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1 Introduction

Researchers are frequently interested in estimating heterogeneous effects on binary out-

comes in different population subgroups. Examples include studying dropout rates among

high school students by gender and race, examining labor market participation decisions

among married and single women, and investigating self-employment outcomes by age and

education level. In the empirical literature, it is common to estimate such group-specific

parameters by dividing the sample into the corresponding subsamples and performing the

estimation separately for each group. While this approach is intuitively appealing, we

argue that it generally results in inconsistent estimators when sorting into groups is not

random. Moreover, as shown by Vella (1988) in the context of linear models, the consis-

tent estimators of heterogeneous parameters can only be obtained if the full information

set is utilized, i.e. when each group is considered as a part of the entire population. The

present paper discusses the estimation procedures that address the mentioned problems

and produce consistent estimators of heterogeneous parameters in binary response models.

The models considered in this paper are related to the literature on the linear switch-

ing regression models (Goldfeld and Quandt, 1973; Lee 1978; Maddala and Nelson, 1975;

Maddala 1983). The switching regression models specify two equations, where the ap-

plicability of either equation depends on the endogenous switching from one regime to

the other. Another relevant strand of the literature includes studies on program evalua-

tion and estimation of treatment effects. Analogous to the switching regression models,

program evaluation literature is focused on addressing the endogenous self-selection into

treatment. One parameter of interest in these studies is the effect of the treatment on the

treated, which can be formulated within a switching regression or self-selection framework

(Bjorklund and Moffitt, 1987; Heckman et al., 2006). Furthermore, several studies have

proposed methods for estimating heterogeneous treatment effects using the instrumental

variables methodology (Heckman et al., 2006; Basu, 2014, and others).
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The problem of nonrandom selection is also discussed in the studies of sample se-

lection, including the seminal paper by Heckman (1979). In those models parameters

are assumed to be the same for all units in the population, and the selection problem

arises because the value of the dependent variable is not observed for some part of the

population. In the previous literature, the methods for addressing the sample selection

in linear and binary response models were proposed. The estimators were developed to

address the selection problem in both cross section and panel data models (Heckman,

1979; Kyriazidou, 1997; Newey, 2009; Semykina and Wooldridge, 2017; Wooldridge, 1995,

among others).

Considering heterogeneity in binary response models, several studies discuss the switch-

ing probit model for cross section and panel data (Carrasco, 2001; Manski et al., 1992).

Similar to linear models, the endogenous switching is between two regimes, and parame-

ters are regime-specific. However, to the best of our knowledge, estimating general het-

erogeneous effects models with an arbitrary number of groups (or regimes) has not been

considered so far. To goal of this paper is to fill the gap in the literature by presenting

the methods for estimating heterogeneous effects in binary response models with two or

more groups. In the presented discussion, we distinguish between the models where the

groups are ordered and models with unordered multiple groups.

The rest of the paper is structured as follows. Section 2 presents binary response

models with heterogeneous effects. Estimation of the model parameters is discussed in

Section 3. Section 5 contains an empirical application, and Section 6 concludes.
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2 Heterogeneity in binary response models

Consider a population that consists of J groups (or subpopulations) and write a binary

response model with heterogeneous effects as

y∗j = xβj + uj, (1)

yj = 1[xβj + uj > 0], j = 1, . . . , J,

where y∗j is a latent variable, and yj is the observed outcome in group j, 1[·] is an indicator

function equal to one if the expression in brackets is true, x is a 1×K vector of explanatory

variables that is independent of error uj, and βj is a vector of parameters that is different

for each group j. For each j, βj is considered to be fixed, so that it is independent of x

and uj.

Let d be a discrete random variable identifying groups, d = {1, 2, . . . , J}. After

defining dichotomous indicators for each group as sj = 1[d = j], j = 1, . . . , J , the outcome

in the entire population can be written as

y =
J∑

j=1

sjyj. (2)

In this paper, we focus on the case, where the primary interest is in estimating the

partial effects of covariates in each group with the ultimate goal of performing comparisons

across groups. For example, for a continuous explanatory variable xk, one would like to

estimate

PEj,k =
∂P(y = 1|d = j, x)

∂xk

=
∂P(yj = 1|d = j, x)

∂xk

, j = 1, . . . , J, (3)

where PEj,k is the partial effect of xk conditional on being in group j. If group assignment

is random, then consistent estimators of βj and PEj can be obtained by estimating

3



equation (1) separately for each group and computing the partial effects within that

group. However, because of self-selection or other factors, sorting into groups may be

nonrandom, which generally leads to inconsistency. In this paper, we allow for a possibility

that P(d = j|u) ̸= P(d = j) and discuss how it can be addressed in the estimation of

βj and partial effects. We start by considering a simple case with only two groups and

then discuss more general models with J > 2, where groups may be either ordered or

unordered.

2.1 Model for two groups

Let yj be determined as in equation (1), with J = 2. The applications of such models could

include, for example, examining labor force participation among married and non-married

women, as well as estimating the determinants of dropout incidents among economically

disadvantaged and other students. Assume that sorting into groups is determined by the

value of latent variable d∗,

d∗ = zδ + v, (4)

d = 1 if d∗ ≤ 0,

d = 2 if d∗ > 0.

where z is a 1×L vector of exogenous variables, and v is the error term. Setting a cutoff

point at zero is at no cost, as long as z contains an intercept. Let yj, j = 1, 2, and d be

defined as in equations (1) and (4), respectively. Also, assume that the following holds:

ASSUMPTION 2.1 (i) (uj, v) are independent of (x, z), j = 1, 2, (ii) z = (x, z1), where

z1 is not empty, (iii) (uj, v) have a bivariate normal distribution with Var(uj) = Var(v) = 1

and Corr(uj, v) = ρj, j = 1, 2, (iv) 0 < P(d = j) < 1, j = 1, 2.

Assumption 2.1(i) is a standard exogeneity condition that implies that inconsistencies
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in group-by-group estimation may result only due to nonrandom sorting (or self-selection),

but not because of endogenous explanatory variables. The second assumption, 2.1(ii),

requires that z contain x and at least one more variable, which is needed for identification.

Without 2.1(ii), βj can only be estimated based on the nonlinearity of the likelihood

function, which is undesirable. The normality assumption, 2.1(iii), is rather standard in

the literature and permits obtaining formulae for the conditional probabilities and partial

effects. Finally, the last part of assumption 2.1 ensures that there are cross section units

in each group.

Notice that under the specified assumptions, the two-group model is a switching

probit model, which is analogous to a linear switching regression model discussed in the

literature (Carrasco, 2001; Lee 1978; Maddala and Nelson, 1975; Maddala 1983; Manski

et al., 1992). It is evident that when ρj = 0, sorting is completely random and can be

safely ignored because

P(y = 1|d = j, z) =
P(yj = 1, d = j|z)

P(d = j|z)
= P(yj = 1|x), j = 1, 2. (5)

In a general case, however, one has to account for a possibility of nonrandom sorting

or self-selection. In the linear switching regression model, it is usually addressed by

constructing a correction term that captures the conditional expected value of uj given

(v, d = j). In binary response models, the nonlinearity of the conditional mean makes

such correction impossible. Instead, one has to consider the conditional distribution of uj

given (v, d = j). Under Assumption 2.1, using the properties of normal distributions we

can write

uj = ρjv + ej, (6)

ej|z, v ∼ Normal(1, 1− ρ2j),
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so that the dependent variable for group j can be written as

yj = 1[xβj + ρjv + ej > 0], j = 1, 2. (7)

Then, the conditional probability for the first group can be written as

P(y = 1|d = 1, z) =
P(−e < xβ1 + ρ1v, v ≤ −zδ|z)

P(v ≤ −zδ|z)
(8)

=

∫−zδ
−∞ Φ

(
xβ1+ρ1v√

1−ρ21

)
ϕ(v)dv

1− Φ(zδ)
,

and the corresponding conditional probability for the second group is

P(y = 1|d = 2, z) =

∫ zδ
−∞Φ

(
xβ2+ρ2v√

1−ρ22

)
ϕ(v)dv

Φ(zδ)
, (9)

where ϕ(·) and Φ(·) are the standard normal density and cumulative distribution functions,

respectively.

The partial effects of continuous explanatory variables can be obtained by differenti-

ating the probability function in (8) or (9) with respect to xk. Specifically, for j = 2,

PE2,k =
∂P(y = 1|d = 2, z)

∂xk

= δk ·
ϕ(zδ)

Φ(zδ)
· Φ

xβ2 + ρ2zδ√
1− ρ22

 (10)

+
1

Φ(zδ)
· β2k√

1− ρ22
·
∫ zδ

−∞
ϕ

xβ2 + ρ2v√
1− ρ22

ϕ(v)dv − δk ·
ϕ(zδ)

Φ(zδ)
· P(y = 1|d = 2, z),

where P(y = 1|d = 2, z) is as defined in equation (9). For j = 1, the partial effects

are obtained by replacing δ (δk) with −δ (−δk) and changing β and ρ subscripts to one.

Notice that when the group assignment is random, the partial effects on the conditional

probabilities are the same as the unconditional partial effects. However, they are different

when ρj ̸= 0.
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The partial effects of discrete variables (such as binary indicators) are obtained by

considering changes in conditional probabilities. For example, for a discrete variable h,

PEj,h = P(y|d = j, z1)− P(y|d = j, z0), j = 1, 2, (11)

for z1 = (x1, z1), x
1 = (x1, . . . , xh−1, x

1
h, xh+1, . . . , xk) and z0 = (x0, z1), x

0 = (x1, . . . , xh−1,

x0
h, xh+1, . . . , xk, ).

2.2 Model for multiple ordered groups

Now, allow the total number of groups, J , to exceed two, and define d∗ and d as

d∗ = zδ + v, (12)

d = j if Cj−1 < d∗ ≤ Cj, j = 1, . . . , J,

where C0 = −∞, and CJ = ∞,

where now z does not contain an intercept. Such a model is applicable when, for example,

the goal is to estimate women’s labor force participation or choice of the employment type

(wage-employment versus self-employment) by education level.

When specifying the joint distribution of uj and v, it is convenient to assume normality

for both errors, so that (12) becomes an ordered probit model. Similar to the two-group

case, accounting for self-selection or, generally, sorting into groups is necessary when the

correlation between uj and v is different from zero.

Formally, let Assumption 2.1 hold for j = 1, 2, . . . , J . Then, using the argument

similar to the one in Section 2.1,

yj = 1[xβj + ρjv + ej > 0], j = 1, . . . , J, (13)

ej|z, v ∼ Normal(1, 1− ρ2j).
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From (12) and (13), the conditional probabilities for each group are given by

P(y = 1|d = 1, z) =

∫ C1−zδ
−∞ Φ

(
xβ1+ρ1v√

1−ρ21

)
ϕ(v)dv

Φ(C1 − zδ)
, (14)

P(y = 1|d = j, z) =

∫ Cj−zδ
Cj−1−zδ Φ

(
xβj+ρjv√

1−ρ2j

)
ϕ(v)dv

Φ(Cj − zδ)− Φ(Cj−1 − zδ)
, j = 2, . . . , J − 1,

P(y = 1|d = J, z) =

∫∞
CJ−1−zδ Φ

(
xβJ+ρJv√

1−ρ2J

)
ϕ(v)dv

1− Φ(CJ−1 − zδ)
.

By differentiating the conditional probability with respect to xk, the partial effects of

continuous explanatory variables are obtained as

PEj,k =
δk

Φ(αj)− Φ(αj−1)
·

ϕ(αj−1)Φ

xβj + ρjαj−1√
1− ρ2j

− ϕ(αj)Φ

xβj + ρjαj√
1− ρ2j


+

1

Φ(αj)− Φ(αj−1)
· βjk√

1− ρ2j
·
∫ Φ(αj)

−Φ(αj−1)
ϕ

xβj + ρjv√
1− ρ2j

ϕ(v)dv

+ δk ·
ϕ(αj)− ϕ(αj−1)

Φ(αj)− Φ(αj−1)
· P(y = 1|d = j, z), (15)

for j = 1, . . . , J , C0 = −∞, CJ = ∞, αj = Cj − zδ, and P(y = 1|d = j, z) as defined in

equation (14). Partial effects of discrete variables are obtained as in equation (11), using

the conditional probabilities in (14).

2.3 Model for unordered multiple groups

In some cases we can have multiple groups that are not ordered. For example, one might

want to study the determinants of job satisfaction among workers employed in different

types of jobs: wage-employment in the private sector, wage-employment in the public

sector, and self-employment. In such a case, the choice of d = j can be described in the
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context of a multinomial response model. To formalize ideas, define

d∗j = zδj + vj, j = 1, . . . , J, (16)

where the error now varies by group.

Following the standard formulation of a multinomial response model, the cross-section

unit i will be in group j if it has the highest chance of belonging to that group. In the

case of self-selection, choice j is the best option in the available set. We can write it as

d = j if d∗j = max{d∗1, d∗2, . . . , d∗J}, (17)

where the choice in equation (17) will be made if zδj + vj > zδl + vl for all l ̸= j. It is

clearly seen that only differences between d∗j are identified, so that a reference category

needs to be assigned – a feature that is common for all multinomial response models.

To obtain the formulae for the conditional probability of y, we define ṽl = vj − vl,

δ̃l = δj − δl, for l ̸= j, and make the following assumption:

ASSUMPTION 2.3.1 (i) (uj, v1, . . . , vJ) are independent of (x, z), j = 1, . . . , J , (ii)

z = (x, z1), where z1 is not empty, (iii) (uj, ṽ1, . . . , ṽj−1, ṽj+1, . . . , ṽJ) have a multinomial

normal distribution, j = 1, . . . , J , (iv) 0 < P(d = j) < 1, j = 1, . . . , J .

Under Assumption 2.3.1, for group j = 1, for example, we obtain

P (y = 1, d = 1) =
∫ ∞

−xβ1

∫ ∞

−zδ̃2
. . .

∫ ∞

−zδ̃J
ϕ(u1, ṽ2, . . . , ṽJ)du1dṽ2, . . . , dṽJ , (18)

P (d = 1) =
∫ ∞

−zδ̃2
. . .

∫ ∞

−zδ̃J
ϕ(ṽ2, . . . , ṽJ)dṽ2, . . . , dṽJ ,

and the conditional probability is obtained as P (y = 1|d = 1) = P (y=1,d=1)
P (d=1)

. Probabilities

P (y = 1|d = j), j = 2, . . . , J , are obtained similarly.

Because equation (18) does not have a closed form solution, one would need to nu-
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merically evaluate this J-dimensional integral. While simulated likelihood methods have

been helpful in addressing computational difficulties, the estimation may still be infeasible

if there are more than four groups. Therefore, we also consider a different approach.

The unordered multiple groups case can be considered in the context of selection

models, where the choice is made between the best option and the second best alternative.

This approach appears to be well-suited for the presented model because when estimating

group-specific effects, one needs to account for the fact that option d = j is chosen as the

most optimal of all. We can define a binary indicator for group j as

wj = 1[zδj + vj > d̄j], (19)

d̄j = max
l ̸=j

{zδl + vl},

which can be re-written as

wj = 1[zδ̄j + v̄j > 0], j = 1, . . . , J, (20)

where δ̄j is a difference between δj and the vector of parameters that correspond to d̄j, and

v̄j is a difference between vj and the error corresponding to d̄j. Because in the unordered

case the second best option is not known, δ̄j is determined as a weighted average of δj−δl,

l ̸= j, where weights depend on the probability that group l is the best alternative to j.

In this case, we will formulate the assumption for the errors in equation (20), rather

than vj in (19). Specifically, assume

ASSUMPTION 2.3.2 (i) (uj, v̄j) are independent of (x, z), j = 1, . . . , J , (ii) z = (x, z1),

where z1 is not empty, (iii) (uj, v̄j) have a bivariate normal distribution with Var(uj) =

Var(v̄j) = 1 and Corr(uj, v̄j) = ρj, j = 1, . . . , J , (iv) 0 < P(d = j) < 1, j = 1, . . . , J .

Notice that in this model it is not possible to estimate δj. Fortunately, this does not

affect our ability to consistently estimate parameters β, which is the main goal of the
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estimation.

Under Assumption 2.3.2, conditional probabilities for each group are obtained as

P(y = 1|d = j, z) = P(y = 1|wj = 1, z) =

∫ zδ̄j
−∞ Φ

(
xβj+ρj v̄√

1−ρ2j

)
ϕ(v̄)dv̄

Φ(zδ̄j)
, j = 1, . . . , J. (21)

Moreover, the partial effect of a continuous variable xk is given by

PEj,k =
∂P(y = 1|d = j, z)

∂xk

= δ̄k ·
ϕ(zδ̄)

Φ(zδ̄)
· Φ

xβj + ρjzδ̄√
1− ρ2j

 (22)

+
1

Φ(zδ̄)
· βjk√

1− ρ2j
·
∫ zδ̄

−∞
ϕ

xβj + ρj v̄√
1− ρ2j

ϕ(v̄)dv̄ − δ̄k ·
ϕ(zδ̄)

Φ(zδ̄)
· P(y = 1|wj = 1, z).

Similar to the previous discussion, partial effects of discrete covariates are obtained as

differences in conditional probabilities.

3 Estimation

To estimate the models presented in Section 2, one can use the maximum likelihood

(MLE) estimator. In the case of two groups, the switching probit estimator is obtained

by maximizing the following log likelihood function:

lnL =
N∑
i=1

lnLi, (23)

Li = P
yi1(2−di)
i,11 · P (1−yi1)(2−di)

i,01 · P yi2(di−1)
i,12 · P (1−yi2)(di−1)

i,02 ,

Pi,11 ≡ P (yi = 1, di = 1|zi) =
∫ −ziδ

−∞
Φ

xiβ1 + ρ1v√
1− ρ21

ϕ(v)dv,

Pi,01 ≡ P (yi = 0, di = 1|zi) =
∫ −ziδ

−∞

1− Φ

xiβ1 + ρ1v√
1− ρ21

ϕ(v)dv,
Pi,12 ≡ P (yi = 1, di = 2|zi) =

∫ ziδ

−∞
Φ

xiβ2 + ρ2v√
1− ρ22

ϕ(v)dv,
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Pi,02 ≡ P (yi = 0, di = 2|zi) =
∫ ziδ

−∞

1− Φ

xiβ2 + ρ2v√
1− ρ22

ϕ(v)dv.
The resulting estimators of β1, β2, ρ1, and ρ2 are unbiased under the standard set of

assumptions for the MLE estimator. Then, it would be possible to check whether the

usual group-by-group estimation is valid by testing the hypothesis, H0 : ρ1 = ρ2 = 0.

Also, the equality of the coefficients in the two groups could be tested either for each

explanatory variable separately, or for the entire vectors of parameters, β1 and β2.

When specifying the likelihood function for J > 2, ordered groups, it is convenient

to use indicators sj, j = 1, . . . , J , that were defined at the beginning of Section 2. When

groups are ordered, the likelihood function for observation i can be written as

Li = P yi1si1
i,11 · P (1−yi1)si1

i,01 · . . . · P yiJsiJ
i,1J · P (1−yiJ )siJ

i,0J , (24)

Pi,11 ≡ P(yi = 1, di = 1|zi) =
∫ C1−ziδ

−∞
Φ

xβ1 + ρ1v√
1− ρ21

ϕ(v)dv,

Pi,01 ≡ P(yi = 0, di = 1|zi) =
∫ C1−ziδ

−∞

1− Φ

xβ1 + ρ1v√
1− ρ21

ϕ(v)dv,
Pi,1j ≡ P(yi = 1, di = j|zi) =

∫ Cj−ziδ

Cj−1−ziδ
Φ

xβj + ρjv√
1− ρ2j

ϕ(v)dv, j = 2, . . . , J − 1,

Pi,0j ≡ P(yi = 0, di = j|zi) =
∫ Cj−ziδ

Cj−1−ziδ

1− Φ

xβj + ρjv√
1− ρ2j

ϕ(v)dv, j = 2, . . . , J − 1,

Pi,1J ≡ P(yi = 1, di = J |zi) =
∫ ∞

CJ−1−ziδ
Φ

xβJ + ρJv√
1− ρ2J

ϕ(v)dv,

Pi,0J ≡ P(yi = 0, di = J |zi) =
∫ ∞

CJ−1−ziδ

1− Φ

xβJ + ρJv√
1− ρ2J

ϕ(v)dv.
Similar to the ordered probit model, maximization of the log-likelihood function is

performed with respect to β1, . . ., βJ , ρ1, . . ., ρJ , C1, . . ., CJ−1. Because all parameters are

estimated together, it is easy to test the hypotheses involving parameters from different

groups (e.g. testing parameter equality across j). This can be done using the usual t and
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Wald tests, as well as the likelihood ratio test.

It is important to note that when J = 2, or if there are J > 2 ordered groups, it

is possible to consistently estimate parameters separately for each group by specifying

P (di = l) rather than P (yi, di = l) for groups l ̸= j. This might make it easier to perform

the optimization and should not result in an efficiency loss, because different groups are

never observed together. Of course, an important disadvantage is that testing the equality

of parameters in different groups becomes more complicated.

For the unordered multiple groups, one can make a joint normality assumption for

(uj, ṽ1, . . . , ṽj−1, ṽj+1, . . . , ṽJ), as in Assumption 2.3.1, and estimate parameters by MLE.

Here, we focus on a simpler estimator that relies on Assumption 2.3.2, where estimation

is similar to that discussed in the sample selection literature. The vectors of parameters

are estimated separately for each group, where the estimator accounts for the choice of

(or self-selection into) the group, which may be nonrandom.

For each group j, we specify the likelihood function as

Li = P
yi1wij

i,11 · P (1−yi1)wij

i,01 · P (1−wij)
i,0 , (25)

where

Pi,11 ≡ P (yi = 1, wij = 1|zi) =
∫ ziδ̃j

−∞
Φ

xiβj + ρjv√
1− ρ2j

ϕ(v)dv, (26)

Pi,01 ≡ P (yi = 0, wij = 1|zi) =
∫ ziδ̃j

−∞

1− Φ

xiβj + ρjv√
1− ρ2j

ϕ(v)dv,
Pi,0 ≡ P (wij = 0|zi) = 1− Φ(ziδ̃j).

The limitation of this estimation approach is that hypothesis testing is complicated

when parameters from different groups are involved. A relatively simple solution is to use

bootstrap, where all βj are estimated using the same bootstrap samples. Then, it becomes
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relatively easy to obtain covariance matrices for the estimators of slope parameters in

different groups.

Partial effects are usually estimated using one of the two methods. First, it is possible

to estimate average partial effects by averaging over the distribution of all covariates other

then the one whose effect is being estimated. Alternatively, one can obtain partial effects

evaluated at particular values of other explanatory variables, such as the sample mean or

median values. In the empirical application below, we estimate average partial effects.

4 Extensions to Panel Data

To be added.

5 Empirical Application

To illustrate the presented theoretical argument with an empirical example, we study the

determinants of labor force participation among white, African American, and Hispanic

women. In this case, groups are defined by the person’s race or ethnicity. In the literature,

it is usually assumed that race/ethnicity can be viewed as exogenous because it is not a

choice variable. However, there may be cultural and behavioral differences across different

ethnic groups, which may also be related to economic outcomes, such as the probability

of employment. For example, women in a particular ethnic group may traditionally be

more independent, where independence may also impact the likelihood of working. Using

the methodology presented above, it is possible to test this hypothesis, as well as study

the sensitivity of estimation results to accounting for a possibility of nonrandom sorting.

To perform estimation, we use data from the National Longitudinal Survey of Youth,

1979 (NLSY79). The initial sample is representative of all individuals who were 14 to 22

years old in 1979. To maximize the sample size we use data from the 1990 wave of the
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survey, where the response rate was relatively high (about 91%), and all supplemental

samples (poor white, black, and Hispanic) were still active. In 1990, all respondents

were at least 25 years old, and the age of the oldest respondent was 33. Women in the

military sample and those working in a family business were excluded. After dropping

the observations with missing information on any of the variables used in the analysis,

the final sample includes 4,417 women, 2,585 of whom are white, 1,139 African American,

and 693 Hispanic.

The dependent variable is an indicator equal to one if the woman worked for at least

some time during the period since the last interview. The list of explanatory variables

includes age, education and marital status indicators, number of young children (ages

0 through 5), number of older children (ages 6 through 17), income of the spouse (in

thousands of dollars), urban location indicator, and region indicators. To control for

individual differences in cognitive ability we include the woman’s score on the Armed

Forces Qualification Test (AFQT), which was administered in 1979. The AFQT score

was standardized to have a zero mean and unit variance in the sample.

As mentioned earlier, it is necessary to have an exclusion restriction to ensure the

reliability of the estimator. Such a restriction can be obtained by assuming that the

probability of working is determined by economic factors (such as skills and educational

qualifications, availability of other sources of income, presence of children), but personality

traits may be of minor or no importance. On the other hand, there may be personality

differences by race and ethnicity, which may emerge due to cultural and social factors. In

the context of the presented analysis, we assume that self-esteem varies by race/ethnicity,

but does not affect the probability of employment. The self-esteem measure, developed

by Rosenberg (Rosenberg, 1965), is aimed to assess the degree of approval or disapproval

toward oneself. In the sample, the self-esteem measure is standardized to have a zero mean

and unit variance. Later we check the validity of the exclusion restriction by estimating

the unrestricted model and testing the statistical significance of self-esteem measure in
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each equation.

Summary statistics are presented in Table 1. As seen in the Table, white women are

slightly more likely to be working and be married, but tend to have fewer kids of ages

6-17. Among the three groups of women, African American females are lease likely to

be married and tend to have more older children. Among married women, the income of

the spouse tends to be the highest among white respondents and lowest among African

American women. With regard to location, African American females are more likely to

live in the South, while Hispanic women mostly reside in urban locales. Finally, white

women tend to have the highest AFQT scores, while the self-esteem score tends to be the

lowest among Hispanic women.

To obtain main results, the employment equation was first estimated separately for

each racial/ethnic group by probit. Subsequently, the same equations were estimated

using the methodology described in Section 2.3. Relying on Assumption 2.3.2, estima-

tion was performed using the MLE estimator with the likelihood function as defined in

equations (25) and (26).

Results are presented in Table 2. It is apparent that the correlation between the

errors in the main and group choice equations is the strongest among white women. The

correlation is approximately -0.55 and is highly statistically significant, suggesting that

the unobservables that determine the probability of working among white women are

negatively correlated with the unobserved determinants of the likelihood of being white.

One possible example of such an unobserved factor could be the traditional views of the

women’s role as housekeepers and care providers. The traditional views are likely to

negatively impact the probability of employment, and may be more common to white

women. The error correlation for African American and Hispanic women is smaller in

magnitude and not statistically significant. This may be due to the lesser importance

of traditional views for the employment outcome among nonwhite women because their

decision to work may be largely dictated by economic necessity. For example, because
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Table 1: Summary Statistics.

White Black Hispanic
(1) (2) (3)

Proportion working 0.84 0.81 0.80
(0.36) (0.40) (0.40)

Age 29.24 29.05 28.96
(2.26) (2.23) (2.29)

12 years of schooling (proportion) 0.43 0.43 0.43
(0.50) (0.49) (0.49)

13-15 years of schooling (proportion) 0.20 0.28 0.27
(0.40) (0.45) (0.44)

16 or more years of schooling (proportion) 0.25 0.14 0.10
(0.43) (0.34) (0.30)

Proportion married 0.61 0.26 0.52
(0.49) (0.44) (0.50)

Number of children ages 0-5 0.63 0.59 0.71
(0.79) (0.79) (0.81)

Number of children ages 6-17 0.62 0.99 0.86
(0.92) (1.09) (1.06)

Income of Spouse (in $1,000) 40.43 30.07 34.96
(27.78) (28.35) (24.16)

Urban location (proportion) 0.72 0.83 0.94
(0.45) (0.37) (0.24)

Northeast region (proportion) 0.20 0.14 0.15
(0.40) (0.35) (0.36)

Northcentral region (proportion) 0.30 0.19 0.09
(0.46) (0.39) (0.28)

South region (proportion) 0.33 0.60 0.30
(0.47) (0.49) (0.46)

West region (proportion) 0.17 0.07 0.46
(0.37) (0.25) (0.50)

AFQT score (standardized) 0.42 -0.62 -0.38
(0.97) (0.69) (0.81)

Self-esteem score (standardized) 0.04 0.06 -0.18
(1.02) (0.98) (0.97)

Observations 2,585 1,139 693

Proportions may not add up to one due to rounding.
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Table 2: Estimated Partial Effects on the Probability of Being Employed.

White women Black women Hispanic women

Single Joint Single Joint Single Joint
probit estimation probit estimation probit estimation
(1) (2) (3) (4) (5) (6)

Age −0.0052∗ -0.0058 -0.0045 -0.0035 0.0066 0.0059
12 years of sch. 0.0623∗∗∗ 0.0611∗∗∗ 0.1532∗∗∗ 0.1307∗∗ 0.0869∗∗ 0.0803∗∗

13-15 years of sch. 0.0932∗∗∗ 0.0807∗∗∗ 0.1777∗∗∗ 0.1506 0.1050∗∗ 0.0971∗∗

≥ 16 years of sch. 0.1120∗∗∗ 0.1043∗∗∗ 0.1903∗∗∗ 0.1605 0.1084 0.1007
Married 0.0297∗ 0.0348 0.1470∗∗∗ 0.1255∗∗ 0.0146 0.0134
# young children −0.1062∗∗∗ −0.1233∗∗∗ −0.0850∗∗∗ −0.0650∗∗∗ −0.1235∗∗∗ −0.1141∗∗∗

# older children −0.0439∗∗∗ −0.0484∗∗∗ −0.0291∗∗∗ −0.0215∗∗∗ −0.0475∗∗∗ −0.0429∗∗∗

Spouse’s income −0.0013∗∗∗ −0.0014∗∗∗ −0.0011∗ -0.0008 0.0002 0.0002
Urban location 0.0144 0.0013 0.0710∗∗ 0.0589 0.1117∗∗ 0.0992
AFQT score 0.0271∗∗∗ 0.0566 0.1122∗∗∗ 0.0789∗∗∗ 0.0838∗∗∗ 0.0752∗∗

Corr(uj , v̄j) −0.5537∗∗∗ -0.3081 -0.1012

Observations 2,585 4,417 1,139 4,417 693 4,417

Statistical significance corresponds to the test of the underlying coefficient being equal to 0.

All equations also include region indicators.

African American and Hispanic women tend to have more children, the stay-at-home

option may appear to be more economically viable for these women. On the other hand,

non-economic factors may be less relevant.

Comparing the magnitude of the estimated partial effects produced by different es-

timation methods, it is seen that accounting for nonrandom group sorting alters the

estimates somewhat. The most noticeable changes are observed for African American

women. The estimated effects of most variables decline in magnitude and in same cases

become insignificant. These include several education indicators, spousal income, and ur-

ban indicator. For white women, the largest changes are observed for the urban location,

number of young children, and AFQT score. Accounting for nonrandom sorting has a

very minor influence on the estimates for Hispanic women.

Going back to the underlying assumptions, they included the requirement that the
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sorting equation include at least one variable that affects sorting, but not the main out-

come. In the presented analysis, self-esteem was used as such a factor. Indeed, the

self-esteem score was highly significant in the sorting equations for all three racial/ethnic

groups. Moreover, when the unrestricted model was estimated, the self-esteem measure

remained highly statistically significant in each group sorting equation, but was highly in-

significant in the employment equations. Thus, the employed exclusion restriction appears

to be valid.

6 Conclusion

This paper discusses the methodology for consistently estimating heterogeneous parame-

ters in binary response models. In addition to a two-group case, we consider estimating

parameters for multiple heterogeneous groups, which may be ordered or unordered. As an

illustration, we estimate heterogeneous effects on women’s employment outcomes using

NLSY79 data. We find that although accounting for nonrandom group sorting does not

appear to matter in some groups, in several cases it produces notably different results as

compared to the simple group-by-group estimation.
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