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Abstract

This paper considers estimating tail properties such as tail index, extreme quantile

and tail conditional expectation with small sample size, say only 250 observations. We

provide new asymptotically (quantile) unbiased estimators that are applicable to (i)

complete data; (ii) tail censored (top-coded) data with known or unknown censoring

value; and (iii) tail truncated data with known or unknown truncation value. The new

method only requires regularly varying tails and delivers excellent small sample bias

and risk properties as shown by Monte Carlo simulations. The empirical relevance is

illustrated by estimating (i) the tail index of macroeconomic disasters as studied by

Barro and Jin (2011) and (ii) extreme quantiles of the U.S. earthquake fatality.
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1 Introduction

Estimating tail properties such as tail index, extreme quantile, and tail conditional expecta-

tion (TCE) has been an important issue in economics and finance (see, for example, McNeil

and Frey (2000), Engle and Manganelli (2004), Kuester, Mittnik, and Paolella (2006), Jorion

(2007), Bollerslev and Todorov (2011a,b), Fissler and Ziegel (2016), and Patton, Ziegel, and

Chen (2017)). Due to the limited numer of observations in the tail, existing methods typ-

ically require a large sample and completely observed data, which are unavailable in many

empirical applications such as natural catastrophe and macroeconomic disaster. This paper

focuses on the small sample situation, say only 100 observations, and develops new estima-

tors that are unbiased and optimal in a well-defined sense. Furthermore, they are tailored

to cover incomplete data due to censoring or truncation.

When the data are complete, a large number of estimators have been developed based on

the extreme value theorem and tail regularity conditions. See Embrechts, Klupperberg, and

Mikosch (1997), Reiss and Thomas (2007), Resnick (2007), and de Haan and Ferreira (2007),

Beirlant, Caeiro, and Gomes (2012), Gomes and Guillou (2015) for reviews and references.

Given the assumption that the underlying distribution F is regularly varying, its tail can

be well approximated by a generalized Pareto distribution (cf. Pickands (1975)), and then

common tail properties of interest, including high quantile and TCE, are functions of three

parameters only, at least approximately. These parameters include the tail index ξ which is

the exponential component, the scale, and the location. Along this line, numerous sugges-

tions have been made about estimating these parameters, and the corresponding estimators

of high quantile and TCE can be constructed by plugging in estimators of these parameters.

One concern of the above mentioned methods is that they rely on the "increasing-k"

asymptotics, which, however, may lead to a poor small sample approximation when the

sample size is only moderate. More specifically, methods in the existing literature require

the asymptotics under k → ∞ and k/n → 0 where k is the number of tail observations

and n is the sample size. So given a certain sample, the choice of k can be diffi cult to

keep the delicate balance that (i) k has to be large enough for the asymptotics to hold on

estimating ξ; and (ii) k has to be so small relative to n that the largest k observations are

well approximated by Pareto. Therefore, in many empirical applications such as financial

daily data collected from one year, there could be no choice of k that results in a satisfactory

small sample performance (cf. Diebold, Schuermann, and Stroughair (2000)).

In addition to the concern about choosing k, the above mentioned methods cannot be
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applied to incomplete data due to censoring or truncation. In particular, data censoring

usually exists in surveys about earnings and wealth such as the Current Population Survey,

and the problems subject to data truncation can be found in finance, hydrology, fire ecology,

and seismology (see, for example, Groisman, Knight, Karl, Easterling, Sun, and Lawrimore

(2004) and Malamud, Morein, and Turcotte (1998)). In particular, recent literature on the

macroeconomic disasters (see Barro and Jin (2011) and reference therein) concerns that the

largest observations of disaster size (measured by percentage of GDP or consumption decline)

can be missing due to government collapse or fighting a war. Estimating tail properties

with such incomplete data is even more diffi cult, since the largest observations are very

informative about tail but unfortunately unavailable. Existing literature typically makes

parametric assumptions on the whole distribution (cf. Aban, Meerschaert, and Panorska

(2006) and Jenkins, Burkhauser, Feng, and Larrimore (2010)) but this approach may suffer

severe misspecification. Recently, Beirlant, Alves, and Gomes (2016) and Zou, Davis, and

Samorodnitsky (2017) develop estimators for truncated data and they also require a large

sample for satisfactory approximation of their asymptotics.

To overcome the above issues, this paper develops a unified framework to accommodate

all three type of data and considers the "fixed-k" asymptotic embedding developed by Müller

andWang (2017) under the sole assumption that the k largest order statistics jointly converge

to k jointly extreme value distributed variables, for fixed and given k. This means we only

require a fixed number of tail observations are approximately stemming from a (generalized)

Pareto while leaving the main body of the underlying distribution unspecified. Consequently,

it is asymptotically equivalent to deal with a small sample problem in which we are estimating

a quantity as a function of the underlying distribution based on k observations. Regarding

incomplete data, we model censoring as that in the sample, the largest m observations (m <

k) are unobserved, for a known and fixed m, and model truncation as that approximately

only a fixed number of the largest draws are unavailable. In neither case does the fixed-k

method require the knowledge of the censoring or truncation value. We start with an i.i.d.

sample and then extend the results to stochastic volatility models by establishing that the

innovations of fitting a GARCH model still satisfy the joint extreme value theorem.

To precisely capture the diffi culty in small samples, we do not aim for consistency but

focus instead on the unbiasedness, which is well motivated since it is naturally embedded in

the definition of quantile and TCE. In particular, in estimating the quantile of the underlying

distribution F , it makes sense to require the estimator of the p quantile, Q̂ (p), to satisfy the

quantile unbiasedness: P
(
Yi > Q̂ (p)

)
= 1 − p where Yi is another independent draw from
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F . For TCE, we show that the mean unbiasedness is equivalent to some average quantile

unbiasedness that measures both the size and the likelihood of the tail above a certain

confidence level. This is especially important in finance as it corresponds to the reason why

Basel III suggests switching from value at risk (VaR) to expected shortfall (ES) for measuring

financial risk. See Basel Committee on Banking Supervision (2013) for more details. For the

tail index, we impose median unbiasedness which has been studied by the influential works

by Andrews (1993) and Stock and Watson (1998) in estimating the autoregressive coeffi cient

and the coeffi cient of time variation, respectively. Given the unbiasedness constraint, we

then set up and solve a Lagrangian problem to find the optimal estimator that minimizes a

weighted average risk criteria and satisfies the corresponding constraint.

As a summary, the new approach has four advantages comparing with existing methods.

First, the fixed-k asymptotics provides excellent small sample approximations as shown

by Monte Carlo experiments with moderate sample size. Second, our estimator requires no

parametric assumption on the underlying distributions and hence is robust to deviation from

the power law, which is commonly used. This robustness is valuable since it is diffi cult to test

out a specific parametric distribution in small samples by any goodness-of-fit test (Chernobai,

Rachev, and Fabozzi (2012)). Third, our estimator is invariant/equivariant to data shifting.

As pointed out by Alves, Gomes, de Haan, and Neves (2009), popular estimators of the tail

index such as the Hill (1975) estimator and the log-log regression estimator (see, for example,

Gabaix and Ibragimov (2011)) are sensitive to data shifting, especially when the underlying

distribution is not exactly Pareto. Finally, the Lagrangian structure gurantees that the new

approach is nearly optimal in the sense of minimizing a weighted average risk criteria among

all uniformly unbiased estimators that are invariant/equivariant to data shifting. However,

imposing invariance/equavariance to data shifting is costly in terms of the risk, suggesting

that the knowledge of the location is very informative.

We illustrate the empirical relevance of our approach with two applications. The first is to

estimate the tail index of the size distribution of macroeconomic disasters. Barro and Ursua

(2008) and Barro and Jin (2011) define a macroeconomic disaster if the consumption/GDP

declines by more than 10%. The authors collect a dataset of 157 observations, fit them with

a double power law, and claim that only the very large observations are mainly informative

about the tail behavior. The parametric assumption is subject to misspecification and the

largest observations can be missing due to goverment collapse or fighting wars. We apply

the new approach allowing possible data truncation and obtain a substantively different tail

index estimate, resulting in a larger coeffi cient of relative risk aversion, 8.59 instead of 4.
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Second, we examine the U.S. earthquake fatality data and estimate the large quantiles, which

are important from economic persepctive (see, for example, Anbarci, Escaleras, and Register

(2005) and Kahn (2005)). In the earthquake fatality exercise, data might be truncated

due to complicated reasons (Burroughs and Tebbens (2001, 2002) and Clark (2013)). Our

approach works well for truncated data as verified by Monte Carlos and delivers a much

larger estimate of the high quantiles than the increasing k method proposed by Beirlant,

Alves, and Gomes (2016).

The rest of the paper is organized as follows. Section 2 illustrate the new approach

with estimating extreme quantiles, including deriving the fixed-k asymptotics, setting up

and solving the Lagrangian problem for three data categories. Section 3 discusses estimat-

ing TCE and tail index and Section 4 reports Monte Carlo simulations. Section 5 applies

the new approach to two empirical examples and Section 7 concludes. All the proofs and

computational details are included in the Appendix.

2 Extreme Quantile

2.1 Complete Data

We start with estimating a high quantile based a random sample Y1, Y2, ..., Yn drawn from

a certain cumulative distribution function (CDF) F . To capture the fact that we only have

limited information about the tail, we focus on estimating the 1−h/n quantile of F , denoted
by Q(F, 1− h/n), for a given and fixed h. This indicates that the object of interest is of the

same order of magnitude as the sample maximum and thus cannot be consistently estimated.

Typical choices of h can be 0.1, 1, 5, and 10, corresponding to the quantile at levels 99.98%,

99.8%, 99%, and 98% for a sample of 500.

There is a naturally embedded quantile unbiasedness constraint on the estimator Q̂,

that is E
[
P
(
Yi > Q̂

)]
= h/n for an independent draw Yi from F . That says the violation

probability that another independent draw is larger than p-th quantile should be exactly 1−p.
Hence our objective is to construct the optimal Q̂ that satisfies such quantile unbiasedness

restriction, at least asymptotically.

To avoid assuming an increasing k that may lead to a poor finite sample approximation

(see Section 4 for Monte Carlo results), we follow Müller and Wang (2017) to consider the

fixed-k asymptotics. In particular, we use only the largest k order statistics as our effective
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sample, denoted as

Y = (Y(1), Y(2), · · · , Y(k))

where Y(1) ≥ Y(2) ≥ · · · ≥ Y(k) denote the order statistics.

Our approach relies on the sole assumption that the underlying distribution F is regular

varying (see, for example, de Haan and Ferreira (2007)). In particular, a CDF F is called

regular varying at infinity if

lim
t→∞

1− F (tx)

1− F (t)
= x−1/ξ for x > 0 (1)

where ξ is the tail index, measuring the decay rate of the tail. The regular variation assump-

tion (1) is satisfied for a large range of commonly used distributions, including, normal,

Pareto, Student-t, F, and Burr distributions. Given the regular variation, the extreme value

theorem (the Fisher—Tippett—Gnedenko theorem) suggests that that there exist sequences

an and bn such that
Y(1) − bn

an
⇒ X1 (2)

where X1 has the following generalized extreme value distribution

Gξ(x) =

{
exp[−(1 + ξx)−1/ξ], 1 + ξx ≥ 0, for ξ 6= 0

exp[−e−x], x ∈ R, ξ = 0.
(3)

The cases with ξ < 0, ξ = 0 and ξ > 0 correspond to Weibull, Gumbel and Fréchet type,

respectively.

In additional to the sample maximum, the extreme value theorem also extends to the

first k order statistics such that if (2) holds, then for any fixed k,(
Y(1) − bn

an
, ...,

Y(k) − bn
an

)
⇒ X = (X1, ..., Xk) (4)

where the joint probability density function (PDF) of X is given by fX|ξ(x1, ..., xk) =

Gξ(xk)
∏k

i=1 gξ(xi)/Gξ(xi) on xk ≤ xk−1 ≤ . . . ≤ x1, where gξ(x) = dGξ(x)/dx.

Suppose the constants an and bn were known, the limiting problem then only involves

a k-dimensional draw X whose distribution is fully characterized by the scalar parameter

ξ, and then we can seek to construct an estimator that satisfies the asymptotic quantile

unbiasedness whenever (4) holds. But unfortunately an and bn are unknown and even diffi cult

6



to estimate since they depend on the underlying distribution F , especially on ξ whose

knowledge requires a large number of tail observations. To see this, in the case of the

standard Pareto distribution, the constant an is nξ and bn is 0. The estimator of an is

naturally constructed as nξ̂ for some tail index estimator ξ̂, and thus a small estimation

error in ξ leads to a substantive error in estimating an.

To avoid estimating an and bn (essentially ξ), we impose location and scale equivariance

on the estimator Q̂, such that for any constants a 6= 0 and b,

Q̂(aY + b) = aQ̂(Y) + b. (5)

Such equivariance can be implemented by constructing the estimator as a function of a

self-normalized statistic in the following fashion

Q̂ (Y) =
(
Y(1) − Y(k)

)
Q̂ (Ys) + Y(k)

where

Ys =

(
Y(1) − Y(k)

Y(1) − Y(k)

,
Y(2) − Y(k)

Y(1) − Y(k)

, ...,
Y(k) − Y(k)

Y(1) − Y(k)

)
is a maximal invariant statistic to the linear transformations (see, for example, Lehmann

and Romano (2005)). The continuous mapping theorem and (4) imply

Ys ⇒ Xs ≡
(
X1 −Xk

X1 −Xk

,
X2 −Xk

X1 −Xk

, ...,
Xk −Xk

X1 −Xk

)
whose distribution then depends on ξ only.

Also notice that P (Y(1) > Q(F, 1−h/n)) = (1−h/n)n → e−h and (Q(F, 1−h/n)−bn)/an

converges to the e−h quantile of X1, denoted as q(ξ, h) in the following. Some calculation

shows q(ξ, h) = (h−ξ−1)/ξ for ξ 6= 0 and q(0, h) = − log(h). Since Q(F, 1−h/n) andY share

the same normalizing constants an and bn, the original problem asymptotically amounts to

determining Q̂ as a function of Xs on the k − 2 dimensional subset of Rk where Xs has

first element equal to 1 and last element equal to zero. More specifically, we can derive the

quantile unbiasedness, that is, P
(
Yi > Q̂ (Y)

)
= h/n, as follows

h = nP
(
Yi > Q̂ (Y)

)
= n

(
1− F

((
Y(1) − Y(k)

)
Q̂ (Ys) + Y(k)

))
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= n

(
1− F

(
an

(
Y(1) − Y(k)

an
Q̂ (Ys) +

Y(k) − bn
an

)
+ bn

))
→ Eξ

[(
1 + ξ

(
(X1 −Xk) Q̂ (Xs) +Xk

))−1/ξ
]

where the expectation is taken w.r.t. the vector (X1 −Xk, Xk,X
s) whose distribution can

be derived from the PDF of X via change of variables, and the convergence follows from

Theorem 1.1.6 of de Haan and Ferreira (2007) given F is regularly varying at infinity.

Recall that ξ cannot be consistently estimated as we only have a fixed k number of

observations. Alternatively, we impose the asymptotically quantile unbiasedness for all the

values of ξ in an empirically relevant set Ξ ⊂ R. The asymptotic problem is then to construct
Q̂ that satisfies

Eξ

[(
1 + ξ

(
(X1 −Xk) Q̂ (Xs) +Xk

))−1/ξ
]

= h for all ξ ∈ Ξ. (6)

To construct the optimal Q̂ among those satisfying (6), we focus on the one that minimizes

the weighted average mean absolute deviation (MAD) criterion∫
Eξ[
∣∣∣(X1 −Xk) Q̂ (Xs) +Xk − q (ξ, h)

∣∣∣]dW (ξ) (7)

whereW is a positive measure with support on Ξ.1 Thus combining the asymptotic versions

of the constraint (6) and the objective (7), the limiting problem can be formulated as

minQ̂(·)
∫
Eξ[
∣∣∣(X1 −Xk) Q̂ (Xs) +Xk − q (ξ, h)

∣∣∣]dW (ξ)

Eξ

[(
1 + ξ

(
(X1 −Xk) Q̂ (Xs) +Xk

))−1/ξ
]

= h for all ξ ∈ Ξ.
(8)

By writing the expectations in (8) in terms of the PDF ofXs, denoted by fXs|ξ, the above

problem can be written in a Lagrangian form

min
Q̂(·)

∫
Ξ

Eξ[
∣∣∣(X1 −Xk) Q̂ (Xs) +Xk − q (ξ, h)

∣∣∣ |Xs]fXs|ξ (Xs) dW (ξ) (9)

+

∫
Ξ

λ (ξ)Eξ

[(
1 + ξ

(
(X1 −Xk) Q̂ (Xs) +Xk

))−1/ξ

|Xs

]
fXs|ξ (Xs) dξ

1The mean squared error criterion might not be well-defined for ξ ≥ 1/2.
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where the function λ (ξ) denotes the Lagrangian multipler, and the expectations in the above

expression can be numerically computed by Gaussian quadrature. Therefore, the limiting

problem can be treated as estimating q (ξ, h), a function of the scalar parameter ξ ∈ Ξ,

based on a single observation Xs from a parametric distribution indexed only by ξ. The

only remaining challenge is thus to identify suitable Lagrangian multipliers. To this end, we

can discretize Ξ into a fine enough grid and resort to the numerical algorithm developed in

Müller and Wang (2015). This algorithm delivers the Lagrangian multipliers that lead to

uniform unbiasedness up to numerical accuracy. Further details are provided in Appendix

A.1.

By construction, the estimator constructed in this way is nearly optimal in the sense of

minimizing the weighted risk (7) among all estimators that are location and scale invariant

and satisfy the uniform asymptotic unbiasedness (6). Following Arnold, Balakrishnan, and

Nagaraja (1992), it is easy to show that the simple empirical quantile is asymptotically

quantile unbiased when h takes a positive integer larger than 1. This leads to the existence

of the estimator (9), which is in general diffi cult to establish theoretically. If such uniformly

unbiased estimator does not exist, we will expect an arbitrarly large Lagrangian multipler

λ (ξ) for some values of ξ as the sample size grows, reflecting the possibly infinite cost of

imposing the restriction. This is not found in our Monte Carlo simulations.

2.2 Censored Data

The previous analysis can be easily generalized to cover censoring data. Consider an i.i.d.

sample of n observations with the largest m being censored with a known m. We focus on

the case in which the censoring value (which is recorded for all observations larger than it)

is unavailable. The case with a known censoring value follows from similar derivation, and

is postponed to Appendix A.2.

Note that for fixed m and k, the extreme value theorem (2) applies to the largest m+ k

order statistics. Then, to implement the previously introduced approach, we modify the

definition of Xs as

Xs
m =

(
Xm+1 −Xm+k

Xm+1 −Xm+k

,
Xm+2 −Xm+k

Xm+1 −Xm+k

, ...,
Xm+k −Xm+k

Xm+1 −Xm+k

)
which is again invariant to location and scale transformation, and construct the estimator

of q (ξ, h) as (Xm+1 −Xm+k) Q̂ (Xs
m) + Xm+k. The density of Xs

m as well as the asymp-

totic quantile bias (6) and risk (7) can be adjusted accordingly. Therefore, the asymptotic
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Lagrangian problem can be rewritten as

min
Q̂(·)

∫
Ξ

Eξ[
∣∣∣(Xm+1 −Xm+k) Q̂ (Xs

m) +Xm+k − q (ξ, h)
∣∣∣ |Xs

m]fXsm|ξ (Xs
m) dW (ξ) (10)

+

∫
Ξ

λm (ξ)Eξ

[(
1 + ξ

(
(Xm+1 −Xm+k) Q̂ (Xs

m) +Xm+k

))−1/ξ

|Xs
m

]
fXsm|ξ (Xs

m) dξ

where the Lagrangian multipler λm (·) depends on m. Similarly as before, the finite sam-
ple version can be implemented as

(
Y(m+1) − Y(m+k)

)
Q̂ (Ys

m) + Y(m+k) where Ys
m is defined

similarly as Ys with Y(i) replaced by Y(m+i) for i = 1, ..., k.

2.3 Truncated Data

Truncated data exist when observations outside a certain range are automatically eliminated.

Without loss of generality, we assume the truncation value is Q
(
F, 1− h̃/n

)
for some un-

known h̃.2This means approximately the largest h̃ order statistics are unavailable, which is

coherent with our small sample setup in the sense that both the unknown quantity and the

truncation value are of the same order of magnitude as the sample maximum. We assume

the truncation value Q
(
F, 1− h̃/n

)
is unobserved (cf. Aban, Meerschaert, and Panorska

(2006) and Beirlant, Alves, and Gomes (2016)) and postpone the case in which it is observed

(h̃ still unobserved) to Appendix A.2.

We still consider the largest k observations, whose limiting distribution is stated in the

following lemma.

Lemma 1 Suppose data are i.i.d. and generated from a CDF F truncated from above at

Q
(
F, 1− h̃/n

)
with some unknown fixed value h̃ ≥ 0 and F is regularly varying at infinity.

Then (
Y(1) − bn

an
, ...,

Y(k) − bn
an

)
⇒ X̃ =

(
X̃1, ..., X̃k

)
where the PDF of X̃ is Gξ,h̃ (x̃k)

∏k
i=1 gξ,h̃ (x̃i) /Gξ,h̃ (x̃i) with Gξ,h̃ (x) = exp

(
h̃
)
Gξ (x) and

gξ,h̃ (x) = dGξ,h̃ (x) /dx.

2We cannot learn anything if the tail probability under truncation is of a larger order than 1/n, while
the truncation is asymptotically negligible if the truncated mass is of a smaller order.
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The proof is in Appendix A.3. The density of the maximal invariant statistic

X̃s =

(
X̃1 − X̃k

X̃1 − X̃k

, ...,
X̃k − X̃k

X̃1 − X̃k

)

can be derived similarly as Xs with more algebra, as well as the asymptotic bias (6) and risk

(7). The exact expressions are described in Appendix A.1. Then, the estimator of q (ξ, h)

can be constructed as
(
X̃1 − X̃k

)
Q̂
(
X̃s
)

+ X̃k, and h̃ shows up in the limiting problem as

an additional nuisance parameter. Given a two-dimensional weight W
(
ξ, h̃
)
and the set of

Lagrangian multipliers λ
(
ξ, h̃
)
defined on Ξ×H for H =

[
0, h̄
]
with some pre-specified h̄,

the Lagrangian problem can be rewritten as

min
Q̂(·)

∫
Ξ×H

Eξ,h̃[
∣∣∣(X̃1 − X̃k

)
Q̂
(
X̃s
)

+ X̃k − q (ξ, h)
∣∣∣ |X̃s]fX̃s|ξ,h̃

(
X̃s
)
dW (ξ, h̃) (11)

+

∫
Ξ×H

λ
(
ξ, h̃
)
Eξ,h̃

[(
1 + ξ

((
X̃1 − X̃k

)
Q̂
(
X̃s
)

+ X̃k

))−1/ξ

|X̃s

]
fX̃s|ξ,h̃

(
X̃s
)
dξdh̃.

Note that our approach can be easily adapted to estimate the 1 − h/n quantile of the
truncated distribution, which equals the 1 −

(
h+ h̃

)
/n + hh̃/n2 quantile of the original

distribution. Therefore, the same asymptotic problem can be set up with h replaced by

h+ h̃ since the term hh̃/n2 is asymptotically negligible. For implementation, the estimator

is constructed in the same way as in the complete data case.

2.4 Extension to Time Series Data

In financial applications, data may exhibit time series correlation and heteroskedasticity. To

overcome this diffi culty, we can resort to the stochastic volatility models with i.i.d. driving

innovations. In particular, we assume data are completely observed and generated from a

correctly specified AR(p̃)-GARCH(p,q) model (cf. McNeil and Frey (2000)). The condi-

tional quantile of a one-step ahead forecast then simply becomes the product of the square

root of the conditional heteroskedasticity function and the estimated quantile of the driving

innovations. We show that estimation error of the AR and GARCH parameters is negligi-

ble for our asymptotic theory, so that we can apply the fixed-k approach to the estimated

innovations.

More specifically, let Zt denote the real data which are assumed to be the following
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stationary time series

Zt = µt + σtYt

σ2
t = α0 + α1Y

2
t−1 + ...αqY

2
t−q + β1σ

2
t−1 + ...+ βpσ

2
t−p

µt = µ̄+ φ1Zt−1 + ...φp̃Zt−p̃,

where the innovation Yt is i.i.d. with CDF F . As standard in the literature, we assume that

µt and σt are measurable with respect to Ft−1, the information available up to time t− 1.

To estimate the unknown coeffi cients, we can apply the pseudo maximum likelihood

(PML) estimator, which maximizes the likelihood under the assumption of standard

Gaussian innovations. Given the PML estimator, we can back out the estimated condi-

tional mean and standard deviation series, denoted as {µ̂t} and {σ̂t}, respectively. Then,
the residual is calculated as

Ŷt =
Zt − µ̂t
σ̂t

which can be used as i.i.d. data for estimating high quantile and TCE. The following theorem

shows that the error in fitting the AR-GARCH type models is asymptotically negligible if

the estimator of the coeffi cients is consistent.

Theorem 1 Suppose there exists a consistent estimator of the AR(p̃)-GARCH(p,q) coef-
ficients for some known positive integers (p̃,p,q), then the estimated innovations {Ŷt} sat-
isfy the extreme value theorem, i.e., the largest k innovations with a fixed and given k,(
Ŷ(1), ..., Ŷ(k)

)
, satisfy (4).

The proof is in Appendix A.3. This theorem validates the weak convergence (4) for the

ordered estimated innovations, and hence the previously suggested approach is applicable

again. As a summary, our estimator can be implemented by the following steps:

Step 1 For time t > n, fit the data {Zt, Zt−1, ..., Zt−n+1} with an AR-GARCH type model
and obtain the standardized innovations.

Step 2 Compute the fixed-k estimators Q̂ by using the largest k standardized innovations,

denoted by Ŷt, and solving the Lagrangian problems (9).

Step 3 Plug in the conditional mean and standard deviation at time t to construct the
one-step prediction of the high quantile, that is, Q̂

(
Ŷt

)
σ̂t + µ̂t.
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When the data generating process is unknown, it is in general diffi cult to establish (4) (and

even (2)) for strictly stationary and weakly dependent time series data. Leadbetter (1974) (see

also Leadbetter (1983) and O’Brien (1987)) establishes that if the sample maximum (normalized

by an and bn) has the same extreme value distribution Gξ if data satisfy a global mixing condition

(referred as the D assumption which is implied by strong mixing) and another condition restricting

that large observations cannot cluster (referred as theD′ condition). Furthermore, Chernick, Hsing,

and McCormick (1991) and Hsing (1993) show that if the data do not satisfy the D′ condition yet

have a limit distribution of the sample maximum, this limit is of the form Gθξ (·) where θ ∈ (0, 1]

is called the extremal index. This scalar parameter θ captures the tail dependence structure. In

particular, the i.i.d. case implies θ = 1 while the identical observation case is reflected by θ = 0.

The consistent estimation of θ typically requires more conditions and an even larger sample size

(see Ancona-Navarrete and Tawn (2000) and Süveges (2007) and references therein). So in small

samples, we can treat it as an additional nuisance parameter and in principle construct a uniformly

unbiased estimation of the high quantile for all values of θ ∈ [θ, 1] for some θ ∈ (0, 1). However,

the condition for the convergence to the limit distribution Gθξ (·) and even for determining the
tail index can only be verified in some specific case (see, for instance, O’Brien (1987), Leadbetter

(1983), Davis (1985), Kearns and Pagan (1997), and Mikosch and Starica (2000)). So it is unclear

in how to determine an empirically relevant range of dependence (the value of θ) over which we

would like to impose the unbiasedness.

3 Tail Conditional Expectation and Tail Index

3.1 Tail Conditional Expectation

The fixed-k estimators (9), (10), and (11) can be modified for the TCE: T (F, 1− h/n) = E[Yi|Yi ≥
Q(F, 1 − h/n)], for given h. Assume F is in regularly varying with tail index ξ < 1 (otherwise,

the tail conditional expectation does not exist). The limiting problem still amounts to choose

the estimator T̂ as a function of the limiting observation Xs to minimize a weighted average risk

subject to some unbiasedness restriction. In particular, given (T (F, 1− h/n)− bn) /an→ τ (ξ, h) =

q (ξ, h) / (1− ξ)− 1/ξ for ξ 6= 0 and 1− log (h) for ξ = 0 (cf. Müller and Wang (2017), pp. 1336),

the limit version of the weighted average risk given a weight W on Ξ thus has the form∫
Ξ
Eξ[
∣∣∣(X1 −Xk) T̂ (Xs) +Xk − τ (ξ, h)

∣∣∣ dW (ξ).
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Regarding the constraint, we impose the mean unbiasedness restriction on the estimator of TCE,

that is,

E
[
T̂ (Y)

]
− T (F, 1− h/n) = 0, (12)

which is motivated in finance and risk management. Recall that for a positive random variable Z

with CDF FZ , E[Z] =
∫

(1 − FZ(z))dz. Denote F̂ TCE (·) as the CDF leading to the TCE that
equals T̂ (Y), then the constraint (12) is equivalent to∫ ∞

Q(F,1−h/n)

(
F̂ TCE (z)− F (z)

)
dz = 0

which can be interpreted as an average quantile unbiasedness above the true quantile. In finance,

the high quantile and TCE can be interpreted as the VaR and the ES, respectively. The above

expression then suggests that the expected shortfall captures the unbiasedness at all the confidence

levels above a certain VaR, which, however, measures the risk at only one particular level. As

pointed out by Basel Committee on Banking Supervision (2013): "A number of weaknesses have

been identified with using VaR for determining regulatory capital requirements, including its inability

to capture “tail risk”. For this reason, the Committee proposed in May 2012 to replace VaR with

ES. ES measures the riskiness of a position by considering both the size and the likelihood of losses

above a certain confidence level."

To impose (12), which is asymptotically equivalent to Eξ
[
(X1 −Xk) T̂ (Xs) +Xk − τ (ξ, h)

]
=

0,3 we can construct the following Lagrangian problem

min
Q̂(·)

∫
Ξ
Eξ[
∣∣∣(X1 −Xk) T̂ (Xs) +Xk − τ (ξ, h)

∣∣∣ |Xs]fXs|ξ (Xs) dW (ξ) (13)

+

∫
Ξ
λ̃ (ξ)Eξ

[
(X1 −Xk) T̂ (Xs) +Xk − τ (ξ, h) |Xs

]
fXs|ξ (Xs) dξ

where λ̃ is another set of Lagrangian multipliers that are numerically determined. Once T̂ is

obtained, the estimator of TCE can be implemented as
(
Y(1) − Y(k)

)
T̂ (Ys) + Y(k).

When data exhibit censoring or truncation, the same procedure applies by adjusting the density,

risk, and bias terms accordingly. We postpone the exact expressions to the Appendix.

3.2 Tail Index

Given the limiting observationXs, it is even more straightforward to construct an estimator ξ̂ which

minimizes a weighted average risk criteria and satisfies a certain unbiased restriction. In particular,

3A formal derivation is obtained by applying Theorem 5.3.1 of de Haan and Ferreira (2007) and assuming
that T̂ (·) is uniformly bounded, which is without loss of generality given T (F, 1− h/n) is of the same order
as Y(1) − Y(k).
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we choose the median unbiased restriction, that is, P
(
ξ̂ (Ys) > ξ

)
= 1/2 at least asymptotically.

This restriction has been proposed by Andrews (1993) and Stock and Watson (1998) to learn the

parameters that cannot be consistently estimated. Assume that ξ ∈ Ξ a compact subset of R, the
dominated convergence theorem and (4) yield that

E

[(
ξ̂ (Ys)− ξ

)2
]
dξ → E

[(
ξ̂ (Xs)− ξ

)2
]

=

∫ (
ξ̂ (xs)− ξ

)2
fXs;ξ (xs) dxs

and for any ξ ∈ Ξ

P
(
ξ̂ (Ys) > ξ

)
→ P

(
ξ̂ (Xs) > ξ

)
=

∫
1
[
ξ̂ (xs) > ξ

]
fXs;ξ (xs) dxs.

We present the result with the mean standard error since it is well defined given our bounded

space Ξ and widely used in comparing different approaches (see, for example, de Haan and Peng

(1998)). It can be replaced by MAD without any diffi culty. Combine the risk and the bias terms,

our problem is asymptotically equivalent to

min
ξ̂∈Ξ

∫
Ξ

(
ξ̂ (Xs)− ξ

)2
fXs|ξ (Xs) dW (ξ) +

∫
Ξ
λ (ξ)

(
ξ̂ (Xs)− ξ

)2
fXs|ξ (Xs) dξ (14)

where λ (ξ) is the Lagrangian multiplier, and the density fXs|ξ (Xs) can be numerically computed

by Gaussian quadrature. Again, the estimator constructed in (9) is nearly the best in the sense

of nearly minimizing the weighted risk (7) among all estimators that are invariant to location and

scale and satisfy the uniform asymptotic unbiasedness (6). It turns out that being invariant to

location or not makes a substantive effect in small sample performance as shown in Monte Carlos.

It is worth mentioning that the fixed-k asymptotics can be easily modified to construct confi-

dence intervals for ξ. Now consider the hypothesis testing problem

H0 : ξ = ξ0 against H1 : ξ 6= ξ0, ξ ∈ Ξ.

Given the effective limiting observation Xs whose density fXs;ξ is fully characterized by ξ, we can

simply construct the likelihood ratio test if the alternative is simple. To transform the composite

alternative into a simple one, we consider a weighted average power critera (see, among others,

Andrews and Ploberger (1994), Elliott, Müller, and Watson (2015), and Lehmann and Romano
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(2005)). With a positive measure W (·) defined on Ξ, our test is constructed as

ϕ (xs) = 1

[∫
Ξ fXs|ξ (xs) dW (ξ)

fXs|ξ0 (xs)
> κ (α; ξ0, k)

]
(15)

where κ (α; ξ0, k) is the critival value for significance level α, null value ξ0 and the length of the

effect sample. This is a simplier problem than the case in Müller and Wang (2017) since there is

no nuisance parameter under the null hypothesis. We calculate the critical values by simulation

and provide the results on the author’s website. In finite samples, this test can be implemented

by replacing Xs by Ys. The continuous mapping theorem and the extreme value theorem (4)

yield that E [ϕ (Ys)] → E [ϕ (Xs)] = α under the null and the confidence interval is obtained by

inverting the test (15). Note that by construction, this likelihood ratio test maximizes the weighte

average power among all invariant tests that have a converging power function under (4) and that

control size under the null.

As a final remark in this section, both the estimator (14) and the test (15) can be easily modified

to data with censoring and truncation, and thus omitted for notational ease.

4 Monte Carlo Simulations

4.1 Extreme Quantile and TCE

This section reports some small sample results of estimating extreme quantiles and the correspond-

ing TCEs. In particular, we consider h = 0.5 and 5 and n = 250, corresponding to the confidence

levels at 99.8% and 98%. For expositional ease, we only report the results for k = 20. We consider

six data generating processes: A Pareto law with tail index equal to ξ = 0.25, a standard normal

distribution, a standard lognormal distribution, a Student-t distribution with 3 degrees of freedom,

and the empirical distributions of the AR(1)-GARCH(1,1) residuals of S&P500 and Nasdaq daily

returns from 02/08/1990 to 04/17/2017 (see Section 2.4 for a theoretical justification for using

such residuals). For the censored data model, the largest 5 observations are censored. For the

truncated data model, we generate the data from those distributions truncated at Q
(
F, 1− h̃/n

)
with h̃ = {0, 1, 2}, and impose the unbiasedness for the data truncated at up to Q (F, 1− 2/n), i.e.,

h̄ = 2.

Tables 1 and 2 present the (quantile) bias and the mean absolute deviation of the fixed-

k approach and three other popular estimators: (i) the estimator based on the Smith (1987)

estimator (Smith) of ξ: Q̂Smith = Y(k) + σ̂Smith((h/(k − 1))−ξ̂
Smith

− 1)/ξ̂
Smith

and T̂Smith =

(Q̂Smith + σ̂Smith − ξ̂SmithY(k))/
(

1− ξ̂Smith
)
where ξ̂

Smith
and σ̂Smith denote the maximum like-

lihood estimators of the tail index and the scale, correspondingly, by fitting the exceedances,
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Y(1)−Y(k), ..., Y(k−1)−Y(k) with a generalized Pareto distribution (see also McNeil and Frey (2000))

(ii) the estimators described in Chapter 4 of de Haan and Ferreira (2007) textbook (dH-F): Q̂dHF =

Y(k) + â (n/(k − 1)) ((h/(k − 1))−ξ̂
M

− 1)/ξ̂
M
and T̂dHF = Y(k) + â (n/(k − 1)) ((h/(k − 1))−ξ̂

M

−
1 + ξ̂

M
)/(ξ̂

M
(1 − ξ̂

M
)) where â (n/(k − 1)) and ξ̂

M
are moment estimators of the scale and

the tail index, respectively, (see also Dekkers and de Haan (1989) and de Haan and Rootzén

(1993)); and (iii) the classic Weissman (1978) estimator (W-H): Q̂WH = Y(k) (h/(k − 1))−ξ̂
H

and

T̂WH = (Y(k) (h/(k − 1))−ξ̂
H

)/(1 − ξ̂H) where ξ̂
H
denotes the classic Hill (1975) estimator. For

all four methods we use the same parameter space Ξ = [−1/2, 1/2] for imposing unbiasedness or

estimating ξ.

The bias for quantile is reported as 100
(
E
[
1− F

(
Q̂ (Y)

)]
− h/n

)
, that is, the probability

measured in percentage that an additional random draw from F is larger than the quantile estimator

minus the target tail probability. For TCE, we report the bias E
[
T̂ (Y)− E

[
Yi|Yi > Q̂ (Y)

]]
to

reflect the fact that the error in estimating high quantiles should be included in estimating the

corresponding TCE. The mean bias relative to the true TCE exhibits a similar pattern, and hence

is not reported for ease of presentation. In addition, we also report the bias measured in h. More

precisely, the h bias is defined as ĥ−h where ĥ is value of h that satisfies E
[
T̂ (Y)

]
= T (F, 1− h/n).

Linear interpolation is implemented for the AR(1)-GARCH(1,1) residuals.

We find that the new method has much smaller bias across all h in contrast to the other three

methods. In particular, the quantile bias of the Smith estimator is approximately 0.2% at h = 0.5,

which means the Smith method approximately delivers the 99.6% quantile while the true target is

99.8%. The other two estimators exhibit small sample biases that differ a lot across distributions,

indicating that k = 20 is still too small for their increasing-k asymptotics to perform satisfactorily.

For relatively large h such as 5, the unbiasedness restriction is much easier to impose as reflected

by substantially smaller MADs. This is because the quantity is closer to the central part of the

distribution and therefore more observations can be collected from the right side of the true quantile.

Table 3 lists the small sample bias of the fixed-k and the Smith (adjusted to fit a truncated

Pareto) methods for censored data (the other two estimators are not applicable). These results

suggest that the Smith method always substantially underestimate the high quantile. In particular,

the Smith estimator delivers approximately the 97.8% quantile while the true target is 99.8%.

Table 4 depicts the performance of the fixed-k method with data truncation. We compare a

recently developed method (TP-WH) by Beirlant, Alves, and Gomes (2016), who suggest fitting the

largest k observations with a truncated Pareto distribution to estimate ξ and the truncation value

and applying the Weissman-Hill type estimator. These numbers suggest that the new approach has

an excellent small sample performance in terms of the quantile unbiasedness while TP-WH method

tends to underestimate and hence has a smaller MAD. Note that although the bias is not large

from the perspective of violation probability, the actural level of bias can be substantive given the
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Table 1: Small Sample Properties for the 1− h/n Quantile
Quantile h = 0.5

fixed-k Smith dH-F W-H
Bias MAD Bias MAD Bias MAD Bias MAD

Pareto 0.00 2.89 0.23 1.11 0.22 0.93 0.08 0.83
Normal 0.02 0.58 0.24 0.30 0.20 0.30 -0.15 0.88
Lognormal -0.01 13.6 0.22 5.25 0.20 4.64 -0.02 4.48
Student-t 0.01 6.29 0.23 2.51 0.22 2.23 -0.01 2.00
SP500 0.01 0.84 0.24 0.42 0.20 0.40 -0.13 0.93
Nasdaq 0.02 0.84 0.24 0.39 0.20 0.36 -0.12 0.79

h = 5
Bias MAD Bias MAD Bias MAD Bias MAD

Pareto -0.01 0.22 0.02 0.21 0.18 0.20 0.20 0.20
Normal 0.02 0.13 0.17 0.13 0.27 0.13 0.39 0.13
Lognormal -0.01 1.08 0.17 1.01 0.27 0.94 0.40 0.83
Student-t -0.04 0.48 0.14 0.44 0.23 0.42 0.35 0.37
SP500 -0.00 0.15 0.15 0.15 0.30 0.14 0.38 0.15
Nasdaq -0.01 0.13 0.15 0.13 0.27 0.13 0.37 0.13

Note: Entries are quantile biases and mean absolute deviations of estimators in a sample of size n = 250

about the 1− h/n quantile of the underlying distribution F , based on the largest 20 order statistics. See
the main text for a description of the four types of estimators. Based on 5,000 Monte Carlo simulations.

heavy-tail.

The substantial difference across three data types in MAD indicates that the largest observations

are very informative about the right tail and thus being precisely quantile unbiased is expensive

as measured by risk. Hence if they are unobserved due to either censoring or truncation, the

unbiasedness has to hold at a much larger cost.

4.2 Tail Index

Since tail index is of particular empirical imporance, this section exclusively examines some small

sample behavior for our estimator (14) and confidence interval by inverting (15) (fixed-k) and three

other popular approaches in the literature. In particular, we implement: (i) the Smith (1987)

estimator (Smith), which treats the exceedances Y(i) − Y(k) for i = 1, ..., k − 1 as i.id. draws from

a generalized Pareto distribution and estimate ξ by maximizing the likelihood; (ii) the classic Hill

(1975) estimator (Hill); and (iii) the bias-reduced log-log regression estimator proposed by Gabaix

and Ibragimov (2011) (GI), who regress the log rank log(i − 1/2) on a constant and the log size,

log
(
Y(i)

)
, for i = 1, ..., k. All three estimators are asymptotically normal with convergence rate

k−1/2 but different asymptotic variances, which can be easily estimated by plugging in the tail
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Table 2: Small Sample Properties for TCE above the 1− h/n Quantile

TCE h = 0.5
fixed-k Smith dH-F W-H

Bias h Bias MAD Bias h Bias MAD Bias h Bias MAD Bias h Bias MAD
Pareto -0.07 0.02 2.29 0.86 -0.20 3.39 0.10 -0.03 1.94 -0.16 0.06 1.53
Normal -0.04 0.07 0.44 -0.15 0.33 0.48 0.02 -0.03 0.46 -1.20 14.9 2.02
Lognormal 0.40 -0.03 10.3 4.82 -0.24 15.6 -1.85 0.15 10.4 -9.45 1.90 14.5
Student-t -0.53 0.07 5.53 1.74 -0.16 8.32 0.04 -0.00 5.23 -2.83 0.59 5.70
SP500 -0.05 0.06 0.67 -0.12 0.16 0.79 0.04 -0.05 0.67 -1.07 5.20 2.23
Nasdaq -0.08 0.09 0.63 -0.20 0.28 0.75 0.12 -0.11 0.65 -0.72 2.25 1.74

h = 5
Bias h Bias MAD Bias h Bias MAD Bias h Bias MAD Bias h Bias MAD

Pareto 0.02 -0.11 0.52 0.06 -0.32 0.62 0.10 -0.53 0.49 -0.04 0.23 0.48
Normal 0.00 0.00 0.18 -0.05 0.72 0.18 0.03 -0.34 0.18 -0.35 7.23 0.36
Lognormal 0.08 -0.09 2.45 0.28 -0.32 2.94 0.04 -0.05 2.43 -1.82 2.87 2.42
Student-t 0.03 -0.07 1.21 0.13 -0.31 1.43 0.16 -0.39 1.13 -0.69 2.22 1.10
SP500 0.01 -0.11 0.22 -0.05 0.61 0.23 0.02 -0.28 0.22 -0.36 6.14 0.39
Nasdaq 0.01 -0.12 0.20 -0.04 0.53 0.21 0.03 -0.30 0.20 -0.30 5.39 0.33

Note: Entries are biases and mean absolute deviations of estimators in a sample of size n = 250 about the

tail conditional expectation above the 1− h/n quantile of the underlying distribution F , based on the
largest 20 order statistics. See the main text for a description of the three types of estimators and the

definitions of biases. Based on 5,000 Monte Carlo simulations.

Table 3: Small Sample Properties for the 1− h/n Quantile with Censored Data
Quantile h = 0.5 h = 5

fixed-k Smith fixed-k Smith
Bias MAD Bias MAD Bias MAD Bias MAD

Pareto 0.01 5.19 2.20 2.12 0.00 0.28 2.32 0.44
Normal 0.04 3.12 2.10 0.86 0.00 0.16 2.50 0.35

Lognormal -0.02 25.6 2.18 10.2 -0.02 1.38 2.29 2.10
Student-t 0.04 10.7 2.17 4.67 -0.02 0.59 2.30 0.91
SP500 0.06 3.67 2.16 1.07 0.02 0.19 2.47 0.39
Nasdaq 0.06 3.29 2.15 0.92 0.02 0.17 2.47 0.34

Note: Entries are quantile biases and mean absolute deviations of estimators in a sample of size n = 250

about the 1− h/n quantile of the underlying distribution F , with the largest 5 observations censored. See
the main text for a description of the two types of estimators. Based on 5,000 Monte Carlo simulations.
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Table 4: Small Sample Properties for the 1− h/n Quantile with Truncated Data

Quantile Fixed-k TP-WH
h = 0.5

Truncation h̃ = 0 h̃ = 1 h̃ = 2 h̃ = 0 h̃ = 1 h̃ = 2
Bias MAD Bias MAD Bias MAD Bias MAD Bias MAD Bias MAD

Pareto 0.05 9.98 -0.01 5.85 0.01 3.27 0.31 1.03 0.93 1.11 2.07 1.58
Normal 0.07 5.19 -0.01 2.64 0.03 1.70 1.36 0.44 3.07 0.49 4.62 0.73

Lognormal 0.03 48.3 -0.00 28.6 -0.00 16.1 0.62 6.51 1.91 5.36 3.47 7.70
Student-t 0.07 20.5 0.02 12.3 0.03 6.57 0.38 3.11 1.14 2.54 2.40 3.61
SP500 0.07 6.39 0.00 3.19 0.07 2.02 1.01 0.54 2.39 0.59 4.40 0.88
Nasdaq 0.10 5.72 0.03 2.85 0.04 1.89 0.84 0.48 2.70 0.50 4.21 0.73

h = 5
Pareto 0.06 1.73 -0.01 1.48 0.05 1.09 -0.12 0.28 0.60 0.19 1.77 0.20
Normal 0.06 1.02 -0.05 0.84 0.05 0.69 0.87 0.22 2.66 0.21 4.25 0.26

Lognormal 0.00 8.35 -0.02 7.24 0.03 5.28 0.19 1.44 1.56 0.94 3.15 1.01
Student-t 0.13 3.49 0.12 3.06 0.15 2.23 -0.09 0.64 0.76 0.41 2.05 0.45
SP500 0.05 1.18 -0.11 0.96 -0.01 0.78 0.54 0.22 2.03 0.19 4.06 0.27
Nasdaq 0.04 1.06 -0.01 0.87 0.06 0.69 0.38 0.19 2.33 0.18 3.86 0.23

Note: Entries are quantile biases and mean absolute deviations of the fixed-k estimator in a sample of size

n = 250 about the 1− h/n quantile of the underlying distribution F , with data generated from the

truncated F at Q(F, 1− h̃/n). Based on 5,000 Monte Carlo simulations.
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index estimator. The corresponding confidence intervals are readily constructed as 1.96± σ̂ξ̂k
−1/2

for their corresponding asymptotic variance estimator σ̂ξ̂. There are other location and scale

invariant estimators proposed in the literature such as Pickands (1975) and Aban and Meerschaert

(2001). These methods are stictly dominted in our small sample experiments and hence the results

are not reported. For a coherent comparison, we restrict the parameter space to be [0, 1] in all

experiments so that any estimator or confidence interval outside this range are censored. To

compare estimators, we report the median bias P
(
ξ̂ > ξ

)
− 1/2 and the root mean squared error.

For confidence intervals, we report the probabilities of covering the null value and the length.

In Table 5, we investigate the effect of data shifting by generating 250 i.i.d draws from standard

Pareto distribution with ξ = 0.5 and shifting them by d multiplies of the interquantile range of

Pareto (0.5) for d = 0, 1, 2. We implement all four methods with different choices of k. Panels A and

B depict the finite sample performance of the estimators. Clearly the shift variant estimators (Hill

and GI) are nearly median unbiased under no data shifting, but exhibit severe biases if data are

shifted. Such bias increases as more tail observations are taken into account. The Smith estimator

which is invariant to shift also suffers substantive bias since the sample size not large enough for

the asymptotics to perform well. In contrast, our fixed-k estimator is nearly median unbiased in

all setups with the cost of a higher mean squared error, reflecting the fact that the location is very

informative for studying the tail. These findings are coherent with Panels C and D, where results

of different confidence intervals are collected. In particular, the three competing methods lead to

confidence intervals with coverages substantially different from the 95% target, espectially when

data are shifted, while the fixed-k approach has very precise size properties.

Table 6 examines the robustness to different parametric assumptions. We generate 250 i.i.d

draws from three distributions: Student-t with degree of freedom 2 (denoted as t(2)), F(4,4), and

a mixture distribution (denoted as mixP) with 20% draws from Pareto (0.5) and 80% draws from

Pareto (0.1). All three distributions share the same tail index ξ = 0.5. The mixture distribution is

essentially motivated from the double-power law proposed by Barro and Jin (2011), reflecting that

only a very limited number of observations are relevant for the true tail. As seen from the columns

associated with mixP, choosing a large k leads to large bias and incorrect coverage. In Panels A

and B, we observe that the Hill estimator and the GI estimator are senstive to deviation from the

Pareto model in terms of bias, and the Smith estimator is relatively robust and still exhibits large

bias in small samples (see also Embrechts, Klupperberg, and Mikosch (1997) pp. 197 and 337 and

Huisman, Koedijk, Kool, and Palm (2001)). In constrat, our fixed-k estimator performs well in

controlling bias in all data generating processes. Regarding confidence intervals, Panels C and D

provide similar findings: the fixed-k method dominates the Smith method in both coverage and

length while the Hill and the GI approaches are subject to substantive undercoverage. It is worth

mentioning that choosing k ≥ 50 in the Student-t distribution situation amounts to use about half
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Table 5: Small Sample Properties for Pareto Distribution Draws with Different Shift
Panel A: Median Bias of Estimators

k=10 k=30 k=50 k=70
d 0 1 2 0 1 2 0 1 2 0 1 2
Smith -0.19 -0.19 -0.19 -0.12 -0.12 -0.12 -0.09 -0.09 -0.09 -0.07 -0.07 -0.07
Hill -0.05 -0.18 0.27 -0.03 -0.34 -0.45 -0.02 -0.44 -0.50 -0.01 -0.48 -0.50
GI -0.04 -0.12 0.18 -0.00 -0.19 -0.30 0.00 -0.26 -0.37 0.01 -0.32 -0.42
fixed-k -0.00 -0.00 -0.00 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02

Panel B: RMSE of Estimators
d 0 1 2 0 1 2 0 1 2 0 1 2
Smith 0.40 0.40 0.40 0.30 0.30 0.30 0.24 0.24 0.24 0.20 0.20 0.20
Hill 0.17 0.16 0.17 0.09 0.11 0.16 0.07 0.12 0.17 0.06 0.12 0.18
GI 0.22 0.22 0.22 0.13 0.14 0.15 0.10 0.12 0.15 0.09 0.11 0.15
fixed-k 0.40 0.40 0.40 0.28 0.28 0.28 0.22 0.22 0.22 0.19 0.19 0.19

Panel C: Coverage Probability of Confidence Intervals
d 0 1 2 0 1 2 0 1 2 0 1 2
Smith 1.00 1.00 1.00 0.81 0.81 0.81 0.86 0.86 0.86 0.89 0.89 0.89
Hill 0.88 0.81 0.74 0.93 0.78 0.44 0.94 0.54 0.17 0.94 0.35 0.04
GI 0.93 0.88 0.83 0.95 0.85 0.72 0.95 0.79 0.57 0.96 0.72 0.43
fixed-k 0.96 0.96 0.96 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95

Panel D: Length of Confidence Intervals
d 0 1 2 0 1 2 0 1 2 0 1 2
Smith 1.00 1.00 1.00 0.88 0.88 0.88 0.75 0.75 0.75 0.66 0.66 0.66
Hill 0.62 0.55 0.51 0.36 0.30 0.26 0.28 0.22 0.19 0.23 0.18 0.15
GI 0.92 0.85 0.79 0.52 0.46 0.42 0.40 0.35 0.31 0.34 0.28 0.25
fixed-k 0.73 0.73 0.73 0.74 0.74 0.74 0.69 0.69 0.69 0.64 0.64 0.64

Note: Entries are median biases and root mean squared errors of estimators and coverage and length of

confidence intervals in a sample of size n=250 i.i.d. draws from Pareto (0.5) shifted by d times the

interquantile range. Based on the largest k order statistics. See the main text for a description of the four

types of estimators. Based on 5,000 Monte Carlo simulations.

of the (positive) sample to approximate the Pareto tail. This clearly results in poor finite sample

approximation of the extreme value theorem and thus the large bias and undercoverage of the

fixed-k approach.

5 Empirical Applications

5.1 Macroeconomic Disaster

This session applies the new approach to estimate the tail index of macroeconomic disasters and the

corresponding coeffi cient of relative risk aversion. Barro and Ursua (2008) define the macroeconomic
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Table 6: Small Sample Properties for iid draws from Different Distributions with No Shift

Panel A: Median Bias of Estimators
k=10 k=30 k=50 k=70

Dist. t(2) F(4,4) mixP t(2) F(4,4) mixP t(2) F(4,4) mixP t(2) F(4,4) mixP
Smith -0.19 -0.19 -0.18 -0.18 -0.12 -0.11 -0.25 -0.11 -0.12 -0.34 -0.10 -0.14
Hill 0.04 0.08 -0.24 0.36 0.37 -0.45 0.50 0.48 -0.49 0.47 0.50 -0.50
GI 0.03 0.07 -0.15 0.21 0.36 -0.28 0.41 0.40 -0.36 0.33 0.47 -0.41
fixed-k -0.01 0.00 0.01 -0.08 -0.02 -0.00 -0.19 -0.04 -0.06 -0.30 -0.05 -0.08

Panel B: RMSE of Estimators
Dist. t(2) F(4,4) mixP t(2) F(4,4) mixP t(2) F(4,4) mixP t(2) F(4,4) mixP
Smith 0.41 0.40 0.40 0.31 0.29 0.29 0.27 0.23 0.23 0.26 0.20 0.20
Hill 0.18 0.19 0.17 0.15 0.16 0.15 0.24 0.19 0.16 0.40 0.23 0.17
GI 0.23 0.23 0.22 0.15 0.16 0.15 0.16 0.16 0.14 0.21 0.17 0.14
fixed-k 0.40 0.40 0.40 0.28 0.28 0.28 0.24 0.22 0.22 0.23 0.19 0.19

Panel C: Coverage Probability of Confidence Intervals
Dist. t(2) F(4,4) mixP t(2) F(4,4) mixP t(2) F(4,4) mixP t(2) F(4,4) mixP
Smith 1.00 1.00 1.00 0.75 0.83 0.84 0.75 0.88 0.87 0.71 0.89 0.87
Hill 0.93 0.93 0.75 0.93 0.92 0.47 0.39 0.62 0.22 0.01 0.19 0.07
GI 0.95 0.95 0.84 0.99 0.99 0.73 0.96 0.97 0.61 0.75 0.88 0.48
fixed-k 0.96 0.96 0.95 0.95 0.96 0.96 0.92 0.95 0.94 0.86 0.95 0.94

Panel D: Length of Confidence Intervals
Dist. t(2) F(4,4) mixP t(2) F(4,4) mixP t(2) F(4,4) mixP t(2) F(4,4) mixP
Smith 1.00 1.00 1.00 0.82 0.88 0.89 0.67 0.75 0.75 0.56 0.66 0.65
Hill 0.66 0.69 0.52 0.44 0.44 0.26 0.40 0.37 0.19 0.41 0.34 0.16
GI 0.97 0.99 0.81 0.59 0.60 0.42 0.49 0.49 0.31 0.46 0.43 0.25
fixed-k 0.73 0.73 0.73 0.73 0.73 0.73 0.67 0.69 0.69 0.59 0.63 0.63

Note: Entries are median biases and root mean squared errors of estimators and coverage and length of

confidence intervals in a sample of size n=250 i.i.d. draws from different distributions without shifting.

Based on the largest k order statistics. See the main text for a description of the four types of estimators.

Based on 5,000 Monte Carlo simulations.
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disaster if the GDP (or consumption) declines by more than 10% and collect n = 157 observations

from 36 countries from 1870 to 2005. Barro and Jin (2011) further apply these data to estimate

the tail index of the disaster size distribution and then back out the coeffi cient of the relative

risk aversion by a theoretical model (eq. 2). The authors find that a double power law fits the

data well and conclude that the very large observations mainly determine the risk premium. This

suggests that the effective observations for learning tail consist of only limited number of largest

observations. Columns 4, 7, 10, and 13 in Table 6 also confirm that incorrectly incorporating

non-tail observations could lead to substantively biased estimation of the tail index. Thus to main

robustness, we implement the fixed-k approach and the other three popular methods investigated

in the previous section with the k = 21 largest observations, which are treated by Barro and Jin

(2011) as stemming from the true tail. The point estimate and confidence interval are reported in

Table 7.

Several interesting findings are obtained by comparing different approaches. First, the estima-

tors are substantially different across methods. In particular, the Smith estimator is close to zero,

indicating a possibly underestimate as suggested by the Monte Carlo. In the contrary, the Hill and

the GI estimators might overestimate the tail index, the latter of which is used in Barro and Jin

(2011). Second, we back out the coeffi cient of relative risk aversion by solving the risk premium

condition proposed in Barro and Jin (2011) (eq. 6). Since we consider the tail contains only the

largest 21 observations, the disaster probability and the cutoff value (p and b in their notation) are

accordingly replaced with 0.0046 and 0.32, respectively. The Hill and the GI estimators lead to

estimate very close to 4, similarly as in the original paper, while the fixed-k approach leads to 6.34,

a substantively larger coeffi cient of risk aversion. Finally, standard bootstrap confidence interval

may deliver substantively incorrect coverage in small samples, as demonstrated by Fukuchi (1994)

and Zelterman (1993).

Barro and Jin (2011) also point out that the largest disasters tend to be missing due to gover-

ment collapse or fighting wars. The Monte Carlo results clearly suggest that the largest statistics

are very informative about learning tails and hence we apply the fixed-k approach for truncated

data to estimate the tail index and high quantiles. In the dataset, Turkey enters the record after

1923 and since then the only missing data in the sampled 40 countries come from Greece in 1944,

Malaysia in 1943-46, Phillipine 1941-45, and Singapore 1940-49. In principle, all these 20 obser-

vations can be large disasters but assuming all of them to be larger than the disaster cutoff 0.32,

could be too conservative. To have a rough estimate of the missing range, we first fill in the missing

spots by linear interpretation of the closest observated years. Assuming the constraction size is

monotone in the missing years, there are only 3 possible years that can exihibit contractions larger

than 32% (1 in Malaysia and 2 in Phillipine). Thus, we implement the fixed-k approach with h̄ = 3,

that is, the truncation point is at least the 1-3/157 = 98% percentile of the underlying disaster
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Table 7: Tail Index Estimates of Macroeconomic Disasters
Method Smith Hill GI fixed-k

Tail Index
Est. 0.04 0.29 0.27 0.17
CI 0.00 0.48 0.17 0.41 0.11 0.44 0.00 0.71

Note: Data source: https://scholar.harvard.edu/barro/data_sets. See the main text for a description of

the four methods.

distribution. The estimated ξ is then 0.12, which is smaller than in the complete data senario, and

the coeffi cient of risk aversion is backed out as 8.59 with the same disaster probability4.

5.2 Earthquake Fatality

Catastrophic earthquak incurs very large loss and fatality, so a precise estimate of its (right) tail

behavior is important from the perspective of insurance and macroeconomic policy. However,

the observations might be truncated due to complicated reasons such as physical limitation and

measurement inaccuracy (Burroughs and Tebbens (2001, 2002) and Clark (2013)). In this section,

we apply our method for estimating high quantiles with possibly truncated data to the dataset of

earthquake fatalities provided by the U.S. Geological Survey, which was also investigated in Beirlant,

Alves, and Gomes (2016) and Zou, Davis, and Samorodnitsky (2017). The dataset contains the

fatality information of 125 earthquakes causing 1,000 or more deaths from 1900 to 2014.

Given the small sample size, our Monte Carlo suggests that our fixed-k asymptotics works well

for k less than or equal to 20 for the DGP examined in the previous section and hence we choose

k = 20. Beirlant, Alves, and Gomes (2016) estimate the truncation value to be slightly above the

sample maximum, so we consider at most the top 1−1/n proportion of the underlying distribution

is truncated (h̄ = 1). Table 8 depicts the estimate of 1− h/n quantiles of earthquake fatalily with
h = 0.5 and 5, corresponding to 99.6% and 96% percentiles, respectively.

The fixed-k approach delivers substantially different estimates than the Truncated Pareto ap-

proach (TP-WH) proposed by Beirlant, Alves, and Gomes (2016). Two possible explanations are as

follows. First, Clark (2013) suggests that the tail index can be 0 or negative, indicating a bounded

support. This is ruled out by the TP-WH approach, indicating a possible source of bias. Second,

the TP-WH method tends to underestimate the quantile as suggested in Table 4 in the Monte

Carlo section. Since we are in the very extreme quantile, a small underestimate in terms of h leads

to a substantive underestimate in the level.
4Allowing the possible truncation leads to very small change in the disaster probability.
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Table 8: Estimates of 1-h/n Quantile of the Earthquake Fataliy
h = 0.5 h = 5

Method fixed-k TP-WH fixed-k TP-WH
Estimate 1267 316 243 67.1

Note: Data source: http://earthquake.usgs.gov/earthquakes/world/world_deaths.php. See the main text

for a description of the two methods.

6 Concluding Remarks

This paper develops a fixed-k approach to estimate tail properties including the tail index, extreme

quantile, and tail conditional expectation. The new approach is specially designed for the small

sample senario in which existing methods may exhibit substantive bias. The asymptotic validity of

the new approach relies on the widely assumed regular variation condition and the extreme value

theorem. In particular, this assumption implies that only a fixed number of the largest observations

are assumed to stem from the tail, which is more robust and suitable for very small samples.

Furthermore, the fixed-k estimator is constructed to have several attractive properties: (quan-

tile) unbiasedness, invariance/equivariance to location and scale, robustness to deviation from

Pareto distribution, and optimality in a well-defined sense. This cost of achieving these advantages

is a higher risk, measured by the mean standard error or the mean absolute deviation, indicating

the diffi culty of obtaining a precise estimate with few tail observations.

A final remark about the fixed-k approach is on the determination of k, which has been widely

considered as a challenging question. In principle, there cannot exist a procedure that consistently

determines if a certain k is appropriate. As long as we believe the upper k order statistics are

approximately drawn from the tail instead of the central part, capturing the dependence structure

among these large order statistics by the joint extreme value distribution works better than treating

the exceedances as independent Pareto draws. In practice, we may present the results with varying

choices of k or combine with other algorithms to choose k based on higher order assumptions (see,

for example, Hall (1982)).

Appendix

A.1 Computational Details

The estimators defined in (9), (10), (11), and (14) , and require evaluation of some expecta-

tions. Define Γ (·) as the Gamma function, Γ (a, z) =
∫∞
z ta−1e−tdt as the incomplete Gamma

function, and b0(ξ) = −1/ξ for ξ < 0, and b(ξ) = ∞ otherwise. Also define e (Xs, s) =
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exp
(
−(1 + 1/ξ)

∑k
i=1 log(1 + ξxsis)

)
. Use the expression for fX|ξ below (3). Then for a positive

Q̂ (Xs), some calculation yields the following expressions.

1. For the complete data case, the density of Xs is

fXs|ξ (Xs) = Γ (k)

∫ b0(ξ)

0
sk−2e (Xs, s) ds.

The asymptotic bias terms read

Eξ[
∣∣∣(X1 −Xk) Q̂ (Xs) +Xk − q (ξ, h)

∣∣∣ |Xs]fXs|ξ (Xs)

= Γ (k + 1)

∫ b0(ξ)

0

(
1 + ξsQ̂ (Xs)

)−1/ξ
sk−2e (Xs, s) ds

and

Eξ

[
(X1 −Xk) T̂ (Xs) +Xk − τ (ξ, h) |Xs

]
fXs|ξ (Xs)

= T̂ (Xs) Γ (k − ξ)
∫ b0(ξ)

0
sk−1e (Xs, s) ds

+

(
Γ (k − ξ)− Γ (k)

ξ
− τ (ξ, h) Γ (k)

)∫ b0(ξ)

0
sk−2e (Xs, s) ds.

The risk terms read

Eξ[
∣∣∣(X1 −Xk) Q̂ (Xs) +Xk − q (ξ, h)

∣∣∣ |Xs]fXs|ξ (Xs)

= |ξ|−1
∫ b0(ξ)

0
g (s) sk−2e (Xs, s) ds

where for a (s) = 1 + sξQ̂ (Xs)

g (s) =


(

−h−ξ(Γ[k]− 2Γ[k, a (s)1/ξ h])

+a (s) (Γ[k − ξ]− 2Γ[k − ξ, a (s)1/ξ h])

)
if a (s) > 0(

h−ξΓ[k]− a (s) Γ[k − ξ]
)

otherwise,

and

Eξ

[∣∣∣(X1 −Xk) T̂ (Xs) +Xk − τ (ξ, h)
∣∣∣ |Xs

]
fXs

= |ξ|−1
∫ b0(ξ)

0
g̃ (s) sk−2e (Xs, s) ds
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where for a (s) = 1 + sξT̂ (Xs)

g̃ (s) =


(

−h−ξ

1−ξ (Γ[k]− 2Γ[k, a (s)1/ξ h (1− ξ)1/ξ])

+a (s) (Γ[k − ξ]− 2Γ[k − ξ, a (s)1/ξ h (1− ξ)1/ξ])

)
if a (s) > 0(

h−ξ

1−ξΓ[k]− a (s) Γ[k − ξ]
)

otherwise.

2. For the censored data case, define e (Xs
m, s) in same way as e (Xs, s). The density of Xs

m is

fXsm|ξ (Xs
m) =

Γ (k +m)

m!

∫ b0(ξ)

sk−2 exp

(
−m
ξ

log (1 + ξs)

)
e (Xs

m, s) ds.

The asymptotic bias term reads

Eξ

[(
1 + ξ

(
(Xm+1 −Xm+k) Q̂ (Xs

m) +Xm+k

))−1/ξ
|Xs

m

]
fXsm|ξ (Xs

m)

=
Γ (m+ k + 1)

m!

∫ b0(ξ)

0

(
1 + ξsQ̂ (Xs)

)−1/ξ
sk−2 exp

(
−m
ξ

log (1 + ξs)

)
e (Xs

m, s) ds

and the asymptotic risk term reads

Eξ[
∣∣∣(Xm+1 −Xm+k) Q̂ (Xs

m) +Xm+k − q (ξ, h)
∣∣∣ |Xs

m]fXsm|ξ (Xs
m)

=
1

m! |ξ|

∫ b0(ξ)

0
g (k, h, ξ, s) exp

(
−m
ξ

log (1 + ξs)

)
e (Xs

m, s) s
k−2ds

where for a (s) =
(

1 + sξQ̂ (xs)
)
,

g (s) =


(

−h−ξ(Γ[k +m]− 2Γ[k +m, a (s)1/ξ h])

+a (s) (Γ[k +m− ξ]− 2Γ[k +m− ξ, a (s)1/ξ h])

)
if a (s) > 0(

h−ξΓ[k +m]− a (s) Γ[k +m− ξ]
)

otherwise.

3. For the truncated data case, define e
(
X̃s, s

)
in the same way as e (Xs, s). The density of

X̃s is

f
X̃s|ξ,h̃

(
X̃s
)

= exp
(
h̃
)∫ b0(ξ)

0
Γ
(
k, h̃ (1 + ξs)1/ξ

)
sk−2e

(
X̃s, s

)
ds.

The asymptotic bias term reads

Eξ,h̃

[(
1 + ξ

((
X̃1 − X̃k

)
Q̂
(
X̃s
)

+ X̃k

))−1/ξ
|X̃s

]
f
X̃s|ξ,h̃

(
X̃s
)

= exp
(
h̃
)∫ b0(ξ)

0
Γ
(
k + 1, h̃ (1 + ξs)1/ξ

)(
1 + ξsQ̂

(
X̃s
))−1/ξ

sk−2e
(
X̃s, s

)
ds
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and the asymptotic risk term reads

Eξ,h̃[
∣∣∣(X̃1 − X̃k

)
Q̂
(
X̃s
)

+ X̃k − q (ξ, h)
∣∣∣ |X̃s]f

X̃s|ξ,h̃

(
X̃s
)

= exp
(
h̃
)
|ξ|−2

∫ b0(ξ)

0
g (k, h, ξ, s) e

(
X̃s, s

)
sk−2ds

where for a (s) = 1 + sξQ̂
(
X̃s
)

g (k, h, ξ, s)

=


ξ
(
−h−ξ(Γ[k, h̃ (1 + ξs)1/ξ]− 2Γ[k, a (s)1/ξ h]) + a (s) (Γ[k − ξ, h̃ (1 + ξs)1/ξ]− 2Γ[k − ξ, a (s)1/ξ h])

)
if ξ > 0, a (s) > h−ξ (1 + ξs) /h̃−ξ or ξ < 0, 0 < a (s) < h−ξ (1 + ξs) /h̃−ξ

ξ
(
h−ξΓ[k, h̃ (1 + ξs)1/ξ]− a (s) (Γ[k − ξ, h̃ (1 + ξs)1/ξ])

)
if ξ > 0, 0 < a (s) < h−ξ (1 + ξs) /h̃−ξ or ξ < 0, a (s) < 0 or ξ < 0, a (s) > h−ξ (1 + ξs) /h̃−ξ.

We evaluate these by numerical quadrature.

To determine the suitable Lagrangian multipliers λ λm and λ̃ for estimating extreme quantile

and TCE, we follow the algorithm suggested by Müller and Wang (2015). For the complete and

censored data case, we restrict λ to be discrete distributions with support on Ξ = {−1/2,−1/2 +

1/19, . . . , 1/2}, and determine the 20 point masses by fixed-point iterations based on importance
sample Monte Carlo estimates of bias. In particular, we simulate the biases with 5,000 i.i.d. draws

from a proposal with ξ randomly drawn from Ξ, and iteratively increase or decrease the 20 point

masses on Ξ as a function of whether the (estimated) bias given that value of ξ is larger or smaller

than zero. Stop this iteration until the bias for all values ξ is smaller than a prespecified tolerance

ε, and then the resulting discrete distribution is a candidate for the Lagrangian multiplier. The

tolerance is set to be 0.03. A smaller tolerance can be used at the cost of more Monte Carlo

draws and a longer computation time. Regarding the data truncation model, we take Ξ × H =

{−1/2,−1/2 + 1/9, . . . , 1/2}×{0, 0.5, 1.0, 1.5, 2.0} and compute the Lagrangian multipliers on this
10 × 5 grid with the tolerance set to be 0.05 for h = 0.5 and 0.15 for h = 5. For the weighting

function W , we simply use a uniform weight on Ξ in the complete and censoring models, and use

the uniform weight on Ξ product a weight proportional to exp
(
h̃
)
on H for the truncated data

model. Note that the choice of ξ ≤ 1/2 covers all the distributions with a finite second moment,

and that our approach can be easily extended to cover larger range of ξ. See Müller and Wang

(2015) for more details about the properties and implementation of this algorithm.

For any given k, h, and m, the Lagrangian multipliers only need to be determined once.

Conditional on them, the estimator is readily computed from (9), (10), and (11). The tables

of the Lagrangian multipliers and the corresponding Matlab code are provided on our website:

https://sites.google.com/site/yulongwanghome/.
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To estimate ξ, given most empirical applications involve data with infinite support and finite

expecation, we take Ξ to be [0, 1], which can be easily extended to any subset of R. RegardingW (·),
we again choose a uniform weight which can be treated as a flat prior from a Bayesian perspective.

The numerical solution is based on descritizing Ξ into {1/100, 2/100, ..., 1}. By continuity, the
estimator constructed in (14) is asymptotically median unbiased up to only Monte Carlo accuracy.

A.2 Data with Known Censoring or Truncation Value

In the censored data case, if the censoring value is also observed, we may still consider the maximal

invariant statistic introduced in Section 2.2. Given the censoring value, denoted by c, is between

Y(m) and Y(m+1), we can model it as
(
Y(m+1) − Y(m+k)

)
t+ Y(m+k) for t > 1, and derive(

Y(1) − Y(m+k)

Y(m+1) − Y(m+k)
, ...,

Y(m+1) − Y(m+k)

Y(m+1) − Y(m+k)

)
⇒ Ẋs

where Ẋs
i ≥ t =

c−Y(m+k)
Y(m+1)−Y(m+k) > 1 for i ≤ m and Ẋs

i ∈ [0, 1] for i > m. The density of

Ẋs
m =

(
Ẋs
m+1, ..., Ẋ

s
m+k

)
can be derived as follows

fẊsm|ξ

(
Ẋs
m

)
=

∫
...

∫
Ẋs
1≥Ẋs

2≥...Ẋs
m≥t

fẊs|ξ

(
Ẋs
)(

dẊs
1 ...dẊ

s
m

)
= Γ (m+ k)

∫ b0(ξ)

0

sk−2

m!
(1 + ξts)−m/ξ e

(
Ẋs
m, s

)
ds,

where e
(
Ẋs
m, s

)
is defined in the same way as e(Xs, s) in the previous section, and then the

asymptotic bias and risk can be derived in a similar fashion.

In the truncated data case with a known truncation value c, we can model c = Q
(
F, 1− h̃/n

)
for some unknown h̃ since the quantile function Q (·) is unknown (and not easy to estimate).
Consider (

Y(1) − Y(k)

c− Y(k)
, ...,

Y(k) − Y(k)

c− Y(k)

)

⇒ X̃s (c) =

 X̃1 − X̃k

q
(
ξ, h̃
)
− X̃k

, ...,
X̃k − X̃k

q
(
ξ, h̃
)
− X̃k

 .

Given the density of X̃ remains the same as stated in Lemma 1, the density of X̃s (c) can be derived
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by change of variable as

f
X̃s(c)|ξ,h̃

(
X̃s (c)

)
= exp

(
h̃
)∫ b1(ξ)

0
Γ
(
k, h̃ (1 + ξs)1/ξ

)
sk−2e

(
X̃s, s

)
ds

where b1 (ξ) = ∞ if ξ > 0 and −1/
(
ξX̃s

1 (c)
)
if ξ < 0, and similarly for the asymptotic bias and

risk.

A.3 Proof

Proof of Lemma 1. Given the CDF (3), it is equivalent to show that(
Y(1) − bn

an
, ...,

Y(k) − bn
an

)

⇒


(
h̃+ E∗1

)−ξ
− 1

ξ
,

(
h̃+ E∗1 + E∗2

)−ξ
− 1

ξ
, ...,

(
h̃+ E∗1 + E∗2 + · · ·+ E∗k

)−ξ
− 1

ξ


where E∗1 , ..., E

∗
k are i.i.d. standard exponentials, and (x−ξ − 1)/ξ is intepreted as − log (x) if

ξ = 0. To show this, denote F c (·) as the truncated CDF by Q
(
F, 1− h̃/n

)
, that is, F c (x) =

F (x) /
(

1− h̃/n
)
for x ≤ Q

(
F, 1− h̃/n

)
. Define U (t) = F−1 (1− 1/t) and similarly for U c (t).

Then (
Y(1), ..., Y(k)

) d
=

(
U c
(

1

1− e−E1,n

)
, U c

(
1

1− e−E2,n

)
, ..., U c

(
1

1− e−Ek,n

))
where E1,n...Ek,n are order statistics of n i.i.d. standard exponentials. Note that U c

(
1

1−e−E1,n

)
=

U

(
1

1−(1−h̃/n)e−E1,n

)
. Then the proof follows from the same argument of Theorem 2.1.1 of de Haan

and Ferreira (2007) and the fact that n
(

1−
(

1− h̃/n
)

exp (−x/n)
)
→ x+ h̃.

Proof of Theorem 1. For notational ease, we prove the theorem without the autoregression

part, i.e., assuming φ1 = ... = φp̃ = µ̄ = 0. The proof with it follows the same logic with

more tedious algebra, and is hence omitted. We start with the simplest GARCH(1,1) case, i.e.,

σ2
t = α0 + α1y

2
t−1 + βσ2

t−1. By iteration, we have σ
2
t =

∑t−1
l=0 β

l(α0 + α1y
2
t−1) and plugging in the

PML estimator, denoted as
(
α̂0, α̂1, β̂

)
, of the coeffi cients leads to an estimator of σ̂2

t , that is,

σ̂2
t =

∑t−1
l=0 β̂

l
(α̂0 + α̂1y

2
t−1).

Note that

sup
0≤w
| â+ wb̂

a+ wb
− 1| ≤ max(|a− â|, |b− b̂|)

min(a, b)
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sup
0≤w
| âĉ+ wb̂

ac+ wb
− 1| ≤ max(|ac− âĉ|, |b− b̂|)

min(ac, b)

≤ max(a|c− ĉ|, c|a− â|, |c− ĉ| · |a− â|, |b− b̂|)
min(ac, b)

since

ac− âĉ = a(c− ĉ+ ĉ)− âĉ
= a(c− ĉ) + ĉ(a− â)

= a(c− ĉ) + (ĉ− c+ c)(a− â)

= a(c− ĉ) + c(a− â) + (ĉ− c)(a− â).

Thus, by repeated applications of these inequalities, we have

sup
y2t−1

| σ̂
2
t

σ2
t

− 1| ≤ max(β|α0 − α̂0|, β|α1 − α̂1|,max(α1, α0) supl |βl − β̂
l|)

α0

which converges to zero in probability by consistency of the PML estimator and α0 > 0.

Thus, supt |σ̂2
t /σ

2
t − 1| p→ 0, and also supt |σ̂t/σt − 1| p→ 0. Let Yt = Zt/σt and Ŷt = Zt/σ̂t, so

that Ŷt = Ytσt/σ̂t. Then these results also imply supt |Ŷt/Yt − 1| p→ 0. Now suppose Yt satisfies

(4), that is, (
Y(1) − bn

an
, ...,

Y(k) − bn
an

)
⇒ X

where X is jointly extreme value distributed as below (4). Let I = (I1, . . . , Ik) ∈ {1, . . . , T}k be
the k random indices such that Yn:n−j+1 = YIj , j = 1, . . . , k, and let Î be the corresponding indices

such that Ŷn:n−j+1 = ŶÎj . We claim that I − Î p→ 0. Suppose otherwise, then (4) implies that

supt |Ŷt/Yt − 1| is not op(an). This contradicts supt |Ŷt/Yt − 1| p→ 0 (since an →∞).
Thus, (

ŶÎ1 − bn
an

, ...,
ŶÎk − bn
an

)

=

(
ŶI1 − bn
an

, ...,
ŶIk − bn
an

)
+ op(1)

= diag(
σI1
σ̂I1

, . . . ,
σIk
σ̂Ik

)

(
YI1σI1/σ̂I1 − bn

an
, ...,

YIkσIk/σ̂Ik − bn
an

)′
+ op(1)

⇒ X
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by the Slutzky’s theorem.

Now for GARCH(p, q) model, we have σ2
t = α0 +

∑q
i=1 αiy

2
t−i +

∑p
i=1 βiσ

2
t−i with α0 > 0,

αi ≥ 0, βi ≥ 0 and
∑p

i=1 βi < 1.

Let B(x) = 1 − β1x − β2x
2−, ...,−βpxp and A(x) = α1x + α2x

2+, ...,+αqx
q, then we have

B(L)σ2
t = α0 +A(L)y2

t

sup
y2t−1,...,y

2
t−q

∣∣∣∣ σ̂2
t

σ2
t

− 1

∣∣∣∣ ≤ sup
y2t−1,...,y

2
t−q

1

a0

∣∣∣α̂0B̂
−1(1)− α0B

−1(1) +
(
Â(L)B̂−1(L)−A(L)B−1(L)

)
y2
t

∣∣∣
≤ 1

a0

∣∣∣α̂0B̂
−1(1)− α0B

−1(1)
∣∣∣+ sup

y2t−1,...,y
2
t−q

1

a0

∣∣∣(Â(L)B̂−1(L)−A(L)B−1(L)
)
y2
t

∣∣∣
≤

∣∣∣B̂−1(1)−B−1(1)
∣∣∣+

B̂−1(1)

α0
|α̂0 − α0|

+ sup
y2t−1,...,y

2
t−q

1

a0

∣∣∣(Â(L)B̂−1(L)−A(L)B−1(L)
)
y2
t

∣∣∣
≤ op(1) +

(maxi α̂i)

a0
sup

y2t−1,...,y
2
t−q

∣∣∣(B̂−1(L)−B−1(L)
)
y2
t

∣∣∣
+

(
maxB−1(L)

)
a0

sup
y2t−1,...,y

2
t−q

∣∣∣(Â(L)−A(L)
)
y2
t

∣∣∣
= op(1)

where B−1(L) = 1
B(L) =

∑∞
j=1 bjL

j with coeffi cients bj decaying exponentially fast andmaxB−1(L)

denotes the maximum of {b1, b2, ...}. In the last inequality, we implicitly use the fact that the
consistency of B̂ implies the consistency of B̂−1. Then the rest of proof is the same as in the

GARCH(1,1) case.
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