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ABSTRACT. We consider adaptive tests and estimates which are asymptoti-
cally efficient in the presence of unknown, nonparametric, distributional form
in pure spatial models. A novel adaptive Lagrange Multiplier testing pro-
cedure for lack of spatial dependence is proposed and extended to linear re-
gression with spatially correlated errors. Feasibility of adaptive estimation is
verified and its efficiency improvement over Gaussian pseudo maximum likeli-
hood is shown to be either less than, or more than, for models with explanatory
variables. The paper covers a general class of semiparametric spatial models
allowing nonlinearity in the parameters and/or the weight matrix, in addition
to unknown distribution.
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1. INTRODUCTION

Spatial autoregressive models were introduced by Cliff and Ord (1968), and
have since been extensively developed in the econometric literature. In par-
ticular, they often model spatially observed explanatory variables in terms of
explanatory variables as well as a weight matrix structure that introduces spatial
correlation. But as originally introduced they were designed to model spatial
correlation, without the presence of explanatory variables, echoing the earlier
work of Moran (1950) on testing for spatial correlation. Pure spatial models,
in which observations are spatially dependent but not influenced by explanatory
variables, are known to lead to rather different statistical properties from mod-
els that do include explanatory variables. In particular least squares estimates
(LSE) of pure spatial models are inconsistent, and, with instrumental variables
being unavailable, the leading alternative, Gaussian pseudo maximum likelihood
estimate (PMLE), may converge more slowly than at the parametric rate. Here
we consider a quite general class of pure spatial models which involves a known
but possibly nonlinear transformation of the spatial dependence parameter and
of a user-specified weight matrix, but a disturbance distribution of unknown, and
thus possibly non-Gaussian, form. The latter aspect motivates us to develop
adaptive estimates and tests, which are asymptotically as efficient as those based
on correctly specified parametric distributions. Adaptive estimation was consid-
ered for spatial autoregressions with explanatory variables by Robinson (2010).

While Wald statistics based on our adaptive estimate have greater efficiency
compared to those based on less efficient estimates, we also provide adaptive
Lagrange Multiplier (LM) tests which have the advantage of being based on
the restricted model only. Many authors including Cliff and Ord (1972), Bur-
ridge(1980), Kelejian and Prucha (2001), Robinson (2008) and Robinson and
Rossi (2014) have considered Gaussian LM tests for lack of spatial dependence
in SAR model, extending Moran (1950). Although Gaussian LM tests enjoy the
same robustness property as Gaussian PMLE, there is a scope for further effi-
ciency improvement which our adaptive LM tests set to achieve. To enhance
the relevance of our methods, we also extend our results to cover testing spatial
correlation in error terms of a linear regression model.

A class of spatial models for a vector y = (yi, ..., y.)T of observations with the
same (unknown) mean, E (y;) = po, and T denoting transposition is given by

Qo) (y = poly) = ooe, (1.1)

where 1,, is a n x 1 vector of 1’s, ¢ = (51,...,5n)T is a vector of independent
identically distributed random variables with zero mean and unit variance, and
oo and A\ are unknown scalar parameters. The n x n matrix Q)()\g) is described
as follows.

Introduce the n x n weight matrix, W = W,, with known real-valued (7, j)-th
element w;; such that w; = 0. The paper develops asymptotic statistical theory
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with n diverging and the individual w;;,1 < 7,j < n may change as n increases
but as with y, €, () and other quantities we suppress reference to n in our notation.

The following are three special cases of the general model . Let eig(W)
denote the minimum eigenvalue of the matrix W.

(1) SAR(1) (spatial autoregression of degree 1, see e.g. Arbia(2006))
Qo) = T = AW, (1.2)

where I is the n X n identity matrix and \g € (@(W)fl, 1).
(2) SMA(1) (spatial moving average of degree 1, see e.g. Anselin(2003))

Qo) = (I +AW)™H, (1.3)

for g € (eig(W) ', 1).
(3) MESS (matrix spatial exponential model, see LeSage and Pace (2009)):

Q(Mo) = exp (MW). (1.4)

The models — are sometimes referred to as “pure”models, to reflect
the absence of regressors. When ¢, and thus y, is Gaussian, the model can be
thought of as primarily describing the covariance matrix of y, since this, and py,
describe the distribution of y completely. The parameter vector 6y = ()\0, 140, O’O)T
can be asymptotically efficiently estimated by the maximum likelihood estimate

(MLE) 6 = (5\, i, 5)T. Lee (2004) showed that for pure SAR model under some

regularity conditions, the estimate 6 is consistent and asymptotically normal. In
fact, these latter properties hold over a much wider class of distributions of the
g;, for which the estimate 6 is termed a (Gaussian) PMLE. Such robustness is
also shared by the LM test for Hy : A = 0 based on the Gaussian likelihood.

However, Gaussian PMLE and LM test are asymptotically inefficient under
non-Gaussianity. Given a (non-Gaussian) parametric specification of the distri-
bution of £, we can construct (non-Gaussian) MLE and LM statistics as follows.
Let f(x; () = R — R! be the probability density function of €, a given func-
tion of all its arguments, with (y being an unknown ¢ x 1 parameter vector. Set
0o = (Mo, 1o, 00, Cg)T, and denote by 6 = (X, i, o, CT)T any admissible value of
Bo. Write the corresponding log likelihood as

L(9) = Zlogf (Q?(/\) Sy — “1>;<> + log det{Q(\)} — glog o2, (1.5)

where Q7' ()\) denotes the ith row of Q(\). The MLE 6 = (X,[L,&,Q_"T)T of 6y
maximizes over a suitable compact set, and can be expected to be asymp-
totically efficient. The LM statistic can be constructed from the first and second
derivatives of L(6) with respect to A evaluated at A = 0. Unfortunately there
are rarely strong prior grounds for specifying f, and misspecification of a non-
Gaussian probability density f in general leads to inconsistent estimation and
tests.
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In practice, A is often the main feature of interest, with py and oy being
nuisance parameters (and our results on inference on Ay are unaffected if the fact
that o = 0 is known a priori). In this paper we establish an estimate )\ of Ao that
achieves the same asymptotic distribution as the MLE ), in the presence of only
nonparametric assumptions on the distribution of ;. Specifically, the adaptive
estimate A takes a Newton step from the Gaussian PMLE )\, using nonparametric
(series) estimation of the score function. In a similar vein, a LM statistic based
on the nonparametrically estimated score function is shown to achieve the same
efficiency as that based on the (unknown) true score function.

This kind of “adaptive” property was previously established for estimation in a
spatial context by Robinson (2010), for the mixed regressive SAR model of order
1:

([—)\OW)y:,uO—i-Xﬁo—l-O'oé‘, (16)
where X is a n x k matrix of observed regressors and [, is a vector of unknown
parameters. Although it may seem that is a special case of with 5y = 0,
the asymptotic behaviours of estimates of Ay under the two models can differ,
even their convergence rates. Consequently, the feasibility and implementation of
such adaptive estimation in the pure spatial models, including pure SAR model,
need to be established separately.

The method of estimation we employ is very similar to that of Robinson (2010),
but the asymptotic variance matrix of his estimate of (Ao, 8)7 corresponds to
that found in the classical adaptive estimation literature, whereas that of ours
differs from the classical one. In particular, the efficiency gain of the improved
X over the preliminary A can be either less or more (typically less) than in the
classical outcome. Somewhat unusually in the spatial econometric literature,
we cover several possible functional forms by treating (L.1) with Q(\) being a
parametric function that can take several forms, such as —.

Section 2 presents the information matrix corresponding to the MLE based on
, its form suggesting both potential for adapting to unknown distributional
form of €1 in the estimation of )y, and the scope for efficiency gains described in
the previous paragraph. Sections 3 and 4 describe, respectively, our estimate A
and its asymptotic distribution. The nonparametric estimation of the score func-
tion for £; introduced in Section 3 is used in Section 5 to construct an adaptive
LM testing procedure for lack of spatial dependence in the model , and also
when (1.1]) is used for the unobserved error terms in a linear regression model.
Section 6 presents results of a small Monte Carlo study of finite sample per-
formance of our adaptive estimate and LM testing procedure. Both estimation
and testing led to substantial efficiency gains compared those based on Gaussian
likelihood, while it is notable that LM testing improves significantly in the size
performance compared to Wald test statics that accompany substantial undersiz-
ing, which was also reported in panel data setting in Robinson and Rossi (2015).
Section 7 contains application of our methods to an economic dataset on crime
rates across [talian provinces.
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2. BLOCK-DIAGONALITY OF THE INFORMATION MATRIX

The feasibility of adaptive estimation of \g is shown via establishing the block-

diagonality of the information matrix Denote M(A) = —dQ(N) /d/\ M =
M(Xo) = (myj;). For SAR (1.2) M (X W for SMA (L.3) M(\) = (I +
AV)7TW (I 4+ AW)~! and for MESS . M = —Wexp(AW).

Assumption 1. (i) For all sufficiently large n, M = (my;)i j=1,... n 15 uniformly
bounded in both row and column sums, i.e. as n — o0,

mZ mijl = O(1) and &%Z mij| =

(ii) For a sequence h = hy, such that h™*+h/n — 0 as n — oo, ; Jax |mi;| =

O(h™"). 7

(iii) For all sufficiently large n, Q := Q(X\o) is non-singular and Q' is uni-
formly bounded in both row and column sums.

The sequence h is important in the asymptotic analysis, defining the rate of
convergence of estimates of A\g. For SAR model, Assumption 1 is typically as-
sumed with M =W and Q = (I —\gW) (see e.g. Assumptions 2-5 of Lee (2004),
with A\g € (—1,1)). These are in fact sufficient conditions for Assumption 1 to
also hold for SMA and MESS models, based on some basic matrix results given
in e.g. Lee (2004, p.1918).

Assumption 2. The limits

Wy 1= lim Etr(MQle*ITMT), wy := lim ﬁtr(]\JQ*lM'Q*l),

n—oo 1

ws = lim — Z(QT n)°,  wgi= lim —Z Q1

n—oo N n—oo 1

exist and are finite, and wy # 0, wy # 0, ws # 0.

Similar assumptions on w; and ws are imposed in Kyriacou, Phillips and Rossi
(2017, Assumption 5) and Robinson and Rossi (2015, Assumption 5) for SAR
model where they are discussed. For SAR model with row-normalized weight
matrix ie. 33" w; = 1foralli=1,..,n, wy=(1—A)? and wy =1 — Xp.

To show the feasibility of adaptive estimation of \g, we establish block-diagonality
of the information matrix between \y and the other parameters. Introduce:

0 0
P = —&logf(&‘;@), Xi = — 8§10gf(5uC0) 1> 1,

J = By} D:=diag{(n/h)?, n3ly,)}.
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d*L(6
Pr'oposition 1.  Under Assumptions 1-2, = = nh_)rrgo DflE( — de(Og))Dl
exists and
Jw1 + wo
0 U—JQW3
== 0 (5;?> wi B} —1)
0 0
0 0 —ﬁE@ﬂbiXi) E(xix!)

Noting the zero non-diagonal elements of the first column, the feasibility of
adaptive estimation of Ay is established. The proof of Proposition 1 is given in
the Appendix and the supplementary appendix.

3. ADAPTIVE ESTIMATION

With f, f’ respectively denoting the nonparametric density and derivative-
of-density of e;, the score function of £, is given by ¥ (s) = —f'(s)/f(s), when
f(s) # 0. The nonparametric estimate of 1) we use in adaptive estimation is a
series one, whose advantages over kernel estimation are discussed in Robinson
(2010). To formulate the adaptive estimate, denote first by ¢,(s), ¢ = 1,2,... a
sequence of smooth functions, to be used in series estimation of ¢(-). For an
integer L > 1, where L = L,, will be regarded as increasing with n, define the
L x 1 vectors

¢ (s) = (d1(s), -+, on(s)T, 6P(s) = P (s) = E{oP(en)}, (3.1)
¢ (s) = (@n(s), b (s))"
L is the number of approximating functions that are used in series estimation of
¥(+). Allowing L — 0o as n — oo enables nonparametric estimation of ¥(-). See

Robinson (2010) for discussion on the choice of ¢ and L.
We regard 1 (s) as being approximated by

U(s, a(L)) = <5(L)(S)TG(L), (3.2)
for unknown vector a¥ = [E {¢") }] E{¢'P(e;)} as explained
in Robinson (2010). Given a vector of observable proxies £ = (&1,...,6,)7, we
estimate a® by @), a sample analogue constructed as follows. For a generic
vector x = (z1,...,7,)T € R", define

i (x) = WP (2) " w (2),

where
n

= %Z@L)(ggi)@(m(zi)ﬁ W) (z;) = B (z;) 12¢
=1 7=1

and w'™) (z) ::~n_1 S ¢ D (x;). Likewise, define P (z;;aH) (z)) = yraB)(x).
The estimate ;, := () (& ath) (e ) of ¢(5z) for a given vector £, Wlll be used
to construct the adaptive estimate in (3.5)).

3
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The above discussion is based on a given proxy € for €. The specific one we use
is constructed as follows. Define e(\) = (e;(A), -, en(A)" := Q(\)y. For given
A, sample mean-adjusted residuals are () := e;(A\) —=n~' 377 e;()). Using the
n x n matrix H := I —n~11,11 we can write

6(/\) = (€1<>‘)a T 7€n(>‘))T = HQ()‘):% i=1--,n (33)

Given an estimate A of Ao, we estimate o2 by 52(\) := e(\)Te(\)/n. Our proxy &
for ¢ is then

€W

€= —=

G
For convenience, set 1), Z:}ZiL(S\,fI)LWhel"e Vir(N, o) == ®L(e;(N) /o) Ta*(e(N) /o).
Introduce the estimate 7, := Jp(\, &) of the information J, where

Tir0) = = 3 T (M0) (3.4

Denote P(A) := M(AN)Q '(\), P = P(\) = (pi;). For SAR (1.2) P()\) =
W (I —AW)~L, for SMA (1.3) P(\) = (I +A\W)~'WW and for MESS ([1.4) P(\) =
-W.

We are now ready to define our adaptive estimate of Ao, based on a preliminary
estimate A, as follows:

f=At (F- e {POPO} + 10 {P(S\)Q})_l
<é(1/~11L7 ) M(NHy — tr{P(X)D . (35)
The second term of represents a Newton step, based on nonparametric
estimate of the score function (-).
4. ASYMPTOTIC NORMALITY AND EFFICIENCY

The following assumptions are introduced for our asymptotic theory.

Assumption 3. {g;} is a sequence of i.i.d. random variables with zero mean,
unit variance and twice differentiable probability density function f(-) such that
sf'(s) = 0 and s*f"(s) = 0 as |s| — oo and

E(e}) + B(¢'(e1)) + Elep(er) P < oo,
Assumption 4. In and , be(s) = ¢(s)', I = 1,..., L, where ¢(s) is

a strictly increasing and thrice differentiable function such that for some k > 0,
K >0,

[B(s)| < T+ 1sl7, [ (s)] + [0 (s) + 10" (s)] < C(L+|g(s)]¥), s€R. (41)

Assumption 4 is the same as in Robinson (2010), where it is discussed.
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Define 1 := 1 ++/2 and ¢ := (1 + |#(s1)|)/{o(s2) — H(s1)}, with [s1, 5] being
an interval on which f(s) is bounded away from zero.

Assumption 5. The sequences h and L of satisfy one of the following
conditions with k as in .

(i) k =0, E(e}) < oo, and for some A > nmax(p,1), L <logh/8logA, n —
00.

(ii)) k > 0, for some w > 0 and t > 0, E (e“ei‘w) < oo, and for some B >
8kmax(1, 1), Llog L <logh/B, n — oco.

(iii) £ > 0, the random variables ¢;’s are almost surely bounded, and for some
C >4k, LlogL <logh/C, n — .

Assumption 5 is an amended version of Assumption 5 of Robinson (2010). It
captures the trade-offs in the choice of series functions and restrictions imposed
on the g;’s, L and h. If bounded ¢ is used and Es} < oo, then Assumption 5 (i)
entails a relatively modest upper bound on the rate of growth of L.

Assumption 6. Asn — oo, h = O(y/n) and
E{W ()™ —(e)} = o (h/n).

Assumption 6 requires the choice of series functions to provide an approxima-
tion error of () (c.f. (3.2))) that decreases at a suitably fast rate as n increases,
a typical condition imposed in the series estimation literature. Assumption 6 is
stronger than Assumption 7 of Robinson (2010), necessitated by the slower rate
of convergence of estimates of Ay in pure spatial models.

Assumption 7. Asn — oo,
A —Xo = O,((h/n)'?), & — 09 =0,(n""?).

The Gaussian PMLE satisfies Assumption 7.
The following theorem states asymptotic normality of the adaptive estimate A

of (3.9)).

Theorem 1. Let y follow the model with Ay € (@(W)_l, 1) and Assump-
tions 1 - 7 be satisfied. Then, as n — 00,

\/% (5\ — )\0> —a N(0, {Tw; +wy} ).

4.1. Efficiency comparison of adaptive estimate and PMLE. In Lee (2004)
it was shown that for the pure SAR model

\/%x — o) = N (0, {w + wn} ).
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It is of interest to compare the asymptotic variance of \, to that of A given in The-
orem 1 and see how the efficiency improvement attained via adaptive estimation
in our spatial setting contrasts to that in other settings.

For our SAR model, P = G := W (I — \W)™!, with

wy = lim Etr(GGT), wy := lim ﬁtr(Gz).
n—oo 1, n—oo 1
For some W, it follows that tr(G?) < 0, we < 0. However, if all elements of G
are non-negative, which is implied if w;; > 0 and Ay > 0, or if W is symmetric,
then wy > 0. In any case, it is possible to show that tr(G(G + GT)) > 0, so since
tr(GGT) > 0 also, we have w; > 0 and w; + wy > 0, implying

Jwi +wy > wy +wy >0, because J > 1.
This shows that \ is better than A. The relative efficiency of A to A is given by

Wwp +wy 1 4+ wy/wy
Jwi +wy T +wsfwr

In the autoregressive time series setting, where W is a lower triangular matrix,
wy = 0, and therefore the relative efficiency is 1/J. Thus when wy > 0 in our
setting the efficiency improvement achieved by our adaptive estimate is less than
in the time series case. For example if W is symmetric, the relative efficiency is
2/(J 4+ 1). On the contrary, wy < 0 yields greater efficiency improvement than
under time series setting. For example, for the circulant matrix given below with

one negative and one positive element in each row, we have wy = —(1+\2)73/2 —
A2(14+ 22712 1) < 0 for 0 < A < (1++/5)/2:
0O 100 .. 0 -1
1l -1 010 .. 0 O
W =— . )
2 . . . . . . .
1 000 ... =1 0

When the matrix W above is used in MESS model, w, = —0.5, while in SMA
model w, is the same as in SAR model as given above.

5. TESTING FOR LACK OF SPATIAL DEPENDENCE

One can construct an “adaptive” LM test statistic based on the series estima-
tion of the score function given in Section 3 in order to test Hy : \g = 0 against

Hy : Mg # 0in (L.1). The LM test has the advantage of estimating only the re-
stricted model and the statistic is based on the following standardized residuals
from the restricted model denoted 55”:

&) =&" /51, where & =y — g, 6%, = eVTE0) n, (5.1)

1
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For SAR, the Gaussian LM test statistic LM§, takes the form:

(T Em) 2
tr(WWT) + tr(W2)
Burridge (1980) noted that LMS,, is also the Gaussian LM test statistic for
SMA model.

Whilst the Gaussian LM test shares the robustness of the Gaussian PMLE,
one expects power to improve when using instead a correctly specified error dis-

tribution to derive the LM statistic. To build a LM statistic which adapts to an
unknown error distribution of nonparametric form, note that under Hy:

LMS, = (5.2)

i 2 §§f°) ) = T (0) + wa(0),

with wi(0) and wq(0) evaluated at A\g = 0.

To build a LM statistic, one needs estimates of J and ¢ ((y; — o)/00). We use
the series estimation of score function given in Section 3, with the restricted stan-
dardized residual ", Denote ¢ := ®L(&")7ak (") and 7" = S0 (052 /n.
Our adaptive LM statistic is given by

Z M (0 G5 — te(P(0)))

JLT tr(P(0)PT(0)) + tr(P(0)?)

For SAR and SMA we have M(0) = W = P(0), while for MESS M (0) =
—W = P(0). Hence in SAR (and SMA):

OL(0o), W (y — poln) | (Yi — Ho
8/\ ‘HO N Zl (o1y) w( (o) >7

1=

LMA =

_h OL(6)
’I’Ll—>oo nE( a)\Q }Ho

The adaptive LM test statistic specified for the SAR (and SMA) is

(oW i)
LME,n = : (5.3)
AR jL tr(WWT) + tr(W2)
LM, is in fact identical to what would have been derived under MESS also.

One could extend our LM testing to a linear regression model with spatially
dependent errors

h h
)= lim J—tr(WW7T) + —tr(W?).
n—00 n n

z=XB+vy, (5.4)
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with n x 1 vector of dependent variables z, n X k matrix of regressors X =
(X1, ..., X,,)T, and the error terms y following . The model along with
is called the Spatial Error model (SEM), see e.g. Anselin (1988). Under
Assumption 1, the dependence in the error terms y is weak and usual estimates
of 8 such as ordinary LSE are y/n-consistent. Denoting such estimates 8 and
corresponding fitted residuals 5 := Z — X 3, we replace y with ¢ in getting the
proxy to be used in the LM statistic in (5.1)): €™ = H{, with H being redundant
if X contains an intercept.

Assumption 8. {X;} is a sequence of k x 1 vector of i.i. d. random variables
with E||X;||* < oo, which is independent of {e;}. In addition, f— 8 = O,(n"1/?).

Theorem 2.

(i) Let y follow model with Ao € (@(W)fl, 1). Under Assumptions 1-7
and Hy: Mg =0, asn — 0o, LM* —; x*(1).

(i1) Let y be fitted residuals from model , with Ao € (@(W)_l,l)
and Assumptions 1-8 be satisfied. Then, as n — oo under Hy: \g = 0, LM* —,
X*(1).

6. MONTE CARLO STUDY OF FINITE SAMPLE PERFORMANCE

In this section, we report results from a small Monte Carlo study of the fi-
nite sample performance of our adaptive estimate and test. We first study the
efficiency improvement achieved by the adaptive ) relative to the preliminary
estimate A under differing error distributions, sample sizes, and magnitudes of
spatial dependence, and then compare size and power performance of our adap-
tive tests and the existing ones. We use the following block-diagonal weight
matrix introduced in Case (1992), where 1,, denotes a m x 1 vector of 1’s and
I, is the m x m identity matrix:

Lol — I, 0 0 .. 0

1 0 Il —I, 0 .. 0

Cr—1 : : Lo :
0 0 o 0 1,10 — 1,

The sample size is n = mr and we have h = r — 1. We take values of (m,r)
as in the Monte Carlo study of Robinson (2010): (m,r) = (12,8),(18,11) and
(28, 14) with the corresponding sample sizes n = 96, 198 and 392. To investigate
effects of differing strength of spatial dependence, we consider three different
values of A\g = 0.2,0.4,0.8 for SAR and SMA and Ay = 1, 2,3 for MESS. As in
the Monte Carlo study of Robinson (2010), the following four distributions of ¢;
are used with asymptotic relative efficiency (ARE) (= 2/(J + 1)) of A to X as
reported below. The ARE was calculated based on the reported values of 1/J
from Robinson (2010).
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(a) Unimodal mixture normal, ¢; = u/+/2.2 where

0.05 u? 0.95 u?
u) = —exp(— —) + —exp(— =), ueR ARE =0.679.

(b) Bimodal mixture normal, &; = u/+/10, where the pdf of ¢ is

flu) = \(/)%exp( N _23)2) + \3%61’])( — (u;3)2), weR ARFE =(.188.

(¢) Laplace, f(u) = exp(—|s|v2)v2, ARE = 0.666.
(d) Student t5, &; = uy/3/5, where u ~ t5, ARE = 0.685.

We report results with L = 1,3,5 for n = 96, L = 3,5,7 for n = 198 and
L =4,6,8 for n = 392. It was set that ¢,(s) = ¢*(s),£ = 1,..., L and two choices
of ¢(s) were used:

. g 5
(2) ¢(S) =5 (Zl) ¢(S> - (1 + 82)1/2'
6.1. Efficiency improvement in estimation. Based on 1000 replications, the
Monte Carlo variance of the two estimates of Ay were computed in each setting,
and their ratios are presented in Tables 1-3 for SAR, SMA and MESS, respec-
tively. A ratio less than 1 indicates efficiency improvement. Substantial improve-
ments are reported in the cases (a) and (b) for all three models, as also observed
in Robinson (2010). For error distributions (c¢) and (d) in SAR and SMA, relative
variance is greater than 1 for A = 0.2 (except for SMA with n = 392), and for
A = 0.4,0.8 the ratio is less than 1 for some L but not dramatically so. In MESS
the ratios are mostly less than 1 for all A for (¢) and (d) but not by much. In
most settings, efficiency improvement increases with n, and with the choice (iz)
of ¢ over (i). The best choice of L differs across models, error distributions and
¢ and . Apart from case (a), there is little discernible pattern in the best L
apart from that it increases with n in almost all settings. With (a), across all
three models, the best L is 5,7,7/8 for n = 96, 198, 392, respectively.

Table 4 reports the relative MSE to ascertain whether the bias has been ad-
versely affected by the adaptive estimation for the choice (ii) of ¢. In fact, the
relative MSE often exhibited greater improvement than the relative variance,
suggesting bias has been also reduced.

In Tables 1 and 4, a distinctive contrast to those results obtained in the mixed
SAR case of Robinson (2010) is that the efficiency improvement is greater under
larger values of \g. For SMA (MESS), the efficiency improvement is greater for
A = 0.4(2) than A = 0.2(1) but the pattern is less clear between A\ = 0.4(2) and
A =0.8(3).

[Tables 1-4 about here]
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6.2. Test of Hy : \g = 0. We now compare the finite sample size and power
properties of tests of lack of spatial dependence based on 4 different test statistics:
the Gaussian LM test LM$, of (5.2)), the adaptive LM test LMZ, 5 of (5.3), and

Wald tests based on Gaussian PMLE X\ and our adaptive estimate \ :

¢ = W (GRGT() + tr(G2(), WA = M/ Tt (GA)GT() + tr(G2(N)).

For n = 96,198,392 we report results with three choices of L:, L; = 1,3,4,
Lo = 3,5,6 and L3 = 5,7,8. All results are based on 1000 iterations and the
data generating process (DGP) stays unchanged from the previous subsection.
In Table 5, we report Monte Carlo size, for nominal size s = 0.1,0.05,0.01.
For the Wald statistic W&, undersizing is severe and does not improve with
increasing n, frequently getting worse with larger n across all four distributions.
This is in line with what Robinson and Rossi (2015) observed in a panel data
setting, notably for normal data. Their Table 2 reported severe undersizing for
the Gaussian PMLE, albeit for smaller sample sizes n = 12,15,20,40. Their
figures 1 and 2 demonstrated how normal cumulative distribution function (cdf)
offer poor approximation for the exact cdf of the Gaussian PMLE derived under
normality, even when A = 0. Our adaptive Wald statistic improves matters except
when L = 1,n = 96 in (b), and the extent of improvement increases with n and L
in (a) and (b). In (c) and (d) sizes for W# do not necessarily improve with larger
n, although they do improve with increasing L for given n. But the size based on
W4 is still unsatisfactory across the four distributions. Size results based on LM
statistics are much more encouraging, with LMS, » reporting better size results
than W% and W4 in all four distributions. Our adaptive LM, improves the
size results even further, with the exception of n = 96 in (c), and for L = 1 in
(b) and (a) for n = 96. In (b) and (d), sizes tend to improve with increasing n
for all LM tests, while there is no clear pattern in (a) and (c). In (a) and (b),
size results are best for larger L and for (c¢) and (d) size often is best with the
smaller L, with the exception of (c) n = 198. In all cases but one ((d), n = 392),
our adaptive LM$,, generated the best size results out of the four statistics.

[Table 5 about here]

In Tables 6 and 7, we report Monte Carlo power for nominal sizes s = 01, 0.05, 0.01
when there is mild spatial correlation Ay = 0.1,0.2, respectively. In Table 6, W&
has worst power, which improves only slightly with increasing n. Our adaptive
estimate improves the power, dramatically in (a) and (b) and mildly in (¢) and
(d) and in all cases larger L and n improve power further. In (a) and (b), LM,
has worse power than W4, while this is not necessarily the case in (c) and (d).
In (a), (b), (c), our LM, has best power which improves with increasing L. In
(d), while LMZ, 5 still reports the best power results, there is less clear pattern
on the best choice of L. It is notable that the power of LM§, and W remain
much the same across the four distributions for given n, while adaptive statis-
tics W4 and LM4, report greatest power in (a) and then in (b). In Table 7,
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naturally the reported Monte Carlo power is greater than in Table 6. Patterns
similar to Table 6 are observed, except that W4 often has slightly better power
than LMZ, . It is remarkable that the power improvements from using adaptive
statistics LMZ,r and W4 are so great that even for modest A\ = 0.2, powers are
close to 1 in (a) for n = 198,392,

[Tables 6-7 about here]

Results for the SEM are reported in Tables 8-10, with one dimensional
regressor X; generated from uniform distribution on [0,1] and 8 = 1.  was
estimated by LSE. Table 8 reports Monte Carlo size. For (a) and (c¢) with n =
198,392, sizes for all four statistics are better than in the pure case of Table
5, with the LM statistics in particular having sizes much closer to the nominal
ones. In (b) and (d) there is no such clear pattern. Relative performance of the
four statistics remain unchanged from Table 5. In terms of best choices of L,
there are changes in that L, performs best in (b), n = 198, and in (c) larger Lo
and Lz now produce better size results than L;, and in (d), n = 198, L3 led to
better results than L;. In Tables 9 and 10, powers are reported, the powers of all
statistics under (a) being somewhat smaller than under pure SAR, while in other
distributions they are similar to Tables 6 and 7. Relative power performance of
the four statistics reported from Tables 6-7 continue to hold in the SEM case.

[Tables 8-10 about here]

7. EMPIRICAL APPLICATION

In this section, we apply our adaptive estimation and testing procedure to a
cross-sectional data of property crime rates in 103 Italian provinces. The data
are from Buonanno, Montolio and Vanin (2009) which studies effects of social
capital on crime rates. Their data contains (report-rate-adjusted) crime rates
(Y) for three crimes, robbery, thefts and car thefts, four different measures of
social capital (SC), and a set of demographic, socioeconomics and geographical
controls (DSG), so that X = (SC, DSG). In order to account for possible spatial
spillovers of crime across the provinces, Buonanno et al. (2009) had fitted the
mixed regressive SAR model of with three different choices of weight matrix
W, one based on the inverse of road travel distance between the capital cities
in each province, one based on the inverse of Euclidean distance between their
geographic coordinates, and one based on simple contiguity among provinces.
Buonanno et al. (2009) obtained bootstrapped regionally clustered standard
errors for the coefficient estimates and finds p to be insignificant in all but one of
of 12 regressions (just at the 10 percent level).

In this paper, we focus on the number of blood donations per 100,000 inhabi-
tants (Blood) as the measure of social capital, since it is the least likely to suffer
from endogeneity out of the four social capital measures of Buonanno et al. (2009)
as pointed out by the authors, other measures being the number of recreational
and voluntary associations per 100,000 inhabitants and referenda turnout. As
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estimates of p are insignificant for all three choices of W, we drop the spatial lag
and fit the spatial error model below

Y = p15C + DSGBs + u, u=A\Wu+e, (7.1)

and test Hy : A = 0. Table 11 reports the Gaussian and adaptive LM and Wald
test statistics (L=3,4,5) when using the road-traveling distance weight matrix,
for which Buonanno et al. reported estimation results in their Tables 3-5. In
adaptive tests, we have used for ¢, the choice (ii) given in the previous section.
For the other two choices of weight matrix, the test results are unchanged and
not reported here. We reject Hy : A = 0 for robbery and car thefts, while for
theft, LM statistics fail to reject Hy and Wald statistics reject at 10% significance
level.

[Table 11 about here]

To account for possible spatial correlation in the error term, Buonanno et al.
(2009) obtained bootstrapped regionally clustered standard errors for the coef-
ficient estimates in the mixed SAR model. The controls DSG include income
(GDP), unemployment rate (Unemployment), education (High School), urban-
ization rate (Urbanization), share of youth (Youth), length of judicial proceedings
(Length), crime-specific clear-up rates (Clear Up), a measure of criminal associa-
tion (Criminal Networks) and geographic dummies, details of which can be found
in the appendix of Buonanno et al. (2009).

In Table 12 we report estimation results for the coefficients and standard errors
based on ([7.1)) with the road-traveling distance weight matrix, and corresponding
estimates and standard errors reported in Tables 3-5 of Buonanno et al. (2009) for
mixed regressive SAR when using the same weight matrix. Standard errors that
are obtained for with the other two weight matrices are very similar to the
ones obtained with the road-traveling distance weight matrix and do not affect
significance of any coefficient estimates. For Theft, we have also tried working
out the standard errors under Hy : A = 0, and again the standard error remain
much the same.

[Table 12 about here]

Across the two models, the signs of coefficients which are significant are the
same, although magnitude or significance vary somewhat for Length, Urbaniza-
tion and Clear Up. For the coefficient of the social capital measure, Blood, which
was the main interest of Buonanno et al. (2009), the estimates and significance
are remarkably stable across the two models. Urbanization and Clear Up are
the two variables that are most significant controls across all three crime types.
The SEM tends to find more controls significant. For Theft, Youth and
High School are additionally identified as significant, while for Robbery, Unem-
ployment is the additionally significant control. This is natural as the presence
the spatial lag term WY in the mixed SAR model would have taken on some
explanatory power of these controls.
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TABLE 1. SAR, Relative Monte Carlo Variance Var(\)/Var())

96
0.2 0.4 0.8

198
0.2 0.4 0.8

392
0.2 0.4 0.8

-
~
>
~
>
~
>

2.153 1.348 1.000
1.495 0.874 0.602
0.816 0.486 0.312
1.502 0.854 0.387
0.334 0.209 0.122
0.263 0.168 0.092

1.295 0.809 0.614
0.792 0.453 0.357
0.571 0.316 0.228
0.292 0.143 0.100
0.213 0.103 0.061
0.199 0.098 0.060

1.226 0.673 0.644
0.743 0.373 0.367
0.476 0.237 0.215
0.230 0.106 0.097
0.170 0.081 0.059
0.157 0.077 0.055

2.155 1.366 1.000
0.652 0.376 0.235
0.629 0.376 0.237
1.880 1.354 1.564
0.545 0.322 0.161
0.556 0.334 0.177

0.541 0.270 0.205
0.507 0.245 0.182
0.503 0.261 0.203
0.468 0.225 0.152
0.473 0.229 0.160
0.467 0.240 0.172

0.504 0.256 0.217
0.448 0.234 0.191
0.413 0.236 0.203
0.403 0.209 0.171
0.397 0.213 0.173
0.402 0.216 0.177

2.183 1.310 1.000
2.061 1.194 0.901
1.879 1.091 0.845
2.066 1.171 0.818
1.849 1.058 0.747
1.850 1.092 0.791

1.827 1.084 0.882
1.694 0.997 0.845
1.740 1.075 0.948
1.592  0.917 0.767
1.593 0.943 0.806
1.570 0.959 0.826

1.577 0.935 0.880
1.466 0.885 0.826
1.394 0.899 0.846
1.342 0.804 0.756
1.329 0.825 0.742
1.291 0.837 0.761

2.268 1.323 1.000
2.181 1.236 0.953
2.111  1.259 0.971
2.168 1.237 0.920
2.198 1.226 0.942
2.157 1.206 0.962

1.734 1.100 0.929
1.702 1.114 0.933
1.650 1.216 1.010
1.696 1.096 0.916
1.704 1.087 0.961
1.700 1.132 1.011

1.637 0.941 0.920
1.611 0.946 0.916
1.573 1.028 0.974
1.655 0.953 0.905
1.609 0.963 0.936
1.610 1.001 0.967

LW = UL W HULWH LW | OtWw - OtwHOtwH=Olw=—B
N Ot W N OTWNOTW N OtWNOtWw N OtwWNOtw N otw— B
0O O 00 O |00 O = 00 O |00 O = 00 O =00 O = 00 O = — B
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TABLE 2. SMA, Relative Monte Carlo Variance Var(X)/Var(\)

n 96 n 198 n 392
¢|I\A| 02 04 08|L\MA| 02 04 08|L\A\| 02 04 08
(a)(@) | 1 |1.224 1.011 1.000| 3 | 1.361 1.124 0.635| 4 |0.800 0.663 0.679
3 | 1.310 1.094 0639 | 5 |0.543 0432 0471 | 6 | 0506 0.411 0.436

5 | 0529 0446 0412 | 7 |0.409 0319 0347 | 8 |0.327 0.294 0.293

(i) | 1 |0584 0520 0672| 3 |0255 0.194 0207 | 4 |0.198 0.172 0.167
3 | 0274 0243 0213 | 5 [0.18 0162 0172 | 6 |0.151 0.136 0.130

5 | 0226 0204 0187 | 7 |0.178 0.158 0.163| 8 |0.147 0.128 0.120
(b)) | 1 | 1.273 1.004 1.000 | 3 | 1.122 1.045 0.856 | 4 | 0.386 0.298 0.324
3 | 1116 1.042 0852 | 5 |[0.348 0277 0306 | 6 |0.345 0.277 0.299

5 | 0450 0.345 0352 | 7 |0.381 0298 0317 | 8 |0.332 0.279 0.301

Gi) | 1 |1.842 1.402 0969 | 3 |0320 0263 0274 | 4 |0.313 0255 0277
3 | 0383 0204 0281 | 5 [0.328 0269 0275| 6 |0312 0.261 0.276

5 | 0404 0302 0290 | 7 |0338 0273 028 | 8 |0.317 0.263 0274

(@) | 1 [1.221 1.006 1.000 | 3 | 1.461 1.162 0524 | 4 | 0.978 0.899 0.915
3 | 1424 1.138 0518 | 5 | 1.067 0.825 0.896 | 6 | 0929 0.868 0.858

5 | 1.155 0.893 0914 | 7 |[1.181 0919 0976 | 8 | 0938 0.889 0.874

(i) | 1 |1.084 0866 0927 | 3 |1.017 0.783 0.805 | 4 |0.873 0.807 0.792
3 | 1.107 0.857 0.838| 5 |[1.000 0821 0.839| 6 |0842 0.818 0.813

5 |1.116 0.890 0878 | 7 |1.023 0.866 0.863 | 8 |0.852 0.831 0.830
(@) | 1 [1.210 1.024 1.000 | 3 | 1.486 1.159 0517 | 4 | 1.064 0.901 0.931
3 | 1426 1.138 0518 | 5 |[1.133 0939 0964 | 6 | 1.066 0.920 0.942

5 |1.230 1.034 1.001| 7 |1.208 1.077 1.058 | 8 |1.134 0.998 1.013

Gy | 1 |1.139 0976 0937 | 3 |1.106 0915 0962 | 4 | 1.076 0.916 0.945
3 | 1.199 0983 0964 | 5 |1.144 0927 0993 | 6 |1.066 0.943 0.980

5 |1.229 1.023 0994 | 7 |1.194 1012 1.051 | 8 |1.090 0.987 1.017

TABLE 3. MESS,

Relative Monte

~

Carlo Variance Var(\)/Var(X)

n 96 n 198 n 392
¢ | L\X 1 2 3| L\A 1 2 3] L\A 1 2 3
(@@ | 1 | 1.000 1.000 1.000 | 3 | 0.675 0.686 0.676 | 4 | 0.690 0.644 0.694
3 | 0666 0.660 0.658| 5 |0.429 0404 0433 | 6 |0423 0380 0.431
5 | 0408 0405 038 | 7 |0.307 028 0.300| 8 |0.263 0.247 0.272
(i) | 1 |0522 0522 0508| 3 |0.167 0142 0.154| 4 |0.138 0.121 0.129
3 | 0177 0185 0.174| 5 |0.118 0.106 0.113 | 6 |0.101 0.092 0.092
5 |0.147 0.148 0.138| 7 |0.114 0104 0.111 | 8 |0.097 0.089 0.087
(b)) | T [1.000 1.000 1.000 | 3 | 0.273 0.268 0.284 | 4 | 0.525 0456 0.525
3 |0332 0304 0320 5 [0.257 0242 0260 | 6 |0.494 0438 0.486
5 10339 0308 0321 7 |0.292 0268 0276 | 8 |0.535 0469 0.549
Gi) | 1 |1.200 1.297 1.298 | 3 | 0227 0.222 0225 | 4 |0.239 0221 0.235
3 0263 0248 0245 | 5 |0.236 0228 0231 | 6 |0239 0226 0236
5 | 0287 0262 0258 | 7 |0.246 0241 0245 | 8 |0.246 0.230 0.238
(@) [ 1 [1.000 1.000 1.000 | 3 |0.924 0.889 0908 | 4 |0.892 0.894 0.906
3 | 0942 0919 0923 | 5 |0.884 0831 0.88 | 6 |0.839 0.856 0.855
5 | 0935 0.875 0.903 | 7 |1.003 0923 0978 | 8 |0.844 0.876 0.874
(i) | 1 |0.887 0.857 0.861| 3 |0829 0.777 0.808 | 4 |0.778 0.790 0.790
3 | 0873 0838 0.825| 5 |0.831 0801 0831 | 6 |0.768 0.803 0.791
5 | 0908 0.872 0857 | 7 |0.862 0834 0858 | 8 |0.781 0.819 0.813
(@@ | 1 [1.000 1.000 1.000 | 3 | 0.936 0.923 0.947 | 4 |0.915 0.891 0.936
3 | 0966 0949 0.951 | 5 |0.945 0946 0958 | 6 |0.923 0.905 0.939
5 | 1.032 0999 0997 | 7 |1.069 1074 1.041 | 8 |1.006 0.982 1.005
(i) | 1 |0938 0935 0924 | 3 |0924 0920 0942 | 4 |0.927 0.903 0.934
3 | 0984 0947 0959 | 5 |0.957 0924 0981 | 6 |0923 0.924 0.968
5 | 1.021 0970 0990 | 7 | 1.008 0.995 1.038 | 8 | 0952 0.966 1.000

17
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TABLE 4. Relative Monte Carlo MSE MSE(N)/MSE(X), ¢ = (i7)

n 96 n 198 n 392
I\X 0.2 0.4 0.8 | I\X 0.2 0.4 0.8 | I\X 0.2 0.4 0.8
SAR (a) | 1 | 1.497 0706 0317 | 3 | 0267 0.125 0.095| 4 | 0215 0.094 0.094
3 10334 0176 0.111| 5 |0.196 0.086 0052 | 6 |0.156 0.070 0.049
5 | 0260 0.138 0076 | 7 |0.183 0.082 0.052| 8 |0.145 0.067 0.047
() | 1 | 2438 1.804 2371 | 3 |0449 0.196 0.138 | 4 | 0390 0.185 0.156
3 | 0532 028 0144 | 5 |0459 0.206 0.148 | 6 | 0.384 0.189 0.159
5 | 0540 0299 0.159 | 7 | 0453 0224 0.169 | 8 |0.388 0.193 0.164
()| 1 [2184 1.099 0742 | 3 | 1.585 0.890 0.767 | 4 | 1.378 0.796 0.751
3 1.924 1.013 0.721 5 1.569 0.902 0.776 6 1.348 0.794 0.712
5 | 1.904 1.025 0743 | 7 | 1.531 0914 0797 | 8 | 1.307 0.815 0.735
(d | 1 [2345 1.190 0902 | 3 | 1.771 1.072 0895 | 4 | 1.732 0.930 0.888
3 | 2344 1.180 0933 | 5 | 1.763 1.063 0943 | 6 | 1.678 0.939 0.918
5 | 2274 1.150 0958 | 7 | 1.725 1.096 0.986 | 8 | 1.663 0.975 0.949
SMA (a) 1 0.526 0.463 0.634 3 0.271 0.246 0.286 4 0.228 0.220 0.231
3 | 0318 0300 0306| 5 |0199 0.189 0206 | 6 |0.173 0.162 0.149
5 0.261 0.243 0.237 7 0.197 0.188 0.203 8 0.171 0.158 0.150
(b) | 1 [1.929 1.808 1.934| 3 |0337 0297 0314| 4 |0331 0277 0.309
3 1039 0359 0332] 5 |0343 0.303 0316| 6 |0.330 0.283 0.310
5 | 0414 0367 0339| 7 | 0354 0309 0.329| 8 |0.335 0.285 0.309
()| 1 0095 0838 0854| 3 |0057 0804 0841 | 4 | 0874 0839 0.820
3 |1.032 0876 0848 | 5 |0934 0.826 0843 | 6 |0.835 0.825 0.810
5 | 1.043 0892 0861 | 7 | 0956 0.868 0.870 | 8 |0.848 0.848 0.833
(] 1 [1.063 0956 0934| 3 |1.052 0918 0953 | 4 |1.051 0.910 0.940
3 1.114 0.969 0.970 5 1.086 0.933 0.990 6 1.043 0.937 0.974
5 1.146 1.004 1.009 7 1.124 1.006 1.042 8 1.064 0.981 1.012
MESS (a) | 1 | 0529 0.527 0519 | 3 | 0.155 0.140 0.152 | 4 | 0.134 0.119 0.126
3 | 0177 0177 0173 | 5 |0.113 0.105 0.116| 6 |0.101 0.094 0.092
5 |0.149 0.145 0.140 | 7 | 0.110 0.104 0.114| 8 |0.096 0.092 0.087
(b) | 1 | 1.281 1279 1.28 | 3 | 0222 0221 0225| 4 | 0237 0216 0.235
3 0255 0255 0245| 5 |0230 0.227 0230| 6 |0237 0221 0.237
5 0.278 0.271 0.259 7 0.241 0.242 0.247 8 0.244 0.226 0.241
()| 1 |[0880 0859 0848 | 3 |0791 0.766 0.798 | 4 |0.770 0.789 0.774
3 | 0844 0821 0785 | 5 |0794 0.791 0822 | 6 |0.761 0.795 0.778
5 | 0.881 0848 0814 | 7 | 0.818 0815 0.839| 8 |0.773 0.815 0.795
(] 1 [0930 0921 0927 | 3 |0919 0919 0935| 4 |0933 0.896 0.933
3 10965 0930 0961 | 5 |0945 0921 0971 | 6 |0.925 0911 0.958
5 | 0998 0943 0992 | 7 | 0982 0978 1.017| 8 |0.947 0.950 0.988
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TABLE 5. Size of test of Hy: A =0, ¢ = (i)

n =96 n = 198 n = 302
s 01 005 001 01 005 001 01 005 001
(@) LMC | 0064 0023 0006 | 0063 0031 001 | 0069 0033 0.007
LMA(L1) | 0.147 0.062 0.015| 0074 0.044 0.008 | 0.067 0.035 0.008
LMA(Ly) | 0.083 004 0.011| 0094 0.05 0011| 0082 0.045 0.016
LMA(Ls) | 0.091 0.052 0012 | 0.089 0.047 0.013 | 0081 0.047 0.012
WS | 003 001 0004| 0026 0009 0002| 0024 0.014 0.003
WAL | 0.037 0.015 0| 0068 0039 0009| 0054 0021 0.005
WA(Ly) | 0.045 0.015 0.003 | 0.056 0.023 0.008| 0056 002 0.002
WA(Ls) | 0.054 0.028 0.004 0.07 0.031 0.008 | 0.059 0.027 0.002
®) LMC | 0062 003 0012 | 0077 0025 0.009| 0082 0034 0.009
LMA(Ly) | 0019 001 0001 | 0079 004 001| 0093 0049 0.016
LMA(Ly) | 0.078 0.036 0012 | 0084 0.042 0.01 0.09 0.048 0.014
LMA(Ls) | 0.083 0.043 0.011 | 0.084 0.043 0.014 0.1 0.048 0.012
WS | 0031 0018 0.005| 0025 0015 0.003| 0.033 0.015 0.002
WALy | 0017 0008 0.001| 0.048 0.021 0.004| 0.068 0.031 0.007
WA(Ly) | 0.047 0017 0.003 | 0049 0.022 0.005| 0.063 0.035 0.009
WA(Ls) | 0059 0027 0.008| 0052 0.03 0008 | 0.068 0.042 0.009
©) LMC | 0.057 0024 0.007 | 0053 0017 0.009| 0064 0022 0.004
LMA(Ly) | 0.083 0034 0014 | 0054 0018 0.009 | 0.064 0.024 0.004
LMA(Ly) | 0071 0.035 0.013| 0.058 0.024 0.008 006 0.02 0.002
LMA(Ls) | 0.073 0.035 0.007 0.06 0.026 001 | 0047 0.019 0.003
WS | 0027 0014 0002 | 0017 0011 0.003| 0.018 0.006 0
WALy | 0036 002 0.002| 0032 0017 0005| 0029 001 0.001
WA(Ly) | 0045 0025 0.007| 0036 0.018 0.006| 0.031 0.012 0.001
WA(Ls) | 0.048 0.035 0.012| 0055 0.022 0006 | 0031 0015 0.003
@ LMC | 0.063 0018 0.006 | 0068 0034 0.013 008 003 001
LMA(L1) | 0.068 0.026 0008 | 0074 0.031 0009 | 0078 0.03 0.007
LMA(Ly) | 0.064 0.024 0009 | 0073 0.028 0.006| 0074 0.031 0.008
LMA(Ls) | 0.064 0.027 0.009 | 0.068 0.031 0.008 0.07 0.028 0.007
WS | 0022 0012 0001 | 0036 0018 0.004| 0.027 0017 0.004
WALy | 0032 0014 0.001 | 0032 0015 0005| 0031 0.016 0.003
WA(Ly) | 0038 0023 0.004| 0036 0021 0005 0.033 0.017 0.006
WA(Ls) | 0051 0029 0.013| 0058 003 001 | 0041 0021 0.007

19



20

JUNGYOON LEE' AND PETER M. ROBINSON*

TABLE 6. Power of test of Hy : A = 0 when Ay = 0.1, SAR model,

6 = (i)
n = 96 n = 198 n = 392

s 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

(a) LMC 0.116 0.067 0.025 0.115 0.068 0.033 0.163 0.103 0.05

LMA(Ll) 0.208 0.149 0.09 0.431 0.351 0.2 0.527 0.429 0.288

LMA(LQ) 0.341 0.265 0.141 0.563 0.472 0.33 0.677 0.594 0.42

LMA(Lg) 0.44 0.363 0.242 0.602 0.5 0.35 0.7 0.61 0.442

we& 0.082 0.044 0.014 0.092 0.059 0.026 0.116 0.065 0.025

WA(Ll) 0.137 0.093 0.033 0.376 0.298 0.14 0.475 0.374 0.206

WA(LQ) 0.291 0.207 0.098 0.518 0.411 0.249 0.642 0.533 0.328

WA(Lg) 0.39 0.299 0.169 0.561 0.458 0.271 0.669 0.561 0.337

(b) LMG 0.119 0.067 0.029 0.141 0.092 0.049 0.161 0.104 0.045

LMA(Ly) 0.044 0.026 0.008 0.308 0.234 0.124 0.388 0.306 0.16

LMA(LQ) 0.218 0.159 0.073 0.306 0.233 0.132 0.378 0.304 0.167

LMA(L3) 0.209 0.15 0.069 0.296 0.232 0.118 0.381 0.302 0.165

w¢& 0.075 0.046 0.014 0.098 0.067 0.021 0.113 0.068 0.022

WA(Ly) 0.035 0.021 0.007 0.267 0.195 0.082 0.343 0.253 0.115

WA(LQ) 0.191 0.123 0.048 0.281 0.199 0.089 0.345 0.265 0.124

WA (L3) 0.197 0.13 0.053 0.301 0.225 0.101 0.372 0.281 0.132

(c) LMG 0.11 0.071 0.032 0.156  0.099 0.05 0.162 0.099 0.04

LMA(Ll) 0.148 0.083 0.041 0.162 0.103 0.061 0.156 0.108 0.058

LMA(LQ) 0.138 0.094 0.041 0.171 0.105 0.061 0.164 0.119 0.062

LMA(L3) 0.142 0.088 0.047 0.17 0.116 0.058 0.167 0.114 0.062

w¢& 0.077 0.046 0.012 0.103 0.067 0.026 0.111 0.061 0.017

WA(Ll) 0.095 0.059 0.018 0.12 0.079 0.029 0.125 0.086 0.036

WA(LQ) 0.105 0.067 0.023 0.148 0.104 0.047 0.14 0.1 0.049

WA(L3) 0.131 0.085 0.04 0.149 0.114 0.051 0.156 0.107 0.054

(d) LM% 0.115 0.066 0.029 0.155 0.098 0.046 0.161 0.105 0.044

LMA(Ll) 0.118 0.079 0.041 0.158 0.102 0.051 0.173 0.11 0.056

LMA(Ls) 0.12 0.078 0.035 0.142 0.097 0.043 0.177 0.116 0.051

LMA(L3) 0.114 0.071 0.037 0.134 0.091 0.046 0.173 0.112 0.051

w¢ 0.072 0.046 0.013 0.099 0.068 0.022 0.115 0.07 0.024

WA(Ll) 0.086 0.053 0.026 0.115 0.082 0.021 0.143 0.083 0.027

WA (L2) 0.093 0.062 0.029 0.122 0.084 0.035 0.148 0.095 0.039

WA(Lg) 0.116 0.073 0.036 0.138 0.106 0.056 0.171 0.11 0.044
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TABLE 7. Power of test of Hy : A = 0 when Ay = 0.2, SAR model,

6 = (i)
n = 96 n = 198 n = 392

s 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

(a) LMC 0.266 0.187 0.1 0.294 0.229 0.132 0.321 0.265 0.174

LMA(Ll) 0.441 0.376 0.279 0.871 0.825 0.705 0.936 0.908 0.822

LMA(LQ) 0.759 0.696 0.55 0.934 0.901 0.816 0.969 0.959 0.917

LMA(Lg) 0.849 0.797 0.691 0.943 0.921 0.848 0.98 0.966 0.928

we& 0.206 0.131 0.062 0.259 0.174 0.081 0.277 0.188 0.086

WA(Ll) 0.399 0.318 0.182 0.852 0.791 0.66 0.937 0.909 0.818

WA(LQ) 0.753 0.674 0.489 0.927 0.9 0.833 0.979 0.968 0.915

WA(Lg) 0.866 0.803 0.671 0.941 0.916 0.852 0.988 0.973 0.935

(b) LMG 0.263 0.209 0.125 0.297 0.238 0.146 0.348 0.269 0.17

LMA(Ly) 0.132 0.087 0.031 0.684 0.62 0.493 0.796 0.741 0.605

LMA(LQ) 0.59 0.512 0.384 0.693 0.616 0.502 0.791 0.742 0.607

LMA(L3) 0.584 0.514 0.383 0.689 0.609 0.491 0.797 0.746 0.594

w¢& 0.22 0.161 0.074 0.242 0.173 0.078 0.283 0.214 0.106

WA(Ly) 0.108 0.06 0.022 0.675 0.596 0.438 0.795 0.718 0.552

WA(LQ) 0.569 0.492 0.329 0.691 0.606 0.452 0.795 0.725 0.555

WA (L3) 0.593 0.516 0.36 0.696 0.616 0.476 0.807 0.745 0.567

(c) LMG 0.229 0.17 0.092 0.282 0.216 0.132 0.357 0.283 0.162

LMA(Ll) 0.276 0.211 0.13 0.351 0.284 0.167 0.426 0.344 0.226

LMA(LQ) 0.282 0.218 0.134 0.364 0.282 0.172 0.416 0.348 0.238

LMA(L3) 0.29 0.219 0.132 0.356 0.274 0.165 0.426 0.339 0.236

w¢& 0.179 0.121 0.052 0.233 0.172 0.075 0.292 0.218 0.107

WA(Ll) 0.218 0.156 0.076 0.291 0.216 0.12 0.365 0.28 0.161

WA(LQ) 0.248 0.181 0.097 0.321 0.242 0.129 0.388 0.299 0.182

WA(L3) 0.269 0.207 0.12 0.346 0.274 0.157 0.402 0.333 0.202

(d) LM% 0.235 0.18 0.095 0.303 0.236 0.139 0.362 0.294 0.183

LMA(Ll) 0.256 0.196 0.113 0.33 0.252 0.162 0.38 0.316 0.209

LMA(Ls) 0.252 0.189 0.11 0.321 0.247 0.147 0.373 0.312 0.206

LMA(L3) 0.234 0.185 0.111 0.309 0.243 0.142 0.364 0.306 0.204

w¢ 0.193 0.13 0.058 0.249 0.181 0.088 0.312 0.231 0.115

WA(Ll) 0.197 0.139 0.058 0.287 0.207 0.116 0.343 0.271 0.141

WA (L2) 0.214 0.156 0.074 0.294 0.215 0.125 0.355 0.287 0.158

WA(Lg) 0.231 0.179 0.093 0.325 0.25 0.142 0.367 0.294 0.179
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TABLE 8. Size of test of Hy: A =0, SEM, ¢ = (i1)

n =96 n = 198 n = 392
s 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01
(a) LM% 0.062 0.024 0.007 0.09 0.041 0.011 0.086 0.038 0.009
LMA(Ly) 0.142 0.065 0.019 0.102 0.063 0.019 0.085 0.045 0.008
LMA(L2) 0.099 0.045 0.015 0.104 0.055 0.016 0.098 0.048 0.011
LMA(Lg) 0.086 0.041 0.015 0.1 0.055 0.017 0.094 0.044 0.011
we& 0.027 0.011 0.001 0.037 0.016 0.003 0.034 0.019 0.003
WA(L1) 0.033 0.015 0.002 0.063 0.038 0.006 0.056 0.028 0.003
WA(La) 0.046 0.023 0.009 0.057 0.031 0.007 0.054 0.025 0.002
WA(Ls) 0.043 0.024 0.007 0.062 0.037 0.009 0.065 0.029 0.003
(b) LM% 0.079 0.038 0.016 0.082 0.036 0.012 0.071 0.032 0.005
LMA(Ly) 0.02 0.014 0.005 0.088 0.039 0.005 0.081 0.038 0.007
LMA(L2) 0.082 0.041 0.01 0.084 0.039 0.006 0.08 0.043 0.007
LMA(L3) 0.083 0.044 0.008 0.085 0.037  0.01 0.087 0.038  0.01
wé 0.043 0.017 0.007 0.031 0.015 0.005 0.029 0.012 0.003
WA(Ly) 0.018 0.009 0.005 0.04 0.015 0.002 0.045 0.02 0.003
WA(L2) 0.053 0.023 0.007 0.05 0.018 0.003 0.044 0.019 0.004
WA(Ls) 0.057 0.032  0.01 0.05 0.023 0.004 0.05 0.021 0.005
(c) LMY 0.056  0.023 0.004 0.069 0.024 0.01 0.077 0.033 0.013
LMA(L1) 0.073 0.031 0.012 0.057 0.021 0.007 0.09 0.041 0.011
LMA(Lg) 0.061 0.035 0.01 0.074 0.028 0.006 0.087 0.046 0.011
LMA(L3) 0.075 0.037 0.01 0.073 0.025 0.006 0.092 0.047 0.012
weé 0.027 0.012 0.001 0.025 0.015 0.004 0.03 0.018 0.005
WA(L1) 0.032 0.016 0.001 0.021 0.01 0.005 0.046 0.024 0.005
WA(L2) 0.042 0.025 0.005 0.036 0.018 0.005 0.049 0.033 0.009
WA(L3) 0.052 0.031 0.011 0.046 0.021 0.008 0.056 0.036 0.011
(d) LMC 0.054 0.023 0.011 0.056 0.017 0.007 0.072 0.027 0.005
LMA(Ly) 0.069 0.021 0.01 0.066 0.025 0.012 0.084 0.026 0.007
LMA(Ls) 0.062 0.026 0.011 0.062 0.027  0.01 0.079 0.026 0.005
LMA(L3) 0.064 0.026 0.011 0.068 0.03 0.01 0.077 0.027 0.006
wé& 0.027 0.011 0.006 0.017  0.01 0.001 0.02 0.011 0.003
WA(L1) 0.025 0.012 0.005 0.033 0.021 0.007 0.03 0.012 0.004
WA(Lz) 0.028 0.018 0.007 0.041 0.024 0.007 0.037 0.019 0.005
WA(L3) 0.041 0.026 0.011 0.054 0.033 0.01 0.042 0.027 0.005
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TABLE 9. Power of test of Hy : A = 0 when A\g = 0.1, SEM model,

6 = (i)
n = 96 n = 198 n = 392

s 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

(a) LMC 0.107 0.061 0.03 0.116 0.077 0.025 0.158 0.117 0.055

LMA(Ll) 0.221 0.159 0.074 0.413 0.334 0.192 0.517 0.414 0.274

LMA(LQ) 0.339 0.261 0.145 0.527 0.434 0.287 0.638 0.552 0.395

LMA(Lg) 0.429 0.351 0.22 0.549 0.456 0.307 0.655 0.576 0.422

we& 0.065 0.039 0.01 0.076 0.041 0.011 0.119 0.078 0.026

WA(Ll) 0.135 0.075 0.029 0.363 0.274 0.142 0.48 0.38 0.195

WA(LQ) 0.265 0.195 0.096 0.485 0.387 0.225 0.614 0.514 0.307

WA(Lg) 0.362 0.279 0.159 0.528 0.412 0.251 0.635 0.543 0.347

(b) LMG 0.116 0.068 0.025 0.13 0.089 0.044 0.163 0.109 0.046

LMA(Ll) 0.042 0.023 0.008 0.292 0.212 0.125 0.36 0.281 0.164

LMA(LQ) 0.224 0.158 0.07 0.293 0.202 0.122 0.353 0.286 0.167

LMA(L3) 0.214 0.158 0.077 0.288 0.211 0.115 0.351 0.273 0.156

w¢& 0.076 0.045 0.016 0.093 0.061 0.018 0.114 0.075 0.019

WA(Ly) 0.033 0.017 0.005 0.258 0.18 0.077 0.315 0.235 0.103

WA(LQ) 0.182 0.127 0.048 0.261 0.177 0.077 0.315 0.237 0.104

WA (L3) 0.209 0.142 0.06 0.281 0.204 0.089 0.335 0.234 0.114

(c) LMG 0.106 0.062 0.034 0.154 0.096 0.04 0.18 0.117 0.049

LMA(Ll) 0.13 0.082 0.04 0.17 0.116 0.052 0.185 0.132 0.06

LMA(LQ) 0.132 0.083 0.038 0.169 0.119 0.056 0.191 0.142 0.063

LMA(L3) 0.146 0.088 0.038 0.162 0.114 0.046 0.182 0.132 0.064

w¢& 0.07 0.048 0.019 0.102 0.062 0.021 0.131 0.077 0.022

WA(Ll) 0.09 0.054 0.02 0.125 0.087 0.029 0.148 0.091 0.038

WA(LQ) 0.106 0.059 0.027 0.136 0.092 0.038 0.153 0.103 0.041

WA(L3) 0.124 0.077 0.039 0.157 0.096 0.049 0.164 0.11 0.044

(d) LM% 0.118 0.078 0.032 0.157 0.115 0.058 0.163 0.115 0.052

LMA(Ll) 0.122 0.077 0.037 0.164 0.112 0.065 0.171 0.113 0.055

LMA(Ls) 0.114 0.079 0.038 0.162 0.104 0.063 0.172 0.117 0.049

LMA(L3) 0.12 0.081 0.032 0.166 0.105 0.058 0.175 0.112 0.05

w¢ 0.081 0.049 0.015 0.121  0.078 0.037 0.128 0.083 0.022

WA(Ll) 0.08 0.055 0.019 0.134 0.086 0.039 0.133  0.085 0.03

WA (L2) 0.096 0.062 0.024 0.151 0.093 0.045 0.034 0.141 0.09

WA(Lg) 0.116  0.082 0.03 0.166 0.117 0.063 0.164 0.107 0.043
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TABLE 10. Power of test of Hy : A = 0 when A\g = 0.2, SEM model,

6 = (i)
n = 96 n = 198 n = 392

s 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

(a) LMC 0.243 0.183 0.104 0.2720 0.2160 0.1280 0.33 0.248 0.156

LMA (L1) 0.418 0.354 0.252 0.8400 0.7900 0.687 091 0.869 0.773

LMA(Ls) 0.705 0.639 0.507 0.91 0.871 0.79 0.969 0.933 0.878

LMA (L3) 0.791 0.733 0.636 0.929 0.892 0.812 0.97 0.95 0.889

w& 0.202 0.145 0.059 0.227 0.156 0.069 0.266 0.194 0.094

wAa (L1) 0.374 0.291 0.168 0.851 0.79 0.654 0.924 0.887 0.788

WA (Lz) 0.697 0.625 0.464 0.922 0.892 0.814 0.972 0.955 0.899

wAa (L3) 0.802 0.741 0.623 0.941 0.917 0.833 0.976 0.963 0.916

(b) LMC 0.236 0.175 0.097 0.332 0.26 0.162 0.31 0.253 0.162

LMA(Ly) 0.103 0.071 0.025 0.725 0.662 0.536 0.788 0.709 0.59

LMA (L2) 0.573 0.505 0.372 0.728 0.665 0.536 0.782 0.714 0.585

LMA(L3) 0.563 0.488 0.366 0.718 0.654 0.512 0.783 0.72  0.589

w6 0.193 0.125 0.061 0.284 0.206 0.092 0.266 0.196 0.103

WA (L) 0.083 0.045 0.018 0.711 0.634 0.477 0.775 0.711 0.554

wAa (L2) 0.565 0.477 0.333 0.732 0.643 0.482 0.778 0.705 0.553

WA (L3) 0.57 0.493 0.345 0.738 0.661 0.507 0.795 0.726 0.567

(c) LMC 0.229 0.175 0.104 0.293 0.232 0.143 0.357 0.288 0.179

LMA (L1) 0.27  0.206 0.14 0.351 0.29 0.17 0.417 0.341 0.225

LMA (L2) 0.267 0.201 0.132 0.362 0.296 0.182 0.424 0.344 0.235

LMA(L3) 0.278 0.211 0.133 0.359 0.279 0.166 0.416 0.33 0.231

W& 0.19 0.133 0.062 0.246 0.179 0.087 0.301 0.233 0.119

WA(Ly) 0.213 0.161 0.083 0.311 0.229 0.11 0.367 0.28 0.154

wAa (L2) 0.223 0.171 0.091 0.329 0.26 0.143 0.391 0.302 0.175

WA(L3) 0.268 0.209 0.111 0.352 0.273 0.167 0.403 0.319 0.185

(d) LMG@ 0.262 0.198 0.123 0.307 0.232 0.138 0.338 0.269 0.165

LMA (L1) 0.278 0.224 0.143 0.335 0.255 0.16 0.367 0.283 0.185

LMA(Lg) 0.278 0.208 0.136 0.324 0.25 0.153 0.349 0.283 0.18

LMA (L3) 0.267 0.205 0.124 0.308 0.234 0.146 0.344 0.277 0.174

w¢& 0.216 0.147 0.086 0.247 0.173 0.081 0.281 0.202 0.101

wAa (L1) 0.229 0.164 0.102 0.285 0.21 0.115 0.322 0.23 0.127

WA (Lg) 0.245 0.17 0.109 0.299 0.234 0.124 0.329 0.247 0.136

wAa (L3) 0.268 0.211 0.122 0.312 0.252 0.146 0.339 0.266 0.144
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TABLE 11. Test statistics for Hy: A =0
LM% LMA(3) LMA(4) LMA(5) we¢  WAB)  WAW4)  WA(B)
Thefts 1.052 0.736 0.691 0.78 1.593 1.672* 1.675* 1.676*
Car thefts | 5.578*%*  5.155%*  5.178** 3.225% | 3.829%** 3 R59*** 3 965*F*F*  3.967F**
Robbery | 3.917**  4.217**  4.346** 3.078% | 3.197*** 3. 158%** 3. o7kk*x 3 54kr*
*Significant at 10%, **Significant at 5%, ***Significant at 1%.
TABLE 12. Estimates of coefficients in mixed regressive SAR and SEM
Y Theft Car theft Robbery
model | mixed SAR SEM mixed SAR SEM mixed SAR SEM
Blood | —0.006***  —0.006*** | —0.007**  —0.007** | —0.007**  —0.006**
(0.002) (0.002) (0.003) (0.003) (0.003) (0.003)
Criminal Networks 0.248* 0.249** 0.68** 0.667*** 0.869*** 0.802***
(0.134) (0.118) (0.324) (0.174) (0.228) (0.212)
Length |  0.066** 0.048* 0.11*** 0.086** 0.091 0.073
(0.03) (0.027) (0.036) (0.039) (0.062) (0.047)
Youth —0.109 —0.153*** 0.019 —0.001 0.145 0.04
(0.093) (0.059) (0.136) (0.089) (0.122) (0.108)
High School 0.026 0.032** —0.007 —0.005 —0.074*  —0.081***
(0.018) (0.015) (0.028) (0.022) (0.04) (0.026)
Unemployment 0.001 0.004 —0.016 —0.007 —0.061 —0.05**
(0.024) (0.012) (0.028) (0.018) (0.042) (0.021)
GDP —0.002 —0.01 0.02 0.047 0.056 0.058
(0.031) (0.028) (0.049) (0.042) (0.055) (0.05)
Urbanization 0.006™* 0.005*** 0.009*** 0.006** 0.011*** 0.01***
(0.002) (0.002) (0.003) (0.003) (0.003) (0.003)
Clear Up | —0.048*** —0.078*** | —0.078"* —0.094*** | —0.012**  —0.028***
(0.012) (0.018) (0.015) (0.014) (0.006) (0.006)

Y is logarithm crime rates per 1,000 inhabitants. Results for mixed SAR model are
taken from Tables 3-5 of Buonanno et al. (2009). Standard errors in parenthesis.
*Significant at 10%, **Significant at 5%, ***Significant at 1%.
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8. APPENDIX: PROOFS

The sequence h introduced in Assumption 1 plays important role in asymptotic
analysis. Combining (ii) and (iii) of Assumption 1 leads to (cf. Lee (2004, p.
1918)):

ma |py| = O(h™). (8.1)

1<i,5<

Assumption 1 also implies that for all sufficiently large n, P is uniformly bounded
in both row and column sums:

1%1%};2 Ipi;| = O(1) and 1%%2; Ipij| = O(1), as n — oo. (8.2)
j= i=

Proof of Proposition 1.
We derive the elements of the first row of = which suffices for block-diagonality.
Other terms’ derivations can be found in the supplementary appendix. For

brevity, we will denote M = M (\g), Q@ = Q(\o), P = P(X\o). From (1.5]),
Zlo f(QT( )y = ptln), c) +log det{Q() )}—gloga2,

where Q7 (\) denotes the i-th row of Q(\). Firstly, notice from (1.1,

— uol, Ty — uol,
52(517"'7€n>T:Q(y Ho )7 51':@1(3/ al )a 22177”
0o 00

The first derivative of L(f) w.r.t X at 6y = (Ao, po, 0, o)? is given by

OL(6) _ i M (y - ﬂoln)w(QiT(y - “01”)> — tr(P).

O\ i1 (oy) o)
The following facts are used below:

Ov(s) _ (f'(s))* = f"()f(s) _ WA (s) — f"(s)

Os f2(s) f(s)’
g@?(y - ,u()]-n) _ _MzT(y - /*LO]-TL) MTQ e = PT
(9/\ o)) 0o
D%l Ol 0 O-sl) Q- mld)
ou 00 oo = Oo? 00 203 202’

where PI denotes the ith row of P. Next, we derive the elements in the first row
of =. For brevity, we denote ¢; = 9 (¢;). Introduce notations N () := dM(X)/dA
and R()\) := N(A\)Q!(\) with N = N(\g) and R = R(\).

(1,1) element of =. We observe first that

atg—(AP)_tr( a§A1+aAQI>:“(_MQI @'+ 5y

= tr<P2 + NQ~ ) = tr(P2 + R); (8.3)

oQ

oM
oA
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aio{lz";MZTy fioLn ¢<Q?(y;)uoln)>}

u "(QF(y — poln)/oo)\ 0 QF (y — pol,
; ( f(Qi (y — poln)/ ))_Q(y foln)

P ot/ =y St o Jox o

. — T —

of
i=1 0

1@y = b))

:—ZP (V@ W = 1ola)f70) = oty =t o)

+ZRT < Ly — M01)>

0o

= >oEre (v - LDy o oy (S tula)y (o

Then, in the last line of (8.4)), the expectation of the first term is

=D _BI(PToMf) = =D > wiBlel]
i=1 i=1 j=1

n n

= —E@?)E() . Z ‘ p?j + (E(W})E(e]) — E(e1v7)) szz
= —J -tr(PP") + O<n/h2>,

since p;; = O(1/h) uniformly in ¢, see (8.1)). Next, taking the expectation of the
second product of 1} and noting E(f”(ei)/f(ai)) =0,

;E((BT€)2%> E(2f"(e1)/f(e1)) Zp“ = 2tr(P?) = O(hQ)

since under Assumption 3, E(?f”(e1)/f(e1)) = 2. Now, noting that F(g;4;) = 1,
the expectation of the third term of is Y | RiuE(ei;) = tr(R), which
cancels out the same term in (8.3)).

Therefore, the (1,1)" element of = is given by

_ L) (PP + (P = T +

n—oo N, d)\? )  hooon
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(1,2)" element. One has

— 92 M, QF (y = pola)
L b =3 = o( )

0o

N Z M; (ya— fioln) <¢2(QzT(y — poly)/oo) + ];l(griéy:li‘i:l))//;o))> Q;()ln

S

Taking expectations, and noting (8

B h0) = 52 o m@l . ( ety L7E) = o S ief ) - o)

Therefore, the (1,2)" element of Z is of order O(h~'n) x n='Vh = O(h~/?) =
o(1).

(1,3)" element. One has

S Sy ol QN — ol
8028)\L(90) B Z 203 ¢< o0 )

i=

. Z QT ( y ,uol (1/}2@?@ L) /o) + J;f/(g;g_—liollnn))//;o))) M; (yg—o Holn)

- Z ﬁglﬁ(a) + Z 2%3 (20 + J; (;)))pT

Taking expectations yields

PG H0) = g5 Lo (Blew) + 86207 +2) =0( L) = (7).

Therefore, the (1,3)" element of Z is of order O(h~'n) x n='vVh = O(h~/?) =
o(1).

(1,4)™ element. In deriving the (1,4)" element of =, the following result is used
repeatedly.

éw(a; Co) _ f(517 Co)aa 2dC f(€z> CO) f(EM CO)agf(sza CO)
aC f (Q;CO)

d*f (e:3 _
_({;E—dgo))f Hew Go) + it

The second order cross derivative of L(6,) with respect to A and ( is

o O(es; Go) sz,C a e o)
6’)\8C ZPT . ZPT 9% 8(0 )~ (i3 Go) — Plexathi.
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Taking expectations yields

E( 6§;(L(QO)> = Xn:an<5z[82%gfo)] €uCo> me (&Xﬂ/)i)

i=1
& n
= o) Zp -o(7).
Therefore, the (1,4)th element of Z is of order O(h~'n) x n~'vh = O(h~/?) =
o(1). &

Proof of Theorem 1. Define & := —M(X)Hy. The estimate A can be written
alternatively as follows. Denote

re(\o) = —Z@L@,U)g—tr{p(x)} (8.5)

= (Do) Barh0)) MO Hy — i POV}
Then, ) of |D can be written as
5o = (=) + (F - { POOPRYT) 4 {P(W})_l (A 5). (8.6)

Set @1 = (h/n)tr (P(S\)P(:\)T>, (h/n)tr( (3)? )
By the mean value theorem apphed to rp( )\ g) in .
r(\6) = r2(Xo, 00) + 51L(6 — 09) + 52 (A — M),
where 3,7 =

(0/00)rL (A, 5) and 3qf, = (8/8)\)7"L(5\ o) are the first derivatives of
r, at some (), )

such that [A — X\o| < |XA — Xo| and |7 — | < |6 — 0| Thus,

Ao = (A=) {1 + {ja;l + @2}1 % : le} (8.7)

~ 1}
+{T@ @) = [520(6 = 00) + 720 00)]

Let N = <)\,U A = Xo| < Vh/n,|o — o] < \/1/n> be a neighborhood of
(Ao, 00), which takes into account the different rates of convergence for the two

parameters A and o.
As in Robinson (2010

), the proof of consistency and asymptotic normality of
the adaptive estimates (A, &) consist of showing

h
\/;TL(/\[L 09) —a N(0, Twi + wa), (8.8)
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in addition to

(;}1 _>p w1, (,:)2 _>p Wsy, (89)
h h
ﬁ . SIL(A07 0'0) —7p —jwl — Way, TSQL()\(), O'(]) —p O, (810)

jL()\o, 00) —p J, S}\lfp \jL()\, CT) - jL(Ao, Uo)’ = Op(1)7 (8-11)

n .
sup [sir. (A, 0) — sir (Ao, 00)| = 0, (ﬁ) , i=1,2. (8.12)
N
Proof of (8.§). We verify (8.8), by establishing
h OL(6
- 8&0) —q N(0, Jwi + w2), (8.13)
OL(6
r0o,00) — P20 o, (fufR) (8.14)

To prove (8.13)), write

OL(00) _ x~ M (y — put) -
a)\o :;U—Osz_tT(P):(d}b 7¢n)PE_tT<P):;n“

as the sum of martingale differences n; := (e;4;—1)psi+e; Zjd ViDij+Ui Y EiDjis
which satisty E(n;|F;—1) =0, F; = o(e;,j < i). Therefore, we establish by
verifying the following sufficient conditions of central limit theorem for martingale
differences, see Hall and Heyde (1980):

h
EZE(UEU'}—l) —p Jwi + wy, (8.15)
i=1

A 246 n
(-) > EnPt 0. (8.16)
n

=1

Proof of (8.16). Firstly, noting E(e¢;) = 1, E(?) = 1 and E(¢?) = J and
using ¢.i.d. property of {g;}, it follows that

E(nf) = p?i[E(5?¢?)_1]+s7 Z p?j+\7 Z p§i+2 Z PijPji,

1<j<i 1<j<i 1<j<i

ZE(WZQ) = Zp?i[E(f??w?)_Q_j]‘*‘jZP?j+Zpijpji
i=1

ij=1 ij=1
= 0O(1) ip?i + Jtr(PPT) + tr(P?).
i=1
Therefore, by Assumption 2,
%iE(?ﬁ) —>jUJ1+(JJ2, (817)

=1
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since n™'h Y1 ph = O(n'h x h™*n) = O(h™') = o(1). Direct calculation,
noting that Ee?1; = 0 under Assumption 3, gives

Em}|Ficy) — E(n) = Z Vi pipijr + ZP?j(@ZJ? - J)

§.4'<ig A j<i
+T Y e+ T Y (el — 1) + 20 E(Wfe) Y pjie;
5.4 <ig i j<i j<i
23 0 N depippi +2) (e — Dpigps = ma + -+ + ma.
J<i jl<iii j<i

In view of (8.17)), to prove (8.16)), it suffices to show that

n

—Z (F1Fir) = BGR)] = &3 (- mag) = 0,(1),

i=1
which is verified once we establish
n - 2
E[(E;mdi) | =o(1), for d=1,---,7. (8.18)

We first verify for d=1.
E[( Zmli)Q} = E[(Z Z ¢j¢j’pijpij’)2}
i=1 i=1 j,5' <i:j#j’

<2 Z Z Z |pigpipapirk | B E(Wp)| < C Z |pijpiiDikPik|-

ii'=1 j<i k<i i1 k=1

Thus from (8.2)),

Zmn <Ch ! Z |Dij it Dk |
1,1 ,5,k=1
2
<COh! Z maXZ\plfﬂmaxZ]p”|max2|p”|<C( ) <h2>
=1 i'=1

Verification of (8.18)) for d = 3, 6 follows similar steps as in the proof for d = 1.
To establish (8.18]) for d = 2, recall that ¢? — J = 2 — Ev? is an i.i.d. sequence.
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Thus,

E[(lemm (Y - 90 < B2 - Ee2?) S it

i=1 j5<1u 3, ,j=1

= Ci (Zj:pij < Ci (m?X\piﬂ Zj: \pz’j|)2
max\p” ZmaXZ|pU]Z|p”| < Ch*n0(1)0(1) = <Z2)

Verifications of (8.18)) for d = 4,5, 7 follows similar steps.
Proof of . Since |a + b>™ < C(Ja|*™° + |b]?+°),

2 Bl < ¢ Z [pil ™ Bleais 2 + Z BleP B S pyty P

j<t
1 Z B2 B Zp]lgj‘}l—é)

j<t

< C(Z il *T ) Elpy P+ E|pﬂ£]|2+‘;> =: C(cin + Con + C3n).

i<t j<i

To prove 1’ we need to verify that cg, = 0((n/h)2+5) for d = 1,2,3. Firstly,
for d = 1, using |pi| = O(1/h), c1, = O(h™27°n) = o((n/h)***). For d = 2, by
the Rosenthal inequality,

2+6 2
31 = €3 (3 ot (3 08,5,
i<t
where for any i = 1,--- ,n, by Assumption 3, (8.1)) and (8.2)
& 1
Z E‘pij¢j’2+6 = CZ ’p”‘2+6 < CmaX ‘ng’pﬂ; Z \ng’ = (hl_"é),
j=1 7j=1 7j=1
= (2+9)/2 (2+9) (2+6)/2 1
<ZE(p?j¢?)> (ZPZJ T< C(mj‘dx !pz'j|z !pz'j|> = O(W)
j=1

Jj=1

Therefore, ¢z, = O(h™17%2n) = o((n/h)**?). Proof of cs, = o((n/h)**9) follows
similar steps.

Proof of . Let, for the brevity, r;, and ;7o denote quantities evaluated at
the true parameter values 6y. Noting M Hy = M H(Q 'ooe+pol,) = o) MHQ ‘e
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since H1,, = 0, we can write

- 8%(50) = (@mo; e ,Q/NJnLo) MHQ e —tr {P} — (¢1, ..., b)) MQ e + tr(P)
= (1;1[/0’ T 7?72”L0> HMQ_lE + <?721L07 e 7wnL0) —1 1TMQ €
- (@Z)mo, e ﬂano> M1,15Q7 e — (Y, .otbn) MQ e
n
= (Vrzo = w1, s = ) HP = (tn, ) (H — T)Pe

— (@mo, e ﬂznm) (H—1)Pe+ (?/;mo, e 77;nL0> M(H -1)Q™!
= QTL,l - Qn,2 - Qn,S + Qn,4-

It remains to show g,; = 0,(\/n/h), i = 1,2,3,4. First consider ¢ = 2. Denote
P = (pi;). Then,

Iz = (1) (H = P2 = = (b1, 0) (111) P
= _n_l[z_;ej(gpij)] 'X:I%Um,

where " ), = >0 U(en) = Op(y/n) due to €;’s being i.i.d. By Assump-
tion 1, nax (Zl Ipij|) < C uniformly over j. Then, n 'E( Y7 &; (Y, pij)) =

j=1

0, and

n n

Var n IZI Zp” =n" Zl(ilpm)Q) :O(n_l).

Hence, ¢, = O,(n~Y2)0,(n*/?) = O,(1) = 0,(y/n/h), because n/h — co.
Next, we show ¢, 1 = 0,(1/n/h). In the following quantities introduced below,
the triangular array structure is present but the n-subscript is suppressed. Let

g =PT0 — (' P, n = py; — me], xi = PT(; —n7'1,) Zgj ”

m=1

where /; stands for the i column of I and the equality > . x; = 0 holds,
arising from )  t;; = 0 for j = 1,...,n. As pointed out in Robinson (2010, p.
18), Assumption 1 implies |t;;| = O(1/h) uniformly over i and j, following from

max |pi;| = O(1/h). Let aj:=> byx;, [ =2,3,4. Write

1<i,j<n
7= i=1

%L) (Ao, 00) — (&) = W(L) (&‘3 G(L)) - w(&')] + [w(L) (61';&@)(5)) — " (&'3 G(L))}
+ [1L(L) ()\0, 0'0) — 'lb(L) (8“ EL(L) (8)) } = C9; + C3; + Cy;- (819)
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We can rewrite

In1 = <QL1LO — 1, Yoo — 1/%) HPe = Z C2iXi T Z C3iXi + Z CaiXi i= Qg + az + ay. (8.20)
i=1 i=1 i=1
To prove g, 1 = 0,(1/n/h), we show that

=o,(v/n/h), (=234 (8.21)

Proof of for i = 2. It requires the projection error, arising from project-
ing the score function onto the space spanned by the functionals of our series
estimation, to be of small enough order, as required in Assumption 6.

Write down as as in (A.27) of Robinson (2010):

Qo = Z Cngztzz + Z 02251 K (822)

1,j=1:5#1

recalling co; = ¢ (g;;a)) — 4)(e;). Then,

B Y s < (&)Y Sl =a(y1) - 0(7) o ({f3).

by Assumptions 1 and 6. The second term of (8.22)) has zero mean and

Var( zn: C%gitij> — E[(Zc2i€itij)—f‘(ZCQiEitij)]Z

i,j=11ji i<j §<i
S 2F [( Z CQiEitij)Z] +2F [( Z CQiEitij)Z] . (823)
1<J J<i

The first expectation can be bounded by

2 Z Z |E[02i5jc2i’5j']tijt-/ o

i<j i'<j’

1
< ZZE c5)E |twtw | = QZO OP(E) - Op(%)’

1<j 1<j

using independence of ¢;’s, the bound EcZ, = 0,(h/n) from Assumption 6 and
tij = O(1/h).
The same bound holds for the second term in which yields ay = 0,(1/n/h).
To prove for « = 3,4, we shall use the following notation. Let

7w, = (log L)nQLl(gO < 1)+ (Llog L)U2L1(90 =1) + (log L)(USO)Ml(SO > 1)
< L(log L) A**, (8.24)

with A = pmax(p,1). Note that A > 1.
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Set
pu = CL, ifu=0,
= (CL)"F*, if u > 0 and Assumption 5(ii) holds,
= C* ifu> 0 and Assumption 5(iii) holds.

Proof of for i = 3. Proof is based on an extensive use of Assumption
5. Equations (A.31)-(A.39) of pages 19-20 of Robinson (2010) yield the upper
bound on the stochastic order of as:

n 1
as = Oy (£L3/2P2RLP§,§L7T%)

h
n Hj 1
= O, (/-2 ), Hs:=L"porpi . 2
p( h\/ﬁ)’ 3 P2rLPLL L (8.25)
To prove (8.21)) for i = 3, it remains to show
Hs = o(Vh). (8.26)

Case 1. Let Assumption 5 (i) hold. Then, po.r = paxr = CL and Hsz =
C32 372 Notice that for any p > 0 and £ > 0,

L’ =o((1+¢)"). (8.27)
Hence, as L — oo,
77 =o((1+¢e)"A*"), Vve>o0. (8.28)
Combining (8.27) and (8.28), we obtain Hs = o([(1 + €)AJ**), Ve > 0.
Thus, to prove that Hy = o(v/h), it suffices to show that
[(1+e)A*"r <Vh, ie (8.29)

log h
4L 1og[(1 < =
ogl(1+e)A] < (1/2)logh, o L < o

which is valid for small € > 0 by Assumption 5 (i).
Case 2. Let Assumption 5 (ii) hold. Then, p,, = (CL)% and

4L 4k L 2

1
Hy = L2 pyppi m2 = L:C 5 L 72,
Observe that for any C' >0, p >0, a > 0 and € > 0,

LP = o(Lh), C* =o(Lh). (8.30)
Hence by ,
72 =o(L"), Ve >0, (8.31)
and Hy = o(L"C5+9)), Ve > 0. Thus, Hy = o(v/h) holds if
LS+ <V, e, (8.32)

A 1 logh
(U +e)LlogL < glogh, or Llogl < 2(d= 1 g
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which is valid for small € > 0 by Assumption 5 (ii).
1
Case 3. Let Assumption 5(iii) hold. Then, p,;, = C*, and H3 = L%panpjnLﬂ% =
L%C%ﬂ%. Then by (8.30) and (8.31), Hs = o(LL), Ve > 0. Thus, Hs = o(v/h),
if
LE<Vh, e (8.33)
1 1
eLlog L < §logh, or LlogL < 2—logh,
€

which is valid for sufficiently small ¢ > 0 by Assumption 5 (ii).
Now, we prove (8.21) for ¢ = 4. Following (A.45)-(A.56) of Robinson (2010),
we obtain the following upper bound

ay = Op(\/TﬁH4),

Hy = poermr X {C”LL% + porrmr L? + pg,{LwL(C'L)‘L“L*:”n’% log n} )
It remains to show that
Hy = 0,(Vh). (8.34)
Case 1. Under Assumption 5 (i), poxr, = C'L, and
Hy=m L% + 2 L* + W%L5TL_% log n.

By and ({8.28),

Hy=o([1+e)AP" +[(1+e)A]* (1 + n~Y%log n)) = o([(1+¢)A4"").
Hence Hy = o(v/h), if [(1 4 €)A]* < v/h, which is true for small € > 0 as shown

in (520).
Case 2. Let Assumption 5 (ii) hold. Then p,; = (CL)% and

(OL>4/{L(1+1/¢IJ)L37T%

H, = kL L 2nL/wL7/2 L 4I€L/UJL2 2
1 =C"(CL) T+ (CL) T+ JnTTogn

By (530) and (E30).

Hy = o(LE+L 4 (Sl 4

14k (1+1/w)+e)L
vn/logn
_ O(L<4:+6>L(1+L“L)>_
vn/logn
By (8.32), L(S+9L < /A, if € > 0 is small. Next, for any § > 0, \/n/logn >

n2=% > h3-%. Hence by the same arguments as in proving 1} we obtain that
L4K]L L4K/L

n'/2/logn — pz—0 — (8.35)

if Llog L < (3 — d)logh/4r which holds for small §. Hence H = o(v/h), and
(8:34) holds.
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Case 3. Under Assumption 5(iii), p,r, = C* and
H, = O(H+1)LL7/27TL + CZLLQ,R_% + C(4H+2)L+3L4/{L+3ﬂ_%n—% log n.

By (8.30) and (8.31), Hy = O(LEL + %;;Z;) By (8.33), LL < v/h. Hence, to

prove that Hy = o(v/h), it remains to show that

L(4n+e)L L(4n+e)L

< < Vh,
vn/logn = \/h/logh ~
where the first inequality holds because h < n. For that we shall verify that for
small § > 0, L+l < p1=0 - e

1—
(4k +e)LlogL < (1 —6)logh, or LlogL < ((414 —|—55)) log h,

which follows from Assumption 5 (iii) when J and ¢ are small enough.
Now we show ¢, 3 = 0,(y/n/h). Note

- ~ 1
Gn,3 = Qn2 — <¢1L0 — 1, Upro — @Dn) Elnlng

1 /- 1 —
=Gn2 — —— (%’Lo - wz’) — Dij€j-

From (8.2 implied by Assumption 1,

n n

Var(% Z Dij€j) = %Z (Z:pij)Q =0(1).

ij=1 i=1

Therefore, g, 3 = 0,(y/n/h) if Y"1, (@im — @/JZ> /v/n = o(y/n/h), which in turn
follows if for all 1 <7 <n,
Wiro — Ui| = Op(l/\/ﬁ)- (8.36)
Proof of . Recall
G (N, 00) —9(e) =[PP (e;0) — ()] + [ (a7 (e)) — P (850 ]
+ [P (Ao, 00) =) (e3P (€)) | = ca + c3i + cais
and we will verify ¢s = 0,(y/1/h) for d = 2,3,4. From Assumption 6, cy; =

op(/h/n) = 0p(\/1/h).
We have
ez = ¢P(e)"(@P(e) —a) + (2W(e)) — ¢ ()"0 () = 0,(Hs + Hai) = 0,(\/1/h),
from Lemma 9 and 10 of Robinson (2005).
Similarly, Lemma 10 and 19 of Robinson (2005) together with
1

ﬁCLL?’/?p;{fL), (8.37)

12 (€i/00) — @) (e3)| = Oy
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imply
ci = DO @P(efor) - aP(e)) + (3P (e:/o0) — 8P ()" aP) (¢/o)
= 0p(Hs + Hy) = 0,(\/1/h),
where € = HQy.

To see (8.37)), note that using mean value theorem with € denoting some point
that lies between €; /0y and ¢; and recalling el / 0o = €; — &, we have that for each

C=1,...,L, ¢(ei/00) — due(e;) = —Ed)(e;) + 36°¢(€;). Hence,
|be(ei/o0) — elei)| < |edi(en)] + [E°¢% (€])]
Using arguments deployed in (A.46)-(A.52) of Robinson (2010)
_ 1 2 ¢ L
Blgi(e)| = O =titnfonry):  BIEGH ()] = OO C1+ hafyr.a1)).
Hence due to Lemma 9 of Robinson (2005),

1
H‘I’(L)(Ei/ffo) — o) (&)H = L3/2ﬂ1/2

1 K
Ol =L pusi + € FIpLLE) = Oy = CH I 0lf3),

NG

Finally, we verify

Gna = (U1, -+ ,¢y) M%LJZQ_% + (1;1L0 — 1, o — 77Z)n> M%LJZQ_% = op(\/n/h).

First, we have

(U, ) M 111Q e = — (e ) M1, Z=11Q e = O(1) = o/

since Var( (¢1, ..., ¥ )Mln/\/_) =ntJy ", (Z 1mw)2 =O0(1),and Var(17Q~'e/\/n) =
n Y (X52,QY)° = O(1). Now,

<7;1L0 - wla e 71;71[/0 - wn> Mlnlz;Qilg = % (1;1L0 - wla e 71;711/0 - wn> Mlnﬁnglga

and we have from above 17Q~'e/\/n = O (1) Therefore, we need to establish

% <7J}1LO — 1, Yo — ¢n> M1, \/— Z (¢zL0 @Z)z) me = o h)

Since max (Z Imy;|) = O(1),

1<i<n

\/TE 2 @im B %) (2_mis) < 22X (> |mij|)\/7ﬁ > ltino — vl = 0p(1),
=1 j=1 T =l i=1

which follows from (8.36]) shown above.
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This completes the proof of (8.8), which is by far the most difficult and dis-
tinctive part of the Theorem’s proof. We omit the proofs of —, which
follow standard arguments. W

Proof of Theorem 2. Theorem 2 (i) follows rather straightforwardly from
the Proof of Theorem 1, applying — to the case A = 0. Here we prove
Theorem 2 (ii), focusing on additional considerations arising from the use of fitted
residuals ¢ in place of y.

In the Spatial Error model considered in Theorem 2 (ii), denote & = — M (0) Hj

and 7 (0) := ®L(E" /o) TGk (") /o). Let
~/(r)

{P(0)}

rr,sem(0,0) = _szL

L (00 080) MOV £ X (3 ) — e (PO}

One can verify {/2r, sgr(0,00) =4 N(0, Jwi(0) 4+ wa(0)) by establishing

RO N0, e ) + 0, 539
rrsem(0,00) = alé(fo) |1 = op(\/n/1). (8.39)

(8.38) follows on from ({8.13]).
Proof of . Let 1 spm, wf;’o, M and P denote quantities evaluated at true
parameter 0y = (0, po, 09)T under Hy. Noting Q(0) = I,,,

OL(6y)
T"LSEM — —Qa~ N |H0

= <~§TL)07 e 7%&2@) MH (e + ULOXW - B)) —tr {P} — (Y1, ..., Yn) Me + tr{ P}
= (1%120 — 1, nLO )

B (1;&)0’” ’wnLO)( )M5+( 1000 """ 1/;1(1L)o> M(H —1I)e
)

1 -
e (980 = e G = ) MHX(B = 3) (41, ) MHX( = )
= Qn,l - Qn,Q - Qn,S + Qn,4 + Qn,5 + Qn,ﬁ

HMe — (¢, ....,¢,) (H—1)Me

We need to show g,; = o,(\/n/h), i = 1,...,6. We closely follow the proof of
8.14) given in the proof of Theorem 1. For ¢ = 2, the proof given in that of
8.14)) applies without any change.

Introduce notations d; = &/og — &; = —& + (X; — X)7(8 — ) /o and & =
de(€/00) — de(e;). Denote r; = (X; — X)T(8 — f3)/0y. By mean value theorem
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0o = (=& + 1) @(e;) + 3(E2 — 28r; + r2) ¢ (e]) for |} — ;] < |d;| and terms that
contain r; are new to the SEM model case. B
For i = 1, the term ¢y in (8.19) is affected by the presence of HX (8 — f) in

the argument of ;/) .70, Which is in the term a4 of lD a4 can be decomposed as

as = {a® (=) —aD(e) }Z@L £i)Xin + @ Z{@ B () Xim

0o
(8.40)
Analysing the first term is unaffected and follows the same steps as in the proof
of Theorem 1 since Lemma 19 of Robinson (2005) continues to apply. For the
second term in (8.40]), we need to show that

Z{(D (51)}Xm} = Op( V n/h) (8'41)

From Lemma 10, 19 of Robinson (2005) and Assumption 5, ||a'™)(¢/a)|| =
O, (Lpéé 7). The sum in the square bracket in (8.41) has norm bounded by

n ~ L n
€; 1/2
||§:{‘1>(L)(UO — &P (&) bl < (Z me% ) .

=1 =1 =1

We analyse for £ =1, ..., L

(Z Xin5Zi> (Z Xm 5¢£ 51 + EQQSZ(E:)] + [T1¢2<5z) + %(_25” + r7,2> 2/(5:)])>2

(> Xin(—éqb}(»si)+52¢2’(5;k)/2))2 was the term considered in Theorem 1. In proof
of Theorem 1, we followed Robinson’s (2010) steps (A.46)-(A.54) which did not
involve any r; terms and all steps there continue to apply here for corresponding
terms. Hence, we only need to focus on terms that contain r;, i.e. latter quadratic
term:

(me ridy(e;) ( 28r; +17) (52‘)))2
In the term above, two square terms are dominant so we focus on
( i erigb’e(ei))z + (i Xin(—287; + 1) }’(53))2. (8.42)
i=1 i=1
For the first term of , by Cauchy-Schwarz inequality

(5 xind(=)(Xs = X)'(3 = 3))° < 18 = BN Y xindi(=) (X — I

i=1
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We know || — B||*> = O,(n""'). By Assumption 8

I3 Xinh(e (X5 = D) = 0 (15 3 Blximxondi(en) (=) B — X)(Xo = X)T) ).

ii'=1

Ford=1,.. . k:
> B i)z E(Xut — Xa) (Xea — X)) (8.3
ii'=1
Var(Xi) « 2 -
= RS Blaendiee) + Va6 3 BOG )

noting E((X1q — X4)(Xag — X4)) = —Var(Xi4)/n. By Assumption 8,

Z E(XinXin®y(€:)dy(ei)) = Z Z tijtvy E(e5€500(€:)9(€7))

i,i/=1 B,i'=17,5'=1

= E(e)E*(¢)(1)) Z tijt; + E*(e1dy(e1)) Z (tiitiir + Listin)
i1, j=1 i,0'=1

+(E(D) E(¢y(e1)?) — B(e]) E*(d)(21)) Zt

i,1'=1
+<E(5%¢2(51))E(¢2<51)) - E(ff%)EQ(%(éfl)) Z (tiitirs + tigrtin)
ii'=1
H(E(E3)(e1)?) — E(E)E*(¢(e1) — 2E2(e16)(21)) Zt = hQé [ (t+ 1))

noting that the second term on the right hand side is the dominant term, since

n 2 n
Z £ = O(%), Z |titis 0(%), > ltijtasl = On),

2,7=1 i,4'=1 4,3/ j—l

= n - n
'Z1 |tiirtins] = 0(5)7 ~Z1 |tiitis| = O(ﬁ)’ 21 5] = ( 5)-
4,0/ = 1,0/ = 7

For the second term in (8.44)), we get

n+2

Var(Xua) 3 EOG6)?) - O Criies o)
=1
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using Cauchy-Schwarz inequality and

maxE(Xf‘)Zi%maxZthjt —3max Zt < 3( maxﬁw\Z!tm :O(%).

j=1 k=1 Jj=1
(8.44)
In the second term of , the dominant term is given by
n 1 n B ~
(innrfasz(e:))z = (- D xind ED (X = D)6 - o))’
‘ i=1
< _(2) Z ? Z ((XZ - )_QT(B - 60))4 = Op (h lruzlﬁe 1+2K))

=1 =1
using Cauchy-Schwarz inequality. From Assumption 8

n

P P

i=1
and steps similar to (A.48) of Robinson (2010) and (8.44]) lead to

n

}me ’ < 02““642 {1 4 |6i|2n(€—1+2K ’6|2m(z 1+2K) Xm-

=1

By Cauchy-Schwarz inequality
r(0— 1/2
E(|5i’2 (142K Xm) < Ch~ 1:“422 14+2K)"

Hence for ¢ =1, ..., L,

(ZXm%)Z = ( h2£ H2k(e+K) T h02“€+2£4,ui£2£ 1+2K)>

Applying Lemma 9 of Robinson (2005), we get

L n
Z (ZXm(Sei)z = (hQL Powr, + h025L+2L9/2 1/2)
(=1 =1
To verify , it remains to show

th ot + h02ﬁL+2L9/2p1/2) _ o(n/h),
which directly follow from Hy = o(v/h) on p. 31.

For i« = 3,4, we need to verify that for all 1 <7 < n,
[izo — wil = 0p(1/ V). (8.45)

Compared to the proof of (8.36)) given earlier, the only term that is different here
is cy; of (8.19)) while Lemma 10, 19 of Robinson (2005) continue to hold.

L2p2nL7rL (
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Noting |ooé+ (X; — X)T(8—B)| = O,(n"/?) from Assumption 8, and following
same steps as in the proof of (8.37)), we can show

|95 fo0) = ()| = O S=CHLY2pi),

from which (8.45]) follows on based on the same steps given in (8.36)).
For ¢ = 5, due to Assumption 8, it suffices to verify

(92 =, 9 — v MHXH<ZMLO il Y fmigl |65 = X = op(n/ V),
j=1

which follows from Assumptions 1, 8 and ( -
For ¢ = 6, we shall show

El (1, 00) MHX|* = tl‘( > itemimig (X5 — X)(X - X)T)) = o(n*/h).

1,5, ,5'=1

Noting E(1;) = 0 and Assumption 8, we have for all 1 < d < k:

> E(dibimimigy (Xja — Xa)(Xja — Xa))

igi g =1
=D B me = £ m (Xya - £)
=1 j'=1
n+2)Var(X Var(X u
- 06§ VO
1,7=1 1,5,5'=1

since from Assumption 1

> m? = O0(n/h) = o(n®/h), > Imimip| = O(n) = o(n’/h).

,j=1 i,5,5'=1
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