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Abstract

In college admissions in China over the last fifteen years, the Boston mechanism (BM,

aka the sequential mechanism or Shunxu Zhiyuan) has been replaced by the deferred

acceptance mechanism (DA, aka the parallel mechanism or Pingxing Zhiyuan). In this

paper, we compare the empirical performance of these two mechanisms in the Chinese

context. We construct a BM model and apply it in the provinces of Guangxi, Hebei,

and Sichuan. This model only employs public data, instead of the micro data normally

used in the literature, because the micro data are highly confidential in college admis-

sions in China. Then, we conduct counterfactuals to empirically compare BM and DA

in these three provinces for given years. We find that not only is BM superior to DA in

terms of total welfare but also that most students receive lower utility after the switch

from BM to DA.

JEL classification: C51, C78, D47, D61.

Keywords : College admission; Boston mechanism; deferred acceptance mechanism; welfare;

China.



1. Introduction

On June 6-8 every year, around ten million high school seniors take the College Entrance

Exam (Gaokao) in China. For most of these young adults, it is the most important exam

they will ever take, and its results will have a profound influence on the rest of their lives.

In each Chinese province, there is a “student placement office” (Zhu, 2014), which ranks the

students in the province based on their exam results and asks them to submit their college

preferences. Each college has an admission quota for each province. Then, the office uses

a variant of either the Boston mechanism1 (BM, aka the sequential mechanism or Shunxu

Zhiyuan) or the deferred acceptance mechanism (DA, aka the parallel mechanism or Pingxing

Zhiyuan) to assign students to colleges according to their exam-grade-based ranking, their

preferences, and the admission quotas.

Under BM, students first-choice colleges are important. If a student is rejected by her

first-choice college, she is very likely to be assigned to a much worse college or even to lose

the opportunity of admission. Thus, students must think carefully before submitting their

preferences, and many complain about the risks of the process. In contrast, under DA, if a

student is rejected by one of her choices, her next choice will be considered. Since her admis-

sion is guaranteed only if her exam score is above the cutoff threshold for one of the colleges

in her preference list, students feel much safer under this mechanism. In addition, BM also

has inferior theoretical properties according to the literature (Abdulkadiroglu and Sönmez,

2003): DA is Pareto optimum for college admission in China, while BM is not. Furthermore,

BM is not strategy-proof. Under BM students strategically select their preferences, so that

1See details in Appendix A in page 30.
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we are unable to learn the true college preferences of the students directly from the data. All

these drawbacks of BM led this mechanism to be largely abandoned in China: while before

2001 BM was implemented in all the provinces, in 2001 DA was first introduced, in Hunan

province, and became more and more popular thereafter. By 2012, BM was applied only in

three out of thirty-one provinces(Chen and Kesten, 2017).

However, all these drawbacks of BM can be called into question. First, both mechanisms

will assign the same number of students to each college, while the admission quotas of the

colleges also remain the same under the two mechanisms. If the preferences of students are

homogeneous past a certain degree2, not all students will be able to benefit equally from the

switch from BM to DA-at least some of the students will sacrifice other benefits to enjoy the

safety of DA. Second, though DA is Pareto optimum, it may not yield highest social welfare

when the preferences are cardinal: that is, where students can not just prefer one college

to another, but much prefer one college to another. The overall performance of DA under

cardinal preference is still unclear, but the literature (Abdulkadiroğlu et al., 2011, 2015) has

demonstrated that DA is not the best strategy when the priorities of the students are coarse.

Third, although under BM we cannot learn the true preferences of the students directly from

the data, we can still learn them after constructing a model of this mechanism.

Therefore, can we estimate colleges quality (or more accurately, their attractiveness) by

using manipulated preference data under BM? Can we compare the empirical performance

of BM to that of DA in China? Can we estimate the welfare loss (or gain) for an individual

student when the mechanism switches from BM to DA?

2In China, most students would like to attend “good” colleges because better colleges not only provide
better education, but also charge lower tuition fees. In addition, the quality of the different colleges is
common knowledge; thus, the preferences of the students should be homogeneous enough.
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To attempt this, first, we need to construct a model of BM for structural estimation. As

far as we know, all the extant models in the literature (Agarwal and Somaini, Forthcoming;

Calsamiglia et al., 2017; He, 2017; Hwang, 2016) require preference data of individual stu-

dents (that is, micro data). However, in college admissions in China such data are highly

confidential. For example, Li et al. (2010) used such micro data but anonymized the names

of the provinces due to the sensitivity of the data. In addition, the use of micro data also

restricts the reusability of the model in the future. In our model, we do not use micro data

but instead consult the admission quotas and cutoff thresholds of the colleges in order to

estimate the attractiveness of each college under BM. Nevertheless, computing the model is

a heavy task: we need to estimate over 100 highly nonlinear parameters without the assump-

tions of contraction mapping being satisfied. To do so, we invent a new estimation method,

FQR, which uses the DA model to assist with solving the BM model, based on the theorem

proved in this paper stating that the two models are equivalent when the admission quotas

are large.

Then, we apply the BM model to Guangxi, Hebei, and Sichuan provinces 3 and conduct

counterfactuals calculating social and individual welfare under DA. In these three provinces

for given years, the students apply the colleges after receiving their scores and are assigned

to the colleges based on BM. We find that total welfare under DA is 1.73% - 6.63% lower

than that under BM. Given that DA is Pareto optimum and thus yields the best result

under ordinal preference, the welfare loss from BM to DA must be related to the property of

cardinal preference. We raise an example to illustrate this relationship. Suppose that there

are two colleges M and N and five students x, y, z, w, and r. M will admit one student while

3We plot the location of the three provinces in Figure 1 on Page 47.
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N will admit three students. x is the top student, y the second, z the third, w the fourth, and

r the bottom. It is common knowledge that M is a better school than N , but the students

do not know others private preferences. Thus, y, z, w and r know that x is more likely to

choose M but do not know her actual decision. Further suppose that x, w and r prefer N ,

while y and z prefer M . Under DA, students will be assigned to the best available colleges:

x, z, and w will be admitted to N and y to M . All other mechanisms are dominated by

DA if the preferences are ordinal; in contrast, if the preferences are cardinal, we can further

assume that y prefers M a little, while z prefers M a lot. Under this assumption, DA is

no longer optimum, because assigning z to M and y to N will yield higher social welfare.

Under BM, y will choose N because the probability of her admission to M is much lower

and she is nearly indifferent between the two colleges. Meanwhile, z will choose M because

she prefers M greatly. Even if the admission probability is low, she wants to try. In the

end, x, y, and w will be assigned to N while z will be assigned to M under BM, yielding

higher social welfare than under DA. Intuitively, this holds up: since students are allowed to

express their cardinal preferences under BM but not under DA, BM potentially yields better

social welfare than does DA.

In all three provinces we look at, we also find that the cutoff thresholds under BM are

looser than under DA. In actual fact, many provinces switching from BM to DA saw cutoff

thresholds become stricter after switching. The phenomenon was reported on in the news

media4. In the last example, the cutoff for M is 3 (at z) under BM and 2 (at y) under

DA. This reveals the cost of students enjoying safety under DA: It becomes more difficult to

receive admission if one’s rank is not competitive.

4Please see one example here (http://news.sohu.com/20140713/n402175085.shtml).
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Intuitively, “good” students (like y) will benefit from increased safety under DA while

“bad” students (like z) suffer from cutoff thresholds being stricter after switching from BM

to DA. However, how good should a “good” student be? From our results, only 0.64% -

10.65% of students above the key cutoff threshold5 benefit from mechanism switching in

Round 1 admission; most students suffer from switching.

Although the results suggest that BM is superior to DA on the whole, we also discover

a potential drawback of BM: the cutoff thresholds of some colleges may become stricter

as their attractiveness decreases. The attractiveness of a college is common knowledge,

and so if one college becomes less attractive, students will realize that they may face less

competition if they choose it. As a result, more students may apply to this college and

the cutoff threshold become stricter as a result. That is, although the cutoff threshold is an

indicator of the quality of a college, a college may nevertheless strengthen its cutoff threshold

by decreasing its attractiveness in such a situation. This will result in worse actual aggregate

quality of the higher education. We raise a theoretical instance to prove that this situation

may actually occur. Fortunately, empirically in the three provinces for given years, only

Tsinghua University suffered this for Guangxi science major students in 2008. Tsinghua

University still needs to improve itself to attract better students from all other provinces.

Below, we review the literature in Section 2 and construct the theoretical models in

Sections 3. We illustrate the estimation method and simulate it in Section 4. We describe

the data and present the results in Section 5. Finally, we conclude in Section 6.

5The key cutoff threshold is the threshold for the students to be considered for admission in Round 1.
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2. Literature

Abdulkadiroglu and Sönmez (2003) analyzed the school choice problem in terms of mecha-

nism design. They defined the “justified envy” that occurs when a student prefers another

school to her assigned school while the preferred school admits someone with lower priority

than her priority. They argue that any mechanism without justified envy is Pareto dom-

inated by DA and any mechanism, including DA, is Pareto dominated by the top trading

cycle (TTC) mechanism. In college admission in China, a given student has the same priority

in any college since colleges rank students only through their total scores. That is, DA and

TTC are equivalent, and therefore DA is Pareto efficient and justified-envy free. Ergin and

Sönmez (2006) demonstrate that DA is more efficient than BM. They raise an example with

two regions (region M and region N) and three schools (school L, school M , and school N).

All students prefer school M and N to school L, and students prefer school M (or N) if they

live in region N (or M respectively). However, students who live in region M (or N) have

higher priority in school M (or N respectively). In DA, students report their preferences

truthfully6. Hence, students living in region M (or N) will be admitted by school N (or M

respectively). In BM, students are afraid to report their true preferences, and thus do not

have the highest priority in their favorite schools. They also do not want to be admitted by

school L. Therefore, to ensure a seat in school M or N , a student in region M (or N) would

choose school M (or N) as her first choice. However, not all students will be admitted by

their favorite schools, and BM is not as efficient as DA. This example relies heavily on the

6Dubins and Freedman (1981), showing that students are unable to improve their utility by lying under
DA.
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assumption that the schools can rank students differently. If a student has the same priority

in all schools, the two mechanisms are equivalent to a mechanism in which students with

higher priority choose schools before than the others do7. Thus, Ergin and Sönmez (2006)

is unable to show in fact that DA performs better than BM in college admission in China.

Moreover, these two papers (Abdulkadiroglu and Sönmez, 2003; Ergin and Sönmez, 2006)

consider a scenario of complete information and ordinal preference, in which all information

is public and in which students can prefer one school to another but cannot much prefer one

school to another. These assumptions are not realistic.

Abdulkadiroğlu et al. (2011) considered incomplete information and cardinal preference,

and assumed that schools have no priority and that, while students have the same ordinal

preference, their cardinal preferences may be different. They showed BM performing slightly

better than DA. Abdulkadiroğlu et al. (2015) generalized this idea, illustrating that DA is

not Pareto efficient when the priorities are coarse under complete information and cardinal

preference. That is, these papers assume that the priority is not strict, an assumption that

is essential for their results. Unfortunately, priority in college admission in China is strict.

Therefore, these theoretical papers leave us with a mystery for the Chinese case.

Our paper is related to four previous papers using structural models to compare the two

mechanisms empirically, all of which found that BM is more efficient than DA. He (2017)

studied the Chinese high school admission, using a model based on the assumption that

students behave at Nash equilibrium. He found that both näıve and sophisticated students

suffer if he switches BM to DA at equilibrium. However, multiple Nash equilibria may exist,

harming the reliability of the results. The other three papers do not use the game structure.

7This is called the serial dictatorship mechanism.
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Calsamiglia et al. (2017) analyzed public school admission in Barcelona, Spain, using a

counterfactual analysis showing that average welfare decreases by 1020 euros from BM to

DA. Agarwal and Somaini (Forthcoming) scrutinized public elementary schools admission

in Cambridge, MA. They found that the Cambridge controlled choice mechanism (a variant

of BM) performed better than DM. Hwang (2016) proved that both näıve and sophisticated

students follow a simple rule, a rule he uses to partially identify the model. In his empirical

application, he found that ex-ante welfare is higher in BM.

However, all these papers rely on individual preference data, which are highly confidential

and unavailable in our case. Thus, departing from the literature, we created a BM model that

does not need micro data, only the admission quotas and cutoff thresholds of the colleges,

which are public and can be found in college application guides. The looser requirements of

the data can expand the future usability of the model.

3. Model

3.1. Boston Mechanism

Suppose that there are L colleges in China. College l has quota Al for a given province8.

This means that it can admit up to Al students. Students are ranked; student i is the

ith-highest-ranked student. We observe that the lowest-ranked student admitted by college

l is student Nl. Thus, college l has a cutoff threshold (at student) Nl, with no lower-ranked

students admitted.

8As described in the Appendix A (page 30), we consider the admission process for each province inde-
pendently, so the model is for one province only. We consider only Round 1 admission.
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Each college l has a fixed effect ξl. This effect is the attractiveness of the college, and

is public information. Each student i has a private preference in relation to each college

εil. The students cannot observe others private preferences; thus, for them, others private

preference is random but its distribution remains common knowledge. If student i is able to

be admitted by the college l, she receives ξl + εil in utility. However, the student may also

be rejected. College admission is quite competitive in China, and all spaces at most colleges

are filled in the first step of BM. If a student is rejected in the first step, she may be either

rejected overall or admitted by a much lower-ranked college in this round. We assume that

she gets zero utility if she is rejected in the first step of BM. If student i has a Pal (i,A)

chance to be admitted by college l, the expected utility for her of listing college l as her first

choice is (ξl + εil)P
a
l (i,A). If the admission probability becomes too small (Pal (i,A) < α),

the student will not consider this college. In addition, l = 0 is the students outside option.

Student i getting εi0
9 from this option. Therefore, each student i solves a maximization

problem10,

max
l


(ξl + εil)P

a
l (i,A)− inf 1

(
P
a
l (i,A) < α

)
, l ≥ 1

εil, l = 0

(1)

where α is a small positive number. We emphasize that students are unable to observe Nl

when they submit their preferences. We also solve Pal (i,A) recursively.

Lemma 1. Pal (i, Al;A−l)
11 = P

a
l (i−1, Al;A−l)(1−Pcl (i−1,A))+Pal (i−1, Al−1;A−l)P

c
l (i−

9εi0 = 0 is the most realistic outcome here, because a student should receive the same utility for rejection
and for the outside option. To make the model more generic, we also allow εi0 to be a random variable in
this section.

10We define inf ×0 = 0.
11
P

a
l (i, Al;A−l) = P

a
l (i,A)
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1,A) for i ≥ 2 and Al ≥ 1 where Pcl (i,A) is the chance of student i choosing college l. In

addition, Pal (1, Al;A−l) = 1 for Al ≥ 1 and Pal (i, 0) = 0 for i ≥ 1.

The proof is in Appendix B.1 of page 32. Intuitively, for instance, suppose that college l

admits one student (Al = 1). Then, we can simplify the equation as

P
a
l (i, 1;A−l) = P

a
l (i− 1, 1;A−l)(1−Pcl (i− 1,A)) =

i−1∏
j=1

(
1−Pcl (j,A)

)
(2)

In other words, the probability of student i being admitted equals the probability of the

students ranked higher than i not choosing college l if this college admits only one student.

In Lemma 1, we treat Pcl (j,A) ∀j < i as given. The admission probability Pal (i,A) is

recursively determined by the first i−1 students choice probabilities. So is student is choice.

This does not mean that student is choice depends on the first i− 1 students choices; since

εil is private and independent, the choices are also independent.

We now want to estimate the colleges attractiveness ξl. Then we will know the preferences

of the students. The next theorem establishes mapping from the quota A and the cutoff

threshold N to ξ

Theorem 1. For all l, Al/Nl − 1/Nl

Nl∑
i=1

P
c
l (i,A)

a.s.→ 0

The proof is provided in Appendix B.2 on page 33. Intuitively Al/Nl is from the actual

choices, while 1/Nl

Nl∑
i=1

P
c
l (i,A) is from the expected choices. In the large sample, the two

terms are equivalent due to the Law of Large Numbers. This theorem links A, N and ξ in

the large sample. Thousands or even tens of thousands of students are admitted in Round

1. The assumption of the large sample is valid. Ψ : ξ,A→N denotes the mapping from ξ

and A to N , while Ψ−1 : N ,A → ξ denotes the mapping from N and A to ξ. Notably,
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N are assumed to be integers in the theorem. If N are not only integers, we extend the

theorem to be

Al
Nl

− 1

Nl

( bNlc∑
i=1

P
c
l (i,A) + (Nl − bNlc)Pcl (bNlc+ 1,A)

)
= 0,∀l (3)

where bNlc is the largest integer not larger than Nl. This ensures that both mappings will

be continuous. We learn more features of the mappings in the following theorem.

Theorem 2 (Uniqueness). Given that A and ξ, N are uniquely generated by Ψ if α is small

enough.

The proof is in Appendix B.3, on page 34.

Theorem 3 (Existence). Rank Nl from the smallest to the largest as N(1), N(2), ..., N(L).

When α is small enough and given A and N , (1) Ψ−1 = ∅ if ∃l N(l) ≤
∑l

j=1 A(j), where

A(j) is the admission quota of the college with the cutoff threshold N(j); (2) Ψ−1 6= ∅ if

Nl >
∑L

j=1Aj for all l.

The proof is in Appendix B.4 on page 35.

Theorem 4 (Non-Uniqueness). Ψ−1 may be multi-valued.

Corollary 1. For college l, its cutoff threshold Nl may increase (i.e. be looser) when it

becomes more attractive.

The proof is in Appendix B.5 on page 38.

Corollary 1 indicates that a college may admit worse students when it becomes more

attractive, as students are more afraid to apply to an attractive college since they know their
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admission probabilities are low. This results in the quota being more difficult to fill. To the

best of our knowledge, the literature has not addressed this property of BM. In fact, this

property may be a major drawback, as the cutoff threshold is very important to a college

as an indicator of its quality. Change in the line may affect funding and future students

applications. In addition, worse students may also find worse jobs after their graduation,

also affecting the reputation of the college. Thus, colleges want to have stricter cutoff

thresholds (i.e. Nl is smaller). Therefore, if a college is in the situation of Corollary 1, it

may decrease its attractiveness (or quality) to reach the goal. In fact, if most colleges are in

this situation, they may compete to lower their quality. Thus, BM may result in low college

quality. We will check this in our empirical analysis.

Theorem 2 indicates that cutoff thresholds will not change if attractiveness and quotas

stay the same. We will estimate attractiveness given certain quotas and cutoff thresholds;

then, we can generate cutoff thresholds based on the quotas and the estimated attractiveness.

The distance between the generated cutoff thresholds and the real cutoff thresholds is our

goodness-of-fit.

However, we do not know much about Ψ−1. Theorem 3 demonstrates that Ψ−1 does

not exist with the small N but does exist with the large N ; we do not know whether Ψ−1

exists if N is in-between. Even worse, Theorem 4 finds that Ψ−1 may be multi-valued. If we

work on the model directly and estimate the attractiveness from Ψ−1, the computation is

quite heavy. We do not know whether the colleges attractiveness is identified in most cases.

The objective function based on Ψ−1 may be non-convex, since Ψ−1 may be multi-valued.

In addition, we have more than 100 variables (i.e. ξ) to estimate, while the function is

highly non-linear. We will also show that the assumptions of contraction mapping fail in
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Section 5.2. In the simplest case, we take ten values of each variable and look for the best fit

of the objective function. We need to compute more than 10100 times. We propose a method

to solve this problem in the following sections.

3.2. Deferred Acceptance Mechanism

DA is equivalent to the serial dictatorship mechanism in college admission in China, because

a student has the same priority in any college (Abdulkadiroglu and Sönmez, 2003). Therefore,

in DA, students are assigned to the best available colleges. For instance, if a student has

preference l1 � l2 � l3 � l4 · · · , and colleges l1 and l2 have admitted enough students prior to

that student, while l3 has not, in DA the student is assigned to l3. Any mechanism assigning

students to the best available colleges is equivalent to DA.

Let us construct an imaginary mechanism. This mechanism is the same as BM, except

that the students are able to observe the cutoff thresholds before submitting their preferences,

which is impossible in the real world. In this case, students will know which college will reject

them based on their ranking. Thus, the students will list the best available colleges as their

first choices, and they will be admitted by these colleges. This indicates that this imaginary

mechanism is equivalent to DA, and so we can use this imaginary mechanism to study DA.

Theorem 1 requires independence among choices across students (i.e. ∀l, 1l(1), 1l(2),

..., 1l(Nl) are independent). We emphasize that this assumption still holds given freely

available information on the cutoff thresholds. To see why, we denote whether a student i

chooses college l as her first choice by 1l(i|N ); N is a random vector determined by the actual

choices of the students, meaning that the choice of a student may be affected by the choices of
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other students through N . However, Pcl (i,A|N )P(N ) = P
c
l (i,A,N ) = P

c
l ((i,A|N ),N ).

1l(i|N ) and N are independent, so 1l(i|N ) is independent with 1l(−i|N ). Intuitively, we

may provide fake cutoff thresholds N f to the students; in such a situation, their choices will

be unrelated due to the fake information, while the fake cutoff thresholds N f may coincide

with the real ones N .

In this imaginary mechanism, we rank cutoff thresholds Nl from smallest to largest, as

N(1), N(2), ..., N(L). The top N(1) students can be admitted by any college, and understand

this (i.e. ∀l Pal (i,A) = 1). Thus, they compare the utility from each of L colleges as well

as from the outside option and choose the best one. From student N(1) + 1 to student N(2),

they will be rejected by college (1) but accepted by other colleges (i.e. ∀l 6= (1) Pal (i,A) = 1

and Pa(1)(i,A) = 0). Then, they compare the utility from each of the L− 1 colleges as well

as from the outside option. ... Next, student N(L−1) + 1 to student N(L) will be rejected by

any college except college (L) (i.e. ∀l 6= (L) Pal (i,A) = 0 and Pa(L)(i,A) = 1); thus, they

compare the utility from college (L) and from the outside option. They remaining students

will be rejected by any college (i.e. ∀l Pal (i,A) = 0), and fully understand this. They choose

the outside option.

The general expression of this model is tedious. We only consider εil + γ being i.i.d

Extreme Value Type 1 distributed, where γ = 0.5772156649... is the Euler constant. This

ensures that the mean of εil is zero. From Theorem 1, we get the relationship between

average behavior and mean behavior.
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A(1)

N(1)

−
exp (ξ(1))

1 +
L∑
l=1

exp (ξ(l))

a.s.→ 0

A(2)

N(2)

−
N(1)

N(2)

exp (ξ(2))

1 +
L∑
l=1

exp (ξ(l))

−
N(2) −N(1)

N(2)

exp (ξ(2))

1 +
L∑
l=2

exp (ξ(l))

a.s.→ 0

· · ·

A(L)

N(L)

−
N(1)

N(L)

exp (ξ(L))

1 +
L∑
l=1

exp (ξ(l))

−
N(2) −N(1)

N(L)

exp (ξ(L))

1 +
L∑
l=2

exp (ξ(l))

− . . .−
N(L) −N(L−1)

N(L)

exp (ξ(L))

1 + exp (ξ(L))

a.s.→ 0

(4)

where Al/Nl is the average behavior, while other terms are the mean behavior. Similar to

the full model, the simplified model relates ξ, A and N by Equation 4. Φ : ξ,A → N

denotes the mapping from ξ and A to N , and Φ−1 : N ,A→ ξ denotes the mapping from

N and A to ξ, in the simplified model.

Theorem 5. Based on Φ−1

ξ(l) = log

(
1 +

L∑
k=l+1

exp (ξ(k))
)
Al

N(l) −
l∑

k=1

A(k)

(5)

for all l < L and

ξ(L) = log
A(L)

N(L) −
L∑
k=1

A(k)

(6)

Theorem 6. Rank Al/ exp (ξl) from smallest to largest as A(1)/ exp (ξ(1)), A(2)/ exp (ξ(2)),
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..., A(L)/ exp (ξ(L)). Based on Φ

N(l) =
l∑

k=1

A(k) +

1 +
L∑

k=l+1

exp (ξ(k))

exp (ξ(l))
A(l) (7)

for all l < L and

N(L) =
L∑
k=1

A(k) +
1

exp (ξ(L))
A(L) (8)

The proof is provided in Appendix B.6 on page 41. The two theorems generate one-to-

one mapping between ξ and N given A. The calculation is simple. However, what is the

relationship between BM and DA?

Theorem 7. Ψl/Al = Φl/Al and Ψ−1
l = Φ−1

l assuming (1) Nl → ∞ and Al/Nl > 0 for ∀l;

(2) Nl/Nl′ is finite for any l and l′; (3) α is small enough; and (4) εil of Ψl has the same

distribution with that of Φl.

The proof is provided in Appendix B.7 on page 43. This theorem indicates that the two

models are equivalent when A is large. Intuitively, there are two types of knowledge relevant

here: the actual cutoff thresholds and the expected cutoff thresholds. We know the actual

cutoff thresholds, while the students do not; however, the students can calculate the expected

cutoff thresholds. The two types of knowledge are similar in the large sample. Most students

know which colleges they can be admitted to, and only a small proportion of the students

are guessing. Thus, BM collapses to DA. We emphasize that while Theorem 1 requires N to

be large, the present theorem requires A to be large. For example, let us consider a college

that plans to admit one student. After the admission, the admitted student is ranked 3000.

In this case, Al = 1, which is small, while Nl = 3000, which is large. This is common in
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college admission in China because the number of students and that of colleges are both

large. Therefore, As being large is harder to hold. Nonetheless, the two models are similar

even if A is not large, based on the theorem. We will employ this similarity to estimate BM

with the assistance of DA.

4. Estimation and Simulation

4.1. Estimation

We cannot simply use Φ−1 to approximate Ψ−1, for three reasons. First, A being large is

unrealistic in most situations, and the two models are not equivalent in a finite sample. In

addition, εi0 = 0 is most reasonable in BM, while εi0 +γ is Extreme Value Type 1 distributed

in the closed-form solution of DA. Thus, the specifications of the two models are not exactly

the same. Furthermore, one purpose of the paper is to compare BM with DA, and so it is

unreasonable to assume that the two models are equivalent in the beginning. Instead, we

propose a finite quota remedy (FQR) procedure to estimate Ψ−1.

Step 1: Get ξ̂ = Φ−1(N ,A). Here, A is the real admission quotas and N is initialized as

the real cutoff thresholds. ξ̂ is the estimated attractiveness of the DA model. The

calculation of ξ̂ is simple due to the closed-form expression of Φ−1.

Step 2: Get N̂ = Ψ(ξ̂,A). We generate a new set of cutoff thresholds N̂ based on the

estimated attractiveness from the last step and the BM model. If the two models are

not equivalent, N̂ 6= N and thus Ψ−1(N ,A) 6= ξ̂

Step 3: Set Nζ = N + ζ(N − N̂ )
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Step 4: Get ξζ = Φ−1(Nζ ,A)

Step 5: Calculate the distance between Ψ(ξζ ,A) and N0, and choose the best ζ as ζ∗. Here,

N0 is the real cutoff thresholds. Steps 3-5 yield the best ξζ by modifying N with the

direction N − N̂ , in the light of the line search. ξζ is weakly better than ξ̂, because

ξ0 = ξ̂.

Step 6: Set new N = Nζ∗ and go to Step 1.

In Step 5, we do not need perfect optimization; in practice, we randomly select 11 ζs

within [−1, 1] and choose the best one as ζ∗. The procedure stops after 100 iterations; we

record ξζ∗ in each iteration, and the best one is denoted by ξ∗.

4.2. Simulation

In this section, we will study the performance of FQR and compare it with Φ−1, which uses

the DA model directly to approximate BM. In Figure 2(a) on page 48, we suppose that there

are two colleges: ξ1 = 3 for college 1 while ξ2 = 5 for college 2. Each college admits the same

number of students (i.e. A1 = A2.). We generate their cutoff thresholds using BM for the

different quotas (i.e. A1 = A2 = 1, 2, . . . , 50.); then, we use the cutoff thresholds N and the

quotas A to estimate the attractiveness ξ by either Φ−1 or FQR.

We find FQR outperforming the DA model. FQR works well even when the quotas are

small (e.g. A1 = A2 = 5.), while Φ−1 does not perform well when A are small. The model

works better when colleges admit more students, which coincides with Theorem 7. If we

suppose that there are three, four, or five colleges instead of two colleges, they all get similar

results to Figure 2(a), as reported in Figure 2(b)-2(d).
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5. Empirical Analysis

5.1. Data

We collect data for Guangxi, Hebei, and Sichuan from different sources. In Guangxi, the

Guangxi Provincial Academy of Recruitment and Examination (Gvangjsih Cauhswngh Gau-

jsi Yen in Zhuang language) composed guides for the college entrance examination (“Gaokao

Zhinan”) in 2007, 2008, and 2009. These guides include the quota for each college, the lowest

score for the students admitted to each college, and the number of students achieving each

score in 2006, 2007, and 2008. We calculate the cutoff threshold for each college from the

lowest score for admitted students to each college and the number of students on each score.

In addition, admission is divided into 11 rounds. The first four rounds are Round 0, a round

for arts and physical education, Round 1, and Round 1 for college-preparatory education.

Only a small proportion of the students are eligible to apply to colleges in the second and

the fourth round, while the choices of major and college are limited in Round 0. Thus, most

highly ranked students will apply in in Round 1. In this paper, we combine Round 1 and

Round 1 for college prep into one round and study this round only. We also assume that all

highly ranked students will apply to college in this round.

In Hebei, the Hebei Education Examinations Authority compiled “Statistics of Admission

Score Distribution in Hebei of China’s Colleges and Universities from 2005 to 2007” (“Quan-

guo Putong Gaoxiao zai Hebei Zhaosheng Luqu Fenshu Fenbu Tongji (2005-2007)”). These

statistics include the quota for each college and the lowest score of the students admitted to

each college in 2005, 2006, and 2007. Unfortunately, we miss page 166 of this statistics for
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science major students, and so we do not have the quota or the lowest score of the students

admitted to China University of Mining in 2007 or China University of Mining (Beijing) in

2005. We assume therefore that these two colleges did not admit students for given years.

In addition, the lowest score of students admitted to Xi’an International Studies University

was 570 for science major students in 2007, lower than the key cutoff threshold (587). This

may be an error in the data; regardless, we address it by again assuming that this college

did not admit science major students in 2007. Since in fact Xi’an International Studies

University only admitted five science majors from Hebei that year, this presumption does

not significantly affect the results. We also collect the number of students achieving each

score in these three years from Hengshui High School. In admissions, the first three rounds

are Round 0, Round 1A, and Round 1B; most highly ranked students apply in Rounds 1A

and 1B. Because Round 1B is conducted after the completion of Round 1A, the existence of

Round 1B does not affect the study of Round 1A. Therefore, in this paper, we only analyze

Round 1A.

In Sichuan, the Sichuan Recruitment and Examination Information Co. (Sichuan Zhaosheng

Kaoshi Xinxi Zixun Youxiangongsi), a state-owned enterprise supervised by the Sichuan Ed-

ucational Examination Authority, composed guides for the college entrance examination

(“Gaokao Zhinan”) in 2007 and 2008. These guides include the quota for each college, the

lowest score of students admitted to each college, and the number of students achieving each

score, presented in five-score increments, in 2006 and 2007. In the data, the cutoff threshold

(N(l)) of a given college may be smaller than the sum of the quotas of the colleges with

cutoff threshold stricter than that college (i.e.
∑l

j=1 A(j)), leading to non-existent results

(i.e. Ψ−1 = ∅ and Φ−1 = ∅) based on Theorem 3 and 5. This may be caused by errors in
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the data and/or our simplifications. To solve this issue, we presume that the top one or two

colleges in terms of cutoff threshold do not admit students. This approach does not signifi-

cantly affect the results, since these colleges do not admit many students, but it ensures that

N(l) >
∑l

j=1 A(j) for ∀l. Specifically, we presume that the Chinese University of Hong Kong

and Peking University did not admit arts majors from Sichuan in 2006, while in reality they

admitted 1 and 31, respectively; that Tsinghua University did not admit science majors in

2006, while in fact it admitted 78 students; that Tsinghua University and Peking University

did not admit arts majors in 2007, while in fact they admitted 12 and 29, respectively;

and that Tsinghua University did not admit science majors in 2007, while in fact it again

admitted 78.

In addition, the lowest score of Sichuan science majors admitted to Tianjin University

was given as 518 in 2006, much lower than the key cutoff (560). This is an error; based on

other information provided in the guide, this score should be between 618 and 619, so we

corrected it to 618 from 518. In the admission process, the first two rounds are Round 0 and

Round 1; we only consider Round 1 in this paper.

The student placement office in each province conducts admissions for science and arts

majors separately; thus, we analyze the two groups separately in the model. Furthermore,

in the years under consideration, students in all three provinces received their exam scores

and the distribution of the scores before applying to college.
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5.2. Results

The results are similar for all three provinces; thus, we only report the results for science

majors in Guangxi for 2008 here (the other results are reported in Table 1-4 on Page 52-54).

For the BM model, Figure 3 on page 49 presents the top ten colleges in terms of attractiveness

ξl. The attractiveness of Tsinghua University and Peking University, the top two colleges

on the Chinese mainland, is much higher than that of all other colleges. Most students

will definitely choose one of these two if they have a reasonable chance to be admitted.

In addition, the attractiveness of all colleges other than the top seven is negative. We

emphasize that attractiveness is the average preference of the students; if a given student

chooses a college, she must receive non-negative utility from it, because she receives zero

from the outside option. A student may be only interested in some small number of colleges

(such as high-ranking ones) and thus may receive positive utility only from these colleges.

This leads average preference (or attractiveness) to be negative for most colleges.

Then, we simulate and compare BM and DA based on estimated attractiveness. The

cumulative welfare change from BM to DA is reported in Figure 4, on page 49, and the

individual change is reported in Figure 5, on page 50. In these two graphs, the x-axis is

the rank of a student while the y-axis is the average utility change for all students ranked

weakly better than the student (Figure 4) or the utility change of this student (Figure 5).

The two graphs both start from 0% on the x-axis. The two mechanisms are equivalent for

the top students, who are able to choose any college without worrying about rejection. In

addition, the two graphs also show that well-ranked students benefit from the switch while

badly ranked students suffer from it. However, Figure 7 on page 51 indicates further that
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only 129 (0.9%) students in fact benefit from the switch, while 14241 students are above the

key cutoff threshold. All of them are among the top 197 students, as seen in Figure 5. Social

welfare would increase after the switch only if fewer than 335 students exist, as suggested in

Figure 4.

In the two graphs, “A” is the sum of the quotas of all colleges, while “L” is the key cutoff

threshold. In reality, students will be considered for admission in this round only when they

have scores higher than that of the key cutoff threshold. Therefore, the welfare of all eligible

students decreases 1.96% after the switch from BM to DA. If we assume that all students

can apply to these colleges, their utility decreases 2.49% after the switch. We emphasize

here that the former estimate (1.96%) underestimates the real welfare loss, because we only

consider the first step of BM in our model, whereas rejected in the first step may be also

admitted in the second step. Thus, students may receive higher utility in real BM than that

in our BM model. In the latter estimate (2.49%), colleges admit enough students under our

BM model, which then collapses to real BM.

In Figure 6, on page 50, the cutoff thresholds of all colleges become stricter after the

switch. This is a reason for welfare loss: a student who can be admitted under BM may be

rejected under DA. As seen in Figure 4 and 5, students who receive scores a little bit higher

than the key cutoff threshold suffer most from the switch. In Guangxi (as well as in Sichuan),

the quality of colleges in this round is much higher than that in the latter rounds; students

around the key cutoff threshold can be admitted under BM but not under DA because of

the stricter cutoff, so they receive much lower utility under DA.

In Figure 5, the results are noisy for the bottom students. The two mechanisms are

equivalent for these students because the bottom students receive rejection and zero utility
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in both mechanisms. The relative error of our simulation becomes larger when utility is close

to zero, which contributes to the noisiness of the results.

We now check whether the problem indicated in Corollary 1 exists in college admission

in China. We find that the cutoff threshold of each college becomes looser when the col-

leges attractiveness decreases, except for science majors in Guangxi applying to Tsinghua

University in 2008. In other words, Tsinghua University can attract better students after

its attractiveness (or quality) decreases for this given province and year. The reason is that

Tsinghua is one of the top colleges in China; most students realize that the probability of

being admitted by Tsinghua is low, and apply for the alternatives instead. If Tsinghua lowers

its quality, students realize that the competition to enter will be milder and are more likely

to apply there. Although this situation is possible, it is rare. For most colleges, students are

less likely to apply for them when their attractiveness decreases, because the students would

receive lower utility from the college. Thus, due to the rareness of this situation, it does not

reduce the superiority of BM in college admission in China. Tsinghua University would not

plausibly choose to decrease its quality only to lure students in from only one province.

Finally, we explain why we are unable to directly use contraction mapping in the esti-

mation. In Appendix I of Berry et al. (1995), the proof of the contraction mapping requires

the same sign for all ∂log(Ψl)/∂ξl′ where l 6= l′. However, our results indicate that this

assumption fails in all cases.
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6. Conclusion

In this paper, we simulated and compared the empirical performance of BM and DA in

college admission in China. We constructed a model of BM and employed it to estimate the

attractiveness of Chinese colleges in three Chinese provinces. Then, we conducted counter-

factuals to empirically compare BM and DA in these three provinces for given years. We find

that not only is BM superior to DA in terms of total welfare, but also that most students

suffer from the switch from BM to DA.

This paper makes the following contributions. First and most importantly, this paper

shows that BM is a better approach than DA to college admission in China from a social

welfare perspective. Historically, BM was implemented in all the provinces of the Chinese

mainland, whereas currently DA is employed by most provinces. The results indicate that

this switch from BM to DA has been costly: the total welfare of students has decreased 1.73%

- 6.63% due to the switch. On the Chinese mainland, there are around 150 colleges which

admit students in Round 1 (aka key colleges). In the case of a 1.73% - 6.63% welfare loss,

these colleges need to improve their quality by 1.73% - 6.63% to compensate, equivalent to

constructing 2.595-9.945 more key colleges, assuming that the cost of each unit of the quality

is the same. Further, if we assume that one key college is worth 1 billion dollars, the switch

costs 2.595-9.945 billion dollars.

Second, departing from the literature, our model does not need micro data on the sub-

mitted preferences of individual students; instead, it requires only the admission quota and

cutoff threshold for each college. Micro data are difficult to obtain and may be restricted for
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privacy reasons; our use of public data makes our results easier to replicate and makes the

model potentially more widely usable.

Third, theoretically, we have proven that the performances of DA and BM are equivalent

when admission quotas A are large enough. As far as we know, this equivalence has not

been pointed out in the literature. We also learn from this equivalence that DA and BM are

similar in most situations; for example, in our case, the difference in total welfare of these two

mechanisms is only 1.73% - 6.63%, although the difference is significant when applying to the

ten million students. In addition, currently each province in China conducts the admission

separately. A college may admit a few students in a province. If all the provinces conduct

the admission together, the quota of a college will be the sum of its quotas in these provinces.

Thus A will become larger and the theorem indicates that the performances of BM and DA

will be closer. Therefore, conducting BM nationwide may weaken its superiority.

Fourth, we point out a potential drawback of BM: under BM, a college may need to

lower its quality to attract better students, and if most colleges are in this situation, BM

may result in lower quality of higher education. Future studies may want to investigate this

drawback when analyzing the performance of BM.

Fifth, we derived a closed-form expression of the DA model. Given the quotas and cutoff

thresholds, we can then derive attractiveness, and given the attractiveness and the quotas

we can predict cutoffs. Currently, most Chinese provinces use DA for college admission, as

noted; we can predict cutoff thresholds based on the previous years cutoffs and the present

and previous years admission quotas. As far as we know, this is the first study allowing such

a prediction in the Chinese market based on a solid model.

To sum up, in this paper, we find that BM performs better than DA in college admission
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in China. However, is BM the best possible mechanism? Future studies may want to propose

new mechanisms better than BM or conversely to prove that BM yields the highest welfare

in college admission in China.
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Appendix A. Boston Mechanism, Deferred Acceptance

Mechanism, Serial Dictatorship Mecha-

nism And Their Variants in China’s Col-

lege Admission

A.1. Boston Mechanism

Step 1 College l has quota A1
l . The student placement office sends each college a list containing

all students who choose the college as their first choice12. If the list contains more than
A1
l students, college l admits the top A1

l students and rejects the remaining students.
The quota for the next step (A2

l ) is zero. Otherwise, college l admits all the students
on the list and the remaining quota is A2

l .

Step k College l has quota Akl . The student placement office sends each college a list containing
all students who are rejected in Step k − 1 and choose the college as their kth choice.
If the list contains more than Akl students, college l admits the top Akl students and
rejects the remaining students. The quota for the next step (Ak+1

l ) is zero. Otherwise,
college l admits all the students on the list and the remaining quota is Ak+1

l

The mechanism stops when all lists are blank.

A.2. Deferred Acceptance Mechanism

Step 1 College l has quota Al. The student placement office sends each college a list containing
all students who choose the college as their first choice. If the list contains more than
Al students, college l tentatively admits the top Al students and rejects the remaining
students. Otherwise, college l tentatively admits all the students on the list.

Step k The student placement office sends each college a list containing all students who are
rejected in Step k − 1 and choose the college as their kth choice. College l compares
the students on the list and the ones that have been tentatively admitted. If there are
more than Al students, college l tentatively admits the top Al students and rejects the
remaining students. Otherwise, college l tentatively admits all the students.

The mechanism stops when all lists are blank. All tentatively admitted students are con-
firmedly admitted.

A.3. Serial Dictatorship Mechanism

Step 1 College l has quota Al. The student placement office sends the information of the top
student to her first choice - college l11. Since Al11 > 0, the student will be admitted by

the college and the remaining quota of this college for the next step is A2
l11

= Al11 − 1.

12In practice, the office does not send the full list to the colleges. Instead, it sends a list containing slightly
more than A1

l students to college l if more than A1
l students choose college l as their first choice.
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Step k The student placement office sends the information of the kth ranked student to her
first choice - college l1k. If this college has admitted enough student (that is Ak

l1k
= 0),

the student will be rejected and the office sends her information to her second choice.
If she is rejected again, the office sends her information to her next choice. If she is
admitted by her h choice - college lhk , the remaining quota of this college for the next
step is Ak+1

lhk
= Ak

lhk
− 1. If she is rejected by all the choices on her preference list, she

is rejected in this round.

The mechanism stops when the office sends the information of all the students to the colleges.
Deferred acceptance mechanism (DA) is equivalent to serial dictatorship mechanism (SD)
because the students are assigned to the best available college based on their preference lists
in both mechanisms. We will use DA and SD interchangeably in this paper, while SD is
actually implemented in college admission in China.

A.4. Variants in China’s College Admission

In China, college admission has several rounds. In each round, a mechanism is applied. Most
good colleges are in and only in Round 1, and most highly ranked students apply colleges in
Round 1. Thus, we only consider Round 1 for simplicity. In addition, the ranking is strict.
If one student has higher total score than the other, she is ranked higher than the other. If
two students have the same total score, their scores of each part are compared to break the
tie.

The students submit their preferences at different times in different provinces. In some
provinces, they shall submit them before taking the exam. In some provinces, they shall
submit them after the exam but before the ranking is published. In other provinces, they
shall submit them after the ranking is published. In this paper, we only consider the provinces
in the last case. Moreover, the students shall not submit the full list of their preference. They
can submit their first two to eighty choices depending on the province.

The mechanism also depends on the province. It can be either the Boston mechanism
(BM), DA or a mixture of these two. For example, some provinces apply BM in the first
step and apply the DA in the following steps. The literature (Haeringer and Klijn, 2009;
Wu and Zhong, 2014) indicates that the first choice is the most important choice in BM. We
consider a mechanism as BM if this mechanism applies BM in its first step.

Moreover, the students submit their major preferences for each college that they choose.
A college uses a mechanism to assign students to the majors. Students can reject the
assignment but the rejection may result them getting to much worse colleges. Wu and
Zhong (2014) indicate that almost all the students accept the assignment. Therefore, we
can separate the admission into two stages. In the first stage, the students are assigned to
the colleges, which are considered as composite goods. In the second stage, the students
are assigned to the majors. This argument was proposed by Wu and Zhong (2014). In this
paper, we only consider the first stage.
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Appendix B. Proofs

B.1. Proof of lemma 1 on page 9

Lemma 1. Pal (i, Al;A−l)
13 = P

a
l (i−1, Al;A−l)(1−Pcl (i−1,A))+Pal (i−1, Al−1;A−l)P

c
l (i−

1,A) for i ≥ 2 and Al ≥ 1 where Pcl (i,A) is the chance of student i choosing college l. In
addition, Pal (1, Al;A−l) = 1 for Al ≥ 1 and Pal (i, 0) = 0 for i ≥ 1.

Proof. The student i does not need to consider the choices of the students ranked lower than
her. She considers the first i − 1 students’ choices. P

o
l (i, k, A−l) denotes the probability

of k slots of the school l having been taken by the first i − 1 students. We decompose
P
a
l (i, Al;A−l) as

P
a
l (i, Al;A−l) =

Al−1∑
k=0

P
o
l (i, k, A−l), Al ≥ 1 (9)

If the college l admits the student i, the quota must be not filled up by the first i−1 students.
This case can be broken down into that the first i − 1 students take zero slot, that these
students take one slot, ..., that these students take Al − 1 slots. This derives Equation 9.

In addition, we can express Pol (i, k, A−l) as

P
o
l (i, k, A−l) =

{
P
o
l (i− 1, k, A−l)(1−Pcl (i− 1,A)); k = 0, i ≥ 2

P
o
l (i− 1, k, A−l)(1−Pcl (i− 1,A)) +P

o
l (i− 1, k − 1, A−l)P

c
l (i− 1,A); k > 0, i ≥ 2

(10)
If none of the first i− 2 students chooses the college l and the student i− 1 does not choose
the college l, none of the first i − 1 students chooses this college. If (1) k of the first i − 2
students choose the college l and the student i− 1 does not choose the college l or (2) k− 1
of the first i− 2 students choose the college l and the student i− 1 chooses the college l, k
of the first i− 1 students choose this college. These derive Equation 10.

We start from the initial conditions. If the college l does not admit any student, the
chance to be admitted is zero. We have

P
a
l (i, 0;A−l) = 0,∀i ≥ 1 (11)

In addition, if the college l has a positive quota, it is impossible for the college to reject the
top ranked student. We have

P
a
l (1, Al;A−l) = 1,∀Al ≥ 1 (12)

13
P

a
l (i, Al;A−l) = P

a
l (i,A)
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For the case that i ≥ 2 and Al ≥ 2, we have

P
a
l (i, Al;A−l) =

Al−1∑
k=0

P
o
l (i, k, A−l)

=

Al−1∑
k=1

P
o
l (i, k, A−l) +P

o
l (i, 0, A−l)

=

Al−1∑
k=1

P
o
l (i− 1, k, A−l)(1−Pcl (i− 1,A))

+

Al−2∑
k=0

P
o
l (i− 1, k, A−l)P

c
l (i− 1,A) +P

o
l (i− 1, 0, A−l)(1−Pcl (i− 1,A))

=Pal (i− 1, Al;A−l)(1−Pcl (i− 1,A)) +P
a
l (i− 1, Al − 1;A−l)P

c
l (i− 1,A)

(13)

For the case that i ≥ 2 and Al = 1, we have

P
a
l (i, Al;A−l) = P

o
l (i, 0, A−l)

=Pol (i− 1, 0, A−l)(1−Pcl (i− 1,A))

=Pal (i− 1, Al;A−l)(1−Pcl (i− 1,A))

=Pal (i− 1, Al;A−l)(1−Pcl (i− 1,A)) +P
a
l (i− 1, Al − 1;A−l)P

c
l (i− 1,A)

(14)

B.2. Proof of theorem 1 on page 10

Theorem 1. For all l, Al/Nl − 1/Nl

Nl∑
i=1

P
c
l (i,A)

a.s.→ 0

Proof. 1l(i) is an indicator function. It denotes whether the student i chooses the college l
as her first choice. If 1l(i) = 1 she chooses the college l. If 1l(i) = 0, she does not choose
the college. 1l(1), 1l(2),..., 1l(Nl) are independent random variables because the private
preferences (i.e. εil) are independent. Her probability of choosing the college l is Pcl (i,A).
The mean of 1l(i) is 1×Pcl (i,A)+0×(1−Pcl (i,A)) = P

c
l (i,A). Let ωl(i) = 1l(i)−Pcl (i,A).

Based on the variance criterion for averages, Kolmogorov in Corollary 3.22 of Kallenberg
(1997), we have

1

Nl

Nl∑
i=1

ωl(i)
a.s.→ 0 (15)
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This equation holds if 1
N2

l

Nl∑
i=1

Eω2
l (i) <∞. In addition,

ω2
l (i) =(1l(i)−Pcl (i,A))2

=12
l (i) + (Pcl (i,A))2 − 21l(i)P

c
l (i,A)

≤1 + 1 + 2 = 4

(16)

Thus, 1
N2

l

Nl∑
i=1

Eω2
l (i) ≤ 1

N2
l

Nl∑
i=1

4 = 4
Nl
<∞. Equation 15 holds.

The cutoff line is Nl. This also means that Al of the top Nl students choose the college

l.
Nl∑
i=1

1l(i) = Al. We have

1

Nl

Nl∑
i=1

ωl(i) =
1

Nl

Nl∑
i=1

1l(i)−
1

Nl

Nl∑
i=1

P
c
l (i,A) =

Al
Nl

− 1

Nl

Nl∑
i=1

P
c
l (i,A)

a.s.→ 0 (17)

B.3. Proof of theorem 2 on page 11

Theorem 2 (Uniqueness). Given that A and ξ, N are uniquely generated by Ψ if α is small
enough.

Proof. The relationship among ξ, A and N is equivalent to

Al −
( bNlc∑
i=1

P
c
l (i,A)14 + (Nl − bNlc)Pcl (bNlc+ 1,A)

)
= 0,∀l (18)

and we let fl(Nl) = Al −
( bNlc∑
i=1

P
c
l (i,A) + (Nl − bNlc)Pcl (bNlc + 1,A)

)
. When α = 0, the

students do not rule out a college even if the admission probability is small15. In this case,
P
c
l (i,A) is strictly positive because the chance of εil′ < −ξl′ for all l′ 6= {0, l} does not vanish.

If εil′ < −ξl′ (∀l′ 6= {0, l}), εi0 ≤ 0 and εil > −ξl, the student chooses the college l since she
can get positive utility only from this college. Thus, fl(Nl) is a strictly decreasing function.
fl(0) = Al > 0 and fl(∞) ≤ Al −∞×miniP

c
l (i,A) < 0. There is a unique Nl0 such that

fl(Nl0) = 0.
Let N∗ = dmaxl f

−1
l (0)e+ 1 where d•e is the smallest integer not smaller than the •. We

14
P

c
l (i,A) = P

c
l (i,A, ξ), which depends on ξ

15See details in Equation 1 on page 9
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also know that Pal (i, Al;A−l) ≤ Pal (i− 1, Al;A−l)∀i > 1, A > 0 because

P
a
l (i, Al;A−l) =Pal (i− 1, Al;A−l)(1−Pcl (i− 1,A)) +P

a
l (i− 1, Al − 1;A−l)P

c
l (i− 1,A)

=Pal (i− 1, Al;A−l)(1−Pcl (i− 1,A)) +P
c
l (i− 1,A)

Al−2∑
k=0

P
o
l (i− 1, k, A−l)

≤Pal (i− 1, Al;A−l)(1−Pcl (i− 1,A)) +P
c
l (i− 1,A)

Al−1∑
k=0

P
o
l (i− 1, k, A−l)

=Pal (i− 1, Al;A−l)(1−Pcl (i− 1,A)) +P
a
l (i− 1, Al;A−l)P

c
l (i− 1,A)

=Pal (i− 1, Al;A−l)

(19)

Thus we know that
P
a
l (N

∗, Al;A−l) ≤ Pal (i, Al;A−l)∀i < N∗∀l (20)

Now we take a positive α such that α < minlP
a
l (N

∗, Al;A−l). P
a
l (i, Al;A−l) and Pcl (i−1,A)

are unchanged for ∀i < N∗ due to Equation 20. This also keeps all Nl0 unchanged. Moreover,
fl(Nl) is a non-increasing function when α > 0. From our construction, fl(N

∗) < 0 for all l.
So Nl0 is still the unique solution.

B.4. Proof of theorem 3 on page 11

Theorem 3 (Existence). Rank Nl from the smallest to the largest as N(1), N(2), ..., N(L).

When α is small enough and given A and N , (1) Ψ−1 = ∅ if ∃l N(l) ≤
∑l

j=1 A(j), where

A(j) is the admission quota of the college with the cutoff threshold N(j); (2) Ψ−1 6= ∅ if

Nl >
∑L

j=1Aj for all l.

Proof. If ∃l N(l) ≤
∑l

j=1 A(j), we add f(1)(N(1))
16, f(2)(N(2)), ..., f(l)(N(l)) up,

l∑
j=1

f(j)(N(j)) =
l∑

j=1

A(j) −
l∑

j=1

( bN(j)c∑
i=1

P
c
(j)(i,A) + (N(j) − bN(j)c)Pc(j)(bN(j)c+ 1,A)

)

≥
l∑

j=1

A(j) −
l∑

j=1

( bN(l)c∑
i=1

P
c
(j)(i,A) + (N(l) − bN(l)c)Pc(j)(bN(l)c+ 1,A)

)

=
l∑

j=1

A(j) −
( bN(l)c∑

i=1

l∑
j=1

P
c
(j)(i,A) + (N(l) − bN(l)c)

l∑
j=1

P
c
(j)(bN(l)c+ 1,A)

)
(21)

The chance of choosing the outside option is always strictly positive. When εil < −ξl (∀l 6= 0)
and εi0 ≥ 0, the student chooses the outside option because she can get non-negative utility

16fl(•) is defined in Appendix B.3 on page 34
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only from this option. Therefore,
l∑

j=1

P
c
l (•,A) < 1. We have

l∑
j=1

f(j)(N(j)) ≥
l∑

j=1

A(j) −
( bN(l)c∑

i=1

l∑
j=1

P
c
(j)(i,A) + (N(l) − bN(l)c)

l∑
j=1

P
c
(j)(bN(l)c+ 1,A)

)

>

l∑
j=1

A(j) −
( bN(l)c∑

i=1

1 + (N(l) − bN(l)c)1
)

=
l∑

j=1

A(j) −N(l) ≥ 0

(22)

Equation 22 indicates ∃j ≤ l f(j)(N(j)) > 0. No ξ can be the solution of these functions.
Ψ−1 = ∅.

If ∀l Nl >
∑L

j=1 Aj, we apply the Poincaré-Bohl theorem. For the convenience, I copy
the theorem from Fonda and Gidoni (2016):

Theorem 2 (Poincaré-Bohl). Assume that Ω is an open bounded subset of RN ,
with 0 ∈ Ω, and that f : Ω→ R

N is a continuous function such that

f(x) /∈ {β17x : β > 0}, for every x ∈ ∂Ω.

Then, there is an x̄ ∈ Ω such that f(x̄) = 0(Fonda and Gidoni, 2016, Page 4)

Ψ(ξ,A) is a continuous function when α is small enough18. We consider that ξ is in the big
ball (i.e.

∑
l ξ

2
l ≤ R2). We would like to show Ψ(ξ,A)−N /∈ {βξ : β > 0} where ξ satisfies∑

l ξ
2
l = R2. Then, according to the Poincaré-Bohl theorem, there is at least a ξ0 in the ball

satisfying Ψ(ξ0,A)−N = 0.
When ξ satisfies

∑
l ξ

2
l = R2, there is at least one |ξl| ≥ R/

√
L. We divide this into two

cases: (1) ∃l ξl ≥ R/
√
L and (2) @l ξl ≥ R/

√
L

Case 1 (∃l ξl ≥ R/
√
L).

Divide the real line into L + 2 sections: (−∞, 0), [0, R1/L/
√
L), [R1/L/

√
L,R2/L/

√
L),

..., [R(L−1)/L/
√
L,R/

√
L), [R/

√
L,∞). There are L colleges. ξl are in these sections.

At least one section except (−∞, 0) does not have ξl. We suppose this section being
[Rk/L/

√
L,R(k+1)/L/

√
L). M out of L ξl are not smaller than R(k+1)/L/

√
L while others

are smaller than Rk/L/
√
L. This procedure distinguishes the big ξl (ξl ≥ R(k+1)/L/

√
L) and

the small ξl (ξl < Rk/L/
√
L). There is at least one big ξl since ∃l ξl ≥ R/

√
L.

N̂l denotes the result of Ψl(ξ,A) while Nl is the real cutoff line of the college l. Consider

these M colleges. We rank N̂l of these colleges from the smallest to the largest as N̂{1}, N̂{2},

..., N̂{M}. For any college m among these M colleges, we have

17It is α in Fonda and Gidoni (2016). We change it to β because we have defined α in our paper.
18See details in Theorem 2 on page 11
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0 =A{m} −
( bN̂{m}c∑

i=1

P
c
{m}(i,A) + (N̂{m} − bN̂{m}c)Pc{m}(bN̂{m}c+ 1,A)

)

≤A{m} −
( bN̂{1}c∑

i=1

P
c
{m}(i,A) + (N̂{1} − bN̂{1}c)Pc{m}(bN̂{1}c+ 1,A)

) (23)

We add all these inequalities up. We get

M∑
m=1

A{m} −
( bN̂{1}c∑

i=1

M∑
m=1

P
c
{m}(i,A) + (N̂{1} − bN̂{1}c)

M∑
m=1

P
c
{m}(bN̂{1}c+ 1,A)

)
≥ 0 (24)

Then, we show that
M∑
m=1

P
a
{m}(i,A) does not vanish for i ≤

M∑
m=1

A{m}. Since i is finite,

M∑
m=1

P
a
{m}(i,A)→ 0 requires at least A{1} out of top i− 1 students almost surely choose the

college (1); at least A{2} of these students almost surely choose the college (2); ...; and at
least A{M} of these students almost surely choose the college {M}. This contradicts with

i ≤
M∑
m=1

A{m}. Thus Pa{m}(i,A) > 0 for at least one m, in which one of them is denoted by

m∗.
Recall ξ{m∗} being one of the big ξl. (ξ{m∗} + εi(m∗))P

a
{m∗}(i,A) is almost surely larger

than those with the small ξl when R→∞. Thus, student i will choose college {m∗} or other

colleges with big ξl. This leads
M∑
m=1

P
c
{m}(i,A)→ 1 for ∀i ≤

M∑
m=1

A{m}. If
M∑
m=1

P
c
{m}(bN̂{1}c+

1,A) > 0, then N̂{1} ≤
M∑
m=1

A{m} + ι almost surely when R → ∞, where ι is a arbitrary

small positive number. Then, N̂{1} −N{1} < 0 when ι is small enough. This leads no β > 0

satisfying N̂{1} −N{1} = βξ{1}.

Unfortunately,
M∑
m=1

P
c
{m}(bN̂{1}c+1,A) may converge to zero when R→∞. For example,

among the top
M∑
m=1

A{m} students, A{1} students choose college {1} almost surely; A{2}

students choose college {2} almost surely; ... A{M} students choose college {M} almost

surely. Student i (i >
M∑
m=1

A{m}) will not choose the M colleges almost surely because she

realizes the low probability of her to be admitted. In this case, N̂{1} may be much larger.
To solve this problem, we play the same trick as in Equation 23 for all colleges. We get

L∑
l=1

Al −
( bN̂(1)c∑

i=1

L∑
l=1

P
c
l (i,A) + (N̂(1) − bN̂(1)c)

L∑
l=1

P
c
l (bN̂(1)c+ 1,A)

)
≥ 0 (25)

37



where N̂(1) is the smallest N̂ . There are two circumstances: (1)
L∑
l=1

P
c
l (i,A) → 1 for all

i ≤
L∑
l=1

Al when R→∞ or (2) ∃i ≤
L∑
l=1

Al such that
L∑
l=1

P
c
l (i,A) < 1 when R→∞.

Let us consider the first circumstance. Students shall not almost surely choose the out-
side option when R → ∞, because the chance of εi0 ≤ 0 does not vanish. This ensures
L∑
l=1

P
c
l (bN̂(1)c + 1,A) > 0. We have N̂(1) ≤

L∑
l=1

Al + ι. In addition, ξ(1) > 0. If ξ(1) ≤ 0,

P
c
(1)(i,A) > 0 =⇒ P

c
0(i,A) > 0. If a student may choose the college (1), she also has a posi-

tive probability to choose the outside option. This is impossible in this circumstance because
L∑
l=1

P
c
l (i,A) → 1. If no student i (i ≤

L∑
l=1

Al) may choose the college (1), N̂(1) �
L∑
l=1

Al + ι.

This leads to a contradiction. When R → ∞ and ι is small enough, N̂(1) − N(1) < 0 as

N(1) >
L∑
l=1

Al. No β > 0 satisfies βξ(1) = N̂(1) −N(1).

Now consider the second circumstance. If a student i4 may choose the outside op-

tion, she may also choose the colleges with the big ξl.
M∑
m=1

P
c
{m}(i

4,A) > 0. In addition,

M∑
m=1

P
c
{m}(i,A) → 1 for ∀i ≤

M∑
m=1

A{m}, so i4 >
M∑
m=1

A{m}. N̂{1} < i4 <
L∑
l=1

Al < N{1}. The

big ξl are all larger than zero. This leads no β > 0 satisfying βξ{1} = N̂{1} −N{1}.

Case 2 (@l ξl ≥ R/
√
L).

If @l ξl ≥ R/
√
L, then ∃lO such that ξOl ≤ −R/

√
L. When R becomes big, the student would

like to choose the outside option rather than the school lO. Thus, N̂lO can be arbitrarily
large if we choose a large R. We choose a R such that N̂lO −NlO > 0. This leads no β > 0
satisfying βξlO = N̂lO −NlO .

All in all, the conditions of the Poincaré-Bohl theorem are satisfied. We have Ψ−1 6= ∅
if Nl >

∑L
j=1 Aj for all l

B.5. Proof of Theorem 4 and Corollary 1 on page 11

Theorem 4 (Non-Uniqueness). Ψ−1 may be multi-valued.

Corollary 1. For college l, its cutoff threshold Nl may increase (i.e. be looser) when it
becomes more attractive.

Proof. We prove the theorem and the corollary by raising an example. Suppose that there
are two colleges: college l and college l′. Each college would like to admit one student
(Al = Al′ = 1). For simplification, α is small. ξl ≥ ξl′ > 0.5. The support of εi0 is (−∞, γ),
while εi1 and εi2 are exponential distributed. γ is a small positive number. This ensures that
the top students do not consider the outside option.
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Af first, we calculate the choice probabilities for the top students19 given the admission
probabilities. The utility that a student can get from the college l is (ξl + εil)P

a
l

20. The
utility that she can get from the college l′ is (ξl′ + εil′)P

a
l′ . She chooses the college l if and

only if (ξl + εil)P
a
l ≥ (ξl′ + εil′)P

a
l′ . We can get the choice probability

P
c
l (i,A) =

∫ ∫
(ξl+εil)P

a
l ≥(ξl′+εil′ )P

a
l′

exp (−εil − εil′)dεildεil′ (26)

This can be divided into two cases.

Case 1 (Pal ξl < P
a
l′ξl′).

P
c
l (i,A) =

∫ ∞
0

∫ ∞
(ξl′+εil′ )P

a
l′/P

a
l −ξl

exp (−εil − εil′)dεildεil′

=

∫ ∞
0

exp (−εil′) exp (−(ξl′ + εil′)P
a
l′/P

a
l + ξl)dεil′

=
P
a
l

Pal +Pal′
exp (

1

Pal

(Pal ξl −Pal′ξl′))

(27)

Case 2 (Pal ξl ≥ Pal′ξl′).

P
c
l (i,A) =

∫
P

a
l ξl/P

a
l′−ξl′

0

∫ ∞
0

exp (−εil − εil′)dεildεil′

+

∫ ∞
P

a
l ξl/P

a
l′−ξl′

∫ ∞
(ξl′+εil′ )P

a
l′/P

a
l −ξl

exp (−εil − εil′)dεildεil′

=

∫
P

a
l ξl/P

a
l′−ξl′

0

exp (−εil′)dεil′

+

∫ ∞
P

a
l ξl/P

a
l′−ξl′

exp (−εil′) exp (−(ξl′ + εil′)P
a
l′/P

a
l + ξl)dεil′

=1− exp (−Pal ξl/Pal′ + ξl′) +
P
a
l

Pal +Pal′
exp (−Pal ξl/Pal′ + ξl′)

=1− P
a
l′

Pal +Pal′
exp (− 1

Pal′
(Pal ξl −Pal′ξl′))

(28)

For the student 1, her admission probability is one for both colleges. We can get her
choice probabilities from Equation 27 and Equation 28.

19Thus we do not consider the outside option.
20
P

a
l = P

a
l (i,A) for abbreviation.
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P
c
l (1,A) =1− 1

2
exp (−(ξl − ξl′))

P
c
l′(1,A) =

1

2
exp (−(ξl − ξl′))

(29)

Then we calculate the admission probabilities for the student 2.

P
a
l (2, 1; 1) =Pal (1, 1; 1)(1−Pcl (1,A)) +P

a
l (1, 0; 1)Pcl (1,A)

=
1

2
exp (−(ξl − ξl′))

(30)

P
a
l′(2, 1; 1) =Pal′(1, 1; 1)(1−Pcl′(1,A)) +P

a
l′(1, 0; 1)Pcl′(1,A)

=1− 1

2
exp (−(ξl − ξl′))

(31)

In addition, we have

exp (ξl − ξl′)−
ξl + ξl′

2ξl′
≥ 0 (32)

because the equality holds when ξl = ξl′ and its first derivative with respect to ξl is

exp (ξl − ξl′)−
1

2ξl′
, being larger than zero based on our assumption.

Equation 32 leads to Pal (2,A)ξl ≤ Pal′(2,A)ξl′ . We then have

P
c
l (2,A) =

1

2
exp (−(ξl − ξl′)) exp (ξl − ξl′

1− 1
2

exp (−(ξl − ξl′))
1
2

exp (−(ξl − ξl′))
)

=
1

2
exp

(
2ξl′
(
1− exp (ξl − ξl′)

)) (33)

We add the probabilities of choosing the college l up for the two students. We get

g(ξl, ξl′) =Pcl (1,A) +P
c
l (2,A)

=1− 1

2
exp (−(ξl − ξl′)) +

1

2
exp

(
2ξl′
(
1− exp (ξl − ξl′)

)) (34)

If we take ξl = ξl′ , g(ξl, ξl′) = 1. Thus, Ψl = 2 based on our definition. We take the derivative
of g(ξl, ξl′) with respect to ξl.

∂g(ξl, ξl′)

∂ξl
=

1

2
exp

(
− (ξl − ξl′)

)
− ξl′ exp

(
2ξl′
(
1− exp (ξl − ξl′)

)
+ ξl − ξl′

)
(35)

When ξl = ξl′ , Equation 35 can be simplified,
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∂g(ξl, ξl′)

∂ξl
=

1

2
− ξl′ (36)

Given ξl′ > 0.5,
∂g(ξl,ξl′ )

∂ξl
< 0. Ψl shall increase when ξl slightly increases. This proves the

Corollary 1. When the college l becomes more attractive, its cutoff line is higher (i.e. it
admits worse students.). The reason is that the student 2 is afraid to apply the college l.
For the student 1, she is more willing to apply the college l if the college is more attractive.
However, the student 2 observes this change of the willingness. She understands her admis-
sion probability becoming lower. Therefore, she is more likely to apply the college l′, the
safer option.

For Theorem 4, we note that g(ξl, ξl′) ≡ 1 for any ξl = ξl′ . Thus Ψl = 2. Still when
ξl = ξl′ , P

c
l′(1,A) + P

c
l′(2,A) = 1 − Pcl (1,A) + 1 − Pcl (2,A) = 1, which leads to Ψl′ = 2.

Therefore, Ψ({ξl, ξl},A) generate the same result for ∀ξl. Ψ−1 may be multi-valued.

B.6. Proof of Theorem 5 and Theorem 6 on page 15

Theorem 5. Based on Φ−1

ξ(l) = log

(
1 +

L∑
k=l+1

exp (ξ(k))
)
Al

N(l) −
l∑

k=1

A(k)

(5)

for all l < L and

ξ(L) = log
A(L)

N(L) −
L∑
k=1

A(k)

(6)

Theorem 6. Rank Al/ exp (ξl) from smallest to largest as A(1)/ exp (ξ(1)), A(2)/ exp (ξ(2)),
..., A(L)/ exp (ξ(L)). Based on Φ

N(l) =
l∑

k=1

A(k) +

1 +
L∑

k=l+1

exp (ξ(k))

exp (ξ(l))
A(l) (7)

for all l < L and

N(L) =
L∑
k=1

A(k) +
1

exp (ξ(L))
A(L) (8)

Proof. First, we shall prove Theorem 5. We know N and A. We want to get ξ. Equation 4
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tells us the relationship.

A(l) = N(1)

exp (ξ(l))

1 +
L∑
k=1

exp (ξ(k))

+(N(2)−N(1))
exp (ξ(l))

1 +
L∑
k=2

exp (ξ(k))

+. . .+(N(l)−N(l−1))
exp (ξ(l))

1 +
L∑
k=l

exp (ξ(k))

(37)

A(l+1) = N(1)

exp (ξ(l+1))

1 +
L∑
k=1

exp (ξ(k))

+(N(2)−N(1))
exp (ξ(l+1))

1 +
L∑
k=2

exp (ξ(k))

+. . .+(N(l+1)−N(l))
exp (ξ(l+1))

k +
L∑

k=l+1

exp (ξ(k))

(38)
where Equation 37 and Equation 38 are two lines of Equation 4. We multiply Equation 37
by exp (ξl+1)/ exp (ξl) and substitute the result into Equation 38. We get

A(l+1) = A(l)

exp (ξ(l+1))

exp (ξ(l))
+ (N(l+1) −N(l))

exp (ξ(l+1))

1 +
L∑

k=l+1

exp (ξ(k))

(39)

Arrange it. We get

N(l+1) −N(l) = A(l+1) + A(l+1)

1 +
L∑

k=l+2

exp (ξ(k))

exp (ξ(l+1))
− A(l)

1 +
L∑

k=l+1

exp (ξ(k))

exp (ξ(l))
(40)

where we define
L∑

k=L+1

exp (ξ(k)) = 0. Sum N(2) −N(1), N(3) −N(2), ..., N(l+1) −N(l) up. We

get

N(l+1) =
l+1∑
k=1

A(k) +

1 +
L∑

k=l+2

exp (ξ(k))

exp (ξ(l+1))
A(l+1) (41)

Arrange it. We get

ξ(l+1) = log

(
1 +

L∑
k=l+2

exp (ξ(k))
)
Al+1

N(l+1) −
l+1∑
k=1

A(k)

(42)

Theorem 5 has been proven.
Now let us look at Theorem 6. If we know how to map l to (l), the proof has been

completed in Equation 41. However, we need to know N to generate the mapping from l to
(l). N(l) is the lth smallest value in N . We only know A and ξ. We shall prove Al/ exp (ξl)
generating the same mapping from l to (l).

At first, we show the existence of N .21 We rank Al/ exp (ξl) from the smallest to the
largest as A[1]/ exp (ξ[1]), A[2]/ exp (ξ[2]), ..., A[L]/ exp (ξ[L]). We have

21We emphasize that Theorem 2 is not valid since Pa
l depends on N in the simplified model.
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A[l+1]

exp (ξ[l+1])
≥

A[l]

exp (ξ[l])

⇐⇒(1 +
L∑

k=l+1

exp (ξ[k]))
A[l+1]

exp (ξ[l+1])
≥ (1 +

L∑
k=l+1

exp (ξ[k]))
A[l]

exp (ξ[l])

⇐⇒A[l+1] + (1 +
L∑

k=l+2

exp (ξ[k]))
A[l+1]

exp (ξ[l+1])
≥ (1 +

L∑
k=l+1

exp (ξ[k]))
A[l]

exp (ξ[l])

⇐⇒
l+1∑
k=1

A[k] + (1 +
L∑

k=l+2

exp (ξ[k]))
A[l+1]

exp (ξ[l+1])
≥

l∑
k=1

A[k] + (1 +
L∑

k=l+1

exp (ξ[k]))
A[l]

exp (ξ[l])

(43)

If we let

N[l] =
l∑

k=1

A[k] + (1 +
L∑

k=l+1

exp (ξ[k]))
A[l]

exp (ξ[l])
(44)

We have N[l+1] ≥ N[l]. N[l] is one set of solution. N exists.
Then, we show the uniqueness of N . If we have Al/ exp (ξl) > Al′/ exp (ξl′)⇐⇒ Nl > Nl′

and Al/ exp (ξl) = Al′/ exp (ξl′) ⇐⇒ Nl = Nl′ , N[l] is the unique set of solution, as the
mapping from l to [l] and that from l to (l) are equivalent. If N is not unique, we have
another set of Nl such that ∃l, l′, Nl < Nl′ , Al/ exp (ξl) ≥ Al′/ exp (ξl′) or ∃l, l′, Nl = Nl′ ,
Al/ exp (ξl) 6= Al′/ exp (ξl′). In either case, the order of Nl is different from the order of
Al/ exp (ξl).

Case 1 ( ∃l, l′, Nl < Nl′ , Al/ exp (ξl) ≥ Al′/ exp (ξl′)).

We rank N from the smallest to the largest as N(1), N(2), ..., N(L). l = (m) and l′ = (m′).
Since Nl < Nl′ , m < m′. From Equation 43, we have A(m)/ exp (ξ(m)) ≤ A(m+1)/ exp (ξ(m+1))
≤A(m+2)/ exp (ξ(m+2)) . . . ≤ A(m′)/ exp (ξ(m′)). If all equalities hold, N(m) = N(m+1) . . . =
N(m′). This contradicts with our assumption. Thus we haveA(m)/ exp (ξ(m)) < A(m′)/ exp (ξ(m′)).
This contradicts with Al/ exp (ξl) ≥ Al′/ exp (ξl′).

Case 2 (∃l, l′, Nl = Nl′ , Al/ exp (ξl) 6= Al′/ exp (ξl′)).

We apply the same strategy in Case 1. N(m) = N(m′) indicatesA(m)/ exp (ξ(m)) =A(m+1)/ exp (ξ(m+1))
. . . = A(m′)/ exp (ξ(m′)). This contradicts with Al/ exp (ξl) 6= Al′/ exp (ξl′).

Therefore, the mapping l → (l) generated from Al/ exp (ξl) and the one from Nl are
equivalent. N is unique.

B.7. Proof of Theorem 7 on page 16

Theorem 7. Ψl/Al = Φl/Al and Ψ−1
l = Φ−1

l assuming (1) Nl → ∞ and Al/Nl > 0 for ∀l;
(2) Nl/Nl′ is finite for any l and l′; (3) α is small enough; and (4) εil of Ψl has the same
distribution with that of Φl.
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Proof. We consider the full model. We present another representation of Pal (i,A)

P
a
l (i,A) = P(

i−1∑
j=1

1l(j) < Al) (45)

The student i can be accepted by the college l if and only if fewer than Al among top i− 1
students choose the college l. Pal (i,A) = 1 for i ≤ Al. We only need to consider i > Al. We
have

1

i− 1

i−1∑
j=1

1l(j)−
1

i− 1

i−1∑
j=1

P
c
l (j,A)

a.s.→ 0 (46)

The proof is the same as that of Theorem 1. Al/Nl > 0, so i → ∞ when Nl → ∞ and
i > Al. We get

P(
1

i− 1

i−1∑
j=1

P
c
l (j,A)− Nl

i− 1
ν <

1

i− 1

i−1∑
j=1

1l(j) <
1

i− 1

i−1∑
j=1

P
c
l (j,A) +

Nl

i− 1
ν) = 1

⇐⇒P(
1

Nl

i−1∑
j=1

P
c
l (j,A)− ν < 1

Nl

i−1∑
j=1

1l(j) <
1

Nl

i−1∑
j=1

P
c
l (j,A) + ν) = 1

⇐⇒P(
i−1∑
j=1

P
c
l (j,A)− νNl <

i−1∑
j=1

1l(j) <
i−1∑
j=1

P
c
l (j,A) + νNl) = 1

(47)

where ν is an arbitrary small positive number when Nl is large enough. Using the same
logic, we also have

P(

Nl∑
j=1

P
c
l (j,A)− νNl < Al <

Nl∑
j=1

P
c
l (j,A) + νNl) = 1 (48)

Combining Equation 45, Equation 47 and Equation 48, we have

P

( i−1∑
j=1

P
c
l (j,A) + νNl ≤

Nl∑
j=1

P
c
l (j,A)− νNl

)
≤ Pa

l (i,A) ≤ P
( i−1∑

j=1

P
c
l (j,A)− νNl ≥

Nl∑
j=1

P
c
l (j,A) + νNl

)

⇐⇒P
( i−1∑

j=1

P
c
l (j,A)−

Nl∑
j=1

P
c
l (j,A) ≤ −2νNl

)
≤ Pa

l (i,A) ≤ P
( i−1∑

j=1

P
c
l (j,A)−

Nl∑
j=1

P
c
l (j,A) ≥ 2νNl

)
(49)

P
c
l (j,A) has a positive lower bound when Pal (j,A) ≥ α. The chance of εil′ < −ξl′ for all

l′ 6= {0, l} does not vanish. If εil′ < −ξ′l (∀l′ 6= {0, l}), εi0 < 0 and εil > −ξl, the student
chooses the college l since she can get positive utility only from this college. κ > 0 denotes
this lower bound. Pcl (j,A) ≥ κ. If i ≤ Nl + 1− d2νNl/κe,
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P
a
l (i,A)

≥P
( i−1∑
j=1

P
c
l (j,A)−

Nl∑
j=1

P
c
l (j,A) ≤ −2νNl

)
=P
(
−

Nl∑
j=i

P
c
l (j,A) ≤ −2νNl

)
≥P
(
− (Nl − i+ 1)κ ≤ −2νNl

)
= 1

(50)

Likewise, when i ≥ Nl + 1 + d2νNl/κe, Pal (i,A) = 0 if Pal (i−1,A) ≥ α. If Pal (i−1,A) < α,
P
a
l (i,A) < α because Pal (i,A) ≤ Pal (i− 1,A). In both cases, Pal (i,A) < α. The student i

does not consider the college l. ω denotes a small positive number such that 1 + d2νNl/κe <
ωNl for all l. ν can be an arbitrary small positive number when Nl is large. So can ω.

Being consistent with the simplified model, εil + γ is i.i.d Extreme Value Type 1 dis-
tributed. For the college l, we do not count the choice probabilities of the students with
0 ≤ P

a
l (i,A) < 1. This causes that a college admits fewer students at the cutoff line Nl.

Mathematically we have

A(l)

N(l)

=
1

N(l)

N(l)∑
i=1

P
c
(l)(i,A)

≥ 1

N(l)

(
N(1)(1− ω)

exp (ξ(l))

1 +
L∑
k=1

exp (ξ(k))

)

+
1

N(l)

((
N(2)(1− ω)−N(1)(1 + ω)

)
+

exp (ξ(l))

1 +
L∑
k=2

exp (ξ(k))

)

. . .+
1

N(l)

((
N(l)(1− ω)−N(l−1)(1 + ω)

)
+

exp (ξ(l))

1 +
L∑
k=l

exp (ξ(k))

)

=
A(l)

N(l)

(N(1)

A(l)

(1− ω)
exp (ξ(l))

1 +
L∑
k=1

exp (ξ(k))

)

+
A(l)

N(l)

((N(2)

A(l)

(1− ω)−
N(1)

A(l)

(1 + ω)
)

+

exp (ξ(l))

1 +
L∑
k=2

exp (ξ(k))

)

. . .+
A(l)

N(l)

((N(l)

A(l)

(1− ω)−
N(l−1)

A(l)

(1 + ω)
)

+

exp (ξ(l))

1 +
L∑
k=l

exp (ξ(k))

)

(51)
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where the first equality is used in the full model. (X)+ = X if X > 0 while (X)+ = 0 if
X ≤ 0. We ignore the marginal students for a college l, whose α ≤ Pal (i,A) < 1. The non-
marginal students have definite beliefs. They act as they do in the simplified model. Likewise,
we count the choice probability of a student with α ≤ Pal (i,A) < 1 as 1 for the college l.
This causes that a college admits more students at the cutoff line Nl. Mathematically we
have

A(l)

N(l)

=
1

N(l)

N(l)∑
i=1

P
c
(l)(i,A)

≤ 1

N(l)

(
N(1)(1− ω)

exp (ξ(l))

1 +
L∑
k=1

exp (ξ(k))

+ 2ωN(1)

)

+
1

N(l)

((
N(2)(1− ω)−N(1)(1 + ω)

)
+

exp (ξ(l))

1 +
L∑
k=2

exp (ξ(k))

+ 2ωN(2)

)

. . .+
1

N(l)

((
N(l)(1− ω)−N(l−1)(1 + ω)

)
+

exp (ξ(l))

1 +
L∑
k=l

exp (ξ(k))

+ ωN(l)

)

=
A(l)

N(l)

(N(1)

A(l)

(1− ω)
exp (ξ(l))

1 +
L∑
k=1

exp (ξ(k))

+ 2ω
N(1)

A(l)

)

+
A(l)

N(l)

((N(2)

A(l)

(1− ω)−
N(1)

A(l)

(1 + ω)
)

+

exp (ξ(l))

1 +
L∑
k=2

exp (ξ(k))

+ 2ω
N(2)

A(l)

)

. . .+
A(l)

N(l)

((N(l)

A(l)

(1− ω)−
N(l−1)

A(l)

(1 + ω)
)

+

exp (ξ(l))

1 +
L∑
k=l

exp (ξ(k))

+ ω
N(l)

A(l)

)

(52)

In the two equations, N(l′)/A(l) is finite due to our assumptions. ω can be arbitrarily small
when N is large enough. When ω → 0, the full model collapses to the simplified model.
This completes the proof.

Appendix C. Graphs
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Fig. 1. Location of Three Chinese Provinces
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(a) Two Colleges (b) Three Colleges

(c) Four Colleges (d) Five Colleges

Fig. 2. DA Model (Φ−1) vs. FQR for Different Quotas in A Two-, Three-, Four-, or Five-
College World
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Fig. 3. Attractiveness ξl of Top 10 Universities for Science Majors Students in Guangxi for
2008

Fig. 4. Cumulative Welfare Change from BM to DA for Science Majors Students in Guangxi
for 2008
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Fig. 5. Individual Welfare Change from BM to DA for Science Majors Students in Guangxi
for 2008

Fig. 6. Cutoff Threshold of Each University in BM vs. DA for Science Majors Students in
Guangxi for 2008
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Fig. 7. Histogram of Welfare Change from BM to DA of Science Majors Students above Key
Cutoff Threshold (Top 14241 Students) in Guangxi for 2008
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Appendix D. Tables

Table 1: Top Ten Colleges in terms of ξl in Guangxi
Arts Majors for 2006 Science Majors for 2006

Ranking Name ξl Name ξl
1 Peking University 19.796 Tsinghua University 2.530
2 Fudan University 5.682 Shanghai Jiao Tong University 1.837
3 Renmin University of China 4.303 University of Science & Technology China 1.510
4 University of International Business and Economics 1.866 Peking University 1.173
5 City University Hong Kong 1.266 Nanjing University 0.809
6 China University of Political Science and Law 0.823 Guangxi University -0.920
7 Beijing Normal University 0.333 Xi’an Jiao Tong University -0.950
8 Sun Yat-sen University 0.205 Sun Yat-sen University -0.963
9 Wuhan University 0.117 Central South University -1.041
10 Nanjing University -0.117 Central University of Finance and Economics -1.174

1/L‖Ψ(ξ∗,A)−N0‖1 = 0.00745 1/L‖Ψ(ξ∗,A)−N0‖1 = 0.00194

Arts Majors for 2007 Science Majors for 2007

1 Peking University 6.124 Peking University 9.502
2 Renmin University of China 1.271 Tsinghua University 7.812
3 Fudan University 0.560 University of Science & Technology China 0.557
4 Nanjing University 0.472 Zhejiang University 0.144
5 Beijing Foreign Studies University -0.199 Guangxi University -0.645
6 Zhongnan University of Economics and Law -0.379 Nanjing University -1.067
7 Guangxi University -0.480 Beihang University -1.233
8 Guangxi Normal University -0.688 Guangxi Medical University -1.287
9 Wuhan University -0.877 Hunan University -1.322
10 Sun Yat-sen University -1.059 Nankai University -1.357

1/L‖Ψ(ξ∗,A)−N0‖1 = 0.00152 1/L‖Ψ(ξ∗,A)−N0‖1 = 0.00560

Arts Majors for 2008 Science Majors for 2008

1 Tsinghua University 30.256 Tsinghua University 10.782
2 Peking University 18.050 Peking University 7.024
3 Renmin University of China 3.713 Shanghai Jiao Tong University 2.367
4 Nanjing University 2.188 Peking University Health Science Center 1.916
5 University of International Business and Economics 1.362 Zhejiang University 1.589
6 Sun Yat-sen University 1.289 University of Science & Technology China 1.471
7 China University of Political Science and Law 0.552 Huazhong University of Science and Technology 0.189
8 Wuhan University 0.360 University of International Business and Economics -0.268
9 Nankai University 0.264 Wuhan University -0.379
10 Zhongnan University of Economics and Law -0.104 Fudan University -0.510

1/L‖Ψ(ξ∗,A)−N0‖1 = 0.01523 1/L‖Ψ(ξ∗,A)−N0‖1 = 0.00327
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Table 2: Top Ten Colleges in terms of ξl in Hebei
Arts Majors for 2005 Science Majors for 2005

Ranking Name ξl Name ξl
1 Peking University 3.634 Tsinghua University 1.848
2 Fudan University 1.167 Peking University 1.067
3 Zhejiang University -0.109 Zhejiang University 0.459
4 University of International Business and Economics -0.185 Tianjin University 0.096
5 Wuhan University -0.439 Peking University Health Science Center -0.070
6 Nankai University -0.440 University of Science & Technology China -1.238
7 China University of Political Science and Law -0.454 University of Science and Technology Beijing -1.313
8 Tsinghua University -0.515 Harbin Institute of Technology (Harbin) -1.474
9 Beijing Normal University -0.576 Huazhong University of Science and Technology -1.484
10 Renmin University of China -0.814 Beijing Jiaotong University -1.490

1/L‖Ψ(ξ∗,A)−N0‖1 = 0.00077 1/L‖Ψ(ξ∗,A)−N0‖1 = 0.00162

Arts Majors for 2006 Science Majors for 2006

1 Peking University 5.901 Tsinghua University 6.926
2 Tsinghua University 4.255 Peking University 4.849
3 Renmin University of China 3.408 Beihang University 0.687
4 Zhejiang University 0.138 Zhejiang University 0.510
5 Nankai University 0.066 University of Science & Technology China -0.227
6 Nanjing University -0.523 Xi’an Jiao Tong University -0.969
7 Xiamen University -0.694 Harbin Institute of Technology (Harbin) -1.399
8 University of International Business and Economics -1.126 Dalian University of Technology -1.476
9 Jilin University -1.281 Nanjing University -1.586
10 Zhongnan University of Economics and Law -1.406 Xi’an Electronic and Science University -1.663

1/L‖Ψ(ξ∗,A)−N0‖1 = 0.00067 1/L‖Ψ(ξ∗,A)−N0‖1 = 0.00174

Arts Majors for 2007 Science Majors for 2007

1 Peking University 8.101 Tsinghua University 8.920
2 Tsinghua University 3.779 Peking University 5.421
3 Renmin University of China 2.809 Shanghai Jiao Tong University 2.344
4 Fudan University 1.372 Peking University Health Science Center 2.041
5 Zhejiang University -0.030 Beihang University 1.966
6 Central University of Finance and Economics -0.379 Fudan University 0.450
7 Nanjing University -0.396 Zhejiang University 0.356
8 China University of Political Science and Law -0.460 Xi’an Jiao Tong University 0.281
9 Nankai University -0.689 Nanjing University 0.188
10 Beijing Foreign Studies University -0.693 Nankai University -0.184

1/L‖Ψ(ξ∗,A)−N0‖1 = 0.00255 1/L‖Ψ(ξ∗,A)−N0‖1 = 0.00203
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Table 3: Top Ten Colleges in terms of ξl in Sichuan
Arts Majors for 2006 Science Majors for 2006

Ranking Name ξl Name ξl
1 Tsinghua University 3.489 Peking University Health Science Center 6.255
2 Renmin University of China 2.864 Peking University 5.422
3 Fudan University 1.322 Zhejiang University 4.426
4 Sichuan University 0.053 University of Science & Technology China 3.681
5 Southwestern University of Finance and Economics -0.046 Fudan University 3.346
6 Nanjing University -0.284 Shanghai Jiao Tong University 2.660
7 Wuhan University -0.742 Beihang University 1.363
8 Zhejiang University -0.793 Nanjing University 1.221
9 Tongji University -1.009 Beijing University of Posts and Telecommunications 1.164
10 Nankai University -1.248 Shanghai University of Finance and Economics 0.711

1/L‖Ψ(ξ∗,A)−N0‖1 = 0.00044 1/L‖Ψ(ξ∗,A)−N0‖1 = 0.00097

Arts Majors for 2007 Science Majors for 2007

1 Fudan University 2.830 Peking University 8.208
2 University of International Business and Economics 0.931 Fudan University 8.206
3 Sichuan University 0.850 Peking University Health Science Center 6.472
4 Beijing Foreign Studies University 0.816 Shanghai Jiao Tong University 6.290
5 Southwestern University of Finance and Economics 0.791 Zhejiang University 5.091
6 Nanjing University 0.582 University of Science & Technology China 4.353
7 Zhejiang University 0.491 Renmin University of China 3.381
8 China University of Political Science and Law 0.403 Tongji University 3.156
9 Nankai University 0.196 Nanjing University 2.887
10 Shanghai University of Finance and Economics -0.719 Beihang University 2.471

1/L‖Ψ(ξ∗,A)−N0‖1 = 0.00024 1/L‖Ψ(ξ∗,A)−N0‖1 = 0.00059

Table 4: BM vs. DA

Province Year Major G I Breakeven Loss (L) Loss A La

Guangxi 2006 Arts 241 (6.75%) 308 (8.63%) 546 (15.30%) -5.87% -6.63% 2524 3570
Guangxi 2006 Science 232 (1.77%) 1049 (8.01%) 306 (2.34%) -2.87% -3.26% 8960 13098
Guangxi 2007 Arts 65 (1.59%) 112 (2.75%) 172 (4.22%) -2.45% -3.50% 2898 4077
Guangxi 2007 Science 1506 (10.65%) 4793 (33.91%) 278 (1.97%) -1.50% -2.00% 9794 14135
Guangxi 2008 Arts 140 (3.13%) 211 (4.72%) 278 (6.22%) -3.67% -4.37% 2967 4468
Guangxi 2008 Science 129 (0.91%) 197 (1.38%) 335 (2.35%) -1.98% -2.49% 9875 14242
Hebei 2005 Arts 63 (1.15%) 226 (4.12%) 291 (5.31%) -4.31% -4.34% 1743 5480
Hebei 2005 Science 430 (1.86%) 3020 (13.05%) 379 (1.64%) -1.93% -1.94% 9476 23145
Hebei 2006 Arts 36 (0.64%) 60 (1.06%) 96 (1.70%) -4.13% -4.16% 1839 5656
Hebei 2006 Science 210 (0.88%) 5125 (21.47%) 551 (2.31%) -1.69% -1.73% 9187 23866
Hebei 2007 Arts 39 (0.68%) 65 (1.13%) 105 (1.82%) -3.94% -3.98% 1722 5764
Hebei 2007 Science 236 (0.93%) 544 (2.14%) 846 (3.33%) -3.52% -3.52% 8947 25437
Sichuan 2006 Arts 62 (1.31%) 2090 (44.15%) 155 (3.27%) -2.86% -3.77% 3452 4734
Sichuan 2006 Science 307 (1.19%) 731 (2.84%) 1293 (5.03%) -3.02% -3.39% 20672 25715
Sichuan 2007 Arts 300 (6.57%) 454 (9.94%) 784 (17.16%) -4.03% -4.95% 3488 4569

a G: the number of students who benefit from the switch and the percentage of these students in the all students above
the key cutoff threshold in the parentheses (i.e. Figure 7 on page 51).
I: the last student in terms of rank who benefits from the switch and is above the key cutoff threshold; the percentage
of the rank in the key cutoff in the parentheses (i.e. the first vertical line from the left in Figure 5 on page 50).
Breakeven: the maximum number of students where the social welfare may increase after the switch; the percentage
of this number in the key cutoff in the parentheses (i.e. the first vertical line from the left in Figure 4 on page 49).
Loss (L) and Loss: the welfare loss of the students above the key cutoff and that of all the students.
A: the sum of the quotas of all colleges.
L: the key cutoff threshold.
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