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Abstract

Set-identified SVARs, which relax exclusion restrictions and rely on weaker assumptions such as sign

restrictions, are increasingly common. However, a known drawback is that the inference is rarely informa-

tive. This paper shows that robust restrictions on the Forecast Error Variance (FEV) decomposition may

dramatically shrink the inference. Specifically, these restrictions are consistent with the implications of a

variety of different DSGE models, with both real and nominal frictions, and with sufficiently wide ranges for

their parameters. First, in a bivariate and trivariate setting, this paper analytically proves restrictions on

the FEV decomposition are more informative than traditional sign restrictions. Second, sufficient conditions

are provided to guarantee that the identified set is non-empty and convex. Finally, two applications are

provided: using models of monetary policy and technology shocks, restrictions on the FEV decomposition

tend to be highly informative, greatly shrink and even change the inference of models originally identified

via traditional sign restrictions. Remarkably, shrinkage in inference is robust to the recent concerns over

the unintended consequences of rotation matrix prior (Baumeister and Hamilton, 2015).
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1 Introduction and Related Literature

After Sims (1980), the structural vector autoregressive (SVAR) models are the common tool

to study the dynamics caused by macroeconomic shocks. The early literature employs zero

short-run, medium-run, or long-run restrictions on impulse response function (IRFs) for iden-

tification (Sims, 1980; Uhlig, 2004; Blanchard and Quah, 1989). However, recent contributions

relax controversial restrictions and attempt to rely on weaker assumptions. Specifically, since

Faust (1998), Canova and Nicolo (2002), and Uhlig (2005), it is increasingly common to identify

structural shocks with sign restrictions on either the impulse response functions or the struc-

tural parameters. Such restrictions are usually weaker than classical identification schemes and,

as a result, likely to be agreed upon by researchers. Additionally, because the structural param-

eters and IRFs are set-identified, or bounded, conclusions are robust across the set of structural

models that satisfy the sign restrictions. But this minimalist, or agnostic, approach comes at

a cost. Sign restrictions will usually deliver a set of structural parameters with very different

implications for IRFs, elasticities, historical decompositions or forecasting error variance de-

compositions. On one hand, it will be extremely challenging to obtain informative inference

and meaningful economic results. On the other hand, some of the admissible structural models

may contain implausible implications. Specifically, Kilian and Murphy (2012) find that sign

restrictions on IRFs of a SVAR for the oil market induce highly questionable implications for

the price elasticity of oil supply to demand shocks. Arias, Caldara, and Rubio Ramı́rez (2016)

show that identifying restrictions in Uhlig (2005) have counter-intuitive consequences for the

systematic response of monetary policy to real output. Thus, the challenge is to come up with

a small number of additional uncontroversial restrictions that help shrink the set of admissible

structural parameters and allow us to reach clear economic conclusions.

I make the following contributions to the class of set-identified dynamic models. This

paper shows that robust restrictions on the Forecast Error Variance (FEV) decomposition

may dramatically shrink the inference. Specifically, these restrictions are consistent with the

implications of a variety of different DSGE models, with both real and nominal frictions, and

with sufficiently wide ranges for their parameters. First, in a bivariate and trivariate setting,

this paper analytically proves restrictions on the FEV decomposition are more informative

than traditional sign restrictions. Second, sufficient conditions are provided to guarantee that

the identified set is non-empty and convex. Finally, two applications are provided: using

models of monetary policy and technology shocks, restrictions on the FEV decomposition tend

to be highly informative, greatly shrink and even change the inference of models originally

identified via traditional sign restrictions. Remarkably, shrinkage in inference is robust to the

recent concerns over the unintended consequences of rotation matrix prior (Baumeister and
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Hamilton, 2015).

This paper shares with Antolin-Diaz and Rubio Ramı́rez (2017) and Amir-Ahmadi and

Drautzburg (2017) the need to enrich traditional sign restrictions with additional informa-

tion; however, the methodology greatly differs. First, Antolin-Diaz and Rubio Ramı́rez (2017)

employ historical information to derive additional sign restrictions on the historical decom-

position and truncate the likelihood distribution rather than the prior specification. Second,

Amir-Ahmadi and Drautzburg (2017) propose a ranking of IRFs derived from micro data.

The paper is organised as follows. Section 2 provides the econometric framework for set-

identified structural models. Section 3 analytically illustrates the shrinkage of identified set in

a bivariate and trivariate setting. Section 4 establishes sufficient conditions for non-emptiness

and convexity. Section 5 shows how to derive a set of restrictions on the FEV decomposition

consistent with a variety of different theoretical models and shows the results for a monetary

policy SVAR. Section 6 presents the second empirical application based on identification of

technology shocks. Finally, Section 7 concludes.

2 The Econometric Framework

This section illustrates the SVAR. It then introduces the identification problem, the relation-

ship between reduced-form and structural parameters and the class of equality, sign and FEV

restrictions considered in this paper.

2.1 The Model

Consider a SVAR(p) model

A0yt = a+

p∑
j=1

Ajyt−j + εt (2.1)

for t = 1, . . . , T, where yt is an n× 1 vector of endogenous variables, εt an n× 1 vector white

noise process, normally distributed with mean zero and variance-covariance matrix In, Aj for

j = 0, . . . , p is an n × n matrix of structural coefficient. As usual in literature, structural

disturbances are assumed to be uncorrelated. The initial conditions y1, . . . ,yp are given. Let

θ = (A0,A+) collect the structural parameters, where A+ = (a,Aj) for j = 1, . . . , p. The

reduced-form VAR is as follows

yt = b+

p∑
j=1

Bjyt−j + ut, (2.2)
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where b = A−1
0 c is an n × 1 vector of constants, Bj = A−1

0 Aj , ut = A−1
0 εt denotes the

n × 1 vector of reduced-form errors. var(ut) = E(utu
′
t) = Σ = A−1

0 (A−1
0 )′ is the n × n

variance-covariance matrix of reduced-form errors. Let φ = (B,Σ) ∈ Υ collect the reduced-

form parameters, where B ≡ [b,B1, . . . ,Bp]. Note that Υ is such that the VAR(p) is invertible

into a VMA(∞), i.e., the model is stationary. Thus, the VMA(∞) representation of (2.2) is

yt = c+

∞∑
j=0

Cj(B)A−1
0 εt−j , (2.3)

where Cj(B) is the j-th coefficient matrix of (In −
∑p

j=1BjL
j)−1. Let the n× n matrix

IRh = Ch(B)A−1
0 (2.4)

be the impulse response at h-th horizon, where its (i, j)-element denotes the effect on the i-th

variable in yt+h of a unit shock to the j-th element of εt and h = 0, 1, . . . .

2.2 The Identification Problem

Identifying restrictions are needed to point-identify structural parameters A0 and A+ from φ.

Otherwise, reduced-form parameters φ are not able to uniquely pin down the structural objects.

In absence of any identifying restrictions, Uhlig (2005) shows that {A0 = Q′Σ−1
tr : Q ∈ Θ(n)}

is the set of observationally equivalent A0’s consistent with reduced-form parameters, where Σ

relates to A0 by Σ = A−1
0 (A−1

0 )′, Σtr denotes the lower triangular Cholesky matrix with non-

negative diagonal coefficients and Q ∈ Θ(n) is the n× n orthonormal matrix belonging to the

space of n×n orthonormal matrices Θ(n). The likelihood function depends on φ and does not

contain any information about Q, leading to ambiguity in decomposing Σ. Thus, in absence of

point-identification, there is a multiplicity of Q’s which deliver A0 given φ. Similarly, the rest

of structural parameters A+ is a function of Q and Cholesky decomposition of reduced-form

parameters. For simplicity, this section illustrates the identification problem relying on A0

only.

The set of A0 and A+ collapses to a singleton as long as identifying assumptions are

able to deliver a unique Q which recovers structural parameter A0 and A+, i.e. point-

identification. Rubio-Ramirez, Waggoner, and Zha (2010) establish sufficient conditions for

point-identification: there must be at least n − j equality restrictions on the j-th structural

shock, for 1 ≤ j ≤ n, and sign normalizations on the impulse responses to each structural

shock.1 This paper focuses on set-identification, so there will be fewer than n − j equal-

1Rothenberg (1971) proves that necessary condition for point-identification require that the number of equality

restrictions is greater than or equal to n(n− 1)/2.
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ity restrictions on the j-th structural shock. As a result, no matter how many sign restric-

tions are imposed, point-identification fails and will only be set-identification. Under set-

identification, I follow Christiano, Eichenbaum, and Evans (1999) and assume that the di-

agonal elements of A0 are non-negative, i.e., a structural shock is a one standard-deviation

positive shock to the related variable. Thus, the set of observationally equivalent A0’s becomes

{A0 = Q′Σ−1
tr : Q ∈ Θ(n), diag(Q′Σ−1

tr ) ≥ 0}, where diag(•) ≥ 0 implies that all diagonal

elements of • are non-negative. Thus, in absence of any identifying restrictions, there is a

multiplicity of Qs consistent with A0, given the reduced-form parameters:

Q(φ) = {Q ∈ Θ(n) : diag(Q′Σ−1
tr ) ≥ 0}.

Without loss of generality, suppose one is interested in a specific (structural) impulse re-

sponse - for instance, the (i, j)−th element of IRh -:

ghi,j(φ,Q) ≡ e′iCh(B)ΣtrQej ≡ c′ih(φ)qj ,

where ghi,j(φ,Q) ∈ R, ei is the i-th column vector of In, qj is the j-th column of Q and c′ih(φ)

represents the i-th row vector of Ch(B)Σtr. Note that the analysis for the impulse responses

can be easily extended to the structural parametersA0 andA+ since each structural parameter

can be expressed by the inner product of a vector depending on φ and a column vector of Q.

2.2.1 Equality Restrictions

Typical equality restrictions include zero restrictions on off-diagonal elements of A−1
0

2 and zero

restrictions on other components of the matrix.3 Econometric framework here also allows to

place zero restrictions on the lagged coefficients Al : l = 1, . . . p and restrictions on the long-

run impulse responses IR∞ = (In −
∑p

j=1Bj)
−1ΣtrQ. For simplicity and without loss of

generality, this paper reduces the set of equality restrictions to zero restrictions only (in the

short- or in the long-run). They can be considered as linear constraints on the columns of Q

with coefficients depending on the reduced-form parameters φ. As a result, zero restrictions

can be represented as follows:

F (φ,Q) ≡


F1(φ)q1

...

Fn(φ)qn

 = 0, Fi(φ): fi × n, (2.5)

2This corresponds to a subset of the restrictions imposed by the classical recursive identification scheme that

sets the upper-triangular elements of A−1
0 to zero.

3Zero restrictions on A−1
0 restrict the contemporaneous impulse responses.
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where fi × n matrix Fi(φ) depends on φ. Each row vector in Fi(φ) is the coefficient vector

of a zero restriction that constrains the correspondent column of Q. More generally, Fi(φ)

collects all the coefficient vectors that multiply qi into a matrix and fi denotes number of zero

restrictions constraining qi.

2.2.2 Sign Restrictions

Assume that the researcher is interested in imposing some sign restrictions on the impulse

response vector to the j-th structural shock and let sh,j denote the number of sign restrictions

on impulse responses at horizon h. In this case, the impulse response is given by the j-th

column vector of IRh = Ch(B)ΣtrQ and the sign restrictions are

Sh,j(φ)qj ≥ 0,

where S(φ)h,j ≡ Dh,jCh(B)Σtr is a sh,j × n matrix and Dh,j is the sh,j × n selection matrix

that selects the sign-restricted responses from the n × 1 response vector Ch(B)Σtrqj . The

nonzero elements of Dh,j can be equal to 1 or to -1 depending on the sign of restriction on the

impulse response of interest. By considering multiple horizons, the whole set of sign restrictions

is

Sj(φ)qj ≥ 0. (2.6)

Specifically, Sj is a
(∑h̄j

h=0 sh,j

)
×n matrix defined by Sj(φ) =

[
S0,j(φ)′, . . . ,Sh̄j ,j(φ)

]′
. With

abuse of notation, let S(φ,Q) > 0 collect the set of all sign restrictions Sj(φ)qj > 0 for any

j.4

Sign restrictions above can be easily added to the zero restrictions; let Q(φ|F ,S) be the

set of Q’s that satisfy sign normalizations, zero and sign restrictions, given φ:

Q(φ|F ,S) = {Q ∈ Θ(n) : F (φ,Q) = 0,S(φ,Q) ≥ 0, diag(Q′Σ−1
tr ) ≥ 0}.

The identified set for the object of interest is a set-valued map from φ to a subset in R that

delivers ghi,j(φ,Q) when Q varies over Q(Q|F ,S):

ISg(φ|F ,S) = {ghi,j(φ,Q) : Q ∈Q(φ|F ,S)}. (2.7)

4Given the j-th shock, sign restrictions on A0 and A+ can be appended to equation (2.6) as they can be

expressed as linear constraints on qj .
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2.2.3 Restrictions on the Forecast Error Variance

This Section illustrates how to impose restrictions on the Forecast Error Variance. First, the

h-step ahead Forecast Error for a SVAR as in equation (2.1) is FE(h) ≡ yt+h − yt+h|t =∑h−1
i=0 IR

iεt+h−i. Thus, the Forecast Error Variance at horizon h is

FEV (h) ≡ E
[
(yt+h − yt+h|t)(yt+h − yt+h|t)′

]
=

h−1∑
i=0

IRiIRi′ .

Thus, the contribution of shock j to Forecast Error Variance of variable z at horizon h is

CFEV z
j (h) ≡

FEV z
j (h)

FEV z(h)
=

∑h−1
i=0 IR

i2
z,j∑n

j=1

∑h−1
i=0 IR

i2
z,j

, (2.8)

where IRi
z,j is the (z, j)-th element of IRi. Equation (2.8) can be written as

CFEV z
j (h) =

q′jS
z(φ)qj

σ2
z(φ)

, (2.9)

where Sz(φ) =
∑h−1

i=0 czi(φ)c′zi(φ) and σ2
z(φ) =

∑h−1
i=0 c

′
zi(φ)czi(φ) is the total Forecast Error

Variance of variable z at horizon h.

Suppose that researcher believes the contribution of shock j to Forecast Error Variance of

variable z at horizon h is not lower than contribution of shock j∗ to Forecast Error Variance

of variable z∗. This implies that

q′jS
z(φ)qj

σ2
z(φ)

−
q′j∗S

z∗(φ)qj∗

σ2
z∗(φ)

≥ 0. (2.10)

For j = j∗ and z = z∗, inequality (2.10) is trivially always satisfied.

Let IFEV ⊂ {1, 2, . . . , n} be the set of indices such that j, j∗, z, z∗ ∈ IFEV if variables z and

z∗, subject to j- and j∗-th shock, are FEV-restricted as in equation (2.10). The set of all the

constraints on the FEV can be accordingly expressed by

q′jS
z(φ)qj

σ2
z(φ)

−
q′j∗S

z∗(φ)qj∗

σ2
z∗(φ)

≥ 0, for any j, j∗, z, z∗ ∈ IFEV . (2.11)

For simplicity, inequality (2.11) assumes that any restriction on the FEV has a common h;

allowing different horizons is feasible at cost of making the notation dramatically heavier. As

shorthand notation, let Γ(φ,Q) ≥ 0 collect the whole set of rank restrictions on the FEV

represented by (2.11). Note that standard sign assumptions in Section 2.2.2 sign-restrict the

response functions at a given horizon and impose linear constraints on the columns of Q. On

the other hand, assumptions on the FEV are restricting the relative contribution of response
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functions in explaining the FEV of a target variable rather than constraining its sign. This

implies that rank restriction on the FEV impose quadratic constraints on the columns of Q

and can be used with/without standard sign restrictions.

The set of Q’s that satisfy sign normalizations, zero restrictions, sign restrictions and re-

strictions on the FEV is

Q(φ|F ,S,Γ) = {Q ∈ Θ(n) : F (φ,Q) = 0,S(φ,Q) ≥ 0,Γ(φ,Q) ≥ 0, diag(Q′Σ−1
tr ) ≥ 0}.

The correspondent identified set for the object of interest is:

ISg(φ|F ,S,Γ) = {ghi,j(φ,Q) : Q ∈Q(φ|F ,S,Γ)}. (2.12)

Note that Q(φ|F ,S,Γ) and Q(φ|F ,S) can be empty sets depending on φ, unlike the case

with zero restrictions only. If so, the correspondent identified set for ghi,j is an empty set.

2.3 Estimation and Inference

The identification strategy is intuitive and relies on economic theory, but estimation and infer-

ence is not straightforward. While this paper does not take a stand over the exciting debate

about the construction of priors and inference in set-identified SVARs, the current section

briefly illustrates the methodologies used in this work and the main challenges.5

This paper follows the conventional Bayesian approach and places a Normal-inverse-Wishart

prior on the reduced-form6 and a uniform specification onQ, which is uninformative in the Haar

space. However, the implied priors for the structural impulse responses are clearly informative.

This outcome derives from the fact that the responses are a weighted average of the elements

of Q, which are not flat. The resulting informative prior for the structural impulse responses

does not rely on economic information; since the likelihood does not depend on Q, data are

unable to update this prior even asymptotically. A crucial practical question is to what extent

the posterior distribution of the structural parameters of interest relies on the prior for Q, as

opposed to the data.

This paper employs the algorithm in Arias, Rubio-Ramirez, and Waggoner (2017). They

propose to use an agnostic prior, in the sense that it does not imply further identifying re-

strictions beyond those explicitly imposed by the user. They define a prior over the structural

representation θ (or over the impulse response structural representation) to be agnostic if the

prior density is invariant to Q; they formally prove that a prior is agnostic if and only if it is

equivalent to a prior over (φ,Q) that is flat over Q. Thus, the conventional Bayesian approach

5Chapter 13 in Kilian and Lütkepohl (2017) provides an excellent survey.
6The hyperparameters are calibrated on a flat random walk.
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discussed above is agnostic in this sense. As discussed, this does not imply that the prior is

uninformative for the structural impulse responses.

In order to verify the potential effect of the prior for Q on the results, this paper uses

the robust Bayesian approach in Giacomini and Kitagawa (2015) as additional check. They

construct posterior bounds on the structural object of interest without taking a stand on the

prior for Q, which can be any specification as long as identifying restrictions are satisfied.

Thus, their procedure only relies on a reduced-form prior and identifying restrictions. For

practitioners, they provide an algorithm to construct a robustified credible region induced by

posterior bounds. The comparison between this region and the credibility region implied by a

specific prior forQ provides a diagnostic tool to evaluate how much the posterior inference relies

on the prior for Q, as opposed to the data. However, diagnostic in Giacomini and Kitagawa

(2015) is a formal tool to detect unintended informative inference, but it does not provide any

economic interpretation about its root.

Baumeister and Hamilton (2015) specify the prior directly on θ, draw in structural parametriza-

tion and generalize the approach in Sims and Zha (1998) instead of imposing priors on φ and

Q. This is a very interesting and novel approach since the rest of the literature relies on the

orthogonal reduced-form parametrization. Specifically, they place a prior, which can be explic-

itly uninformative or informative, on the (structural) matrix of contemporaneous coefficients.

These priors on the structural parameters should be explicitly acknowledged and defended

trough extraneous information from economic literature and theory.7 However, it is gener-

ally challenging to find such an additional information beyond restrictions already imposed

in the existing literature, especially in medium- and large-size models. On the other hand,

any marginal priors on θ is implicitly informative on the structural responses in a manner

which does not necessarily coincide with the prior beliefs of the researcher about the structural

responses.

3 Illustrative Example

This section analytically illustrates the shrinkage in the identified set implied by restrictions on

the FEV decomposition in static bivariate and trivariate models. Remarkably, the reduction

also affects structural objects which are not involved in the restrictions.

7For example, in a 2-variable labour and supply demand model they place a prior directly on the (structural)

elasticities relying on micro and macro meta-analysis.
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3.1 Bivariate Setting

The structural framework is the following:

A

(
y1t

y2t

)
=

(
ε1t

ε2t

)
, A =

(
a11 a12

a21 a22

)
, t=1,. . . ,T, (3.1)

where (y1t, y2t) are two endogenous variables, respectively. (ε1t, ε2t) denotes an i.i.d. normally

distributed vector of structural shocks with variance-covariance the identity matrix. θ = A

collects the structural parameters and the contemporaneous impulse responses are elements

of A−1. The reduced-form model is indexed by Σ, the variance-covariance matrix of the

endogenous variables, which satisfies Σ = A−1(A−1)′. Let Σtr =

(
σ11 0

σ21 σ22

)
denote its lower

triangular Cholesky decomposition, where σ11 ≥ 0 and σ22 ≥ 0. Thus, φ = (σ11, σ21, σ22) ∈
Φ = R+ × R × R+ collects the reduced-form parameters. Following Uhlig (2005), A can be

parametrized via the Cholesky matrix Σtr and a rotation matrix Q =

(
cosρ −sinρ
sinρ cosρ

)
with

spherical coordinate ρ ∈ [0, 2π]. The structural matrix of impact responses can be written as

IR0 = A−1 = ΣtrQ =

(
σ11 cos ρ −σ11 sin ρ

σ21 cos ρ+ σ22 sin ρ −σ21 sin ρ+ σ22 cos ρ

)
.

Without loss of generality, let the structural object of interest α be the response of output to

a unit positive demand shock, α ≡ σ11 cos ρ.

3.1.1 Traditional Sign Restrictions

Two standard sign restrictions (SR) are imposed on IRFs:

• SR1

On impact, positive shock ε2 does not increase variable y1: σ11 sin ρ ≥ 0. Under this

assumption, the conditional covariance induced by ε2 is negative.

• SR2

Positive shock ε1 does not reduce variable y1 on impact: −σ22 sin ρ− σ21 cos ρ ≤ 0.

Note that standard sign restrictions impose linear inequalities on ρ. Appendix A proves

that the identified set for α is

ISα(φ) ≡


[
σ11 cos

(
arctan

(
σ22
σ21

))
, σ11

]
, for σ21 > 0,[

0, σ11 cos
(

arctan
(
−σ21
σ22

))]
, for σ21 ≤ 0.

(3.2)
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3.1.2 Restrictions on the FEV Decomposition

• FEVR

Assume that shock ε2 explains y2 more than y1 on impact, i.e., the contribution of

shock ε2 to the total error variance of y2 is higher than its contribution to that one

of y1; this restriction ranks the contribution of the shock ε2 in driving the variables.

Following the notation introduced in Section ???, this restriction can be written as
FEVy2,ε2
FEVy2

≥ FEVy1,ε2
FEVy1

. Appendix A proves this imposes the following quadratic constraints

on ρ: (−σ21sinρ+σ22cosρ)2

σ2
21+σ2

22
≥ (−σ11sinρ)2

σ2
11

.

SR1, SR2 and FEVR deliver the following identified set for α:

ISα(φ) ≡


[
σ11 cos

(
arctan

(
σ22

σ21+
√
σ2
21+σ2

22

))
, σ11

]
, for σ21 > 0,[

σ11 cos

(
arctan

(
σ22

σ21+
√
σ2
21+σ2

22

))
, σ11 cos

(
arctan

(
−σ21
σ22

))]
, for σ21 ≤ 0.

(3.3)

For any σ21, the restriction on the FEV shrinks the identified set of α with respect to the set

induced by SR1 and SR2 ; specifically, the lower bound increases, while the upper one remains

unchanged. The degree of additional shrinkage depends on the reduced-form: the higher the

error variance of variable y1, namely σ2
21 + σ2

22, the stronger the shrinkage. Remarkably, the

FEVR is never redundant and always adds information.

• FEVR2

Note that FEVR is restricting one and one shock only. Assume that the researcher has

now information on both shocks. For example, ε1 explains y2 more than ε2: (σ21cosρ +

σ22sinρ)2 ≥ (−σ21sinρ+ σ22cosρ)2.

Under SR1, SR2 and FEVR2 the identified set for α is

ISα(φ) ≡



[
σ11 cos

(
arctan

(
σ22
σ21

))
, σ11 cos

(
arctan

(
σ22−σ21
σ22+σ21

))]
, for σ21 > 0, σ22 ≥ σ21,[

σ11 cos
(

arctan
(
σ22
σ21

))
, σ11

]
, for σ21 > 0, σ22 < σ21,[

0, σ11 cos
(

arctan
(
σ22−σ21
σ22+σ21

))]
, for σ21 ≤ 0, σ22 ≥ |σ21|,

∅, for σ21 ≤ 0, σ22 < |σ21|.
(3.4)

For σ21 > 0, FEVR2 shrinks the identified set of α with respect to the set induced by SR1 and

SR2 if σ22 ≥ σ21, otherwise the restriction is redundant; specifically, the upper bound is now
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lower. For σ21 ≤ 0, FEVR2 restricts ISα(φ) if σ22 ≥ |σ21|; otherwise, it is at odds with SR1

and delivers an empty identified set.

3.1.3 Restrictions on the FEV decomposition without Sign Restrictions

So far I showed that restrictions on the FEV adds information to the sign restrictions and

shrink the identified set. However, credible sign restrictions are not always available to the

researcher, at least for some variables in the model; in such a scenario, he/she may want to

impose restrictions on the FEV decomposition only. For instance, most economists would agree

that technological shocks are a more credible driver than monetary shocks to explain the hours

worked, especially in the long-run; however, there is a huge controversy about the sign of the

response of hours worked to a technological shock (Gaĺı and Rabanal, 2004; McGrattan, 2004).

The following example analytically shows that restrictions on the FEV shrink the identified

set even if not combined with sign restrictions; specifically, they are generally more informative

than traditional sign restrictions.

Example 3.1 Consider the bivariate setting; suppose that the researcher imposes a sign re-

striction on the first variable, but he/she has not credible information to impose sign restric-

tions on y2; however, he/she knows that ε2 explains y1 more than y2. The set of assumptions

is IR0
12 ≤ 0 and

FEVy2,ε2
FEVy2

≤ FEVy1,ε2
FEVy1

. The correspondent identified set is

ISα(φ) ≡


[
σ11 cos

(
arctan

(
σ21
σ22

))
, σ11 cos

(
arctan

(
σ22

σ21+
√
σ2
21+σ2

22

))]
, for σ21 > 0,[

0, σ11 cos

(
arctan

(
σ22

σ21+
√
σ2
21+σ2

22

))]
, for σ21 ≤ 0.

(3.5)

For any φ, the Appendix proves that ISα(φ) in equation (3.5) is smaller than the set induced

by replacing the restriction on the FEV with a sign restrictions on y2, i.e., the identified set in

equation (3.2).

3.2 Trivariate Setting

Bivariate illustration shows that the impulse response of interest belongs to a strictly smaller

identified set with restrictions on the FEV decomposition compared with sign restrictions under

conditions on the reduced-form conditional covariance. Higher dimensional cases are more

complicated. However, the trivariate case is useful to characterize the shrinkage in the identified

set of the variable which is not involved in the restrictions on the FEV. In parallel with the

bivariate setting, the degree of additional shrinkage depends on the reduced-form.
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The structural framework is the following:

A

y1t

y2t

y3t

 =

ε1tε2t
ε3t

 (3.6)

The reduced-form model is indexed by Σ, the variance-covariance matrix of the endoge-

nous variables, which satisfies Σ = A−1(A−1)′. Let Σtr =

σ11 0 0

σ21 σ22 0

σ31 σ32 σ33

 denote its

lower triangular Cholesky decomposition, where σ11 ≥ 0, σ22 ≥ 0 and σ33 ≥ 0. φ =

(σ11, σ21, σ22, σ31, σ32, σ33) collects the reduced-form parameters. Let the structural object of

interest α be the response of y1 to a unit positive shock ε1, α ≡ σ11 cos ρ, where ρ ∈ [0, 2π].

For simplicity, I consider a subspace of the set of all solutions in the trivariate context. This

simplifies the analytical characterization of the identified set for α and the comparison between

sign restrictions and restrictions on the FEV; for details about such a subspace and its specific

features, see Appendix A. However, the results from the bivariate context still persist.

Three standard sign restrictions (SR) are imposed.

• SR1

On impact, positive shock ε2 does not increase variable y1: σ11 sin ρ ≥ 0.

• SR2

Positive shock ε1 does not reduce variable y1 on impact: −σ22 sin ρ− σ21 cos ρ ≤ 0.

• SR3

Positive shock ε2 does not decrease variable y3 on impact: −σ31 sin ρ+ σ32 cos ρ ≥ 0.

For σ21 > 0, σ31 < 0 and σ32 < 0, SR1, SR2 and SR3 imply that

ISα(φ) ≡


[
σ11 cos

(
arctan

(
σ22
σ21

))
, σ11 cos

(
arctan

(
σ32
σ31

))]
, for σ21σ32 ≥ σ22σ31,

∅, for σ21σ32 < σ22σ31.

(3.7)

Thus, limitation of the space for φ allows to focus on a single case, i.e., σ21σ32 ≥ σ22σ31.

• FEVR

Assume that shock ε2 explains y2 more than y3; this restricts contribution of the shock

ε2 in driving y2 and y3. However, it does not involve y1, namely the object of interest.

13



As with the bivariate case, FEVR imposes quadratic constraints on the columns of Q:
(−σ21sinρ+σ22cosρ)2

σ2
21+σ2

22
≥ (−σ31sinρ+σ32cosρ)2

σ2
31+σ2

32+σ2
33

.

As long as σ21σ32 ≥ σ22σ31, SR1, SR2, SR3 and FEVR characterize α as follows:

ISα(φ) ≡

[
σ11 cos

(
arctan

(
σ32

√
σ2

21 + σ2
22 − σ22

√
σ2

31 + σ2
32 + σ2

33

σ31

√
σ2

21 + σ2
22 − σ21

√
σ2

31 + σ2
32 + σ2

33

))
, σ11 cos

(
arctan

(
σ32

σ31

))]
.

(3.8)

Although FEVR does not involve the variable of interest y1, it shrinks ISα(φ); in the

appropriate subspace and for σ21σ32 ≥ σ22σ31, the lower bound of identified set (3.8) gets

closer to the upper bound, which remains unchanged.

3.3 Relationship with Heterogeneity Restrictions

Amir-Ahmadi and Drautzburg (2017) employ heterogeneity restrictions, namely a ranking of

impulse responses, on micro aggregates to derive informative inference for macro variables. For

instance, consider elasticities of different industries to a defense spending shock. Manufacturing

industry A might be more exposed to these shocks relative to sector B if the military is a key

client of the former industry but not of the latter industry. Heterogeneity assumptions then

restrict industry A to respond more than industry B to a defense spending shock.

However, restrictions on the FEV differ from heterogeneity assumptions. First, in the

baseline specification the latter nest sign restrictions. With regard to the previous example,

the heterogeneity assumptions also imply that shipment of all industries rise after a defense

spending shock, but more when the government is an important client of industry. Second,

heterogeneity restrictions rank straight the IRFs, while this paper restricts the contribution of

shocks in explaining the (forecast error) variance of target variables. For the reasons mentioned

above, the application of the two typologies of restrictions is dramatically different. Hetero-

geneity assumptions restrict micro variables and, as such, rely on micro data; on the other

hand, restrictions on the FEV are derived from a large variety of theoretical models and affect

macro variables only.

The following example shows that heterogeneity assumptions and restrictions on the FEV

are generally different and deliver distinct identified sets.

Example 3.2 Consider the bivariate example in Section 3.1 and recall the matrix of contem-

poraneous impulse response:

IR0 =

(
σ11 cos ρ −σ11 sin ρ

σ21 cos ρ+ σ22 sin ρ −σ21 sin ρ+ σ22 cos ρ

)
.

14



Suppose to have the assumptions SR1, SR2 of Section 3.1.1 and the following heterogeneity

restriction:

−σ21 sin ρ+ σ22 cos ρ ≥ σ11 sin ρ, (3.9)

which assumes that the impulse response of y2 to shock ε2 is higher than that of y1. By excluding

the degenerative case in which the heterogeneity restriction delivers an empty identified set,

Appendix A proves that the correspondent identified set for α is

ISα(φ) ≡


[
σ11 cos

(
arctan

(
σ22

σ11+σ21

))
, σ11

]
, for σ21 ≥ 0,[

σ11 cos
(

arctan
(

σ22
σ11+σ21

))
, σ11 cos

(
arctan

(
−σ21
σ22

))]
, for σ21 < 0, σ11 + σ21 ≥ 0,[

0, σ11 cos
(

arctan
(
−σ21
σ22

))]
, for σ21 < 0, σ11 + σ21 < 0.

(3.10)

Compare ISα(φ) in (3.10) with that in (3.3), where assumption that shock ε2 explains y2

more than y1 (restriction FEVR in Section 3.1.2) replaces the heterogeneity restriction:

ISα(φ) ≡


[
σ11 cos

(
arctan

(
σ22

σ21+
√
σ2
21+σ2

22

))
, σ11

]
, for σ21 > 0,[

σ11 cos

(
arctan

(
σ22

σ21+
√
σ2
21+σ2

22

))
, σ11 cos

(
arctan

(
−σ21
σ22

))]
, for σ21 ≤ 0.

(3.11)

For σ21 ≥ 0 and σ21 < 0, σ11 + σ21 ≥ 0, the two identified sets are equivalent if and only

if σ11 =
√
σ2

21 + σ2
22, namely the variance of the two endogenous variables is the same. For

σ21 < 0, σ11 + σ21 < 0, the identified set induced by the restrictions on the FEV is always

tighter.

4 Non-Emptiness and Convexity of the Identified Set

SECTION IN PROGRESS

5 Empirical Application: Monetary Policy Shocks

5.1 A Monte-Carlo Experiment

In order to derive robust implications for the responses to monetary policy shocks and FEV

decomposition, I run the following Monte Carlo simulation. I employ Smets and Wouters (2007)
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as data-generating process (DGP); this model features real rigidities, such as adjustment costs

for investment and variable capacity utilization, and nominal rigidities, namely sticky prices

and wages. It consists of seven endogenous variables: ∆yt,∆ct,∆It,∆wt, lt,∆πt, it, denoting

output growth rate, consumption growth rate, investment growth rate, real wage growth rate,

hours worked, inflation rate, interest rate, respectively.

I assume that all structural parameters of the DGP are uniformly and independently dis-

tributed over sufficiently wide ranges. Table [TO BE ADDED] summarizes the ranges of

the uniform distributions for the parameters of the model including real and nominal frictions.

Since we are interested in implications in terms of the FEV decomposition across a broad range

of parameterizations of the model, with and without nominal, these ranges cover reasonable

values for the parameters, encompassing a large variety of theoretical models.

I then draw 10000 structural pareeters vectors. For each of them, I consider the responses

and the correspondent FEV decomposition to a 1 standard deviation positive (contractionary)

monetary policy shock,8 and compute the 2.5% and 97.5% percentiles of their distributions.

Table 1 reports the signs of impulse responses and the FEV decomposition at horizon h = 0, 1.

Specifically, +(−) indicate that a certain variable has the 90% probability to response positively

(negatively) on impact; the bounds of the FEV decomposition represent the 5% and 95%

percentiles.

5.1.1 Analysis without Estimation Uncertainty

First, I consider analysis without estimation uncertainty, i.e., population analysis. Suppose

that there is an infinite amount of data on observables; it implies that φ, i.e., the reduced-

form VAR, is estimated without error and is fixed at values implied by the data-generating

process. As a result, the only unknown object is the matrix A0 in equation (3.1). In order to

recover A0, the researcher uses the true covariance matrix Σ and set-identifying restrictions.

The setting of this Monte-Carlo experiment isolates the identification uncertainty and excludes

sample uncertainty by construction.

• Model 1 (Sign Restrictions)

Model 1 identifies interest rate shock through sign restrictions on impact. Specifically, it

employs robust sign restrictions in Table 1. Contractionary interest rate shock reduces

inflation, consumption, investment, real wages, hours worked and increases interest rates:

IR0
∆ci ≤ 0, IR0

∆li ≤ 0, IR0
∆wi ≤ 0,IR0

Ii ≤ 0, IR0
∆πi ≤ 0, IR0

ii ≥ 0. IR∆yi. The object of

interest, i.e, the output response, is left unrestricted.

8I focus on this shock only because the model has implications that would allow us to disentangle other shocks

considered in the literature from monetary policy shocks.
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• Model 2 (Sign and Zero Restrictions)

Since literature recommends to combine sign restrictions with exclusion assumptions,

Model 2 relies on restrictions in Model 1 and assumes long-run neutrality of monetary

policy: IR∞yi = 0.

• Model 3 (FEV Restrictions)

Model 3 relies on the robust restrictions on the FEV decomposition in Table 1. In par-

ticular, on top of sign restrictions in Model 1, at horizons h = 0, 1 monetary policy shock

explains the fluctuations in interest rates more than movements of consumption, invest-

ment, real wages, hours worked and inflation rate: FEV h
ki ≤ FEV h

ii at h = 0, 1, where

k = {∆c,∆I,∆w, l,∆π}. Note that output response is left unrestricted by restrictions

on the FEV decomposition.

For each model, Figure 1 reports the true output response to (contractionary) monetary

policy shock and the 90% range of theory-consistent impulse responses indicating the identi-

fication uncertainty. This range is defined by the maximum and minimum response at each

horizon; as long as there is no estimation of reduced-form VAR, such a range captures the

identification uncertainty implied by each set of identifying restrictions, namely the true iden-

tified set. Sign restrictions alone or mixed with parametric assumptions are unlikely to provide

informative results and recover the theoretical response (Model 1 and Model 2); however, once

they are combined with FEV restrictions, Model 3 shrinks the identified set and is fully able

to identify the sign of output response.

5.1.2 Estimation Uncertainty

SECTION IN PROGRESS

5.2 Seven-Variable SVAR

Given the promising results of the Monte-Carlo experiment, this section estimates the three

models above with real data. Specifically, I use the dataset constructed by Stock and Watson

(2008). This includes 149 quarterly variables from 1959Q1 to 2008Q4; several of them are

monthly and transformed into quarterly by taking averages. In order to get annualized log

levels, I take logs and multiply by 4 most of variables, except federal funds rate and bond rate.

I discussed at length the controversy about placing a flat prior on rotation matrix Q. In order

to address concerns of the recent literature, I also implement the approach in Giacomini and

Kitagawa (2015) as robustness check.
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For Model 1-3, Figure 2 displays the output responses. FEV restrictions dramatically shrink

the identified set of output response and lead to informative inference, while alternative restric-

tions support neutrality of monetary policy and are largely uninformative. Remarkably, the

inference implied by FEV restrictions is robust to Giacomini and Kitagawa (2015) algorithm.

Note that the posterior median under FEV restrictions is consistently negative, as opposed to

posterior medians induced by Model 1-2.

6 Empirical Application: Technology Shock

SECTION IN PROGRESS

7 Conclusion

Set-identified SVARs, which relax exclusion restrictions and rely on weaker assumptions such

as sign restrictions, are increasingly common. However, a known drawback is that the inference

is rarely informative. This paper shows that robust restrictions on the Forecast Error Variance

(FEV) decomposition may dramatically shrink the inference. Specifically, these restrictions

are consistent with the implications of a variety of different DSGE models, with both real and

nominal frictions, and with sufficiently wide ranges for their parameters. First, in a bivariate

and trivariate setting, this paper analytically proves restrictions on the FEV decomposition are

more informative than traditional sign restrictions. Second, sufficient conditions are provided

to guarantee that the identified set is non-empty and convex. Finally, two applications are

provided: using models of monetary policy and technology shocks, restrictions on the FEV

decomposition tend to be highly informative, greatly shrink and even change the inference of

models originally identified via traditional sign restrictions. Remarkably, shrinkage in inference

is robust to the recent concerns over the unintended consequences of rotation matrix prior

(Baumeister and Hamilton, 2015).
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8 Tables and Figures

Table 1

∆yt ∆ct ∆It ∆wt lt ∆πt it

IRFs - - - - - - +

FEV, h = 0 [0.05, 0.15] [0.03, 0.13] [0.02, 0.12] [0.00, 0.02] [0.02, 0.09] [0.00, 0.03] [0.37, 0.66]

FEV, h = 1 [0.07, 0.17] [0.06, 0.13] [0.03, 0.12] [0.01, 0.03] [0.04, 0.11] [0.03, 0.10] [0.30, 0.60]

Sign of impact responses and FEV decomposition at horizon h = 0, 1 to positive monetary policy shock from Smets and

Wouters (2007). +(−) indicate that a certain variable has the 90% probability to response positively (negatively) on

impact. The bounds of the FEV decomposition represent the 5% and 95% percentiles.
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Figure 1: Population Analysis, Monte-Carlo Simulation

Notes: Figure 1 reports the theoretical DSGE impulse responses (blue) to contractionary monetary policy shock and the

90% range of theory-consistent responses (red vertical bars). See Section 5.1 for details. The shock size is set to one

standard deviation.
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Figure 2: Output Impulse Responses to Contractionary Monetary Policy Shock, 7-variable

SVAR

Notes: In each figure, the solid lines plot the posterior median and the dashed black lines show the correspondent

90% Bayesian credibility region. The dashed blue lines display the 90% robust Bayesian error band under multiple prior

approach on Q a la Giacomini and Kitagawa (2015). Shock size is set to one standard deviation.
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Appendices

A Omitted Proofs

A.1 Bivariate Setting

Derivation of identified set (3.2).

Following Uhlig (2005), A can be parametrized via the Cholesky matrix Σtr and a rotation

matrix Q =

(
cosρ −sinρ
sinρ cosρ

)
with spherical coordinate ρ ∈ [0, 2π]. The structural matrix of
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impact responses can be written as

IR0 = A−1 = ΣtrQ =

(
σ11 cos ρ −σ11 sin ρ

σ21 cos ρ+ σ22 sin ρ −σ21 sin ρ+ σ22 cos ρ

)

and the parameter of interest is α ≡ σ11 cos ρ. Following Christiano, Eichenbaum, and Evans

(1999), I impose the sign normalization restrictions by constraining the diagonal elements of

A to being nonnegative,

σ22 cos ρ− σ21 sin ρ ≥ 0 (A.1)

and

σ11 cos ρ ≥ 0. (A.2)

The identifying sign restrictions SR1 and SR2 in Section 3.1 are expressed as

σ11 sin ρ ≥ 0, (A.3)

−σ22 sin ρ− σ21 cos ρ ≥ 0. (A.4)

Given φ, the identified set for α = σ11 cos ρ is given by its range as ρ varies over the range

characterized by the restrictions (A.1) - (A.4).

Assume σ21 > 0. Constraints (A.2) and (A.3) induce ρ ∈ [0, π2 ]; constraints (A.1) and

(A.4) imply ρ ∈ [arctan(−σ21/σ22), arctan(σ22/σ21)]. Intersecting the two intervals leads to

[0, arctan(σ22/σ21)] as the identified set for ρ. Thus, for σ21 > 0 the identified set for α follows.

A similar argument applies for σ21 ≤ 0.

Derivation of identified set (3.3).

FEVR assumes that shock ε2 explains y2 more than y1 on impact, i.e., the contribution

of shock ε2 to the total error variance of y2 is higher than its contribution to that one of y1.

Following the notation introduced in Section ???, this restriction can be written as

FEVy2,ε2
FEVy2

≥ FEVy1,ε2
FEVy1

. (A.5)

Given specification of IR0, note that

FEVy2,ε2 = (−σ21sinρ+ σ22cosρ)2,

FEVy2 = (−σ21sinρ+ σ22cosρ)2 + (σ21cosρ+ σ22sinρ)2 = σ2
21 + σ2

22,

FEVy1,ε2 = σ11sin
2ρ,

FEVy1 = σ2
11sin

2ρ+ σ2
11cos

2ρ = σ2
11.
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Thus, restriction (A.5) can be written as

(−σ21sinρ+ σ22cosρ)2

σ2
21 + σ2

22

≥ (−σ11sinρ)2

σ2
11

(A.6)

and imposes quadratic constraints on the two columns of Q. Under the constraints (A.1) -

(A.4) and (A.6), the argument used in the previous proof leads to the identified set for α in

equation (3.3). ISα(φ) in equation (3.3) is restricted relative to the identified set in equation

(3.2) as its lower bound gets closer to the upper bound.

Derivation of identified set (3.4).

In Section 3.1, FEVR2 assumes that ε1 explains y2 more than ε2:

(σ21cosρ+ σ22sinρ)2 ≥ (−σ21sinρ+ σ22cosρ)2. (A.7)

Following the same argument as the previous proof, constraints A.1-A.4 and A.7 deliver the

identified set in equation (3.4). In order to evaluate the shrinkage induced by FEVR2, compare

ISα(φ) in equation (3.3) and (3.4): for σ21 > 0, FEVR2 shrinks the identified set of α with

respect to the set induced by SR1 and SR2 if σ22 ≥ σ21, otherwise the restriction is redundant;

specifically, the upper bound is now lower. For σ21 ≤ 0, FEVR2 restricts ISα(φ) if σ22 ≥ |σ21|;
otherwise, it is at odds with SR1 and delivers an empty identified set.

Example 3.1.

Restrictions are the following:

σ11sinρ ≥ 0, (A.8)

(−σ21sinρ+ σ22cosρ)2

σ2
21 + σ2

22

≤ (−σ11sinρ)2

σ2
11

, (A.9)

and the usual sign normalizations on the main diagonal of A.

The same argument as the previous proof delivers the identified set in equation (3.5):

ISα(φ) ≡


[
σ11 cos

(
arctan

(
σ21
σ22

))
, σ11 cos

(
arctan

(
σ22

σ21+
√
σ2
21+σ2

22

))]
, for σ21 > 0,[

0, σ11 cos

(
arctan

(
σ22

σ21+
√
σ2
21+σ2

22

))]
, for σ21 ≤ 0.

(A.10)

Replacing restriction (A.9) with sign restriction on y1, namely −σ21cosρ − σ22sinρ ≤ 0,

leads to the identified set in equation (3.2):

ISα(φ) ≡


[
σ11 cos

(
arctan

(
σ22
σ21

))
, σ11

]
, for σ21 > 0,[

0, σ11 cos
(

arctan
(
−σ21
σ22

))]
, for σ21 ≤ 0.

(A.11)
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Identified set in (A.10) is smaller than that in (A.11): for both σ21 > 0 and σ21 ≤ 0, the upper

bound in (A.10) is lower.

Example 3.2.

In order to derive the identified set in (3.2), the restrictions are the following:

σ11sinρ ≥ 0, (A.12)

−σ22 sin ρ− σ21 cos ρ ≥ 0, (A.13)

−σ21 sin ρ+ σ22 cos ρ ≥ σ11 sin ρ, (A.14)

where the last inequality ranks the impulse responses of variable y1 and y2 to shock ε2. The

usual sign normalizations on the main diagonal of A also apply. The same argument as the

previous proofs delivers the identified set in (3.2); note that for σ21 < 0, σ11 + σ21 ≥ 0, ISα(φ)

is non-empty if and only if σ2
22 + σ2

21 ≥ −σ11σ21.

A.2 Trivariate Setting

I consider a subspace of the set of all solutions in the trivariate context; this simplifies the ana-

lytical characterization of the identified set for α and the comparison between sign restrictions

and restrictions on the FEV. However, the results from the bivariate context still persist.

Derivation of identified set (3.7).

In the trivariate setting, Q can be written as the product of three Givens matrices Q12,

Q13 and Q23, each rotating a different pair of columns of the matrix to be transformed:

Q =

cosρ12 −sinρ12 0

sinρ12 cosρ12 0

0 0 1


cosρ13 0 −sinρ13

0 1 0

sinρ13 0 cosρ13


1 0 0

0 cosρ23 −sinρ23

0 sinρ23 cosρ23


For simplicity, the main text limits the analysis to the case where ρ13 = ρ23 = 0, namely

Q13 = Q23 = I3, Q = Q12 and ρ = ρ12. Thus, there are the following sign normalizations:

σ22 cos ρ− σ21 sin ρ ≥ 0, (A.15)

and

σ11 cos ρ ≥ 0. (A.16)

The identifying sign restrictions SR1, SR2 and SR3 in Section 3.2 are

σ11 sin ρ ≥ 0 (A.17)

−σ22 sin ρ− σ21 cos ρ ≥ 0, (A.18)

−σ31 sin ρ+ σ32 cos ρ ≥ 0. (A.19)
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Limiting the subspace of reduced-parameters such that σ21 > 0, σ31 < 0 and σ32 < 0, con-

straints (A.15) - (A.19) lead to the identified set for α in equation (3.7).

Derivation of identified set (3.8).

This derivation still relies on the parameter subspace used to characterize identified set (3.7).

In Section 3.2, FEVR assumes that shock ε2 explains y2 more than y3:
FEVy2,ε2
FEVy2

≥ FEVy3,ε2
FEVy3

.

This implies that

(−σ21sinρ+ σ22cosρ)2

σ2
21 + σ2

22

≥ (−σ31sinρ+ σ32cosρ)2

σ2
31 + σ2

32 + σ2
33

(A.20)

Following the same argument as the previous proof, constraints A.15-A.19 and A.20 deliver the

identified set in equation (3.8). Comparing the lower bound in equation (3.8) and (3.7), it is

easy to see that FEVR sharpens the identified set of α.
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