465 -0.001 6.134

a Size refers to the rejection frequencies (%) under the null of a two-sided t test at the 5%

significance level using the 0.975 percentile from the standard normal distribution. The con-

struction of the standard errors is outlined in section 2.3.

Recall the limiting variances of the estimators of (β, δ, α) as a benchmark, against which the

following simulation evidence can be evaluated. Specifically, one infers from proposition 2.1

14



(or, equivalently, from proposition 2.2 and equation (30)) that the asymptotic variances for

the estimators of (β, δ) are given by (0.711, 1.6) if η = 1/5 and by (0.356, 0.8) if η = 3/5,

respectively. The asymptotic variance of α̂ (and λ̂α) does not depend explicitly on the nature

of the gain sequence and equals 0.482. For large T , the actual variances of the estimators are

close to these values. In case of β and δ, the asymptotic approximation works better the smaller

η. This is due to the fact that, as shown in the previous sections, the convergence rate of the

estimators is decreasing in η. Similarly, the bias increases relatively with η. Observe that the

bias of the estimators for δ is approximately equal to −α times the bias of the estimators for

β, thus confirming the singularity of the joint distribution derived previously.

Finally, the generalized Wald statistic W as defined in (24) is evaluated under the null

H0: r(λ) = 0 with r(λ) = Rλ− q, (33)

where R = diag(1, 1) for q = (1/3, 1)′ and the local alternatives

Ha: r(λ) = µ/T b/2, (34)

where µ 6= 02. In the latter case, W follows asymptotically a χ2 distribution with one degree of

freedom and non-centrality parameter µ′V +µ. In order to understand the local power properties,

Figure 1: Local power as a function of ηa
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a The dotted red line indicates the 5% significance level.
Local power is evaluated for µ = (1/2, 3)′ and various η.

it is useful to take a look at the generalized inverse of V

V + =
γ

2cb(1 + α2)2

[
1 −α
−α α2

]
, (35)
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where equations (20) and (22) have been used.7 Note that V + is positive semi-definite, i.e. there

exist non-trivial local alternatives for which the non-centrality parameter is zero. Specifically,

the test has no local power in the direction µ = cια for some constant c 6= 0 as ι′αV
+ια = 0. On

the other hand, if µ is not proportional to ια, power is increasing in η as illustrated by figure 1

for µ = (1/2, 3)′.

Table 2: Simulation Resultsa

η = 1/5 η = 3/5

T size power I power II size power I power II

200 5.31 41.18 7.07 5.22 86.35 24.93
2,000 5.20 31.33 5.86 5.31 47.67 10.29
20,000 5.16 27.07 5.05 5.04 46.31 6.56

a Size and power refers to the rejection frequencies (%) at the 5% signif-

icance level using the 0.95 percentile from the χ2 distribution with one

degree of freedom under the null (33) and the (local) alternative (34),

respectively.

Monte-Carlo evidence supports these theoretical considerations: table 2 reports rejection fre-

quencies under the null (size) and local power for µ = (1/2, 3)′ (power I) and µ = ια (power II).

It is seen that the size of the test is controlled, while the local power approaches the theoretical

values given by 24.79% and 43.89% in case of µ = (1/2, 3)′ for η = 1/5 and η = 3/5, and 5.00%

in case of µ = ια.

4 Concluding remarks

This paper establishes the asymptotic equivalence between a newly proposed ‘three-step’ pro-

cedure and the joint OLS estimator of the structural parameters β and δ in a stylized moacroe-

conomic model of the form

yt = βyet|t−1 + δxt + εt, (36)

where the agents expectation formation is boundedly rational in the sense that yet|t−1 obeys a

stochastic approximation algorithm (cf. equation (5)). In contrast to Christopeit and Mass-

7It is readily verified that the eigenvalue and eigenvectors of V are given by ξ = (1 + α)2 2cb/γ and

A =
1√

1 + α2

[
−1 −α
α −1

]
,

respectively.
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mann (2018) who set xt = 1, the current exposition treats the regressor as a time-varying

random variable while the agent is assumed to use slowly-decreasing gains, i.e. γt ∼ t−η with

η ∈ (0, 1). This represents the intermediate case lying on a continuum between least-squares

learning (η = 1) and constant-gain learning (η = 0) considered by Christopeit and Massmann

(2018).

The estimators of β and δ converge at a polynomial rate to their joint, singular asymptotic nor-

mal distribution. A trade-off between the rate at which the agent learns and the convergence

rate of the estimators becomes apparent. Furthermore, two estimators of the RE equilibrium

parameter α = δ(1− β)−1 emerge as a byproduct of the two estimation frameworks. Interest-

ingly, these estimators converge at the ‘standard’ (faster) convergence rate T 1/2, and are thus

not subject to the aforementioned trade-off. Moreover, it is shown how the limiting results can

be used to make inferences about both single and joint hypotheses by drawing on ideas from

Andrews (1987).

As suggested by the small-sample results, the theoretical analysis of this exposition could be

extended to allow for serial correlated regressors or by relaxing assumption 3.
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Appendices

The outline of the appendix is as follows: Appendices A to E contain the proofs under the auxiliary

assumption that rt is centered at the true value κ(2)

x , resulting in the reduced algorithm

bt = bt−1 +
γt
κ(2)
x

(yt − bt−1xt). (A.1)

Specifically, the following assumption replaces assumption 3:

Assumption 3A. Suppose assumption 3-SG holds and for any t, rt = κ(2)

x .

Thereafter, appendix F extends these results to the general algorithm (5) given assumption 1, 2 and

3 hold true.

A Preliminaries

This section derives the working formula for bt and collects some helpful auxiliary lemmatae.

A.1 Working formula for bt

With a little rearrangement, one gets from (A.1)

b
∗
t = b

∗
t−1(1− cγt) + γtet + γtut, (A.2)

where b∗t := bt − α while et and ut are respectively given by

et := c(1− x∗2
t )b

∗
t−1 with x∗

t := xt/
√
κ(2)
x (A.3)

ut :=x∗
tεt/

√
κ(2)
x , (A.4)

which are, by construction, mean-zero. Solving recursively, it is further seen that for t > 0

b
∗
t = a∗

0Φt,1 + ǔt + ět, (A.5)

where

Φt,k :=

t∏
i= k

(1− cγi) with Φt,t+1 := 1, (A.6)

and

γk,t := Φt,k+1γk, (A.7)

while for any scalar zt

žt :=
t∑

k=1

γk,tzk. (A.8)
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A.2 Lemma 1

Lemma 1. Let assumption 2 and 3A hold. For any s and t

E(utes) = 0, (A.9)

while

E(etes) =

{
0 if s 6= t

σ2(et) := c2(κ(4)

x /κ
(2)

x
2 − 1)E

(
b∗2t−1

)
if s = t.

(A.10)

Proof. Note that E(utes) = c
[
E
(
utb

∗
s−1
)
− E

(
utx

∗2
s b

∗
s−1
)]

. It thus suffices to show that

E
(
utb

∗
s−1
)

= E
(
utx

∗2
s b

∗
s−1
)
.

Clearly, E
(
utb

∗
s−1
)

= E
(
utx

∗2
s b

∗
s−1
)

= 0 for all s ≤ t. For s > t, observe that

E
(
utx

∗2
s b

∗
s−1
)

= E
[
utb

∗
s−1E

(
x∗2
s |Vs−1

) ]
= E

(
utb

∗
s−1
)

E
(
x∗2
s

)
= E

(
utb

∗
s−1
)
, (A.11)

using repeatedly assumption 2.

A.3 Lemma 2

This lemma summarizes properties of partial sums of the coefficients γk,t (cf. equation (A.7)), which

are frequently used in the subsequent proofs for the decreasing gain case. For simplicity assume γ = 1

throughout.

Lemma 2. Define

φit :=
t∑

k=1

γk,t (A.12)

φiit :=

t∑
k=1

γ2k,t (A.13)

φiiit :=

t−1∑
k=1

k∑
s=1

γs,tγs,k (A.14)

and suppose that β ∈ (0, 1), η ∈ (0, 1). Then,

(a) φit = 1/c+ o(1)

(b) φiit = γt/(2c) + o(γt)

(c) φiiit = 1/(2c2) + o(1).

Remark A.1. By the Cesàro mean convergence theorem, it follows that also φ̄i = 1/c + o(1) and

φ̄ii + 2φ̄iii = 1/c2 + o(1), where φ̄` := T−1
∑T

t=1 φ
`
t for ` ∈ {i, ii, iii}.
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A.3.1 Part (a)

Proof. Note that

cφit + Φt,1 = 1. (A.15)

It thus remains to show that Φt,1 = o(1). Using Euler summation (see, e.g., Apostol (1999, theorem

2)), the generalized harmonic number

Hn(η) :=

n∑
i=1

1/iη

can be written as

Ht(η) =
t1−η

1− η
+ ζ(η) + ηR∞t (η) with Rba(η) :=

∫ b

a

u− buc
u1+η

du, (A.16)

where ζ(·) denotes the Riemann zeta function

ζ(η) := lim
t→∞

(
Ht(η)− t1−η

1− η

)
, (A.17)

bxc is the greatest integer smaller or equal x and

0 ≤ R∞t (η) ≤
∫ ∞
t

1

u1+η
du =

1

ηtη
;

see, e.g., theorem 3.2 b) in Apostol (1976, chap. 3). In order to keep the notation simple, the

dependence of Ht(η) and Rba(η) on η will be hereafter implicitly understood; i.e. Ht := Ht(η) and

Rba := Rba(η).

The claim follows because for any r ≥ 1

(Φt,1)
r ≤ C0e

−ratb (A.18)

where C0 ∈ [0,∞), a := c/b and b := 1 − η. To see that (A.18) is true, consider the case r = 1 (the

following is easily extended to the case r > 1) and note that

Φt,1 = e
∑t
j=1 ln(1−c/jη)

= e−c
∑t
j=1 1/j

η

e−O(
∑t
j=1 1/j

2η)

≤ e−cHt(η)

= e−cζ(1−b)e−at
b
e−O(t−η)

≤ e−cζ(1−b)e−atb ,

where e−cζ(1−b) ≥ 0 as ζ(1 − b) ≤ 0. The second and third equality follow, respectively, from the

Taylor series approximation

ln(1− c/jη) = − c/jη −Kt with Kt := c2/(2j2η) + c3/(3j3η) + · · · = O(1/j2η), (A.19)
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and equation (A.16), while the inequalities result upon recognizing that the terms O(
∑t

j=1 1/j2η) and

O(t−η) are both positive. 8

A.3.2 Part (b)

The main idea of this proof is to approximate the partial sum c2φiit by the integral of the function

f(k, t) := (cγk)
2e−2a(t

b−kb). (A.21)

To begin with, let

g(k, t) := (cγk)
2Φ2

t,k+1 (A.22)

so that

c2φiit =

∫ t

1
f(k, t)dk +At +Bt, (A.23)

where

At :=
t∑

k=1

f(k, t)−
∫ t

1
f(k, t)dk and Bt :=

t∑
k=1

[
g(k, t)− f(k, t)

]
. (A.24)

The remainder of this proof is as follows: (1) evaluate the integral
∫
f(k, t)dk, (2) show that At =

O(γ2t ), (3) show that Bt = O(γ2t ).

(1) Evaluation of the integral. We seek to establish∫ t

1
f(k, t)dk =

cγt
2

+ o(γt). (A.25)

More generally, it will be shown that for any s, r, z > 0

lim
t→∞

tη(s−1)
∫ t

1
e−rz/b(t

b−kb)
(
z/k1−b

)s
dk =

zs−1

r
. (X.0)

Before (X.0) is proven, recall the definition of the (upper) incomplete gamma function

Γ (s, x) =

∫ ∞
x

ts−1e−tdt, (A.26)

8Note that the conclusion of part (a) holds also for η = 1. Specifically, γk,t reduces for η = 1 to γk,t =

λt(1− c, 1)λk(0, 1− c) where

λt(α, β) :=
Γ(t+ α)

Γ(t+ β)
. (A.20)

24



see Jameson (2016) for details. Note that the definition of Γ (s, x) extends to arbitrary (possibly

complex) s, x; see, e.g. Winitzki (2003) or Thompson (2013). The proof repeatedly makes use of the

following: For any x, v > 0

lim
t→∞

t1+vΓ (−1/v,−xtv) e−xtv = − x(1−v)/ve−iπ/v, (X.1)∫
e−xt

v
dt = − Γ (1/v, xtv)

vx1/v
+ C, (X.2)∫

ext
v
dt = − Γ (1/v,−xtv)

vx1/v
e−iπ/v + C, (X.3)

with i and C denoting the imaginary number and a suitable constant, respectively.

Proof of (X.1)-(X.3). Define w(t) := Γ (−1/v,−xtv) and q(t) := t−1−vext
v

and denote the first

derivatives with respect to t by

w′(t) = −ve
xtv−iπ/v

t2x1/v
and q′(t) = t−v−2ext

v
(v(xtv − 1)− 1) (A.27)

so that

w′(t)

q′(t)
= − ve−iπ/v

x1/v (vx− (1 + v)/tb)
(A.28)

Then, by L’Hôspital’s rule,

lim
t→∞

t1+vΓ (−1/v,−xtv) e−xtv = lim
t→∞

w′(t)

q′(t)
= −x(1−v)/ve−iπ/v. (A.29)

This completes the proof of (X.1). Turning to (X.2), use the u-substitution u := xtv and observe that

t1−v = u1/v−1x1−1/v. Hence,∫
e−xt

v
dt =

1

vx1/v

∫
e−uu1/v−1du = − 1

vx1/v

∫ ∞
u

e−kk1/v−1dk + C, (A.30)

where the last equality uses that for any integrable function f
∫
f(x)dx =

∫ x
a f(t)dt + C with a so

that the integral converges; thereby proving the claim. (X.3) follows directly from (X.2) upon using

the u-substitution u := ((−1)x)1/vt.

Proof of (X.0). To begin with, note that∫
e−rz/b(t

b−kb)
(
z/k1−b

)s
dk = C0m(k, t), (A.31)

where C0 := b−η(s−1)/br(sη−1)/bz(s−1)/beiπη(s−1) andm(k, t) := e−t
brz/bΓ

(
(1− sη)/b,−kbrz/b

)
. Hence,∫ t

1
e−rz/b(t

b−kb)
(
z/k1−b

)s
dk = C0m(t, t) +O(e−t

b
). (A.32)

Next, it will be shown that

lim
t→∞

tη(s−1)m(t, t) =
C1

rz
, (A.33)
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where C1 := bη(s−1)/b(rz)(1−sη)/beiπ(b(1+s)+1−s)/b. By L’Hôspital’s rule,

lim
t→∞

tη(s−1)m(t, t) = lim
t→∞

h′1(t)

h′2(t)
(A.34)

where h1(t) := Γ
(
(1− sη)/b,−kbrz/b

)
and h2(t) := erz/b(t

b−kb)t−η(s−1) and the corresponding partial

derivatives with respect to t are respectively given by

h′1(t) =C1t
−sηet

brz/b (A.35)

h′2(t) = rzt−η(s−1)−ηet
brz/b(1 + o(1)), (A.36)

thereby verifying (A.33). Some simple calculations reveal further that C0C1/(rz) = zs−1/r.

(2) Negligibility of At. Note that one version of the Euler-Maclaurin formula (see, e.g., Lampret

(2001)) states that

t∑
k=1

f(k, t)−
∫ t

1
f(k, t)dk =

1

2

[
f(1, t) + f(t, t)

]
+

1

12

[
f (1)(t, t)− f (1)(1, t)

]
+ ρ(t; f), (A.37)

where f (`)(k, t) := ∂`/∂k`f(k, t) denotes the `th partial derivative of f(k, t) with respect to k and

|ρ(t; f)|≤ 1

120

∫ t

1
|f (3)(k, t)|dk. (A.38)

It will be shown that the three terms on the right-hand side of (A.37) are of order o(γt). Clearly,

f(1, t)+f(t, t) = O(γ2t ) while from f (1)(k, t) = 2(ckb−η)k−1f(k, t) one gets f (1)(t, t)−f (1)(1, t) = o(γ2t ).

Furthermore,

f (3)(k, t) = 2
[
4(ckb)3 − 18(ckb)2(1− b)− ckb(1− b)(19b− 26)− 2(2− b)(1− b)(3− 2b)

]f(k, t)

k3

implies the existence of a finite constant C0 > 0 such that |f (3)(k, t)| ≤ C0 (cγk)
3f(k, t). Hence, by

equation (X.0), |ρ(t; f)|= O(γ4t ) – thereby showing that At = O
(
γ2t
)
.

(3) Negligibility of Bt. Taking account of equation (A.16) and R∞t = R∞k −Rtk, it is seen that

t∑
j= k+1

γj =Ht(η)−Hk(η) = (tb − kb)/b− ηRtk(η). (A.39)

Now, using equation (A.19) together with (A.39), it follows that

g(k, t) = (cγk)
2 e2

∑t
j=k+1 ln(1−cγj)

= (cγk)
2 e−2c(Ht−Hk)e−2

∑t
j= k+1Kj

= (cγk)
2 e−2c(Ht−Hk) + (cγk)

2 e−2c(Ht−Hk)
(
e−2

∑t
j= k+1Kj − 1

)
= f(k, t) + f(k, t)

(
e2cηR

t
k − 1

)
+ f(k, t)

(
e−2

∑t
j= k+1Kj − 1

)
+ f(k, t)

(
e2cηR

t
k − 1

)(
e−2

∑t
j= k+1Kj − 1

)
=: f(k, t) +Bi(k, t) +Bii(k, t) +Biii(k, t), (A.40)
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say. It thus suffices to show that
∑

k B
`(k, t) = O(γ2t ) for ` ∈ {i, ii, iii}. Begin with Bi(k, t). Since

f(k, t) is non-negative, monotonically decreasing in k ≤ t and e2cηR
t
k ≥ 1, it follows that Bi(k, t) ≥ 0.

Infer from the discussion surrounding (A.16) that Rtk ≤ γk and thus Bi(k, t) ≤ f(k, t)
(
e2cγk − 1

)
.

Next, suppose without loss of generality that 2cγk ≤ α < 1. Because ex < (1 − x)−1 for all x < 1,

it follows Bi(k, t) ≤ 2(1 − α)−1f(k, t)cγk. By (X.0) and the integral comparison test,
∑

k B
i(k, t) =

O(γ2t ).

Next, consider Bii(k, t), which is non-positive so that∣∣Bii(k, t)
∣∣ = f(k, t)

(
1− e−2

∑t
j= k+1Kj(η)

)
. (A.41)

The definition of Ki(η) (cf. equation (A.19)) implies that there exists a finite constant C0 > 0 so that∑t
j= k+1Kj(η) ≤ 2−1C0

∑t
j= k+1 j

−2η, while
∑t

j= k+1 j
−2η = `(k, t)− 2ηRtk(2η) with

`(k, t) =


(1− 2η)−1

(
t1−2η − k1−2η

)
if η < 1/2

(2η − 1)−1
(
k1−2η − t1−2η

)
if η > 1/2

ln t− ln k if η = 1/2,

(A.42)

where for η ≥ 1/2 Apostol (1976, theorem 3.2 (a), (b)) has been used and the case η < 1/2 follows

immediately from (A.39). Hence, for some finite constant C1 > 0

1− e−2
∑t
j= k+1Kj(η) ≤ 1− e−C0

∑t
j= k+1 j

−2η

≤ 1− e−C1`(k,t)eC02ηRtk(2η)

≤C1`(k, t). (A.43)

Since

lim
t→∞

t2η
∫ t

1
f(k, t)`(k, t)dk =

1

4
, (A.44)

it follows from the integral comparison test that
∑t

k=1B
ii(k, t) = O(γ2t ).

Finally,
∑

k B
iii(k, t) = O(γ2t ) is deduced from the analysis of

∑
k B

ii(k, t) as∣∣∣1− e−2∑t
j= k+1Kj(η)

∣∣∣ ≤ 1. (A.45)

This completes the proof of part (b).

Remark. More generally, it can be shown that for any α > 0 and β ≥ 0

t∑
k=1

γαk,tγ
β
k = O(γα+β−1t ). (X.4)

Proof of equation X.4. First, note that with r = α and s = α+ β it follows from (X.0) that

lim
t→∞

t(α+β−1)(1−b)
∫ t

1
e−αz/b(t

b−kb)
(
z/k1−b

)α+β
dk =

zα+β−1

r
. (A.46)
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Next, note that

Φα
t,k+1 = eα

∑t
i= k+1 ln(1−cγi)

= e−αc(Ht(η)−Hk(η))e−cα
∑t
i= k+1Ki(η)

≤ e−αc(Ht(η)−Hk(η))

= e−αa(t
b−kb) + e−αa(t

b−kb)
(

1− eαcηRtk(η)
)

(A.47)

Taking equation (A.46) into account, the claim follows from Toeplitz’s lemma using similar arguments

as to show the asymptotic negligibility of Bi(k, t).

A.3.3 Part (c)

To begin with, observe that one gets from part (a)

(
φit
)2

=
t∑

k, s=1

γk,tγs,t = φiit + 2
t∑

k=2

k−1∑
s=1

γk,tγs,t →
1

c2
. (A.48)

Consequently, 2φiiit =
(
φit
)2

+ 2Rt − φiit , where

Rt := φiiit −
t∑

k=2

k−1∑
s=1

γs,kγs,t. (A.49)

The claim follows by part (b) if Rt = o(1). Investigation of Rt reveals that this term decomposes as

Rt = At +Bt + Ct, where

At :=

t−2∑
k=1

γk,t

t−1∑
j= k+1

(γkΦj,k+1 − γjΦt,j+1)

Bt :=
t−2∑
k=1

γk,t(γk − γt)

Ct := (1− cγt)γt−1(γt−1 − γt).

Clearly, Ct = o(1), while Bt = o(1) is a direct consequence of (X.4). It thus remains to show that

At = o(1).

Before the proof proceeds, three useful results from the literature on stochastic approximation with

averaging of the iterates are stated:

Suppose γt satisfies assumption 1, j ≥ k and v ∈ (1/2, 1). There exist finite and positive constants
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C0 > 0, C1 > 0 and C2 ≥ 0 so that

γk/γj ≤ eo(1)
∑j
s= k γs

Φj,k+1 ≤ C0e
−C1

∑j
s= k γs

sup
k, t

t∑
j= k

j−v e−λ
∑j
s= k s

−v ≤ C2 <∞ for λ > 0,

(X.5)

with o(1) denoting a magnitude that approaches zero as k →∞.

Proof of (X.5). See, for example Chen (2002, lemma 3.1.1 & 3.4.1) or Polyak and Juditsky (1992).

Now, for any k and j sufficiently large Φt,j+1 ≥ Φj,k+1, so that

|At| ≤
t−2∑
k=1

γk,t

t−1∑
j= k+1

(γk − γj)Φj, k+1. (A.50)

Since limt→∞ t
1+η (γt−1 − γt) = η, one arrives at

t−1∑
j= k+1

(γk − γj)Φj, k+1 =

t−1∑
j= k+1

j∑
i= k+1

(γi−1 − γi)Φj, k+1

=

t−1∑
j= k+1

j∑
i= k+1

O
(γi
i

)
Φj, k+1. (A.51)

Hence, there exists a finite constant C0 > 0 such that

|At| ≤C0

t−2∑
k=1

γk,tγk

t−1∑
j= k+1

j∑
i= k+1

Φj, k+1

i
. (A.52)

Consider first the case that η 6= 1/2. There exist constants C1 and C2 such that

t−1∑
j= k+1

j∑
i= k+1

Φj, k+1

i
=

t−1∑
j= k+1

γj

j∑
i= k+1

γi
γj

Φj, k+1

ib

≤
t−1∑

j= k+1

γj

j∑
i= k+1

γk+1

γj

Φj, k+1

ib
≤ C1

t−1∑
j= k+1

γj

j∑
i= k+1

e−C2/2
∑j
s= k+1 γs

ib
, (A.53)

where the first inequality is due to γi ≤ γk+1 and the final one uses the first part of (X.5) to approximate

γk+1/γj .
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Case η < 1/2. (A.53) can be further bounded by

t−1∑
j= k+1

γj

j∑
i= k+1

e−C2/2
∑j
s= k+1 γs

ib
=

t−1∑
j= k+1

j∑
i= k+1

(
j

i

)1−2η
γi
e−C2/2

∑j
s= k+1 γs

jb

≤ 4

C2

(
t

k

)1−2η t−1∑
j= k+1

(
eC2/4

∑j
i= k+1 γi

) e−C2/2
∑j
s= k+1 γs

jb

=
4

C2

(
t

k

)1−2η t−1∑
j= k+1

e−C2/4
∑j
s= k+1 γs

jb

≤ 4

C2

(
t

k

)1−2η t−1∑
j= k+1

e−C2/4
∑j
s= k+1 s

−b

jb
≤ C3

(
t

k

)1−2η
, (A.54)

where C3 ≥ represents a finite constant; the first inequality is due to j/i ≤ t/k and x ≤ ex (x > 0),

the second inequality used that for η < 1/2 and s ≥ 1, γs ≥ s−b while the final one is based on the

last property of (X.5). Hence, there exists a finite constant K > 0 such that

|At| ≤ K t1−2η
t∑

k=1

γk,t
kb

= K t1−2η
t∑

k=1

Φt,k+1

k
. (A.55)

By (A.47),

t∑
k=1

Φt,k+1

k
≤

t∑
k=1

e−ar(t
b−kb)

k
+

t∑
k=1

e−ar(t
b−kb)

k

(
ecrηR

t
k − 1

)
. (A.56)

Furthermore, ∫ t

1

e−a(t
b−kb)

k
dk = e−at

b

(
Ei(atb)− Ei(a)

b

)
= O

(
1

tb

)
, (A.57)

where

Ei(x) := −
∫ ∞
−x

e−t

t
dt (A.58)

denotes the exponential integral. Because for any a, v > 0

lim
t→∞

tve−at
v
Ei(atv) = 1/a, (A.59)

it follows from the integral comparison test and Toeplitz’s lemma (see also section A.3.2) that At =

O(γt). This completes the proof for the case η < 1/2.

Case η > 1/2. Note that (A.53) can similarly be bounded by

t−1∑
j= k+1

γj

j∑
i= k+1

i2η−1γie
−C2/2

∑j
s= k+1 γs ≤ t2η−1

t−1∑
j= k+1

γj

j∑
i= k+1

γie
−C2/2

∑j
s= k+1 γs

≤ t2η−1C3, (A.60)
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where the existence of some finite constant C3 ≥ 0 is ensured by the last property of (X.5). Hence,

|At| ≤ C3 t
2η−1

t∑
k=1

Φt,k+1γ
2
k (A.61)

and by equation (X.4), At = O(γt).

Case η = 1/2. For ε ∈ (0, 1/4) and suitable constants C0, C1 and C2 one gets

t−1∑
j= k+1

j∑
i= k+1

Φj, k+1

i
≤C0

t−1∑
j= k+1

j∑
i= k+1

e−C1
∑j
s= k+1 1/s

1/2

i

≤C0

t−1∑
j= k+1

j∑
i= k+1

e−C1
∑j
s= k+1 1/s

1/2+ε

i

=C0

t−1∑
j= k+1

1

j1/2+ε

j∑
i= k+1

(
j

i

)1/2+ε e−C1
∑j
s= k+1 1/s

1/2+ε

i1/2−ε

≤C0

t−1∑
j= k+1

1

j1/2+ε

j∑
i= k+1

(
j

k + 1

)1/2+ε e−C1
∑j
s= k+1 1/s

1/2+ε

i1/2−ε

≤C0

t−1∑
j= k+1

1

j1/2+ε

j∑
i= k+1

e−C1/2
∑j
s= k+1 1/s

1/2+ε

i1/2−ε

=C0

t−1∑
j= k+1

1

j1/2+ε

j∑
i= k+1

i2ε
e−C1/2

∑j
s= k+1 1/s

1/2+ε

i1/2+ε

≤ t2ε 4C0

C1

t−1∑
j= k+1

e−C1/4
∑j
s= k+1 1/s

1/2+ε

j1/2+ε
≤ t2εC2, (A.62)

where the first inequality is due to the first property of (X.5), the second uses that 1/s1/2 > 1/s1/2+ε,

the third follows from i ≥ k + 1, the fourth is based on the first property of (X.5) while the final

inequality uses the last property of (X.5). Thus, taking equation (X.4) into account, it follows that

|At| ≤ C2 t
2ε

t∑
k=1

γ2kΦt,k+1 = O

(
1

t1/2−2ε

)
. (A.63)

This completes the proof of part (c).

A.4 Lemma 3

Lemma 3. Let assumptions 1, 2 and 3A hold and recall that τ = σ/
√
κ(2)
x . Then for finite and

non-zero constants C1 and C2,
E
(
b
∗
t
2
)
≤C1γt

E
(
b
∗
t
4
)
≤C2γ

2
t

(a)

31



and

lim
T →∞

1

T b

T∑
t=1

E
(
b
∗
t
2
)

=
τ2γ

2cb
. (b)

Proof of (a). Begin with (a) which is an application of theorem 22 of part 2 in Benveniste et al.

(1990). Their theorem provides an L2−upper bound for Robbins-Monro algorithms (cf. pp. 243 in

Benveniste et al. (1990)). In order to apply the theorem, deduce from (A.1) that

bt = bt−1 + γtH(bt−1, v t), (A.64)

where the function b 7→ H(b, v t) is defined via

H(b, v t) = h(b)x∗2
t + ut, (A.65)

with

h(b) := −c(b− α). (A.66)

It is readily verified that

E
[
H(bt−1, v t)− h(bt−1)|Vt−1

]
= 0

E
[
H(bt−1, v t)

2|Vt−1
]

= τ2 + c2
κ(4)

x

κ(2)
x
2
b
∗2
t−1, (A.67)

where

Vt−1 := σ(a0; v s, s ≤ t− 1) (A.68)

so that conditions 1.10.2 and 1.10.4 are satisfied. Furthermore, h in (A.66) satisfies clearly the Lipschitz

condition 1.10.5 of Benveniste et al. (1990). It thus suffices to verify that

lim inft→∞ 2c
γt
γt+1

+
γt+1 − γt
γ2t+1

> 0 (A.69)

for all η ∈ (0, 1) (i.e. condition 1.10.6 in Benveniste et al. (1990)). By assumption 1

γt+1 − γt
γ2t+1

= o(1) (A.70)

while γt/γt+1 = 1 + o(1), which proves (A.69). Similarly, it follows from Kushner and Yan’s (1993)

lemma 3.1 that E
(
b∗t

4
)
/γ2t is bounded.

Proof of (b). Set ǎ0t := a∗
0Φt,1 and recall from equation (A.5) that b∗t = ǎ0t + ǔt + ět. Now, because

E(utes) = 0 for all t and s (cf. lemma 1), it follows that

E
(
b
∗
t
2
)

= E
(
ǎ20t
)

+ E
(
ǔ2t
)

+ E
(
ě2t
)
. (A.71)
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Let us consider the summands in (A.71) one by one: First, equation (A.18) and (X.2) yield

T∑
t=1

E
(
ǎ20t
)

= κ(2)

a

T∑
t=1

Φ2
t,1 ≤ K

∫ ∞
1

e−2at
b

= O(1), (A.72)

for some finite constant K > 0. Turning to the second summand, note that

E (ǔtǔs) =


τ2
∑t

k=1 γ
2
k,t if s = t

τ2
∑s

k=1 γk,tγk,s if s < t

τ2
∑t

k=1 γk,tγk,s if s > t.

(A.73)

Therefore, taking account of lemma 2, it follows that

E
(
ǔ2t
)

= τ2φiit = γt
σ2

2c
+ o(γt). (A.74)

Furthermore, (A.10) implies that

E (ětěs) =


∑t

k=1 γ
2
k,tσ

2(ek) if s = t∑s
k=1 γk,tγk,sσ

2(ek) if s < t∑t
k=1 γk,tγk,sσ

2(ek) if s > t.

(A.75)

By (a), there exists a constant K <∞ such that

E
(
ě2t
)

=

t∑
k=1

γ2k,tσ
2(ek) ≤ C

t∑
k=1

γ2k,tγk = O
(
γ2t
)
, (A.76)

where the last equality is due to Toeplitz’s lemma and part (b) of lemma X.4.

A.5 Lemma 4

Assume α to be known and set x̃t = b∗t−1xt. Henceforth, redefine bt = b∗t for notational simplicity.

Lemma 4. Let assumption 1,2 and 3A hold and set

ρ̃t,t+m := cov
(
x̃2t , x̃

2
t+m

)
.

Then

ρ̃t,t+m =


κ(2)

x πt if m = 1

κ(2)

x πt

m−1∏
j=1

ψt+j if m > 1,
(A.77)

where

πt := E
(
b4t−1

)
ψ̃t − E

(
b2t−1

) [
κ(2)

x E
(
b2t−1

)
ψt − σ2γ2t

(
κ(4)

x /κ
(2)

x
2 − 1

) ]
= O

(
γ2t
)
,

with ψ̃t := κ(2)

x − cγt
(
2κ(4)

x /κ
(2)

x − cγtκ(6)

x /κ
(2)

x
2
)

and ψt := 1− cγt
(
2− cγtκ(4)

x /κ
(2)

x
2
)
.

33



Proof. Irrespective of the nature of the gain sequence, assumption 2 implies

E
(
x̃2t , x̃

2
t+m

)
= E

(
x2t b

2
t−1x

2
t+mb

2
t+m−1

)
= E

[
b2t−1x

2
t b

2
t+m−1E

(
x2t+m|Vt+m−1

) ]
= E

(
b2t−1x

2
t b

2
t+m−1

)
E
(
x2t+m

)
= E

(
b2t−1x

2
t b

2
t+m−1

)
κ(2)

x

= E
[
b2t−1E

(
x2t b

2
t+m−1|Vt−1

) ]
κ(2)

x , (A.78)

so that

ρ̃t,t+m =κ(2)

x

{
E
[
b2t−1E

(
x2t b

2
t+m−1|Vt−1

) ]
− E

(
b2t−1

)
κ(2)

x E
(
b2t+m−1

)}
. (A.79)

Furthermore, equation (A.64) together with (A.65) yields

x2t b
2
t+m =x2t

[
b2t+m−1 + γ2t+m(u2t+m + c2x∗4

t+mb
2
t+m−1 − 2cx∗2

t+mbt+m−1ut+m)

+ 2γt+mbt+m−1(ut+m − cx∗2
t+mbt+m−1)

]
. (A.80)

Now, for m > 1

E
(
x2t b

2
t+m|Vt−1

)
= E

(
x2t b

2
t+m−1|Vt−1

)
ψt+m + γ2t+mσ

2

= E
(
x2t b

2
t |Vt−1

) m∏
j=1

ψt+j + σ2

m−1∑
j=1

γ2t+j

m∏
i= j+1

ψt+i + γ2t+m

 ,
(A.81)

where

E
(
x2t b

2
t |Vt−1

)
= b2t−1ψ̃t + γ2t σ

2κ(4)

x /κ
(2)

x
2. (A.82)

Similarly, it is readily verified that

E
(
b2t+m

)
= E

(
b2t
) m∏
j=1

ψt+j + τ2

m−1∑
j=1

γ2t+j

m∏
i= j+1

ψt+i + γ2t+m

 . (A.83)

Hence,

E
[
b2t−1E

(
x2t b

2
t+m|Vt−1

)]
− E

(
b2t−1

)
κ(2)

x E
(
b2t+m

)
=πt

m∏
j=1

ψt+j (A.84)

where

πt = E
[
b2t−1E

(
x2t b

2
t |Vt−1

)]
− E

(
b2t−1

)
κ(2)

x E
(
b2t
)

= E
(
b4t−1

)
ψ̃t − E

(
b2t−1

) [
κ(2)

x E
(
b2t−1

)
ψt − σ2γ2t

(
κ(4)

x /κ
(2)

x
2 − 1

)]
. (A.85)

Finally, πt = O(γ2t ) is a direct consequence of lemma 3.
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B Proof of proposition 2.2

Suppose α is known and set x̃t := xtb
∗
t−1. Now, consider

T b/2(β̂0 − β) =

(
1

T b

T∑
t=1

x̃2t

)−1
1

T b/2

T∑
t=1

x̃tεt, (A.86)

where β̂0 is defined in (26). The proof is based on two steps:

(1) plim
T →∞

1

T b

T∑
t=1

x̃2t = lim
T →∞

1

T b

T∑
t=1

E
(
x̃2t
)

= σ2γ/(2cb)

(2)
1

T b/2

T∑
t=1

x̃tεt
d−→ N

(
0, σ4γ/(2cb)

)
.

B.0.1 Step (1)

In view of lemma 3 (b) and the weak LLN, we seek to establish that

var

(
1

T b

T∑
t=1

x̃2t

)
= o(1). (A.87)

Consider

var

(
T∑
t=1

x̃2t

)
=

T∑
t=1

var
(
x̃2t
)

+ 2
T−1∑
t=1

T−t∑
s=1

ρ̃t,t+s, (A.88)

where ρ̃t,t+m = cov
(
x̃2t , x̃

2
t+m

)
has been defined in lemma 4. By lemma 3, equation (a), there exists a

constant K <∞ such that

T∑
t=1

var
(
x̃2t
)
≤ KHT (2η) =

{
O
(
T 2b−1) if η 6= 1/2

O (lnT ) if η = 1/2,
(A.89)

where HT (·) denotes the generalized harmonic number (cf. equation (A.16)). Turning to the second

summand on the right-hand side of (A.88), use lemma 4 to write

T−1∑
t=1

T−t∑
s=1

ρ̃t,t+s =κ(2)

x

T−1∑
t=1

πt +

T−2∑
t=1

T−t∑
s=2

ρ̃t,t+s. (A.90)

Since πt = O(γ2t ), the first term of the previous display behaves like

T−1∑
t=1

πt ∼ HT (2η) =

{
O
(
T 2b−1) if η 6= 1/2

O (lnT ) if η = 1/2.
(A.91)
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Before the second term in (A.90) is investigated, recall from lemma 4

ψt = 1− cγt
(
2− cγtκ(4)

x /κ
(2)

x
2
)
.

Next, define

t
∗

:= min

{
t : γt ≤

κ(2)

x
2

cκ(4)
x

}
.

Then,

(a) ψt ≤ 1− cγt if t ≥ t∗ and ψt > 1− cγt otherwise,

(b) ψt is non-negative,

(c) ψt ≤ ψt+m for m > 0 and t ≥ t∗.

Proof of statement (a)-(c). Statement (a) follows directly from the definition of τ . Statement (b) is

clearly true for t < t∗. In case t ≥ t∗, note that

ψt ≥ 0⇔ 2− cγtκ(4)

x /κ
(2)

x
2 ≤ 1

cγt

⇔ cγt
(
1− cγtκ(4)

x /κ
(2)

x
2
)
≤ 1− cγt. (A.92)

From t ≥ τ , it follows cγtκ
(4)

x /κ
(2)

x
2 ≤ 1 and thus 1 − cγtκ(4)

x /κ
(2)

x
2 ≥ 0. To see that (A.92) is true, note

that cγt ≤ 1 and, by the Lyapunov inequality, κ(2)

x
2 ≤ κ(4)

x . Hence, 1 − cγtκ(4)

x /κ
(2)

x
2 ≤ 1 − cγt. Turning

to statement (c), observe that

ψt ≤ ψt+m ⇔ cγt(2− cγtκ(4)

x /κ
(2)

x
2) ≥ cγt+m(2− cγt+mκ(4)

x /κ
(2)

x
2)

⇔ 2 (cγt − cγt+m) ≥ κ(4)

x /κ
(2)

x
2
(
(cγt)

2 − (cγt+m)2
)

⇔ 2
(
(cγt)

2 − (cγt+m)2
)−1

(cγt − cγt+m) ≥ κ(4)

x /κ
(2)

x
2

⇔ 2
[
(cγt)

−1(1 + γt+m/γt)
−1 − κ(4)

x /(2κ
(2)

x
2)
]
≥ 0. (A.93)

But (A.93) is true because (cγt)
−1 ≥ κ(4)

x /κ
(2)

x
2 and (1 + γt+m/γt)

−1 ≥ 1/2.

Suppose T > t∗ ≥ 3 and decompose the second sum in (A.90) as

T−2∑
t=1

T−t∑
s=2

ρ̃t,t+s =κ(2)

x

t
∗− 2∑
t=1

πt

T−t∑
s=2

s−1∏
j=1

ψt+j + κ(2)

x

T−2∑
t= t∗− 1

πt

T−t∑
s=2

s−1∏
j=1

ψt+j =: AT +BT , (A.94)

say. By lemma 3, there exists a finite constant C0 such that

AT ≤ C0

t
∗− 2∑
t=1

γ2t

T−t∑
s=2

s−1∏
j=1

ψt+j ≤ C0

t
∗− 2∑
t=1

γ2t

T∑
s=2

s−1∏
j=1

ψt+j , (A.95)
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while the second inequality results from the non-negativeness of ψt; cf. property (b) above. Next,

consider
s−1∏
j=1

ψt+j = K(s, t)
s−1∏
j=1

ψj with K(s, t) :=

∏s+t−1
i= s ψi∏t
l=1 ψl

. (A.96)

Since t < t∗, K(s, t) is uniformly bounded in the second argument. Similarly, the numerator of K(s, t)

is clearly finite for s < t∗ while for s ≥ t∗ the product-sequence is convergent by property (a) above.

Hence,

AT ≤ C1Ht∗(2η)
T∑

s=1

s∏
j=1

ψj with C1 := C0 max
2≤ s≤T

1≤ t≤ t∗−2

K(s, t). (A.97)

Now,

T∑
s=1

s∏
j=1

ψj =

t
∗−1∑
s=1

s∏
j=1

ψj +

t
∗−1∏
i=1

ψi

T∑
s= t∗

s∏
j= t∗

ψj , (A.98)

where, by property (a),

T∑
s= t∗

s∏
j= t∗

ψj ≤
T∑

s= t∗

Φs,t∗ = O(1) (A.99)

using (A.18) and (X.2). Therefore, AT <∞. Similarly, by lemma 3, there exists a finite constant C0

such that

BT ≤C0

T−2∑
t= t∗−1

γ2t

T−t∑
s=2

s−1∏
j=1

ψt+j

≤C0

T−2∑
t= t∗−1

γ2t

T∑
s=1

Φs+t−1,t+1.

where the second inequality follows from property (a) and (b). Because
∑T

s=1 Φs+t−1,t+1 converges

for any t ≥ t∗ − 1 as T →∞, it follows that there exists a finite constant C1 so that

BT ≤ C1HT (2η) =

{
O
(
T 2b−1) if η 6= 1/2

O (lnT ) if η = 1/2.
(A.100)

B.0.2 Step (2)

The following proof is based on corollary 24.14 which accompanies Central Limit Theorem (CLT) 24.6

in Davidson (1994). The corollary allows for asymptotically (as t → ∞) degenerate variances of the

underlying stochastic process. Here, the CLT is applied to scaled partial sums of

zt := x̃tεt, (A.101)
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which form a martingale difference sequence with respect to Vt and whose variances σ2t := κ(2)

x σ
2E
(
b2t−1

)
behave approximately like γt; see equation (a) of lemma 3. In order to apply Davidson’s (1994)

corollary, it is helpful to introduce the following array notation:

ZtT := zt/sT with s2T :=
T∑
t=1

σ2t . (A.102)

Note that ZtT inherits the martingale difference property from zt and, taking account of equation (b)

of lemma 3, s2T ∼ T b. Now, according to Davidson’s (1994) corollary if

1. there exists a positive constant array ctT so that (E|ZtT /ctT |r)1/r <∞ uniformly for some r > 2;

2. MT = o(1), where MT := max
1≤ t≤T

ctT ;

3.
∑T

i=1M
2
iT = O(1), where MiT := max

(i−1)≤ t≤ i
i=1,...,T

ctT ;

then

T∑
t=1

ZtT
d−→ N (0, 1). (A.103)

If one lets ctT := σt/sT , then, following Davidson’s (1994) argumentation surrounding his corollary,

it can be seen that condition (2) and (3) are satisfied. Specifically, note that c2tT ∼ t−ηT η−1 and thus

M2
iT ∼ (i−1)−ηT η−1; see also the proof of lemma 24.12 in Davidson (1994). Hence, it suffices to verify

that

sup
t,T

[
E (ZtT /ctT )4

]1/4
<∞. (A.104)

But,

E

(
ZtT
ctT

)4

∼
E
(
z4t
)

γ2t
= κ(4)

x κ
(4)

ε

E
(
b4t−1

)
γ2t

, (A.105)

which is, by lemma 3, equation (a), finite. The claim follows upon noting that

T∑
t=1

ZtT =

(
1

T b

T∑
t=1

σ2t

)−1/2 T∑
t=1

x̃tεt (A.106)

and, as stated in equation (b) of lemma 3

lim
T →∞

1

T b

T∑
t=1

σ2t =
σ4

2cb
. (A.107)
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C Proof of proposition 2.3

Proof. Define ω := β/(β − 1) and note that the actual law of motion can be rewritten as

yt = βbt−1xt + δxt + εt

= αxt + ω xth(bt−1) + εt, (A.108)

where δ = α(1 − β) and the definition of h(b) = −c(b − α) (cf. equation (A.66)) has been used. In

order to proceed further, it is helpful to introduce the following notation for suitably scaled partial

sums

uT :=T −1/2
T∑
t=1

ut, (A.109)

HT :=T −1/2
T∑
t=1

H(bt−1, vt), (A.110)

mT :=T −1
T∑
t=1

x2t . (A.111)

Recall for convenience the definition of the map b 7→ H(b, vt)

H(b, vt) = h(b)x∗2
t + ut with ut = x∗

tεt/
√
κ(2)
x ; (A.112)

cf. equation (A.65). Taking account of (27) and the representation (A.108), it follows that

T 1/2(α̂− α) = (κ(2)

x /mT )T −1/2
T∑
t=1

ytxt − αx2t
κ(2)
x

= (κ(2)

x /mT )T −1/2
T∑
t=1

(ω x∗2
t h(bt−1) + ut) = (κ(2)

x /mT )
[
ωHT + c−1uT

]
, (A.113)

where the last equality makes use of (A.65). The scaled average uT converges in distribution to a

mean-zero Gaussian random variable with variance τ2 = σ2/κ(2)

x while (κ(2)

x /mT ) = 1 with probability

one by the CLT and the the strong LLN for i.i.d. random variables, respectively. It thus remains

to be shown that HT is asymptotically negligible. Before doing so, recall (A.65) and note that the

individual summands of the scaled partial sum HT can be rewritten as

H(at−1, vt) = (ut − cb
∗
t−1) + et, (A.114)

where et = c(1− x∗2
t )b∗t−1. Henceforth, write Ht := H(bt−1, vt) for notational ease.

Negligibility of HT . Using the recursive representation (A.5) of b∗t , it follows that

1√
T

T∑
t=1

(ut − cb
∗
t−1) =uT −

c√
T

(
b
∗
0 +

T−1∑
t=1

b
∗
t

)

=uT − cǔT − c

{
ěT −

ěT + ǔT√
T

+
b∗0√
T

[
1 +

T−1∑
t=1

Φt,1

]}
, (A.115)
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where žT := T−1/2
∑T

t=1 žt for z ∈ {ě, ǔ}; and the second equality results from

b
∗
0 +

T−1∑
t=1

b
∗
t = b

∗
0

(
1 +

T−1∑
t=1

Φt,1

)
+

T∑
t=1

ǔt +
T∑
t=1

ět − (ěT + ǔT ). (A.116)

Taking (A.114) into account it thus follows that

HT = (uT − cǔT ) + (eT − cěT ) +
c√
T

{
(ěT + ǔT )− b∗0

[
1 +

T−1∑
t=1

Φt,1

]}
=:H

(u)
T +H

(e)
T +H

(x)
T , (A.117)

say. Begin with H
(u)
T and note that E

(
H

(u)
T

)
= 0, while

var
(
H

(u)
T

)
= E

(
u2T
)

+ c2E
(
ǔ2T
)
− 2cE (ǔT uT ) . (A.118)

Now, equation (A.73) in together with lemma 2 implies that

E
(
ǔ2T
)

=
1

T

[
T∑
t=1

E
(
ǔ2t
)

+ 2
T∑
t=2

t−1∑
s=1

E (ǔtǔs)

]
= τ2

(
φ̄ii + 2φ̄iii

)
. (A.119)

Next, from

E (ǔtus) =

{
τ2γs,t if s ≤ t
0 otherwise,

(A.120)

it can be seen that

E (ǔT uT ) =
1

T

T∑
s,t=1

E (ǔtus) =
τ2

T

T∑
t=1

t∑
s=1

γs,t = τ2φ̄i. (A.121)

Consequently, in conjunction with lemma 2, it follows that

var
(
H

(u)
T

)
= τ2

[
1 + c2

(
φ̄ii + 2φ̄iii

)
− 2cφ̄i

]
= o(1) (A.122)

and, therefore, H
(u)
T = op(1). Turning to H

(e)
T note that E

(
H

(e)
T

)
= 0, while

var
(
H

(e)
T

)
= E

(
e2T
)

+ c2E
(
ě2T
)
− 2cE (ěT eT ) . (A.123)

Equation (A.10) and lemma 3 ensure the existence of a finite constant C such that

E
(
e2T
)

=
1

T

T∑
t=1

E
(
e2t
)
≤ CHT (η)

T
= o(1), (A.124)
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where HT (η) denotes the generalized harmonic number (cf. equation (A.16)). Furthermore, by equa-

tion (A.75)

E
(
ě2T
)

=
1

T

[
T∑
t=1

E
(
ě2t
)

+ 2
T∑
t=2

t−1∑
k=1

E (ětěk)

]

=
1

T

[
T∑
t=1

t∑
k=1

γk,tσ
2(ek) + 2

T∑
t=2

t−1∑
k=1

k∑
s=1

σ2(ek)γs,tγs,k

]
= o(1), (A.125)

by lemma 2 and Toeplitz’s lemma. Similarly, since

E (ětes) =

{
σ(es)

2γs,t if s ≤ t
0 otherwise,

(A.126)

it follows from lemma 2 and Toeplitz’s that

E (ěT eT ) =
1

T

T∑
s,t=1

E (ětes) =
1

T

T∑
t=1

t∑
s=1

σ(es)
2γs,t = o(1). (A.127)

Therefore, H
(e)
T = op(1). H

(x)
T = op(1) follows imediately.

D Proof of proposition 2.1

To begin with, let us restate here for convenience the definition of the regressor second moment matrix

MT =
∑T

t=1wtw
′
t with wt = (xtbt−1, xt)

′; cf. equation (9). The scaled deviation of the joint OLS

estimator (8) in deviation from λ can then be written as

T b/2(λ̂− λ) = T bM−1T
1

T b/2

T∑
t=1

wtεt =
T 1+b

detMT

(
QT /T

T b/2

T∑
t=1

wtεt

)
, (A.128)

using that M−1T = QT /detMT , with

QT :=


T∑
t=1

x2t −
T∑
t=1

x2t bt−1

−
T∑
t=1

x2t bt−1

T∑
t=1

(xtbt−1)
2

 (A.129)

and

detMT :=

T∑
t=1

x2t

T∑
t=1

(xtbt−1)
2 −

(
T∑
t=1

x2t bt−1

)2

. (A.130)
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The proof is based on the following three steps

(1) plim
T →∞

detMT

T 1+b
= σ2κ(2)

x γ/(2cb)

(2) plim
T →∞

QT
T

= κ(2)

x

[
1 −α
−α α2

]

(3)
QT /T

T b/2

T∑
t=1

wtεt
d−→ N

(
0,
κ(2)

x
2γσ4

2cb

[
1 −α
−α α2

])
.

Step (1). Recall the definitions of x̃t = xtb
∗
t−1 and mT = T−1

∑T
t=1 x

2
t , where the latter expression

equals κ(2)

x with probability one by the strong LLN for i.i.d. random variables. Now, with some

rearrangement, it is seen that

detMT

T 1+b
=mT

 1

T b

T∑
t=1

x̃2t −m−1T

(
1

T (1+b)/2

T∑
t=1

x2t b
∗
t−1

)2
 . (A.131)

The following is repeatedly used: Let assumption 1, 2 and 3A hold. Then,

1

T (1+b)/2

T∑
t=1

x2t b
∗
t−1 = Op

(
1

T b/2

)
. (A-D.1)

Proof of (A-D.1). From equation (A.5) one deduces that

1

T (1+b)/2

T∑
t=1

x2t b
∗
t−1 =

b∗0
T (1+b)/2

T∑
t=1

x2tΦt−1,1 +
1

T (1+b)/2

T∑
t=1

x2t ǔt−1 +
1

T (1+b)/2

T∑
t=1

x2t ět−1

=:AT +BT + CT , (A.132)

say. It will be shown that the three terms on the right-hand side of (A.132) are asymptotically

negligible. Start by considering At. Assumption 3A in conjunction with (A.18) and (X.3) yields by the

integral comparison test that E|AT |= O
(
T−(1+b)/2

)
. Furthermore, by Cauchy-Schwarz’s inequality,

‖AT ‖22 =
κ(2)

b

T 1+b

T∑
t, s=1

E(x2tx
2
s)Φt−1,1Φs−1,1 ≤

κ(2)

b κ
(4)

x

T 1+b

(
T∑
t=1

Φt−1,1

)2

= O

(
1

T 1+b

)
, (A.133)

where the approximation of the majorant side of the above display uses again (A.18) and (X.3). Hence,

by the weak LLN, AT = Op(T
−b) (note that (1 + b)/2 > b). Turning to the second term, observe that

BT =
κ(2)

x

T (1+b)/2

T∑
t=1

ǔt−1 +
κ(2)

x

T (1+b)/2

T∑
t=1

(x∗2
t − 1)ǔt−1 =: B(1)

T +B(2)

T , (A.134)
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say, where both expressions on the right-hand side have zero mean. Now, taking account of (A.73), it

follows

∥∥B(1)

T

∥∥2
2

=
κ(2)

x
2

T 1+b

T∑
t=1

E(ǔ2t ) +
2κ(2)

x
2

T 1+b

T∑
t=2

t−1∑
s=1

E(ǔtǔs)

=
(τκ(2)

x )2

T 1+b

T∑
t=1

φiit +
2(τκ(2)

x )2

T 1+b

T∑
t=2

φiiit = O

(
1

T

)
+O

(
1

T b

)
= O

(
1

T b

)
, (A.135)

where the order of approximation uses part (b) and (c) of lemma 2. Next, by construction and

assumption 2, the summands of B(2)

T are uncorrelated so that

∥∥B(2)

T

∥∥2
2

=
κ(2)

x
2

T 1+b

T∑
t=1

E
(
(x∗
t − 1)2ǔ2t

)
=
τ2(κ(4)

x − κ(2)

x
2)

T 1+b

T∑
t=1

φiit = O

(
1

T

)
. (A.136)

Consequently, BT = Op(T
−b/2). Next, decompose CT similar to BT as

CT =
κ(2)

x

T (1+b)/2

T∑
t=1

ět−1 +
κ(2)

x

T (1+b)/2

T∑
t=1

(x∗2
t − 1)ět−1 =: C(1)

T + C(2)

T , (A.137)

and note that both terms on the right-hand side are mean zero by construction. Hence, for some finite

constant C0 > 0

∥∥C(1)

T

∥∥2
2

=
κ(2)

x
2

T 1+b

T∑
t=1

t∑
k=1

γ2k,tσ
2(ek) +

2κ(2)

x
2

T 1+b

T∑
t=2

t−1∑
s=1

s∑
k=1

γk,tγk,sσ
2(ek)

≤C0

(
1

T 1+b

T∑
t=1

t∑
k=1

γ2k,tγk +
1

T 1+b

T∑
t=2

t−1∑
s=2

s∑
k=1

γk,tγk,sγk

)
= o

(
1

T b

)
, (A.138)

where the first equality uses (A.10), while the inequality is due to equation (a) of lemma 3. The size

o
(
1/T b

)
results from lemma 2 and (X.4). Analogous to B(2)

T , it is seen that

∥∥C(2)

T

∥∥2
2
≤ C1

T 1+b

T∑
t=1

t∑
k=1

γkγ
2
k,t = O

(
1

T 1+η

)
, (A.139)

for some finite constant C1 > 0. This completes the proof of (A-D.1).

Now, by step (1) of appendix B,

1

T b

T∑
t=1

x̃2t = σ2γ/(2cb) + op(1).

Consequently, taking (A-D.1), (A.131) and the almost sure convergence of mT into account,

detMT

T 1+b
=
κ(2)

x

T b

T∑
t=1

x̃2t +Op

(
1

T b

)
=
κ(2)

x σ
2γ

2cb
+ op(1). (A.140)
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This completes the proof of step (1).

Step (2). Observe that

1

T

T∑
t=1

x2t bt−1 =αmT +
1

T

T∑
t=1

x2t b
∗
t−1 (A.141)

1

T

T∑
t=1

(xtbt−1)
2 =α2mT +

2α

T

T∑
t=1

x2t b
∗
t−1 +

1

T

T∑
t=1

x̃2t (A.142)

implies,

QT /T =mT

[
1 −α
−α α2

]
+


0 − 1

T

T∑
t=1

x2t b
∗
t−1

− 1

T

T∑
t=1

x2t b
∗
t−1

2α

T

T∑
t=1

x2t b
∗
t−1 +

1

T

T∑
t=1

x̃2t

 .

In view of the almost sure convergence of mT , the claim follows because the elements of the second

matrix are op(1) by the same arguments used in step (1). Since the entries of MT /T are found in

rearranged order in QT /T , the convergence in probability of MT /T mentioned in the main text is

readily deduced from the above.

Step (3). The entries of the 2× 1 vector

QT /T

T b/2

T∑
t=1

wtεt (A.143)

are respectively given by

1

T

T∑
t=1

x2t
1

T b/2

T∑
t=1

bt−1xtεt −
1

T

T∑
t=1

x2t bt−1
1

T b/2

T∑
t=1

xtεt (A.144)

1

T

T∑
t=1

(xtbt−1)
2 1

T b/2

T∑
t=1

xtεt −
1

T

T∑
t=1

x2t bt−1
1

T b/2

T∑
t=1

bt−1xtεt. (A.145)

Note that (A.144) and (A.145) can be rewritten as

mT
T b/2

T∑
t=1

x̃tεt − uT

(
κ(2)

x

T (1+b)/2

T∑
t=1

x2t b
∗
t−1

)
(A.146)

− αmT
T b/2

T∑
t=1

x̃tεt + uT

(
ακ(2)

x

T (1+b)/2

T∑
t=1

x2t b
∗
t−1 +

κ(2)

x

T (1+b)/2

T∑
t=1

x̃2t

)
− 1

T

T∑
t=1

x2t b
∗
t−1

1

T b/2

T∑
t=1

x̃tεt (A.147)
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so that

QT /T

T b/2

T∑
t=1

wtεt =

[
1

−α

]
mT
T b/2

T∑
t=1

x̃tεt

−

[
1

−α

](
κ(2)

x

T (1+b)/2

T∑
t=1

x2t b
∗
t−1

)
uT

+

[
0

1

]{(
κ(2)

x

T (1+b)/2

T∑
t=1

x̃2t

)
uT −

(
1

T

T∑
t=1

x2t b
∗
t−1

)
1

T b/2

T∑
t=1

x̃tεt

}

=

[
1

−α

]
mT

T b/2

T∑
t=1

x̃tεt +Op

(
1

T b/2

)
+Op

(
1

T η/2

)
+Op

(
1

T 1/2

)
, (A.148)

where again (A-D.1) and step (1) of appendix B together with uT = T−1/2
∑T

t=1 ut = Op(1) (cf.

(A.109)) has been used in order to obtain the size of the remainder terms. Hence, it follows that

(A.143) is asymptotically equal to[
1

−α

]
κ(2)

x

T b/2

T∑
t=1

x̃tεt
d−→ N

(
0,
κ(2)

x
2γσ4

2cb

[
1 −α
−α α2

])
. (A.149)

The limiting distribution is a direct consequence of step (2) of appendix B. Using step (1) of this proof

in conjunction with Slutzky’s theorem gives the stated result.

D.0.3 Remarks

Recall

σ̂ 2 =
1

T

T∑
t=1

ε̂ 2t and ε̂t = yt − λ̂′wt,

and observe that

σ̂ 2 =
1

T

T∑
t=1

ε2t −
1

T

(
1

T b/2

T∑
t=1

wtεt

)′ (
T bM−1T

)( 1

T b/2

T∑
t=1

wtεt

)
= σ2 + op(1),

using the previous results and applying the LLN to the first term. The consistency of T bVT for V

mentioned in proposition 2.1 follows therefore immediately from step (1) and (2) above. Similarly, the

asymptotic normality of the t statistics for β and δ mentioned in section 2.3 can be easily established

with the help of the previous results be recognizing that

T bm11 σ̂ 2 =
mT σ̂

2

detMT /T 1+b
=

2cb

γ
+ op(1) (A.150)

T bm22 σ̂ 2 =
1

T

T∑
t=1

(xtbt−1)
2 σ̂ 2

detMT /T 1+b
= α2 2cb

γ
+ op(1). (A.151)
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E Proof of corollary 2.1

Begin with the proof of (17) and note that the definition in equation (16) of λ̂α yields

λ̂α − α =
λ̂δ − δ + α(λ̂β − β)

1− λ̂β
. (A.152)

Now, taking (A.129) and (A.130) into account, it is seen that

λ̂β − β =
1

detWT

(
T∑
t=1

x2t

T∑
t=1

bt−1xtεt −
T∑
t=1

x2t bt−1

T∑
t=1

xtεt

)
(A.153)

λ̂δ − δ =
1

detWT

(
T∑
t=1

(xtbt−1)
2

T∑
t=1

xtεt −
T∑
t=1

x2t bt−1

T∑
t=1

bt−1xtεt

)
. (A.154)

Consequently, one gets with a little rearrangement,

T 1/2
(
λ̂α − α

)
=

(detWT /T
1+b)−1

1− λ̂β

1

T 1/2

T∑
t=1

bt−1xtεt

(
α

T b

T∑
t=1

x2t −
1

T b

T∑
t=1

x2t bt−1

)

+
(detWT /T

1+b)−1

1− λ̂β

1

T 1/2

T∑
t=1

xtεt

(
1

T b

T∑
t=1

(xtbt−1)
2 − α

T b

T∑
t=1

x2t bt−1

)

=
uT

1− λ̂β

(
κ(2)

x (detWT /T
1+b)−1

T b

T∑
t=1

x̃2t

)

− (detWT /T
1+b)−1

1− λ̂β

(
1

T (1+b)/2

T∑
t=1

x2t b
∗
t−1

)(
1

T b/2

T∑
t=1

x̃tεt

)
. (A.155)

By the CLT for i.i.d. random variables, uT is asymptotically normal with mean zero and variance

τ2; see also the discussion following the definition of uT in (A.109). Taking step (1) of appendix B

and D together with the consistency of λ̂β into account, one deduces from Slutzky’s theorem and the

aforementioned CLT that the first expression after the second equality is asymptotically normal with

mean zero and variance (τ/c)2. The the second summand after the second equality is op(1) due to

(A-D.1) and the second step of appendix B.

The limiting distribution of T 1/2(ι′αλ̂− α) is now easily established once one notes that

T 1/2(ι′αλ̂− α) =uT

(
κ(2)

x (detWT /T
1+b)−1

T b

T∑
t=1

x̃2t

)

− (detWT /T
1+b)−1

(
1

T (1+b)/2

T∑
t=1

x2t b
∗
t−1

)(
1

T b/2

T∑
t=1

x̃tεt

)
. (A.156)
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F The general algorithm

This section extends the conclusions of the previous analysis to the general algorithm (5) without

restricting rt provided the conditions of assumption 1, 2 and 3 are met. For future reference, define

the Lp−norm ‖X‖p := (E|X|p)1/p for any random variable X with E|X|p< ∞ and real p > 0. To

begin with, a useful result on the recursion rt of the learning scheme (5) is established:

Lemma F.1. Suppose assumption 1 and 2 hold. If, in addition, κ
(2s)
x <∞, then

‖rt − κ(2)

x ‖s = O(γ
1−1/s
t ) for s > 0.

Proof. In view of (A.6) and (A.7) define Φ̃t,1 =
∏t
i= k(1 − γi) with Φ̃t,t+1 := 1 and γ̃k,t := Φ̃t,k+1γk.

Then,

r∗t − 1 = (r∗0 − 1)Φ̃t,1 +

t∑
k=1

γ̃k,t
(
x∗2
k − 1

)
, (A.157)

where it has been used that
∑t

k=1 γ̃k,t + Φ̃t,1 = 1. For simplicity, assume γ = 1, then Φ̃t,1 = 0 and, by

construction, E(r∗t − 1) = 0. The independence of (xt)t≥ 1 implies

‖r∗t − 1‖ss =
t∑

k1,..., ks=1

γ̃k1,t · · · γ̃ks,t
∥∥(x∗2

k1 − 1
)
· · ·
(
x∗2
ks − 1

)∥∥ =
∥∥x∗2

t − 1
∥∥s
s

t∑
k=1

(γ̃k,t)
s , (A.158)

where, by the cr inequality,
∥∥x∗2

t − 1
∥∥s
s
≤ 2s−1(1+κ

(2s)
x ) <∞. The claim follows by equation (X.4).

Remark. For r = 2, convergence in mean square and thus convergence in probability follows. Because

rt is a partial sum of the independent sequence r0, x1, . . . , xt, convergence is almost surely, see e.g.

Davidson (1994, theorem 20.9). In view of the almost sure convergence of rt, there exists a time t0
(random) after which the recursions bt and at coincide with probability one.

First, recall for convenience from (A.1) and (A.2) the simplified algorithm which results upon imposing

assumption 3A, i.e.

b
∗
t = b

∗
t−1 + γtH(bt−1, vt)

= b
∗
t−1(1− cγt) + γtut + γtet

= a∗
0Φt,1 + ǔt + ět. (A.159)

where definition of the map b 7→ H(b, vt) is given by (A.65); et = c(1 − x∗2
t )b∗t−1, b

∗
t = bt − α and

b0 = a0. On the other hand, the general algorithm is seen to be given by

a∗
t = a∗

t−1 + γtH(at−1, vt) + γt(1/r
∗
t − 1)H(at−1, vt)

= a∗
t−1(1− cγt) + γtut + γtξ

(1)

t + γtξ
(2)

t

= a∗
0Φt,1 + ǔt + ξ̌(1)t + ξ̌(2)t , (A.160)
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where

ξ(1)t := c(1− x∗2
t )a∗

t−1 (A.161)

ξ(2)t := (1/r∗t − 1)H(at−1, vt). (A.162)

The strengthening of the conditions of assumption 3 relative to assumption 3A is due to the need of

bounding the fourth moment of ξ(2)t . As shown by lemma F.2, the rth moment of ξ(2)t inherits the

properties of the 2rth moment of rt − κ(2)

x under assumption 3.

Lemma F.2. Let assumption 1, 2 and 3 hold, then∥∥ξ(2)t ∥∥r = O(γ
1−1/(2r)
t ) for r ∈ (0, 4].

Proof. For notational ease, write Ht := H(at−1, vt). Developing f(x) := 1/x − 1 in a mean-value

expansion around 1 yields

ξ(2)t = f(r∗t )Ht = −(r∗t − 1)Htλ
−2
t , (A.163)

where the mean-value λt (random) is on the line segment connecting r∗t and 1. Cauchy-Schwarz’s

inequality yields furthermore ∥∥ξ(2)t ∥∥r ≤ ‖r∗t − 1‖2r
∥∥Htλ

−2
t

∥∥
2r
. (A.164)

By part (a) of assumption 3, λt is bounded a.s., while part (b) ensures that ‖Ht‖2r < ∞, thereby

showing that the previous display is of size O(‖r∗t − 1‖2r). Taking account of lemma F.1 thus completes

the proof.

Remark. From Minkowski’s inequality one gets

∥∥ξ̌(2)t ∥∥r ≤ t∑
k=1

γk,t
∥∥ξ(2)k ∥∥r . (A.165)

Hence, it follows as a corollary (using the previous lemma and equation (X.4)) that∥∥ξ̌(2)t ∥∥r = O(γ
1−1/(2r)
t ).

The key result of this section is summarized by the following proposition.

Proposition F.1. Let assumption 1, 2 and 3 hold, then

(1)
1

T b/2

T∑
t=1

xtεt
(
a∗
t−1 − b

∗
t−1
)

= op(1)

(2)
1

T b

T∑
t=1

(
a∗2
t−1 − b

∗2
t−1
)

= op(1).
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Remark. In order to see how this proposition can be applied, consider the proof of proposition 2.2

given in appendix B. Let x̃t := xta
∗
t−1 and note that

1

T b/2

T∑
t=1

x̃tεt =
1

T b/2

T∑
t=1

xtb
∗
t−1εt +

1

T b/2

T∑
t=1

xtεt(a
∗
t−1 − b

∗
t−1)

1

T b

T∑
t=1

x̃2t =
1

T b

T∑
t=1

(xtb
∗
t−1)

2 +
1

T b

T∑
t=1

x2t (a
∗2
t−1 − b

∗2
t−1).

Since the leading terms of the above display are treated in appendix B and the remainder terms have

been shown to be op(1), the conclusion of proposition 2.2 remains to hold under the general algorithm

(5) without constraining rt. Similar arguments can be applied to the results contained in appendices

C, D and E in order to show that the corresponding results extend to the general algorithm (5) given

assumptions 1, 2 and 3 are met.

Proof of part (1). Note that the summands

zt := xtεt
(
a∗
t−1 − b

∗
t−1
)

form a martingale difference sequence with respect to Vt (cf. equation (A.68)) so that∥∥∥∥∥ 1

T b/2

T∑
t=1

zt

∥∥∥∥∥
2

2

=
1

T b

T∑
t=1

‖zt‖22 . (A.166)

It will be shown that ‖zt‖22 = O(γ
3/2
t ). First, note that the definitions of at and bt imply that

‖zt‖22 = κ(2)

x σ
2
∥∥a∗

t−1 − b
∗
t−1
∥∥2

2
= κ(2)

x σ
2
∥∥ξ̌(1)t − ět + ξ̌(2)t

∥∥2
2
≤ 2κ(2)

x σ
2
(∥∥ξ̌(1)t − ět∥∥22 +

∥∥ξ̌(2)t ∥∥22 ).
Now,

∥∥ξ̌(1)t − ět∥∥22 = c2

∥∥∥∥∥
t∑

k=1

γk,t
(
1− x∗

k
2
) (
a∗
k−1 − b

∗
k−1
)∥∥∥∥∥

2

2

= c2
(
κ(4)

x /κ
(2)

x
2 − 1

) t∑
k=1

γ2k,t
∥∥a∗

k−1 − b
∗
k−1
∥∥2

2

≤ c2
(
κ(4)

x /κ
(2)

x
2 − 1

) t∑
k=1

γ2k,t

(∥∥a∗
k−1
∥∥2

2
+
∥∥b∗k−1∥∥22)

≤ 2C0 c
2
(
κ(4)

x /κ
(2)

x
2 − 1

) t∑
k=1

γ2k,tγk = O(γ2t ), (A.167)

where the first equality follows from assumption 2, the final inequality uses that E
(
a∗2
t

)
= O(γt) (cf.

Benveniste et al. (1990, theorem 24)) and the last equality is due to equation (X.4). By the remark
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surrounding lemma F.2,
∥∥ξ̌(2)t ∥∥2

= O(γ
3/2
t ) which proves ‖zt‖22 = O(γ

3/2
t ). Hence,

∑T
t=1 ‖zt‖

2
2

=

O
(
T 1−3/2η) so that

1

T b/2

T∑
t=1

zt = Op

(
T−η/4

)
, (A.168)

thereby completing the proof of part (1).

Proof of part (2). Use the definitions of at and bt to write

a∗2
t − b

∗
t
2 =

(
ξ̌(1)t

2 − ě2t
)

+ 2
(
ξ̌(1)t − ět

)
(b

∗
t − ět) + ξ̌(2)t

(
2at − ξ̌(2)t

)
=:A(1)

t + 2A(2)

t +A(3)

t , (A.169)

say. We seek to establish

1

T b

T∑
t=1

A(`)

t = op(1) (A.170)

by first showing that E|T−b
∑T

t=1A
(`)

t | = o(1) for ` = 1, 2, 3. If, in addition,
∥∥∥∑T

t=1A
(`)

t

∥∥∥2
2

= o(T 2b),

the claim follows from the weak LLN. Making use of Minkowski’s inequality,∥∥∥∥∥
T∑
t=1

A(`)

t

∥∥∥∥∥
2

≤
T∑
t=1

∥∥A(`)

t

∥∥
2
, (A.171)

it is seen that a sufficient condition for (A.170) is that both, E|A(`)

t | and
∥∥A(`)

t

∥∥
2
, are of size O(γαt ) for

some α > 1 and ` = 1, 2, 3.

Begin with A(1)

t and note that by assumption 2,

E|A(1)

t | = c2
t∑

s,k=1

γk,tγs,tE|(1− x∗
k
2)(1− x∗

s
2)(a∗

k−1a
∗
s−1 − b∗k−1b∗s−1)|

= c2
(
κ(4)

x /κ
(2)

x
2 − 1

) t∑
k=1

γ2k,t

(∥∥a∗
k−1
∥∥2

2
−
∥∥b∗k−1∥∥22) . (A.172)

By Benveniste et al. (1990, theorem 24) and equation (X.4), the final display is seen to be of size

O(γ2t ). Furthermore,

∥∥A(1)

t

∥∥2
2

= c4
t∑

k1,..., k4 =1

γ̃k1,t · · · γ̃k4,t
∥∥∥ (x∗2

k1 − 1
)
· · ·
(
x∗2
k4 − 1

)
×
(
a∗
k1−1a

∗
k2−1 − b

∗
k1−1b

∗
k2−1

) (
a∗
k3−1a

∗
k4−1 − b

∗
k3−1b

∗
k4−1

) ∥∥∥
= c4

∥∥x∗
t
2 − 1

∥∥4
4

t∑
k=1

γ4k,t
∥∥a∗2

k−1 − b
∗2
k−1
∥∥2

2

≤ (2c)4
(
1 + κ(8)

x /κ
(2)

x
4
) t∑
k=1

γ4k,t

(∥∥a∗
k−1
∥∥4

4
+
∥∥b∗k−1∥∥44) ,
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where the second equality uses assumption 2 while the inequality is due to the cr inequality. By part

(a) of assumption 3,
∥∥a∗

k−1
∥∥4

4
+
∥∥b∗k−1∥∥44 < ∞ so that in conjunction with equation (X.4) it follows

that
∥∥A(1)

t

∥∥2
2

= O(γ3t ).

Turning to A(2)

t , observe first that Cauchy-Schwarz’s together with the triangle inequality yield

E|A(2)

t | ≤
∥∥ξ̌(1)t − ět∥∥2

‖b∗t − ět‖2 ≤
∥∥ξ̌(1)t − ět∥∥2

(‖ǔt‖2 + ‖ǎ0t‖2) . (A.173)

Because ‖ǔt‖22 = τ2
∑t

k=1 γ
2
k,t = O(γt) and ‖ǎ0t‖22 = O(e−t

b
) (cf. equation (??)), it follows from equa-

tion (A.167) that E|A(2)

t | = O(γ
3/2
t ). Again, by Cauchy-Schwarz’s inequality,

∥∥A(2)

t

∥∥
2
≤
∥∥ξ̌(1)t − ět∥∥4

‖b∗t − ět‖4.
Now,

∥∥ξ̌(1)t − ět∥∥44 = c4
t∑

k1,..., k4 =1

γ̃k1,t · · · γ̃k4,t
∥∥∥ (1− x∗2

k1

)
· · ·
(
1− x∗2

kr

)
×
(
a∗
k1−1 − b

∗
k1−1

)
· · ·
(
a∗
k4−1 − b

∗
k4−1

) ∥∥∥
= c4

∥∥1− x∗
t
2
∥∥4

4

t∑
k=1

γ4k,t
∥∥a∗

k−1 − b∗k−1
∥∥4

4

≤ (2c)4(1 + κ(8)

x /κ
(2)

x
4)

t∑
k=1

γ4k,t

(∥∥a∗
k−1
∥∥4

4
+
∥∥b∗k−1∥∥44) (A.174)

using assumption 2 together with the cr inequality. Because, by part (a) of assumption 3,
∥∥a∗

k−1
∥∥4

4
+∥∥b∗k−1∥∥44 <∞ the previous display is seen to be of size O(γ3t ). The claim follows because ‖b∗t − ět‖4 ≤

‖ǎ0t‖4 + ‖ǔt‖4 = O(γ
3/4
t ).

Finally, consider A(3)

t . By Cauchy-Schwarz’s inequality, the definition of at and bt together with lemma

F.2, one gets

E|A(3)

t | ≤
∥∥ξ̌(2)t ∥∥2

(
2 ‖at‖2 +

∥∥ξ̌(2)t ∥∥2

)
= O(γ

3/4
t ) (A.175)

and ∥∥A(3)

t

∥∥
2
≤
∥∥ξ̌(2)t ∥∥4

(
2 ‖at‖4 +

∥∥ξ̌(2)t ∥∥4

)
= O(γ

7/8
t ). (A.176)

This completes the proof of part (2).

G Proof of remark 2.2

Throughout assumption 2 and 3A are assumed to hold. Further, suppose assumption 1 holds with

η = 0, i.e. γt = γ for all t.
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A recursive representation for the simplified recursion (A.1) similar to (A.2) is then readily derived,

i.e.

b
∗
t = (1− θ)tb∗0 + γ

t−1∑
i=0

(1− θ)iet−i + γ
t−1∑
i=0

(1− θ)iut−i, (A.177)

where θ := cγ while et and ut have been defined in (A.3). Let

ũt :=
t−1∑
i=0

(1− θ)iut−i (A.178)

ẽt :=
t−1∑
i=0

(1− θ)iet−i, (A.179)

so that (A.177) can be written as

b
∗
t = (1− θ)tb∗0 + γũt + γẽt. (A.180)

Lemma G.1. If η = 0, then for finite and non-zero constants C1 and C2,

E
(
b
∗2
t

)
≤C1γ

E
(
b
∗4
t

)
≤C2γ

2.
(G.1a)

Set ν := lim
t→∞

E
(
b∗2t
)
, then

ν =
γτ2

2c
+O

(
γ2
)
. (G.1b)

Proof of lemma G.1. (G.1a) follows from part (a) of lemma 3. Now, by lemma 1 and equation (A.177),

E
(
b
∗2
t

)
= (1− θ)2tκ(2)

b + θ2
(
κ(4)

x /κ
(2)

x
2 − 1

) t−1∑
i=0

(1− θ)2iE
(
b
∗2
t−1−i

)
+ (γτ)2

t−1∑
i=0

(1− θ)2i. (A.181)

The three terms on the right-hand side of (A.181) will be subsequently investigated: The first term is

asymptotically negligible as lim
t→∞

(1− θ)2t = 0 and κ(2)

b <∞. Turning to the second term, note that

∞∑
i=0

(1− θ)2i =
1

θ(2− θ)
. (A.182)

By (G.1a), E
(
b∗2t
)

= O(γ) while the definition of θ implies θ/(2 − θ) ≤ γ. Hence, the second term

behaves asymptotically as O(γ2). Finally, consider the third term

lim
t→∞

γ2τ2
t−1∑
i=0

(1− θ)2i = ν +
(γτ)2

2(2− θ)
= ν +O(γ2). (A.183)

This completes the proof of (G.1b).
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Remark G.2. Note that part (G.1b) of the previous lemma implies that

lim
γT

1

γT

T∑
t=1

E
(
b
∗2
t

)
=
τ2

2c
, (A.184)

where the limit is taken as γ ↘ 0 such that γT → ∞.

Lemma G.3. Assume α to be known and set x̃t = b∗t−1xt. Henceforth, redefine bt = b∗t for notational

simplicity. Let assumption 1,2 and 3A hold and set

ρ̃t,t+m := cov
(
x̃2t , x̃

2
t+m

)
.

Then

ρ̃t,t+m =κ(2)

x πtψ
m−1,

where

πt := E
(
a4t−1

)
ψ̃ − E

(
a2t−1

) [
κ(2)

x E
(
a2t−1

)
ψ − σ2γ2

(
κ(4)

x /κ
(2)

x
2 − 1

) ]
= O

(
γ2
)
,

with ψ̃ := κ(2)

x − θ
(
2κ(4)

x /κ
(2)

x − θκ(6)

x /κ
(2)

x
2
)

and ψ := 1− θ
(
2− θκ(4)

x /κ
(2)

x
2
)
.

Proof of lemma G.3. Recall from lemma 4 that

E
(
x̃2t , x̃

2
t+m

)
= E

[
b2t−1E

(
x2t b

2
t+m−1|Vt−1

) ]
κ(2)

x , (A.185)

so that

ρ̃t,t+m =κ(2)

x

{
E
[
b2t−1E

(
x2t b

2
t+m−1|Vt−1

) ]
− E

(
b2t−1

)
κ(2)

x E
(
b2t+m−1

)}
. (A.186)

If η = 0, then

E
(
a2t+m

)
= E

(
a2t+m−1

)
ψ + γ2τ2

= E(a2t )ψ
m + γ2τ2

m−1∑
i=0

ψi, (A.187)

where E(a2t ) = E
(
a2t−1

)
ψ + γ2τ2. Similarly,

E
(
x2ta

2
t+m|Vt−1

)
= E

(
x2ta

2
t |Vt−1

)
ψm + γ2σ2

m−1∑
i=0

ψi, (A.188)

where

E
(
x2ta

2
t |Vt−1

)
= a2t−1ψ̃ + γ2σ2κ(4)

x /κ
(2)

x
2. (A.189)

Therefore,

E
[
a2t−1E

(
x2ta

2
t+m|Vt−1

) ]
− E

(
a2t−1

)
κ(2)

x E
(
a2t+m

)
= πtψ

m (A.190)
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where

πt = E
[
a2t−1E

(
x2ta

2
t |Vt−1

) ]
− E

(
a2t−1

)
κ(2)

x E
(
a2t
)

= E
(
a4t−1

)
ψ̃ − E

(
a2t−1

) [
κ(2)

x E
(
a2t−1

)
ψ − σ2γ2

(
κ(4)

x /κ
(2)

x
2 − 1

)]
. (A.191)

G.1 Proposition 2.2

Proposition G.1. Suppose that assumption 1, 2 and 3A hold. Then

(γT )1/2(β̂0 − β)
d−→ N (0, 2cb) .

Proof of lemma G.1. Analogous to the proof for the case η > 0 (cf. appendix B), consider

(γT )1/2(β̂0 − β) =

(
1

γT

T∑
t=1

x̃2t

)−1
1

(γT )1/2

T∑
t=1

x̃tεt. (A.192)

The proof proceeds in two steps:

(1) plim
γT

1

γT

T∑
t=1

x̃2t = lim
γT

1

γT

T∑
t=1

E
(
x̃2t
)

= σ2/(2c)

(2)
1

(γT )1/2

T∑
t=1

x̃tεt
d−→ N

(
0, σ4/(2c)

)
,

where the respective limits are taken as γ ↘ 0 such that γT → ∞.

Step (1). By lemma G.1, it suffices to show that

var

(
T∑
t=1

x̃2t

)
=

T∑
t=1

var
(
x̃2t
)

+ 2
T−1∑
t=1

T−t∑
s=1

ρ̃t,t+s, (A.193)

where, as defined in lemma 4, ρ̃t,t+m = cov
(
x̃2t , x̃

2
t+m

)
. The first term behaves like O(Tγ2) by part

(G.1a) of lemma G.1. Turning to the second summand, suppose that γ < 2/(κ(4)

x c). Then ψ < 1 and

for some suitable C1 <∞

T−1∑
t=1

T−t∑
s=1

ρ̃t,t+s =

T−1∑
t=1

ψ̃t

T−t∑
s=1

ψs−1

≤C1γ
2
T−1∑
t=1

T−t∑
s=1

ψs−1

=C1γ
2ψ

T − ψ2(T − 1) + ψ(T − 2)

(1− ψ)2ψ
= O(Tγ2), (A.194)
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which completes step (1).

Step (2). Note that

zt := x̃tεt = bt−1xtεt (A.195)

forms a martingale difference sequence with respect to Vt. Furthermore, define ZtT := zt/sT , where

s2T :=

T∑
t=1

σ2t with σ2t := E
(
z2t
)

= σ2E
(
a2t−1

)
(A.196)

and observe that by definition of zt and ZtT ,

1

(γT )1/2

T∑
t=1

x̃tεt =

(
1

γT
s2T

)1/2 T∑
t=1

ZtT . (A.197)

Now, taking account of equation (G.1b) of lemma G.1, it is seen that

s2T /(γT )

σ4/(2c)
= 1 + o(1). (A.198)

Consequently, the claim follows if
∑T

t=1 ZtT
d→ N(0, 1). According to Davidson’s (1994) theorem 24.3,

it suffices to verify that the following to conditions hold:

1.
∑T

t=1 ZtT
p−→ 1;

2. max
1≤ t≤T

|ZtT |
p−→ 0.

By part (1), the first condition is satisfied. Using theorem 23.10 and 23.16 in Davidson (1994) together

with lemma G.1, also the second condition is seen to hold as z2t is uniformly integrable. This completes

the proof of proposition G.1.

G.2 Proposition 2.3

Next, proposition 2.3 will be shown to hold if η = 0. The recursive representation (A.177) yields with

a little rearrangement that

Ht + b
∗
0c(1− θ)t−1 =

(
ut − θ

t−1∑
i=1

ui(1− θ)t−1−i
)

+

(
et − θ

t−1∑
i=1

ei(1− θ)t−1−i
)

=: H
(u)
t +H

(e)
t for t ≥ 2, (A.199)

where H
(u)
t and H

(e)
t denote respectively the two terms in parentheses on the right hand-side of the

equality. Let H
(z)
T := T−1/2

∑T
t=2H

(z)
t for z ∈ {e, u}, then HT might be expressed as:

HT + op(1) =H
(u)
T +H

(e)
T +

H1√
T

=H
(u)
T +H

(e)
T + op(1), (A.200)
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where the op(1) term on the left-hand side follows upon noting that κ(2)

b <∞ and
∑∞

t=1(1−θ)t−1 <∞,

whereas the last equality follows directly from (A.114) taking into account that u1, e1 and a0 are

uncorrelated. The following two steps establish the asymptotic negligibility of the partial sums H
(u)
T

and H
(e)
T , both of which are mean-zero.

Negligibility of H
(u)
T . By the weak LLN, it suffices to show that

var
(
H

(u)
T

)
=

1

T

T−1∑
t=2

E

[(
H

(u)
t

)2]
+

2

T

T∑
t=2

T−t∑
m=1

E
(
H

(u)
t H

(u)
t+m

)
=: AT +BT (A.201)

approaches zero as T → ∞. It is not difficult to see that the summands of the first partial sum are

given by τ2
(

1 + θ2
∑t−1

i=1(1− θ)2(t−1−i)
)

. Since

t−1∑
i=1

(1− θ)2(t−1−i) =
1− (1− θ)2(t−1)

θ(2− θ)
→ 1

θ(2− θ)
, (A.202)

it follows from Cèsaro’s mean convergence theorem that AT → A := τ2/(1− θ/2). Hence, it remains

to establish −BT → A. Now, observe that

E
(
H

(u)
t H

(u)
t+m

)
= − θ

t+m−1∑
i=1

E(utui)(1− θ)t+m−1−i + θ2
t−1∑
i=1

t+m−1∑
j=1

E(uiuj)(1− θ)t−1−i(1− θ)t+m−1−j

= − τ2θ(1− θ)m−1 + τ2θ2
t−1∑
i=1

(1− θ)2t+m−2−2i

= τ2θ(1− θ)m−1
[
θ

t−1∑
i=1

(1− θ)2t−2i−1 − 1

]

= τ2θ(1− θ)m−1
[
θ

t−1∑
i=1

(1− θ)2i−1 − 1

]
for m > 0, (A.203)

where the last equality is due to

t−1∑
i=1

(1− θ)2i−1 =
θ2 − (1− θ)2t − 2θ + 1

θ3 − 3θ2 + 2θ

=

t−1∑
i=1

(1− θ)2t−2i−1. (A.204)

Note that the limit of the partial sum (A.204) is (1 − θ)/(θ(2 − θ)). Taking this into account, BT is

decomposed as

BT =
θ

θ − 2

2

T

T−1∑
t=2

T−t∑
m=1

(1− θ)m−1 − 2

(1− θ)(2− θ)
1

T

T−1∑
t=2

[
(1− θ)2t − (1− θ)t+T

]
, (A.205)
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where it has been used that

θ
t−1∑
i=1

(1− θ)2i−1 − 1 =
1

θ − 2
− (1− θ)2t

(1− θ)(2− θ)
(A.206)

T−t∑
m=1

(1− θ)2t+m−1 =
(1− θ)2t − (1− θ)t+T

θ
. (A.207)

As the second term on the right-hand side of (A.205) tends to zero while

1

T

T−1∑
t=2

T−t∑
m=1

(1− θ)m−1 =
θ2(T − 1)− (1− θ)T − θT + 1

Tθ2(θ − 1)
→ 1

θ
, (A.208)

it follows that −BT → A, which proves H
(u)
T = op(1).

Negligibility of H
(e)
T . Analogously to the previous part, it will be shown that

var
(
H

(e)
T

)
=

1

T

T∑
t=2

E

[(
H

(e)
t

)2]
+

2

T

T−1∑
t=2

T−t∑
m=1

E
(
H

(e)
t H

(e)
t+m

)
=: AT +BT (A.209)

tends to zero as T →∞. Mirroring the previous arguments, it is readily established that

E
(
H

(e)
t H

(e)
t+m

)
=


σ2(et) + θ2

∑t−1
i=1 σ

2(ei)(1− θ)2(t−1−i) if m = 0

θ(1− θ)m−1
[
θ
∑t−1

i=1 σ
2(ei)(1− θ)2t−2i−1 − σ2(et)

]
if m > 0,

(A.210)

where (A.10) has been used. Consequently, AT can be rewritten as:

AT = c2
(
κ(4)

x /κ
(2)

x
2 − 1

) [ 1

T

T∑
t=2

E
(
a∗
t−1

2
)

+ θ2
1

T

T∑
t=2

t−1∑
i=1

E
(
a∗
i−1

2
)

(1− θ)2(t−1−i)
]
. (A.211)

It will be shown that

AT → A := c2
(
κ(4)

x /κ
(2)

x
2 − 1

) ν

1− θ/2
, (A.212)

where ν := limt E
(
a∗
t
2
)
; cf. lemma 3. In order to see this, take account of (A.202) and let

ξit := θ(2− θ)(1− θ)2(t−1−i). (A.213)

Since lim
t→∞

ξit = 0 and lim
t→∞

∑t−1
i=1 ξit = 1, Toeplitz’s lemma and lemma 3 yield

lim
t→∞

t−1∑
i=1

E
(
a∗
i−1

2
)

(1− θ)2(t−1−i) =
1

θ(2− θ)
lim
t→∞

t−1∑
i=1

E
(
a∗
i−1

2
)
ξit =

ν

θ(2− θ)
. (A.214)

Equation (A.212) follows upon applying Cèsaro’s mean convergence theorem. Turning to BT , note

first that

T−t∑
m=1

θ(1− θ)m−1 = 1− (1− θ)T−t (A.215)
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implies

BT =
2

T

T−1∑
t=2

(
θ
t−1∑
i=1

σ2(ei)(1− θ)2t−2i−1 − σ2(et)

)(
1− (1− θ)T−t

)
=

2

T

T−1∑
t=2

θ

t−1∑
i=1

σ2(ei)(1− θ)2t−2i−1

− (1− θ)T 2

T

T−1∑
t=2

θ
t−1∑
i=1

σ2(ei)(1− θ)t−2i−1

− 2

T

T−1∑
t=2

σ2(et)

+
2

T

T−1∑
t=2

σ2(et)(1− θ)T−t =: Bi
T −Bii

T −Biii
T +Biv

T . (A.216)

Begin with Bi
T and define ξit := (1− θ)2t−2i−2θ(2− θ). Taking account of (A.204), it is seen that that

lim
t→∞

ξit = 0 while lim
t→∞

∑t−1
i=1 ξit = 1. Hence, by Toeplitz’s lemma and Cèsaro’s mean convergence

theorem

Bi
T =

(
1− θ
2− θ

)
2

T

T−1∑
t=2

t−1∑
i=1

σ2(ei)ξi,t → c2 (κ(4)

x − 1) 2ν

(
1− θ
2− θ

)
. (A.217)

Next, by lemma 3, there exists a finite constant C such that

Bii
T ≤C(1− θ)T 2

T

T−1∑
t=2

θ

t−1∑
i=1

(1− θ)t−2i−1

=C(1− θ)T 2

T

T−1∑
t=2

O
(
(1− θ)−t

)
=C(1− θ)T 2

T
O
(
(1− θ)−T

)
= O(1/T ). (A.218)

By lemma 3, Biii
T → 2c2 (κ(4)

x − 1) ν while, similar to Biii
T , Biv

T = O(1/T ). Hence, upon collecting terms,

it is seen that −BT → A, which proves that H
(e)
T = op(1). This completes the proof for the constant

gain case.

G.3 Proposition 2.1

The following equivalent of proposition 2.1 will be established:

Proposition G.2. Suppose assumption 1 with η = 0 so that γ2T 6→ 0, assumption 2 and 3A hold.

Then

(γT )1/2(λ̂− λ)
d−→ N

(
0, 2c

[
1 −α
−α α2

])
.
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Proof of proposition G.2. The following closely mirrors the proof of proposition 2.1 contained in

appendix D. Specifically, consider

(γT )1/2(λ̂− λ) = γTW−1T

1

(γT )1/2

T∑
t=1

wtεt =
γT 2

detWT

(
QT /T

(γT )1/2

T∑
t=1

wtεt

)
. (A.219)

The main idea is to show that

(1) plim
γT

detWT

γT 2
= σ2κ(2)

x /(2c)

(2) plim
γT

QT /T = κ(2)

x

[
1 −α
−α α2

]

(3)
QT /T

(γT )1/2

T∑
t=1

wtεt
d−→ N

(
0,
κ(2)

x
2σ4

2c

[
1 −α
−α α2

])
,

where the respective limits are taken as γ ↘ 0 such that γ2T 6→ 0.

Step (1). Analogous to (A.131), consider

detWT

γT 2
=mT

 1

γT

T∑
t=1

x̃2t −m−1T

(
1

γ1/2T

T∑
t=1

x2t b
∗
t−1

)2
 . (A.220)

Similarly to (A-D.1), it will first be shown that under the conditions of the proposition

1

T 1/2

T∑
t=1

x2t b
∗
t−1 = Op (1) . (A-G.1)

Proof of (A-G.1). From (A.180) it follows that

1

T 1/2

T∑
t=1

x2t b
∗
t−1 =

b∗0
T 1/2

T∑
t=1

x2t (1− θ)t−1 +
γ

T 1/2

T∑
t=1

x2t ũt−1 +
γ

T 1/2

T∑
t=1

x2t ẽt−1

=:AT +BT + CT , (A.221)

We seek to show that the three terms AT , BT and CT are Op (1). Begin with AT and note that

E|AT |=
E|b∗0|κ(2)

x

T 1/2

T∑
t=1

(1− θ)t−1 = O

(
1

γT 1/2

)
, (A.222)

using assumption 2 and the fact that
∑T

t=1(1 − θ)t−1 = θ−1
(
1− (1− θ)T

)
= O(1/γ). Furthermore,

it is seen that

‖AT ‖22 =
κ(2)

b

T

T∑
t,s=1

E(x2tx
2
s)(1− θ)t−1(1− θ)s−1 ≤ κ

(2)

b κ
(4)

x

(
1

T 1/2

T∑
t=1

(1− θ)t−1
)2

, (A.223)
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where Cauchy Schwarz’s inequality has been used. The term in brackets on the majorant side of

(A.223) has already been shown to be of size O
(
γ−1T−1/2

)
, thereby proving that AT = Op(1) if

γ2T 6→ 0. Before turning to BT and CT , note that the definitions of (A.178) and (A.179) imply that

E(ũtũs) =


τ2

t−1∑
i=0

(1− θ)2i if s = t

τ2
s−1∑
i=0

(1− θ)t−s+2i if s < t

(A.224)

E(ẽtẽs) =


C0

t−1∑
i=0

(1− θ)2iE(b∗2t−1−i) if s = t

C0

s−1∑
i=0

(1− θ)t−s+2iE(b∗2s−1−i) if s < t,

(A.225)

where C0 := c2
(
κ(4)

x /κ
(2)

x
2 − 1

)
. Consider BT first and let

BT =
κ(2)

x γ

T 1/2

T∑
t=1

ǔt−1 +
κ(2)

x γ

T 1/2

T∑
t=1

(x∗2
t − 1)ǔt−1 =: B(1)

T +B(2)

T , (A.226)

say. Now, from (A.224) one gets

∥∥B(1)

T

∥∥2
2

=
(κ(2)

x τ)2γ2

T

T∑
t=1

t−1∑
i=0

(1− θ)2i +
2(κ(2)

x τ)2γ2

T

T∑
t=2

t−1∑
s=1

s−1∑
i=0

(1− θ)t−s+2i. (A.227)

Note that

T∑
t=1

t−1∑
i=0

(1− θ)2i =
T

(2− θ)θ
− 1− (1− θ)2T + θ(2− θ)((θ − 1)2T − 1)

(2− θ)2θ2

=O

(
T

γ

)
+O

(
1

γ2

)
. (A.228)

Similarly,

T∑
t=2

t−1∑
s=1

s−1∑
i=0

(1− θ)t−s+2i =

[
(1− θ)T+1

θ3
− (θ − 1)2(T+1) + (1− θ)2

(2− θ)2θ3

]
+ T

1− θ
(2− θ)θ2

− 1− θ
(2− θ)2θ

=O

(
1

γ3

)
+O

(
T

γ2

)
+O

(
1

γ

)
. (A.229)

Hence it follows that
∥∥B(1)

T

∥∥2
2

= O(1) and thus B(1)

T = Op(1) as E(B(1)

T ) = 0. Turning to B(2)

T note that

its summands are uncorrelated with mean zero so that

∥∥B(2)

T

∥∥2
2

=
τ2(κ(4)

x − κ(2)

x
2)γ2

T

T∑
t=1

t−1∑
i=0

(1− θ)2i = O (γ) +O

(
1

T

)
, (A.230)
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using the same arguments as before. Hence, BT = Op(1).

Finally, consider CT and let

CT =
κ(2)

x γ

T 1/2

T∑
t=1

ět−1 +
κ(2)

x γ

T 1/2

T∑
t=1

(x∗2
t − 1)ět−1 =: C(1)

T + C(2)

T , (A.231)

say. (G.1a) ensures the existence of some finite constants K0 > 0 and K1 > 0 so that∥∥C(1)

T

∥∥2
2
≤ K0 γ

∥∥B(1)

T

∥∥2
2

and
∥∥C(2)

T

∥∥2
2
≤ K1 γ

∥∥B(2)

T

∥∥2
2

(A.232)

what proves (A-G.1).

Now, the claim follows by step (1) of appendix G.1, (A-G.1) and the almost sure convergence of

mT .

Step (2). Taking the above into account, the proof is analogous to that of step (2) in appendix D.

Step (3). Similarly to (A.148), the entries of the 2× 1 vector

QT /T√
γT

T∑
t=1

wtεt (A.233)

can be written as

QT /T√
γT

T∑
t=1

wtεt =

[
1

−α

]
mT√
γT

T∑
t=1

x̃tεt

−

[
1

−α

](
κ(2)

x

γ1/2T

T∑
t=1

x2t b
∗
t−1

)
uT

+

[
0

1

]{(
κ(2)

x

γ1/2T

T∑
t=1

x̃2t

)
uT −

(
1

T

T∑
t=1

x2t b
∗
t−1

)
1√
γT

T∑
t=1

x̃tεt

}

=

[
1

−α

]
mT
γ1/2T

T∑
t=1

x̃tεt +Op

(
1√
γT

)
+Op (

√
γ) +Op

(
1√
T

)
, (A.234)

using again that uT = Op(1) together with step (1) and (2) of appendix G.1 together with (A-G.1).

Hence, it follows that (A.233) is asymptotically equal to[
1

−α

]
κ(2)

x√
γT

T∑
t=1

x̃tεt
d−→ N

(
0,
κ(2)

x
2σ4

2c

[
1 −α
−α α2

])
. (A.235)

The limiting distribution is a direct consequence of step (2) of appendix G.1. Using step (1) of this

proof in conjunction with Slutzky’s theorem gives the stated result.
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G.4 Corollary 2.1

Based on the proof of corollary 2.1 contained in appendix E, note that

T 1/2
(
λ̂α − α

)
=

(detWT /(γT
2))−1

1− λ̂β

1

T 1/2

T∑
t=1

bt−1xtεt

(
α

γT

T∑
t=1

x2t −
1

γT

T∑
t=1

x2t bt−1

)

+
(detWT /(γT

2))−1

1− λ̂β

1

T 1/2

T∑
t=1

xtεt

(
1

γT

T∑
t=1

(xtbt−1)
2 − α

γT

T∑
t=1

x2t bt−1

)

=
uT

1− λ̂β

(
κ(2)

x (detWT /(γT
2))−1

γT

T∑
t=1

x̃2t

)

− (detWT /(γT
2))−1

1− λ̂β

(
1

γ1/2T

T∑
t=1

x2t b
∗
t−1

)(
1

(γT )1/2

T∑
t=1

x̃tεt

)
. (A.236)

Taking account of step (1) and (2) of proposition G.1 together with (A-G.1) and step (1) of the

proceeding proof, it follows from the same arguments as that used in proving corollary 2.1 that

T 1/2
(
λ̂α − α

)
d−→ N (0, (τ/c)2).

H Proof of remark 2.3

Assumption 2 M. The elements of the random vector vt := (x′t, εt)
′ are mutually independent and

identically distributed so that E(ε2t ) = σ2 ∈ (0,∞) and E(xtx
′
t) := Q is positive definite.

Similar to the auxiliary assumption 3A, it is assumed that the recursion for the regressor second

moment matrix is centered at Rt = Q for all t. The agent’s recursion (13) for the k dimensional RE

equilibrium vector α is thus given by

bt = bt−1 + γtQ
−1xt(yt − b′t−1xt), (A.237)

so that yet|t−1 = b′t−1xt represents the agent’s forecast of yt.

Assumption 3 M. The elements of vt satisfy assumption 3-SG and E(b∗0b
∗
0
′) <∞.

Lemma H.1. Let x̃t := b∗t−1
′xt. Then

1

T b

T∑
t=1

x̃2t
p−→ kσ2

γ

2cb
.

62



Proof. To begin with, consider

E(x̃2t ) = E(x′tb
∗
t−1b

∗
t−1
′xt) = E

(
tr
[
xtx
′
tb

∗
t−1b

∗
t−1
′]) = tr

[
QE(b

∗
t−1b

∗
t−1
′)
]
, (A.238)

where tr[·] represents the trace of a matrix. Next, note that

1

T b

T∑
t=1

E(b
∗
tb

∗
t
′)→ σ2Q−1

γ

2cb
. (A.239)

In order to see this, observe that analogous to (A.5), one gets

b
∗
t = b

∗
t−1(1− cγt) + γtQ

−1xtεt + γtc(Ik −Q−1xtx′t)b
∗
t−1

= b
∗
0Φt,1 + ǔt + ět, (A.240)

with

žt :=
t∑

k=1

γk,tzk for z ∈ {u, e}, (A.241)

where ut := Q−1xtεt and et := c(It −Q−1xtx′t)b
∗
t−1. As in the proof of 1, it is readily verified that ut

and es are uncorrelated for all t and s. It thus follows that

E(b
∗
tb

∗
t
′) = E(b

∗
0b

∗
0
′)Φ2

t,1 + E(ǔtǔ
′
t) + E(ětě

′
t). (A.242)

The following arguments mirror the proof of equation (b) of lemma 3: the first term is of order O(e−t
b
),

while the second summand obeys

E(ǔtǔ
′
t) =

t∑
k, s=1

γk,tγs,tE(uku
′
s) = σ2Q−1

t∑
k=1

γ2k,t = σ2Q−1
γt
2c

+ o(γt), (A.243)

and the third term is of order O(γ2t ). This proves (A.239).

Lemma H.2. Let zt := x̃tεt. Then

1

T b/2

T∑
t=1

zt
d−→ N (0, kσ4γ/2cb).

Proof. Note that

var(zt) = σ2E(x̃2t ) = σ2tr
[
QE

(
b
∗
t−1b

∗
t−1
′) ], (A.244)

so that by lemma H.1 above

1

T b

T∑
t=1

var(zt) = σ2tr
[
Q

1

T b

T∑
t=1

E
(
b
∗
t−1b

∗
t−1
′) ]→ kσ4

γ

2cb
. (A.245)
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Define the T dimensional vector ye := (ye1|0, . . . , y
e
T |T−1)

′, where yet|t−1 = b′t−1xt and the T × k dimen-

sional matrix X = (x′1, . . . , x
′
T )′. Furthermore, define the k + 1 dimension vector wt := (yet|t−1, x

′
t)
′ so

that

MT :=

T∑
t=1

wtw
′
t. (A.246)

It follows that

M−1T =
1

φT

[
1 −πT
−πT BT

]
, (A.247)

where

πT := (X ′X)−1X ′ye (A.248)

BT := (X ′X)−1
[
IkφT +X ′yeye′X(X ′X)−1

]
(A.249)

φT := ye′ye − ye′X(X ′X)−1X ′ye, (A.250)

see, e.g., Abadir and Magnus (2006, exercise 5.15). Note that

UT
T (1+b)/2

=Op

(
1

T b/2

)
where UT :=

T∑
t=1

xtx̃
′
t (A.251)

X ′X

T
=Q+ op(1) (A.252)

X ′ye

T
=
X ′X

T
α+

UT
T

= Qα+ op(1) (A.253)

φT
T b

=
X̃ ′X̃

T b
−

U ′T
T (1+b)/2

(
X ′X

T

)−1 UT
T (1+b)/2

= kσ2
γ

2cb
(A.254)

BT =

(
X ′X

T

)−1 [
Ik(φT /T ) +

(
X ′ye

T

)(
X ′ye

T

)′(X ′X
T

)−1 ]
= αα′ + op(1), (A.255)

where X̃ := (x̃1, . . . , x̃T )′. Taking this into account, it follows that

T bMT = kσ2
γ

2cb
`α`
′
α + op(1), (A.256)

where `α := (1, −α′)′. Now, consider λ̂ − λ = M−1T W ′ε, where ε := (ε1, . . . , εT )′ and W = (ye, X) is
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the T × (k + 1) sample matrix. With a little rearrangement (similar to that of (A.143)), it follows

T b/2(λ̂− λ) =
1

φT /T b

[
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]
X̃ ′ε

T b/2

− 1
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+
1
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X̃ ′ε

T b/2
+ op(1)

d−→ N (0k+1, V ) with V :=
2cb

kγ
`α`
′
α. (A.257)

Next, similar to the proof of corollary 2.1, it is seen that

T 1/2Iα(λ̂− λ) =T 1/2(λ̂δ − δ + α(λ̂β − β))

=

(
X ′X

T

)−1 X ′ε
T 1/2

− 1

φT /T b

(
X ′X

T

)−1 UT

T 1/2

X̃ ′ε

T b

+
1

φT /T b

(
X ′X

T

)−1 UT
T b

U ′T
T

(
X ′X

T

)−1 X ′ε
T 1/2

=Q−1
X ′ε

T 1/2
+ op(1)

d−→ N (0k, σ
2Q−1). (A.258)
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