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Abstract

This paper considers the role of sector-specific growth shocks as major sources

of cross-sector comovement in the business cycle. The dominant sectors are

identified according to the number of factors detected in the residuals after treat-

ing the production growth in some candidate sectors as observed factors. We

build on the properties of the principal component method and analytically show

this approach can consistently identify the dominant units (sectors) in a large

panel data set even if the assumption of strongly influential factors is moderately

relaxed. We provide empirical evidence that growth in a few industrial sectors

in the US provide suitable approximations for an unknown common factor. Us-

ing data on the intersectoral material input-outputs and the cross-sector capital

flows, we find that the dominant sectors have an important role as suppliers of

capital products to other sectors.
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1 Introduction

Comovement across sectors in an economy is one of the striking features of the

business cycle. This feature appears in large pairwise correlation between the

sectoral growth rates in terms of output, value added, and employment. Shea

(2002) finds an average correlation of 0.28 using annual growth rate of gross

output for 126 industries in the US over the period 1960 to 1986. Even larger

correlation is found using data on employment. Other studies report similar

results such as Long and Plosser (1987), Foerster, Sarte, and Watson (2011), and

Carvalho (2014).

One approach to explaining intersectoral comovement relies on factor model

analysis, where it is assumed that a few common shocks account for a large

portion of comovement across sectors. Comparison of sectoral versus aggregate

shocks have been provided by Long and Plosser (1987), Shea (2002), and Foer-

ster et al. (2011). A common finding is that the idiosyncratic shocks to sectors

have important roles in explaining overall movements, where it is shown that

around 50% of overall variability in the US is attributable to the sector-specific

shocks in some periods. Another strand of literature considers propagation of

shocks due to intersectoral complementarities (e.g. Long and Plosser (1983);

Horvath (1998); Dupor (1999)). These studies create multisector general equi-

librium models, where production technology of a sector (or a firm) is linked to

other sectors through input-output interactions. Complementarity creates inter-

sectoral linkages transmitting growth disturbances to downstream and upstream

sectors. Sequential shocks propagation might lead to widespread comovement,

and in turn to substantial aggregate variability. A common finding among these

studies is that the extent of shock propagation depends on structure of the cross-

sector linkages. The sectors which have a larger number of trading partners

have more important roles in spreading aggregate and idiosyncratic disturbances
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throughout the model. A link between these two strands of literature is provided

by Foerster et al. (2011). In this paper, we view sector-specific shocks as po-

tential sources of overall comovement, and our goal is to identify the dominant

sectors whose growth disturbances act as common macroeconomic shocks.

The concept of micro shocks acting as sources of macroeconomic variabil-

ity was originally established by Jovanovic (1987), and Durlauf (1993). In the

presence of intersectoral complementarity, the sectors sharing linkages tend to

comove. If the optimal decisions of the firms is to form linkages with a partic-

ular firm A, which might be a producer of a broadly used capital product or a

general purpose material, we would expect strong comovement among all the

firms with the source of comovement being attributable to the shocks to firm A.

Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi (2012) elaborate on the role

of structure of the linkages as a transmission mechanism, and argue that micro

shocks would have nontrivial contributions if they come from the firms having

considerably more important roles as suppliers of inputs to others. The authors

provide empirical evidence for the presence of such substantial asymmetries in

favor of their argument.1 Similar evidence is presented by Carvalho (2014).

We focus on identification of the dominant sectors. We do not impose any

structure on the intersectoral interactions implied for example from the input-

output linkages. Instead, we view the presence of a few unknown common

factors as a starting point, and build our analysis on the statistical factor model

analysis. From the literature on the principal component estimator, we know that

number of aggregate shocks and the space spanned by them can be consistently

estimated when the number of cross-section units (N) and time series observa-

tions (T) jointly go to infinity (N,T → ∞).2 To identify the dominant sectors,
1Gabaix (2011) focuses on size of the firms in an economy and develops the hypothesis that idiosyn-

cratic shocks to large firms would have nontrivial contributions to aggregate fluctuations. The author
provides empirical evidence that a weighted average of idiosyncratic shocks to the top US firms explain
around one-third of fluctuations in the GDP growth.

2The properties of the principal component estimator are discussed in detail by Stock and Watson
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we use the approach from Parker and Sul (2015) (henceforth, PS). In particular,

production growth of a candidate sector is treated as an observed common fac-

tor. Including the candidate variables into the factor model, we can identify the

dominant sectors according to number of factors estimated in the residuals. If a

candidate sector is indeed dominant, the production growth in this sector covers

the space of an underlying factor, which leads to a reduction in the number of

factors in the residuals. In Section 2, we provide definition of a dominant sector

and review the PS approach.

Dominance of a unit (sector) as defined by PS relates to factor analysis and

the concept of unknown common factors or diffuse indexes which are usually

meant to explain statistical properties of panel data sets. As opposed to a sta-

tistical factor model, a model of production network incorporates the observed

input-output linkages across sectors and uses the network techniques to discuss

the distinguishing properties of the sectors or firms. In Section 3, we build on

this literature and provide a link between dominance of a sector and its network

centrality. The outdegree centrality is considered which provides a measure of

sectors centrality consistent with our factor analysis. Starting from the solution

of a multisector general equilibrium model (Acemoglu et al. (2012), and Holly

and Petrella (2012)), we obtain a factor model representation as a reduced form

of the model which features the growth in the most central sectors acting as

common factors.

In factor analysis and principal component estimation, it is usually assumed

that the factors are common and potentially affect all the cross-sectional units in

the data set. This feature together with the assumption that there is limited de-

pendency left among the idiosyncratic errors ensure consistency of the estimator.

In Section 4, we deviate from such a common factor structure and analytically

assess consistency of the PS approach under different degree of factors influence.

(1998), Bai and Ng (2002), and Bai (2003), among others.
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The contribution of this section is motivated by the fact that the principal compo-

nent method becomes less reliable or even inconsistent as dominance of factors

relative to the idiosyncratic error reduces (Boivin and Ng (2006), and Onatski

(2012)). To weaken the assumption of commonness of factors, we closely fol-

low Kapetanios and Marcellino (2010) who use an analytically appealing way to

incorporate less-than-strong factors to track the implication of different degree

of factor influence on the principal component method.3 The analysis proceeds

in two steps. In the first step, it is shown that the principal component method

remains consistent for each time t under a mild deviation from the case of com-

mon factors. Under this setting, the second step provides the conditions required

to consistently identify the dominant units using the PS approach. A Monte

Carlo study is presented in Section 5 to assess small sample properties of the

identification approach following the analytical analysis.

Section 6 presents our empirical work, where the dominant sectors in the

US are identified using the data set from Foerster et al. (2011). The data set

contains disaggregated data on sectoral industrial production in the period cov-

ering 1972 to 2007. Two common shocks are detected among production growth

rates. Our findings are as follows. We provide evidence that one of these com-

mon shocks is attributable to the shocks arising in a few sectors, including the

heavy machinery industries, while the other one appears external to the model.

This data set excludes some service sectors like financial industry. The latter

shock could be attributable to the shocks arising in these industries or another

aggregate shock, such as monetary policy affecting demand for durable goods.

In addition, we show the dominant sectors mostly have important role as sup-

pliers of capital products to others. Adopting a network perspective, this result

is implied from centrality analysis of two tables of input-output linkages; in-
3See Chudik, Pesaran, and Tosetti (2011) for an elaboration on factor influence and definitions of

strong and weak factors.
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tersectoral material purchases and cross-sector capital flows. Furthermore, we

show the growth rate of the sectors whose higher centrality is implied from the

table of capital flows tend to have more significant relations with the other sec-

toral growth rates in comparison to those implied from the table of intersectoral

material input-outputs.

A brief note on notation. We use ’hat’ to present the least squares estimates

and ’tilde’ to present the principal component estimates. We use K as a generic

finite number which is independent of N and T, and CNT = min{
√

N,
√

T} is an

important divergence rate as N,T → ∞. ||A||=
√

tr(A′A) is the Frobenius norm

of the matrix A. Let ρ1(A) > ρ2(A) > · · · > ρr(A) denote absolute value of the

first r eigenvalues of A in descending order with ρ1(A) being the spectral radius,

and ||A||2=
√

ρ1(A′A) denotes the spectral norm of A. an = O(bn) states that

the sequence {an} is at most of order bn, and xn = Op(yn) states that the random

variable xn is at most of order yn in probability. Convergence in probability is

denoted by
p→.

2 Factor Model and Review of the PS Approach

To elaborate on the PS approach to identification of dominant sectors, we begin

with defining a static approximate factor model for sectoral growth rates. Let xit

denote the ith sector’s production grow rate, for i = 1, ...,N and t = 1, ...,T . We

assume the underlying data generating process is a r-factor model

xt = Λ ft + et , (1)

where xt = (x1t , ...,xNt)
′, ft is a r× 1 vector of unknown factors, Λ is the N × r

matrix of factor loadings, and et contains the idiosyncratic errors. The ith row

of xt , Λ ft , and et give the process of the ith sector’s production growth rate as
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xit = λ ′
i ft + eit with λ ′

i ft being the common component of sector i. We also use

the matrix form of the model

X = FΛ
′+ e, (2)

where X = (x1, ...,xT )
′ is the T × N matrix of all observations in our panel

data set, F = ( f1, ..., fT )
′, and e = (e1, ...,eT )

′. Here, ft is unknown, and poten-

tially attributable to growth disturbances of some sectors. Our goal is to identify

these sectors.

Our model assumptions are as follows.

Assumption FM1 (Factors): E(|| ft ||4)≤ K < ∞, and F ′F/T
p→ Σ f where Σ f

is a full rank matrix.

Assumption FM2 (Loadings): λi is deterministic such that ||λi||≤ K < ∞ for

all i, and Λ′Λ/N → ΣΛ where ΣΛ is a full rank matrix.

Assumption FM3 (Weakly dependent idiosyncratic errors): For all N and

T; (i) E(eit) = 0 and E(|eit |8) ≤ K < ∞. (ii) Let E(eite js) = τi j,ts, |τi j,ts|≤ τi j

for all (t,s), and |τi j,ts|≤ τts for all (i,j); 1
N ∑

N
i, j=1 τi j ≤ K, 1

T ∑
T
t,s=1 τts ≤ K, and

1
NT ∑i, j,t,s=1|τi j,ts|≤ K. (iii) E|N−1/2

∑
N
i=1(eiseit −E(eiseit))|4≤ K for all (t,s).

Assumption FM4 (Weak dependence between factors and idiosyncratic er-

rors, and moment conditions): (i) E
(
N−1

∑
N
i=1||T−1/2

∑
T
t=1 fteit ||2

)
≤ K for all i.

(ii) E||(NT )−1/2
∑

T
s=1 ∑

N
i=1 fs[eiseit −E(eiseit)]||2≤K for all t. (iii) E||(NT )−1/2×

∑
T
s=1 ∑

N
i=1 fsλ

′
i eit ||2≤ K.

Assumptions FM1-4 are similar to the assumptions of Bai (2003). According
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to Assumptions FM1-2, there are r common factors. Assumption FM2 ensures

that Λ is full column rank, and the number of nonzero elements in each of its

columns is proportional to N as indicated by convergence of Λ′Λ/N to a full rank

matrix. Assumptions FM3 and FM4 respectively allow for limited dependence

in eit across i and t, and limited dependence between the factors and the idiosyn-

cratic errors. These assumptions let the model deviate from a classical factor

model which assumes ft and eit are i.i.d. to the extent that some moment condi-

tions which hold under a classical factor model, still hold. More particularly, the

model (2) has the sample covariance structure (divided additionally by N)

X ′X
NT

=
ΛF ′FΛ′

NT
+

ΛF ′e+ e′FΛ

NT
+

e′e
NT

.

Under Assumptions FM1-2, ΛF ′FΛ′/NT has always r nonzero eigenvalues. In

contrast, the eigenvalues of (ΛF ′e+e′FΛ)/NT and e′e/NT would be diminish-

ing at a suitable rate as N,T → ∞. These results hold similarly to a classical

factor model despite allowing for weak dependence in e and weak dependence

between F and e. Thus, the contribution of the common component in variance

of xt substantially dominates that of idiosyncratic errors when N and T are large.

These features let us estimate r and F using simple approaches.

We here use the principal component method. The method minimizes the

average sum of squared errors

V (r) = min
F,Λ

1
NT

N

∑
i=1

T

∑
t=1

(
xit −λ

′
i ft
)2
, (3)

to estimate F and Λ. Using the normalization F ′F/T = Ir where Ir is a r × r

identity matrix, the estimate of matrix of the factors, F̃ , is
√

T times the first

r eigenvectors of the T ×T matrix XX ′/NT , and the estimate of matrix of the

loadings is Λ̃ = X ′F̃(F̃ ′F̃)−1 = X ′F̃/T . If we treat V (k) as a function of k for

k = 0, ...,rmax such that k is the number of principal components included to
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obtain residuals, we can estimate r using the IC criteria from Bai and Ng (2002).

In particular, r can be estimated by minimizing the following criterion

IC2(k) = log(V (k))+ k
(

N +T
NT

)
log(min{N,T}),

with the penalty term given by the second term.4 Let r̂ = argmin0≤k≤rmax IC2(k).

Then, r̂ equals r with a probability approaching one as N,T → ∞.

To describe the factors which are attributable to the production growth rates

of sectors, we need to define precisely a dominant sector. Following PS, an in-

dividual unit (sector) is dominant if its variable provides an approximation for a

factor. This approximation can be defined in terms of an approximate dominant

leader (ADL)

Definition of Approximate Dominant Leader (ADL): Sector i is an ADL for the

true factor l, flt , if and only if flt = xit + olit , such that olit = ν lit/
√

T with

Var(νlit) = σli ≤ K for all (l, i).

In particular, xi is an approximation for fl when it is not asymptotically distin-

guishable from it when T → ∞. Including the term olit allows xit to deviate from

f jt for some periods.

Suppose ft can be divided in terms of a r1 × 1 vector which are attributable

to ADLs, and a r2 × 1 vector of the common factors having external sources,

where r = r1 + r2. Notice according to the definition of an ADL, there might

be more than one xit for i = 1, ...,N which are approximations for single factor l

since each variable is allowed to deviate from the true factor in a limited way. We

elaborate on this issue later. For now, suppose the first sector in the panel data set

is the only ADL in the model which corresponds to f1t such that f1t = x1t +o11t ,
4We here focus on IC2 which shows a good small sample performance.
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and f−1t is the (r − 1)× 1 vector of the other factors. Inserting x1t in (1), we

obtain

xt = Λ1x1t +Λ2 f−1t + errort , (4)

where Λ1 and Λ2 are the corresponding matrices of loadings, and

errort = Λ1o1t + et

contains the new idiosyncratic errors. Introduction of the approximation errors

does not affect the distinguishable behavior of the first and the remaining eigen-

values of X ′X/NT for large N and T , which is ensured by their diminishing

behavior as T increases, i.e. olit = Op(T−1/2).

The key to identification of ADLs is that ft , properly scaled, is consistently

estimated by f̃t at each time t as shown by Bai (2003). The estimation error of the

principal component method for the unobserved ft is asymptotically negligible.

Nevertheless, ft is identified from f̃t up to scale. This can be seen by noting that

ft and λi are not separately identified since (λ ′
i M−1M ft) creates an equivalent

model for the same observations by any invertible matrix M.

To assess whether any xit is an approximation for a true factor we use the

PS approach. The approach looks into xits one at a time, and includes a single

variable, say x1t , together with a vector of (r−1) principal components into the

model (4). Retrieving the least squares residuals, whether x1t is an ADL or not

is implied according to the number of factors in the residuals. If the variable is

an ADL, there is at least one (r− 1) combination of the principal components

which can together with x1t , spans the space of common factors. Thus, zero

factors will be detected using IC2.

To summarize, the ADLs can be identified from the following steps

10



1. Estimate r and use the principal component method to obtain f̃t .

2. For a given r, consider a set of m candidate sectors with the variable set{
x jt : j ∈ I

}
where I is the set of the sectors. Do the following steps for

each j.

- Consider r vectors containing the principal components f̃−kt , for k =

1, ...,r, where f̃−kt corresponds to f̃t excluding its kth element. For

each combination {x jt , f̃−kt}, estimate the residuals in the following

regression

xt = β jkx jt +Λ
?
jk f̃−kt + e?jkt , (5)

where β jk and Λ?
jk are the coefficient matrices.

- Select x jt as an ADL if the number of factors estimated on the residu-

als from at least one of these r regressions is zero.

Some remarks:

Notice in Step 2 of the algorithm, we need a set of candidate sectors as a

starting point. In the absence of such candidates, we can use an R2-criterion,

where the variables having relatively larger explanatory power for the principal

components, would be selected as potential dominant sectors. To check if x jt

is a good candidate, we can estimate the following regression for each principal

component

f̃kt = ak jx jt +b′k j f̃−kt +η
?
k jt , f or k = 1, ...,r. (6)

If x jt is indeed a good candidate, η̂?
k jt would diminish as N,T → ∞ resulting in

a relatively higher R2. Repeating this analysis for every variable in the data set,
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we obtain m candidate series by selecting m̄ variables with the highest R2 for

each principal component, where m = r · m̄.5

Clustering of ADLs: The concept of ADLs allows production growth of a

dominant sector to deviate from a true factor for some periods. This might lead

to selection of more than one ADL corresponding to the same factor. To gain

a better understanding of how dominant sectors relate to each other and in turn

to a true factor, we can use a clustering technique. This technique looks at all

combinations of the ADLs each consisting of r growth series, and check whether

they can span the space of the factors. To elaborate on it, consider a two-factor

model and a case of four ADLs (in our empirical work discussed in Section 6,

this is the implied setting). Consider all pairs of the selected variables (there are

six pairs considering all combinations of two out of four). Including these vari-

ables as observed factors, we can put the ADLs in one or two groups according

to the following regression

xt =Cl

 xl1t

xl2t

+ζil, f or l = 1, ...,6,

where Cl is a N ×2 matrix of coefficients, and l1 and l2 are indexes of the ADLs

in the lth pair. If a factor is detected in the residuals of all six regressions, it

is implied that all four ADLs belong to a single group since their production

growth capture only the effect of one of the underlying factors. But if in some

regressions we detect a factor and in others we detect zero factors, it can be

implied that the paired sectors resulting in zero factors belong to two different

groups. Using this technique, we conclude in our model that four ADLs can be

put in a single group as there is always a factor is residuals.

In the statistical setting described so far, the ADLs are detected with a prob-
5PS suggest to set m equal to 10% of N so that there are enough candidates for the analysis.
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ability approaching one as N,T → ∞. The next section sheds more light on

dominance of a sector building on the literature on production networks.

3 Dominant Sectors in Production Networks

Centrality is a key aspect of production networks. Thinking of an economy as

a network comprising N sectors with the network matrix characterized by the

corresponding input-output matrix, the central sectors are the most important

suppliers of inputs to others, and lie at the center of propagation of technology

disturbances. In this section, we turn to a stylized structural factor model, which

provides a precise definition of the common and idiosyncratic shocks, and incor-

porates the cross-sector dependencies which are attributable to the input-output

linkages. Our goal is to provide a link between dominance of a sector as defined

before, and the concept of centrality from the network perspective. To do so,

we start with a structural model, and then, describe the network structure under

which a factor representation similar to (4) can be obtained.

The key to capturing the production growth of the dominant sectors in the

space spanned by the principal components is that there is a substantial hetero-

geneity among the dominant sectors and the others, which is reflected in the

larger contribution of ADLs in overall variability of X . This feature can be sim-

ply incorporated into a structural factor model. Suppose a structural relationship

between xt , and a vector of technology innovations, zt , is given as

xt = ΓNxt + zt , (7)

where ΓN is the N ×N matrix of the cross-sector dependencies. This matrix

contains exclusion restrictions for the equilibrium values of xit , i = 1, ...,N. In

addition, zt can be written as
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zt = BN f 2
t + εt , (8)

where f 2
t denotes the r2 ×1 vector of external common disturbances, and εt is a

vector of sector-specific technology disturbances, which are independent across i

with E(ε2
it) = σ2

i . The N × r2 coefficient matrix BN captures how f 2
t affect pro-

ductivity in individual sectors. The model (7)-(8) is a general static relationship

which admits the solutions of the multisector general equilibrium models of Ace-

moglu et al. (2012) and Holly and Petrella (2012), and furthermore, it brings in

f 2
t as common disturbances to productivity of sectors following Foerster et al.

(2011).6

More particularly, these models characterize ΓN as

ΓN = ANWN, (9)

where AN = diag(a1, ...,aN) is a diagonal matrix with ai ∈ (0,1) denoting a pa-

rameter of the ith sector production function, for i = 1, ...,N, and the N × N

matrix WN corresponds to the input-output matrix. The ijth element of WN sat-

isfies wi j ∈ [0,1] for all (i,j), and gives the share of the production of sector j in

total intermediate inputs used by sector i. As a convention, the input shares are

normalized so that they sum up to unity where ∑
N
j=1 wi j = 1 for all i.7

6Acemoglu et al. (2012) and Holly and Petrella (2012) consider a static variation of the general
equilibrium model of Long and Plosser (1983). The solution of a model of this type can be generally
cast is an autoregressive-moving-average in form of ARMA(1,1) depending on the timing of material
input delivery and whether capital is included as discussed in detail by Foerster et al. (2011).

7The production function of sector i is assumed to be Cobb-Douglas with constant returns to scale

Xit = exp(zit)(
N

∏
j=1

X
wi j
i jt )

aiL1−ai
it , f or i = 1, ...,N,

where Xit is the sector’s production, Xi jt is the amount of the products of sector j used in the production of
sector i, Lit is the amount of labor hired, and ai denotes the share of total intermediate input, such that ai ∈
(0,1). Note ∑

N
j=1 wi j = 1 ensures that the function satisfies constant returns to scale. Holly and Petrella

(2012) create their model such that their model features common factors, and εit is serially correlated
and independent across i. Acemoglu et al. (2012) focus on a network assessment of the propagation of
only εt abstracting from external common shocks, and obtain A = aIN assuming a = a1 = ...= aN where
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The matrix of cross-sector dependencies, ΓN , specifies how the sector-specific

technology disturbances, as well as, the common productivity components prop-

agate across sectors. Looking at column i of ΓN , every element amounts to

the direct influence of production growth in sector i on another sector, and

more interestingly for our analysis, the overall influence of an individual sec-

tor in the model can be measured by sum of all the elements in the column.

Based on this matrix, we can define network centrality for sectors. We focus

on the outdegree centrality which is simply defined as column-sums of ΓN .

Let cout
i (N) = ∑

N
j=1 a jw ji denote the outdegree centrality of sector i. Another

measure to capture centrality in production networks is the Katz-Bonacich cen-

trality.8 This measure relates to column-sums of RN in a reduced form of the

model (7) as

xt = RNzt , (10)

where RN = (I−ΓN)
−1. We here focus on the outdegree centrality based on ΓN ,

as opposed to RN which captures propagation of the productivity shocks. We do

so, to remain consistent with the identification approach which looks at xt rather

than the unobserved zt .

In the previous section, commonness of factors in (4) was defined according

to the following condition in Assumption FM2

1
N

 Λ′
1Λ1 Λ′

1Λ2

Λ′
2Λ1 Λ′

2Λ2

→ ΣΛ, (11)

with ΣΛ being a full rank matrix. In particular, this condition corresponds to the

case that each column of Λ has potentially N nonzero elements to ensure the

diagonal elements of N−1Λ′Λ remain nonzero for all N

IN is an identity matrix.
8See Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015).
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N−1
N

∑
i=1

λ
2
i j → τ withτ > 0forall j.

To bring a similar structure into (7) and (8), we suppose some sectors have sub-

stantially larger outdegree centrality in comparison to the others, which is re-

flected in fat-tailed behavior of the the distribution {cout
i (N), i = 1, ...,N}. Let I

be the index set of the r1 most central sectors receiving the largest outdegree cen-

trality, ΓN,I be the N×r1 matrix containing the columns of ΓN corresponding to

these sectors, and ΓN,−I be the N ×N matrix whose I columns contain zeros

and the rest of its columns are the same as those in ΓN . To incorporate these

cross-sector asymmetries, we make the following assumption on the coefficient

matrices

Assumption SM (Coefficient matrices Γ and B): For all N, (i) Let SN =

[ΓN,I ,BN] be the N × r matrix of deterministic coefficients with bounded el-

ements. SN satisfies S′NSN/N1−2α → ΣS where ΣS is a full rank matrix, and

α ∈ [0,1/2). (ii) The spectral norm of ΓN,−I satisfies ||ΓN,−I ||2< 1.

The parameter α indicates how influential the factors are in the model. It gener-

alizes the condition (11) which corresponds to α = 0, and allows the degree of

influence to vary with α such that the smaller the value of α , the greater the in-

fluence of xI ,t and f 2
t on the sectoral growth rates. As α ∈ [0,1/2), the nonzero

elements of SN (in each column) increases with N, which distinguishes the cen-

tral sectors from the others (peripheral sectors) whose limited dependencies are

particularly modeled by ||ΓN,−I ||2< 1 in second part of the assumption.

When the economy comprises a large number of sectors, the distribution of

the outdegree centrality becomes strongly fat-tailed since the centrality measure

of the most central sectors is an increasing function of N, while the others always
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share a limited number of ties among themselves and the central sectors. Note

SN has potentially N1−α nonzero elements in each of its columns according to

Assumption SM. This structure accords with the findings of various studies in

the network literature. It covers an extreme case of a star network, where there

is a node at the center sharing ties with all others, while the others have neigh-

borhood relationships only with this central node, that corresponds to α = 0 and

ΓN,−I being diagonal. In a more general case, in the presence of the central

sectors whose measures are O(N1−α) where α ∈ [0,1/2), the fat-tailed behavior

defined above accords with a scale free distribution (Pareto distribution) with a

tail parameter lying in the interval [1,2).9 The source of such network behav-

ior can be attributed to an efficient outcome of a network formation model with

distance-based utility functions, where the cost of forming a tie relative to its

benefit is in an intermediate range.10 Carvalho and Voigtländer (2014) use this

type of cost-benefit decision making for production of new innovative products,

where the producer of the new product searches for inputs among his current

suppliers and the suppliers of his own suppliers. The implication of such evolv-

ing behavior is that the producers who already have important roles in supplying

inputs are more prone to be selected as suppliers, and as they become closer in

supply chains to an increasing number of producers, their chance to be selected

by more producers grows even larger.

Consider the structural model (7)-(8) which is now written as

xt = ΓN,I xI ,t +BN f 2
t +ΓN,−I xt + εt .

Rearranging the terms and the multiplying both sides by Γ̄N = (IN −ΓN,−I )−1,

we obtain
9See Gabaix (2009) for a survey on the presence of Pareto distributions as a key feature of economic

and finance networks, and some theoretical motivations for it.
10See Chapter 6 of Jackson (2010).
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xt = Λ̄N,1xI ,t + Λ̄N,2 f 2
t +ut , (12)

where Λ̄N,1 = Γ̄NΓN,I , and Λ̄N,2 = Γ̄NBN , and ut = Γ̄Nεt . The factor model

representation (12) is obtained as a reduced form having xI ,t initially separated

from xt . It is similar to the model of the previous section since on one hand, the

error terms in ut , whose cross-section dependence is governed by Γ̄N , are weakly

dependent. This weak dependence is implied from Assumption SM.ii.11 On the

other hand, the particular arrangement of nonzero elements in the columns of SN

leads the r×1 vector ξt = [x′I ,t , f 2′
t ]′ to have dominating role relative to ut .

Our discussion elaborates on three aspects of our analysis. First, given that

the model (7)-(8) is the true model, it is expected that the dominant sectors

whose production growth act as major sources of covariation, match the cen-

tral sectors whose greater outdegree centrality is implied from the corresponding

input-output table. Second, this section refers to a stylized general equilibrium

framework focusing on the material input-output linkages. There might be other

types of intersectoral linkages such as cross-sector capital flows (Foerster et al.

(2011) and Bouakez et al. (2014)), or more probably there exists a combination

of them. The PS approach to identification of dominant sectors is based on the

statistical factor model, which is in general less restrictive than structural model
11This assumption implies convergence of the power series Γ̄N = IN +ΓN,−I +Γ2

N,−I + · · · for all N.
Notice ||ΓN,−I ||2< 1 is stronger than ρ1(ΓN,−I ) < 1 which is made in vector autoregressive (VAR)
models for covariance-stationary time series. This ensures boundedness of variance of ut in the reduced
form model (12) as N → ∞. To see this, consider

Σu = E(Γ̄Nεtε
′
t Γ̄

′
N)≤ σ̄

2
Γ̄N Γ̄

′
N ,

where σ̄2 = maxi{σ2
i }. Note Σu has bounded eigenvalues given that

ρ1(Γ̄N Γ̄
′
N) = (||Γ̄N ||2)2 ≤ K < ∞,

since ||ΓN,−I ||2< 1. One can come up with examples such that ρ1(ΓN,−I ) < 1 and ||ΓN,−I ||2≥ 1
where variance of uit for different i is increasing in N. See the example in Section 3 from Chudik and
Pesaran (2011) in the context of infinite dimensional VARs. This way, separating ΓN,I initially from ΓN
and then obtaining the reduced form of the model, we can incorporate extreme asymmetries in terms of
the outdegree centrality which otherwise would not be allowed under the setting from Acemoglu et al.
(2012) when N → ∞.
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described in this section in the sense that it does not make any particular as-

sumption on sources of the linkages. Thus, it can be used at first. Next, some

measures of relative importance of the sectors in terms of supplying material in-

puts, supplying capital products, or sectors size can be used to assess if there are

common features among the identified sectors. Third, centrality as discussed in

this section is a more general concept than dominance of a sector from the pre-

vious section, because centrality of a sector varies with α ∈ [0,1/2), while only

the case of α = 0 was covered in the discussion on the identification approach.

The next section brings the parameter α into the factor model in a consistent

way, and assesses performance of the principal component method in capturing

the ADLs under different values of α .

4 Identification in Less-Than-Strong Factor Models

We now consider the factor model of Section 2, and suppose the matrix of load-

ing has a similar structure to the coefficient matrix SN as defined by Assump-

tion SM. More particularly, the influence of factors varies with the parameter

α , such that a larger value of α indicates that a smaller part of covariability is

attributable to the common component. This section intends to analytically an-

swer two questions. Does the principal component method consistently capture

the ADLs at each time t when α deviates from 0, and how far above 0 it can be-

come in order that the estimator remains consistent? What is the range of α for

which the PS approach can consistently identify the ADLs? Theorems 1 and 2

in this section answer these questions, respectively. The proofs are provided in

the appendix.

We suppose Λ is the matrix of loading which satisfies Assumption FM2.

To deviate from the case of α = 0, we consider the following data generating

process
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xt = ΛN ft + et , (13)

for t = 1, ...,T , with the assumption that

Λ
′
NΛN/N1−2α → ΣΛN ,

where ΣΛN is a full rank matrix with α ∈ [0,1/2). Chudik et al. (2011) define

strong and semi-strong factors according to column-sums of ΛN = (λN,il). Let

sl = ∑
N
i=1|λN,il|, for l = 1, ...,r, where sl = O(N1−α). Then, ft is a vector of

strong factors if α = 0, and the factors are semi-strong given that α ∈ (0,1/2).12

Kapetanios and Marcellino (2010) consider a less-than-strong factor model by

assuming that ΛN in (13) satisfies

ΛN = N−α
Λ. (14)

This builds on the literature on instrumental variable estimator in the presence

of so many weak instruments where an instrument appears to be weak as sample

size goes to infinity, and it provides a mathematically tractable way to assess

properties of the principal component method for different values of α . We here

closely follow Kapetanios and Marcellino (2010) and adopt the equation (14).

The denominator Nα makes the contribution of the common component in

X ′X/NT a negative function of α . Lemma A.1 in the appendix shows

ρ1(X ′X/NT ) = Op(N−2α),

if α ∈ [0,1/2) and N2α/T → K < ∞. This term is driven by ΛN ft which main-

tains its dominating role relative to et when α ∈ [0,1/2). As α increases, this
12Notice Chudik et al. (2011) define these rates in terms of 1-α which makes for example a strong

factor correspond to 1−α = 1.
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dominance diminishes, and when α goes out of this range and equals 1/2, the rel-

ative dominance goes away. From the literature on factor analysis, we know the

factor estimates and performance of the factor number estimators are affected as

factors becomes less dominating relative to the idiosyncratic errors. Under this

setting, it is not clear if the principal component method remains consistent for

all values α ∈ [0,1/2). Kapetanios and Marcellino (2010) establish that the aver-

age squared difference between the factors estimates and the scaled true factors

diminishes if α ∈ [0,1/4) and N4α/T → 0. Onatski (2012) shows the principal

component method is inconsistent considering the case of α = 1/2.13

For the purpose of identifying the ADLs, we lay down the sufficient condi-

tions required for consistent estimation of factors at each time t. Before doing so,

we assume the number of factors, r, is known. Though, this assumption seems

reasonable under α = 0, it is expected that performance of IC2 deteriorates sim-

ilarly to the principal component method for larger values of α . We here use

IC2, and confine our assessment of this factor number estimator to our simula-

tion studies where we show IC2 performs well in small samples for the range of

α for which the principal component method turns out to be performing well.

The following theorem and corollary establish the time-t convergence of the

principal component method for different values of α .

Theorem 1. Let ΛN = N−αΛ. Under Assumptions FM1-4, f̃t converges to

H ′ ft as N,T → ∞ given that α ∈ [0,1/4) and N4α/T → 0, such that the conver-

gence rate is given as

f̃t −H ′ ft = Op(
N4α

C2
NT

)+Op(Nα−1/2),

13Note consistency of factor estimates depend also on ratio of N and T as N,T → ∞. The conditions
mentioned here such as N2α/T → K < ∞ for the case of α ∈ [0,1/2), and N4α/T → 0 for the case of
α ∈ [0,1/4) are ensured by the general condition; N/T → K < ∞. This condition which is not stringent
is directly assumed by Onatski (2012).
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with H = (Λ′
NΛN/N)

(
F ′F̃/T

)
V−1

NT being a rotation matrix, VNT is a diagonal

matrix containing the first r eigenvalues of XX ′/NT , and C2
NT = min{N,T}.

Corollary 1. Under the conditions of Theorem 1,

(i) if N1/2+3α/C2
NT → 0, we have

N1/2−α
(

f̃t −H ′ ft
)
= Op(1),

(ii) if N1/2+3α/C2
NT → τ > 0, we have

C2
NT

N4α

(
f̃t −H ′ ft

)
= Op(1).

The theorem follows Theorem 1 from Bai (2003). It implies f̃t is a consistent

estimator given that N4α/C2
NT → 0. This condition holds under α ∈ [0,1/4) and

N4α/T → 0. Corollary 1 puts these results in terms of the Bai’s theorem focusing

only on the convergence rates. Bai shows

N1/2 ( f̃t −H ′ ft
)
= Op(1),

given that N1/2/T → 0, but as N1/2/T → τ > 0, he shows

T
(

f̃t −H ′ ft
)
= Op(1).

Under α > 0, there are slower convergence rates such that a nonzero α leads the

rates to decline from 1/N1/2 to 1/N1/2−α in (i), and from 1/T to N4α/min{N,T}

in (ii). It appears that as factors become less influential, the principal component

estimator converges to the scaled ft at a slower rate. We need α ∈ [0,1/4) to

maintain consistency.

Finally, it comes to identification of the ADLs using the PS approach. To

present the results, we consider a general relationship between a candidate vari-
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able, x jt , and a true factor, flt , as follows

flt = x jt +νl jt/
√

T +δl jξ jt , (15)

where νl jt and ξ jt are two random variables with finite variances. In this way, x jt

is an ADL if δl j = 0. To identify dominant sectors, we follow the steps described

in Section 2. Recall that for each candidate sector, the regression model (5) is

estimated r times for the combinations of the principal components and the can-

didate sector’s production growth, and next, whether the sector is a dominant

sector is implied according to the number of factors in the residuals ê?jkt , for

k = 1, ...,r, obtained from these regressions. Let #̂(ê?jkt) denote the correspond-

ing number factors estimated. The following theorem summarizes the results.

Theorem 2. Let ΛN = N−αΛ. Given that α ∈ [0,1/6] and N/T → K < ∞,

and under Assumptions FM1-4

(i) if δl j = 0, we have

Prob
N,T→∞

[
#̂(ê?j1t) = 0, or, #̂(ê?j2t) = 0, or, ... #̂(ê?jkt) = 0

]
= 1,

(ii) if δl j 6= 0, we have

Prob
N,T→∞

[
#̂(ê?j1t) = 0, or, #̂(ê?j2t) = 0, or, ... #̂(ê?jkt) = 0

]
= 0.

Theorem 2 provides the sufficient conditions required to consistently identify the

ADLs, and extends the results of PS for the case of α greater than zero. Putting

the results from this section in terms of centrality in production networks, it

is implied that the most central sectors would be detected using a large panel
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data set of sectoral production growth rates when their outdegree centrality are

O(N1−α) for α ∈ [0,1/6]. In the next section, we conduct Monte Carlo ex-

periments to assess small sample properties of this identification approach, and

we show under relatively less constraining conditions it still performs well in

detecting the ADLs.

5 Monte Carlo Study

In the simulation study, we consider the following data generating process

xit = λN,i1 f1t +λN,i2 f2t +
√

θeit , for i = 1, ...,N, and t = 1, ...,T,

where the parameter θ governs the-signal-to-noise ratio. The factors are gener-

ated such that they are correlated. In particular,

 f1t

f2t

=U

 w1t

w2t

 ,
where U is obtained from the Cholesky decomposition of Ω =Var( ft) with Ω =

[2,0.2;0.2,1], and

wit = ρiwit−1 + εit , for i = 1,2,

with εit
i.i.d∼ N(0,1−ρ2

i ).

Elements of the loading matrix ΛN = (λN,i j) are drawn from a normal distri-

bution according to

λN,i j
i.i.d∼ N(0,σ2

N,α),
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with σN,α = 1/Nα . Once the loadings are generated randomly, the model is

more general in comparison to the case of deterministic loadings which was

assumed before. The analytical results would not be affected anyway if λN,i j has

finite fourth moment and it is independent from the factors and the idiosyncratic

errors, as it is generated here.

The error term i follows

eit = φeit−1 + vit +β

J

∑
j 6=i, j=−J

vi+ j,t , (16)

with vit
i.i.d∼ N(0,(1− φ)/(1+ 2Jβ 2)). It is serially correlated and also cross-

sectionally dependent on the J-upstream and downstream neighbors.

Two sets of experiments are conducted. In Experiment 1, we estimate number

of factors under different values of α using IC2. This sheds light on performance

of the estimator under different degree of factors influence. In Experiment 2, we

turn to identification of ADLs. Two cases are considered. In the first case, there

are two ADLs, which are generated according to the following process and are

replaced by the first two units in the panel data set such that

x jt = f jt +ν jt/
√

T , for j = 1,2, (17)

with ν jt
i.i.d∼ N(0,1) for j = 1,2. A case of four ADLs is also considered, where

the first four variables in the data set provide approximations for the underlying

factors as follows

x jt =


f1t +ν j1t/

√
T , for j = 1,2,

f2t +ν j2t/
√

T , for j = 3,4,
(18)

where ν jlt
i.i.d∼ N(0,1) for all ( j, l). The latter case incorporates more than one

ADL for each factor.
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This is a general setting which closely follows the simulation study design

of PS, and in addition, it incorporates different values of α to adjust the factors

influence in the model. We consider {α = 0,1/6,0.25,0.3,0.4,0.5}. The values

of α covers the whole range of strong to relatively weak factors. The case of

α = 0 is considered by PS to assess performance of the identification approach.

The authors also consider α = 0.5 to assess performance of the factor number

estimator. In our simulation study, we extend these analyses considering dif-

ferent intermediate α . Among these values, 1/6 and 0.25 are relevant for the

asymptotic properties explained by Theorems 1-2. Furthermore, 0.3 and 0.4 are

included to provide a general picture for the intermediate values in [0,0.5]. In

the primary simulation studies, a more detailed incrementing of the intermediate

values was used. The main findings remain the same regarding performance of

the factor number estimator and the PS approach in certain ranges, also that their

performance deteriorates for α outside of these ranges as it approaches 0.5. To

save space, the results only for these values are reported.

Other parameters values are set as follows. For serial correlation in wt and

the error terms, we consider ρi = 0.5 for i = 1,2, and φ = 0.5. We assume

each units has eight neighbors with J = 4, and β = 0.1. The signal-to-noise

ratio is set equal to one, θ = 1. To generate the panel data sets, we consider

{N,T = 50,100,200,500}. The data set is initially generated for T +100 obser-

vations, and N +20 units. Next, the first 100 observations are dropped from the

beginning of the series, and we keep N units from the middle of cross-section

units. The Monte Carlo results are obtained according to 2000 replications.

Experiment 1. Estimation of Number of Factors

Table (1) reports the frequency of estimating two factors in the left panel and the

average number of factors estimated in the right panel under different α . IC2

performs well for relatively small values of α . For α ≤ 1/6, this result holds
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Frequency of Estimating Two Factors Avg. Number of Factors Estimated

α 0 1/6 0.25 0.3 0.4 0.5 0 1/6 0.25 0.3 0.4 0.5

N T

50 50 0.63 0.85 0.53 0.21 0.01 0.00 2.51 2.08 1.60 1.10 0.25 0.04

50 100 0.46 0.86 0.83 0.51 0.03 0.00 2.80 2.14 1.95 1.57 0.51 0.05

50 200 0.35 0.89 0.93 0.72 0.03 0.00 3.03 2.11 2.03 1.78 0.74 0.04

50 500 0.29 0.96 0.99 0.88 0.03 0.00 3.24 2.05 2.00 1.89 0.85 0.03

100 50 0.67 0.91 0.61 0.22 0.01 0.00 2.41 2.08 1.69 1.11 0.18 0.03

100 100 0.96 1.00 0.81 0.23 0.00 0.00 2.04 2.00 1.81 1.20 0.10 0.00

100 200 0.95 1.00 0.99 0.66 0.00 0.00 2.05 2.00 1.99 1.66 0.37 0.00

100 500 0.93 1.00 1.00 0.95 0.00 0.00 2.07 2.00 2.00 1.95 0.76 0.00

200 50 0.81 0.96 0.58 0.12 0.00 0.00 2.21 2.03 1.60 0.93 0.05 0.01

200 100 0.99 1.00 0.88 0.18 0.00 0.00 2.01 2.00 1.88 1.16 0.03 0.00

200 200 1.00 1.00 0.99 0.39 0.00 0.00 2.00 2.00 1.99 1.39 0.03 0.00

200 500 1.00 1.00 1.00 0.97 0.00 0.00 2.00 2.00 2.00 1.97 0.44 0.00

500 50 0.97 0.99 0.27 0.01 0.00 0.00 2.03 1.99 1.21 0.44 0.00 0.00

500 100 1.00 1.00 0.70 0.02 0.00 0.00 2.00 2.00 1.70 0.87 0.00 0.00

500 200 1.00 1.00 1.00 0.16 0.00 0.00 2.00 2.00 2.00 1.16 0.00 0.00

500 500 1.00 1.00 1.00 0.89 0.00 0.00 2.00 2.00 2.00 1.89 0.00 0.00

Table 1: The frequency of detecting two factors and the average number of factors estimated
are reported. IC2 is used.

specially for N,T ≥ 100. When α = 0.25, we observe that the frequency of de-

tecting both of the factors approaches one, but it happens for relatively larger N

and T, such as N ≥ 100 and T ≥ 200. The overall performance of IC2 is better

under α = 1/6 relative to the strong case of α = 0. This is attributable to ten-

dency of this criterion to overestimate the number of factors, r = 2, when N and

T are relatively small, while r̂IC2 tends to decline with an increase in α . This

offsets the tendency of IC2 to overestimate and leads to more frequent detection

of exactly two factors for N,T = 50 under α = 1/6. Furthermore, we observe

a substantial reduction in the frequencies as α becomes larger. As the factors

become less dominating relative to the idiosyncratic errors, r̂IC2 tends to become

smaller which leads in turn to the lower frequencies. This result accords with

the results of Kapetanios and Marcellino (2010) and also our analytical findings

that factors can be consistently estimated for relatively small values of α .

27



Experiment 2. Identification of ADLs

To assess small sample properties of the identification approach, we initially as-

sume that the ADLs are known. Considering the case of two ADLs, it means that

we start the identification procedure by taking the first two variables in the data

set as candidate variables. We then look into the frequency that the PS approach

correctly detects them as dominant units. The left panel in Table (2) presents

the frequency of detecting x1t . Our results indicate a good small sample perfor-

mance for α ≤ 1/6, since the ADL is identified with a frequency close to one for

almost all combinations of N and T. This result accords with the sufficient con-

ditions we obtained in our analytical findings in Theorem 2. For α = 0.25, the

frequencies slightly reduce, but they recover as N and T increase. Furthermore,

very similar to the pattern we previously observed for estimation of number of

factors, our results show a poor performance of the PS approach in identifying

the dominant units when the data is generated using larger values of α .

In most of applications, the potential dominant units are not known, and we

need to select a set of candidate variables first. We develop our simulation study

incorporating four ADLs according to (18). In this case, we consider a differ-

ent generating process for the idiosyncratic errors of the nondominant units. In

particular, for i = 5, ...,N, eit is now generated according to

eit
i.i.d∼ N(0,σ2

i ), (19)

where σ2
i = 1

T ∑t C2
it with Cit = λN,i1 f1t +λN,i2 f2t . Under the previous data gen-

erating process for disturbances, there is a chance that a nondominant unit acts

like an ADL, but this possibility would be ruled out under (19).

Ten candidate variables are selected initially using the R2 values obtained

from regression (6), and then, the frequency of identifying all four ADLs is

computed. The right panel in Table (2) reports the results. It is shown that all
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Frequency of Correctly Identifying x1t Frequency of Identifying All Four ADLs

(Case of Two Known ADLs) (Case of Four Unknown ADLs)

α 0 1/6 0.25 0.3 0.4 0.5 0 1/6 0.25 0.3 0.4 0.5

N T

50 50 0.93 0.93 0.72 0.61 0.20 0.02 0.99 0.96 0.57 0.22 0.01 0.00

50 100 0.91 0.96 0.87 0.66 0.39 0.03 0.99 1.00 0.89 0.55 0.03 0.00

50 200 0.84 0.96 0.95 0.76 0.53 0.03 1.00 1.00 0.98 0.75 0.04 0.00

50 500 0.77 0.98 0.99 0.89 0.56 0.03 1.00 1.00 1.00 0.89 0.03 0.00

100 50 0.97 0.98 0.80 0.66 0.15 0.02 1.00 1.00 0.65 0.23 0.01 0.00

100 100 0.99 1.00 0.86 0.67 0.10 0.00 1.00 1.00 0.81 0.23 0.00 0.00

100 200 0.99 1.00 0.99 0.73 0.36 0.00 1.00 1.00 0.99 0.66 0.00 0.00

100 500 0.99 1.00 1.00 0.96 0.72 0.00 1.00 1.00 1.00 0.95 0.00 0.00

200 50 0.99 1.00 0.85 0.69 0.05 0.01 1.00 1.00 0.59 0.12 0.00 0.00

200 100 1.00 1.00 0.92 0.77 0.03 0.00 1.00 1.00 0.88 0.18 0.00 0.00

200 200 1.00 1.00 0.99 0.66 0.03 0.00 1.00 1.00 0.99 0.39 0.00 0.00

200 500 1.00 1.00 1.00 0.97 0.44 0.00 1.00 1.00 1.00 0.97 0.00 0.00

500 50 1.00 0.99 0.82 0.42 0.00 0.00 1.00 0.99 0.27 0.01 0.00 0.00

500 100 1.00 1.00 0.89 0.82 0.00 0.00 1.00 1.00 0.70 0.02 0.00 0.00

500 200 1.00 1.00 1.00 0.79 0.00 0.00 1.00 1.00 1.00 0.16 0.00 0.00

500 500 1.00 1.00 1.00 0.90 0.00 0.00 1.00 1.00 1.00 0.89 0.00 0.00

Table 2: The frequency of correctly identifying the ADLs is reported. First, x1t and x2t are
incorporated as ADLs into the data set, and it is known that the first two units are potentially the
dominant units. The left panel reports the frequency of x1t being correctly detected. In the right
panel, four ADLs are incorporated into the data set which are assumed to be unknown. The
right panel reports the frequency of detecting all four ADLs, where initially the R2-criterion is
used to select the candidate variables, and the PS approach is used then to identify the ADLs
among the candidate variables.

four ADLs are identified with a frequency close to one for α ≤ 1/6 for almost

all combinations of N and T. For other values of α , the results are similar to our

previous findings. It is worth mentioning a feature in the results corresponding

to α = 0.25, where the frequencies appear to be very different under the cases

of large N and small T and the other way around. For example for N=50 and

T=500, the ADLs are detected with a frequency equal to one, but in contrast

for N=500 and T=50, the frequency reduces to 0.27. This goes in line with the

second condition in Theorem 2, which confines divergence rate of N relative to

T and suggests that, in a case of small N, a large T would help identify the ADLs

as α increases and goes slightly above 1/6.

29



α 0 1/6 0.25 0.3

N T

50 50 0.41 0.21 0.48 0.66

50 100 0.54 0.14 0.17 0.48

50 200 0.65 0.11 0.07 0.28

50 500 0.71 0.05 0.01 0.12

100 50 0.34 0.10 0.38 0.66

100 100 0.04 0.00 0.19 0.74

100 200 0.05 0.00 0.01 0.34

100 500 0.07 0.00 0.00 0.05

200 50 0.19 0.04 0.42 0.69

200 100 0.01 0.00 0.12 0.80

200 200 0.00 0.00 0.01 0.61

200 500 0.00 0.00 0.00 0.03

500 50 0.03 0.01 0.68 0.43

500 100 0.00 0.00 0.30 0.84

500 200 0.00 0.00 0.00 0.84

500 500 0.00 0.00 0.00 0.11

Table 3: The frequency that the nondominant units are falsely identified as ADLs is reported.
Notice in this table in contrast to the previous tables, a larger frequency implies worse perfor-
mance of the PS approach since the nondominant units are detected more frequently.

Last but not the least, we elaborate on the frequency that the nondominant

units are falsely identified as ADLs. To do so, we consider the previous case

of four ADLs and we compute how frequently any units other than first four

units are selected. Table (3) reports the results for α up to 0.3 (we exclude α

equal to 0.4 and 0.5, because IC2 hardly detects any factor in the first place,

that in turn results in smaller frequencies for false identification). It is observed

that for a small N and T, the nondominant units are selected frequently, but the

performance of the PS approach recovers as N and T increase and the frequencies

of false identification reduce to zero.

In sum, our results indicate good small sample performance of the PS ap-

proach for rather small values of α . Putting these results in terms of network

centrality as discussed in Section 3, it means when T is large, in the model for

example with N = 200, a dominant sector would be identified if productivity

disturbances in this sector spread to at least 2001−1/6 ≈ 83 other sectors through
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the input-output linkages.

6 Dominant Sectors in the US

In this section, we identify dominant sectors in the US. We use the data set

provided by Foerster et al. (2011). The data set contains monthly industrial pro-

duction series according to different levels of sectoral disaggregation. It also

provides the corresponding tables of intersectoral material purchases and inter-

sectoral capital flows, where the authors distinguish between the material and

capital inputs according to the period they are used in production. A product

is viewed as a capital product if it is used for a period longer than one year.

Our analysis is based on growth rate of quarterly industrial productions, where

quarterly data are computed as average over the monthly values. We focus on

three levels of disaggregation for the sectors (L3-5). This gives the combinations

T=143 covering the period 1972Q2-2007Q4 and N=88, 117, and 138 respec-

tively for L3-5.

We start with estimation of number of factors. Using IC2, we detect two

factors among industrial productions at all three levels of disaggregation. IC1

provides exactly the same results. The results of the factor number estimator is

robust to use of different expanding windows with ending dates matched to the

last sixteen periods in the sample period. This result goes in line with the factor

model analysis from Foerster et al. (2011), who show two common shocks ac-

count for a large portion of variability in aggregate industrial production. Taking

the presence of two aggregate shocks in the model as a starting point, we now

turn to identification of the ADLs. We first select ten candidate sectors according

to the R2-criterion (here, we select five variables for each principal component).

Next, IC2 is used to determine the number of factors in the residuals obtained by

regressing the sectoral growth rates on the rates of the potential dominant sectors
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L3 (N = 88) L4 (N = 117) L5 (N = 138)

1. Commercial and Service Industrial Machinery/

Other General Purpose Machinery 1 1 1

2. Metalworking Machinery 1 1 1

3. Electrical Equipment 1 1 1

4. Other Wood Products (under L3) 1

Millwork (under L4-5) 0.38 0.81

Table 4: The dominant sectors and the frequency that they are selected in different expanding
windows are presented according to three levels of sectoral disaggregation (L3-5). There are 16
windows in total. Notice that the first three sectors are classified on the same name under L3-5,
but ’millwork’ shows up only under L4-5. It is a subsector of ’other wood products’ under L3.

as described in Section 2. Entire of this section, we conduct our analysis on all

three levels of disaggregation for the purpose of robustness check. This means

identifying a sector as a dominant sector according to the fourth level disaggre-

gation (L4), we view that sector as an ADL if one of its subsectors using the data

for L5 and its supersector in L3 are also identified as dominant sectors. Further-

more, we check how sensitive the results are to different expanding windows.

Four sectors are identified as ADLs, which are presented in Table 4. The sec-

tors ’commercial and services industrial machinery and other general purpose

machinery’ (’commercial and services machinery’ for short), and ’metalwork-

ing machinery’, as well as, ’electrical equipment’ appear to be dominating in all

expanding windows, while ’millwork’ (classified as ’other wood products’ un-

der L3) is selected with a frequency lower than one (the frequencies are 0.38 and

0.81 using the growth rates corresponding to L4 and L5, respectively). Even af-

ter filtering out the first principal component (by regressing the rates on the first

principal component and repeating the analysis on the retrieved residuals), we

find that the first two sectors (’commercial and services machinery’, and ’met-

alworking machinery’) appear to be dominating in all windows.14 The latter
14Here, three sectors are selected. The additional sector is ’machine shops; turned products; and

screws, nuts, and bolts’.
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analysis probably does not filter out the effects of one true factor, but a combi-

nation of both. However, it elaborates on dominance of two heavy machinery

industries, which maintain their role as ADLs even after removing the first com-

mon component.

The dominant sectors identified according to estimation of number of fac-

tors might deviate from the true factors in some periods. This in turn might

lead to identifying more than one dominant sector for a true factor. In a two-

factor model, we can put the dominant sectors in one or two groups according to

whether they correspond to the same factor by means of the clustering technique

discussed in Section 2. In particular, we consider all possible pairs of the selected

sectors. The sectors in a pair are put in different groups if they capture effects

of the both underlying factors. When we conduct this clustering technique, we

find that all four sectors presented in Table (4) belong to a single group. It holds

irrespective of choice of the expanding windows. These results suggest one of

the factors can be attributed to the idiosyncratic production growth in the iden-

tified sectors, while the other factor might have external sources. Note the data

set excludes agriculture, and public, financial and service sectors. Such exter-

nal sources could be attributed to shocks arising in the excluded sectors or other

factors affecting the sectoral growth rates such as monetary policy.

Our analysis so far focused on the statistical properties of the production

growth rates. We now look at whether there are common features among the

dominant sectors. Following our discussion in Chapter 3 on dominance and cen-

trality of a sector in a production network, we particularly consider two types of

intersectoral interactions to assess the role of a sector as a supplier of products

to others, namely; (a) intermediate materials, and (b) capital products. The ma-

terial input-output table is provided for 1977 and 1998, and the table of capital

flows is provided for 1998. To compare centrality of a sector implied from both

of these tables, we use the tables for 1998 which is also closer to the middle of
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the sample period. We refer to them as WIO and WCF, respectively. We also

consider; (c) size of the sectors. For comparison of size of the sectors we use

their aggregation weights. The weight for sector i is computed as si =
1
T ∑t sit ,

with sit being its weight at time t.

To measure centrality, we use the outdegree and Katz-Bonacich centrality

measures.15 Looking at the centrality scores obtained from WIO and WCF, we

learn that dominance of the sectors implied from our statistical analysis accords

more with the patterns of the intersectoral capital flows. This is reflected in

relatively higher ranking of the ADLs according to WCF. Irrespective of the

level of disaggregation, we observe that the sectors ’commercial and services

machinery’ and ’metalworking machinery’ are ranked 1st and 2nd according to

the outdegree centrality using the capital flows table (2nd and 1st according to

the Katz-Bonacich centrality), while they show very moderate roles in terms of

supplying materials to others (based on WIO, ’commercial and services machin-

ery’ is ranked 43rd (41st), and ’metalworking machinery’ is ranked 51st (42nd)

according to the outdegree (Katz-Bonacich) centrality using L4). A similar pat-

tern holds for ’electrical equipment’ and ’millwork’. We also look at size of

these sectors relative to others. It turns out that the largest sector among these

four is ’commercial and services machinery’ (ranked 11th), and coming after

it, there appear ’electrical equipment’ (36th), ’metalworking machinery’ (38th),

and ’millwork’ (78th) out of 117 sectors. Overall, it seems that the results re-

garding the dominant sectors are more in line with the sectoral centrality implied

from WCF, rather than those implied from WIO and relative size of the sectors.

To further assess the relationship between the network centrality and the ef-

fect of a sector’s growth rate on the growth rates of the other sectors, we conduct

additional regression analysis. In particular, we regress all the rates on the rate of
15Considering the interaction matrix W = (wi j), the Katz-Bonacich centrality for j is measured as

cKB
j = λ ∑

N
i=1 wi jcKB

i +η with η being a base centrality which is assumed to be equal among all nodes,
and λ is a parameter. We use 1 and 0.5 for η and λ , respectively.

34



a sector whose higher centrality is implied from WIO and WCF, where we use

the outdegree centrality to rank the sectors. In addition, in each regression we

include a constant and a cross-section average of all the rates which accounts for

a common factor in the model. Looking at the number of times the coefficient of

a sector’s growth rate appears to be significant, we obtain a simple benchmark

on how significantly its production growth affects the others. We retrieve ten

most central sectors according to each table and report the frequency of their

coefficients being significant according to 95% confidence level in Table (5).16

We here report the results for 117 sectors corresponding to L4. The results are

similar based on the other levels of disaggregation and also to the case that the

Katz-Bonacich centrality is used for ranking.

Two immediate features emerge from this table. First, the dominant sectors

which appear among the most important suppliers of capital products (presented

in the upper part of the table) have the largest number of significant coefficients.

These sectors appear to be the most effective sectors having a large number of

significant coefficients even after controlling for a cross-section average in the

regression models. The ’commercial and service machinery’ and ’metalworking

machinery’ have significant coefficients 25% and 24.14% of the times, respec-

tively. This number is 21.55% for ’electrical equipment’. Furthermore, the re-

sults suggest that growth in production of the major capital products suppliers

tend to significantly move with a larger number of other sectors than those hav-

ing important roles as suppliers of input materials. When we repeat this analysis

for 30 most central sectors, we obtain a mean value of 9.48 (7.76) and a me-

dian value of 7.33 (4.74) for number of the significant coefficients using WCF

(WIO). Foerster et al. (2011) consider a class of the multisector general equi-
16To avoid the multiple testing problem, the critical values are adjusted based on the Holm-Bonferroni

correction. Particularly, suppose t(1),...,t(N) are the t-ratios in descending order with their corresponding
adjusted critical value denoted by pa

(1),...,p
a
(N) for the significance level a. The critical values are com-

puted as pa
(i) = Φ−1(1− a

2(N−i) ), where Φ−1 is inverse of the normal cumulative distribution function.
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librium models whose solution can be written as xt = Θxt−1 +R0εt +R1εt−1,

with Θ, R0, and R1 depending on the tables of cross-sector linkages, as well as,

other underlying structural parameters of the model. Mostly these models ab-

stract from capital or assume full depreciation of sector-specific capital within a

period. The authors incorporate the cross-sector capital flows as another interac-

tion channel. Looking at the cross-sector comovements and aggregate variability

implied from the structural models, they show that incorporation of both inter-

sectoral material and capital flows help better explain the key features observed

in the data. Though, we do not impose the identifying restrictions related to

the input-output tables, our results go in line with their results. In particular,

our results highlight the important role of the major capital good producers in

the US production network (specially the heavy machinery industries) whose

production disturbances broadly spread to others, though they might moderately

contribute in the supply chains of material inputs (they are not among the major

energy industries nor the major general purpose material producers like the iron,

and still producers).

7 Conclusions

This paper considers the possibility that the sector-specific shocks to production

growth act as sources of aggregate variability. Our analysis is based on factor

model analysis of sectoral production growth rates, where we identify the domi-

nant sectors whose growth disturbances act as common macroeconomic shocks.

For the purpose of identification, we treat production growth rates of some can-

didate sectors as observed factors. Implication about whether a sectoral growth

rate is an unknown factor is based on the number of factors estimated in the

residuals. Asymptotic properties of this identification approach are discussed in

the literature under a strong factor model. We consider a model containing less-
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that-strong factors, and analytically show the approach identifies the dominant

sectors given that they are influential on relatively large portions of other sectors

in the model.

We provide evidence that production growth of a few sectors in the US pro-

vides approximations for a common factor. Using the input-output tables in

terms of the intersectoral material purchases and capital flows, we show that the

sectors identified as dominant sectors have important roles as suppliers of cap-

ital products to others. We further show that a more central role in terms of

supplying capital products explains comovement among sectoral growth rates

more significantly in comparison to a more central role as supplier of material

inputs. These results highlight importance of the capital flows across-sectors,

next to the material input-outputs, in analyzing intersectoral complementarity.
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Appendix

We first describe the limiting behavior VNT . This in turn gives the limiting be-

havior of the rotation matrix H.

Lemma A.1. Let ΛN = N−αΛ. Under Assumptions FM1-4, given that α ∈

[0,1/2) and N2α/T → K < ∞, we have ||VNT ||= Op(N−2α) and ||H||= Op(1).

Proof: We consider X ′X/NT since ρi(XX ′/NT )= ρi(X ′X/NT ) for i= 1, ...,r.

We have

||VNT ||=

√
r

∑
i=1

ρ2
i (X ′X/NT )≤

√
rρ1(X ′X/NT ).

Thus, it suffices to look at ρ1(X ′X/NT ). Consider the following equation

X ′X
NT

=
ΛNF ′FΛ′

N
NT

+
ΛNF ′e+ e′FΛN

NT
+

e′e
NT

.

The Weyl’s eigenvalue inequality for Hermitian matrices implies

ρ1(
X ′X
NT

)≤ ρ1(
ΛNF ′FΛ′

N
NT

)+ρ1(
ΛNF ′e+ e′FΛN

NT
)+ρ1(

e′e
NT

).

Bai and Ng (2002) show ρ1(e′e/NT ) = Op(C−2
NT ). Consider the first term

1
NT

ρ1(ΛNF ′FΛ
′
N) =

1
NT

(
||FΛ

′
N||2
)2 ≤ 1

NT
(||F ||2·||ΛN||2)2

= ρ1(
F ′F
T

)ρ1(
Λ′

NΛN

N
).
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This shows the first term is Op(N−2α) according to Assumptions FM1-2, since

ρ1(Λ
′
NΛN/N) = ρ1(Λ

′Λ/N1−2α) = Op(N−2α).

We now turn to the second term. Using the spectral radius of the square matrix

in the second term as a lower bound for the Frobenius norm, we have

ρ1(
ΛNF ′e+ e′FΛN

NT
)≤ ||ΛNF ′e+ e′FΛN

NT
||

≤ ||ΛNF ′e
NT

||+||e
′FΛN

NT
||.

For ||ΛNF ′e/NT ||, we have

||ΛNF ′e
NT

||= 1√
NT

√
tr
[

e′F(
Λ′

NΛN

N
)F ′e

]
= Op(N−αT− 1

2 )

√
1

NT
tr (e′FF ′e).

where tr (e′FF ′e)/NT = ||∑T
t=1 fte′t ||2/NT =N−1

∑
N
i=1||T−1/2

∑
T
t=1 fteit ||2=Op(1)

according to Assumption FM4-i. Thus, we have ||ΛNF ′e/NT ||= Op(N−αT− 1
2 ).

The same result holds for||e′FΛN/NT ||. These results show

||VNT ||= Op(N−2α)+Op(N−αT− 1
2 )+Op(C−2

NT ).

Note the term Op(N−2α) would dominate if α ∈ [0,1/2) and N2α/T → K < ∞.

Furthermore, consider H as follows

||H||= ||(Λ′
NΛN/N)(F ′F̃/T )V−1

NT ||

≤ ||(Λ′
NΛN/N)||·||(F ′F/T )||

1
2 ·||(F̃ ′F̃/T )||

1
2 ·||V−1

NT ||,

Assumptions FM1-2, together with ΛN = Λ/Nα and the normalization F̃ ′F̃/T =
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Ir imply

||H||= Op(N−2α)||V−1
NT ||= Op(1).

This completes the proof. Q.E.D.

Lemma A.1. shows the contribution of the common component in overall

variability of X would dominate that from the idiosyncratic shocks under α ∈

[0,1/2) and N2α/T → K < ∞.

Kapetanios and Marcellino (2010) showed consistency of the principal com-

ponent method for F̂ = XΛ̃N/N1−2α , where Λ̃N is the principal component esti-

mate of loadings. The following lemma deducts the same result for F̃ .

Lemma A.2. Let ΛN = N−αΛ. Under Assumptions FM1-4, we have

C2
NT

N4α

(
1
T

T

∑
t=1

|| f̃t −H ′ ft ||2
)

= Op(1). (20)

given that α ∈ [0,1/2) and N2α/T → K < ∞.

Proof: Substituting for Λ̃N = X ′F̃/T in the formula for F̂ , we obtain F̂ =

XX ′F̃/N1−2αT . Also from the principal component analysis we know XX ′F̃/NT =

F̃VNT . This implies F̃ = N−2α F̂V−1
NT . Thus, we can write

f̃t −H ′ ft =
(
N−2αV−1

NT
)[

f̂t − (
F̃ ′F
T

)(
Λ′

NΛN

N1−2α
) ft

]
.

The lemma follows Lemma A.1, together with Theorem 4 from Kapetanios and

Marcellino (2010), which says

C2
NT

N4α

(
1
T

T

∑
t=1

|| f̂t − (
F̃ ′F
T

)(
Λ′

NΛN

N1−2α
) ft ||2

)
= Op(1).
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Q.E.D.

We can now provide the proof for Theorem 1, which closely follows Lemma A.2

and Theorem 1 from Bai (2003).

Proof of Theorem 1. We start with the following identity

f̃t −H ′ ft =V−1
NT

(
1
T

T

∑
s=1

f̃sγN(s, t)+
1
T

T

∑
s=1

f̃sζst +
1
T

T

∑
s=1

f̃sηst +
1
T

T

∑
s=1

f̃sξst

)
(21)

where

γN(s, t) = E(e′set/N),

ζst = e′set/N − γN(s, t),

ηst = f ′sΛ′
Net/N,

ξst = f ′t Λ′
Nes/N.

Equation (21) can be written as

f̃t −H ′ ft =V−1
NT

[(
1
T

T

∑
s=1

( f̃s −H ′ fs)γN(s, t)+
H ′

T

T

∑
s=1

fsγN(s, t)

)

+

(
1
T

T

∑
s=1

( f̃s −H ′ fs)ζst +
H ′

T

T

∑
s=1

fsζst

)
+

(
1
T

T

∑
s=1

( f̃s −H ′ fs)ηst +
H ′

T

T

∑
s=1

fsηst

)

+

(
1
T

T

∑
s=1

( f̃s −H ′ fs)ξst +
H ′

T

T

∑
s=1

fsξst

)]
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=V−1
NT [I + II + III + IIII +V +V I +V II +V III].

Notice the main difference here in comparison to the setting from Bai (2003)

is that 1/T ∑
T
s=1|| f̃s −H ′ fs||2 is Op(N4αC−2

NT ) instead of Op(C−2
NT ). In addition,

ηst and ξst contain ΛN = Λ/Nα as opposed to Λ. From Lemma A.1, we know

||H||= Op(1), which implies the limiting behavior of II and IIII do not change

here relative to those presented by Bai (2003). Thus, we have II = Op(1/T ) and

IIII = Op(1/
√

NT ).

Now, we continue by looking into I. We have

|| 1
T

T

∑
s=1

( f̃s −H ′ fs)γN(s, t)||≤

(
1
T

T

∑
s=1

|| f̃s −H ′ fs||2
) 1

2
 1√

T

(
T

∑
s=1

γ
2
N(s, t)

) 1
2
 .

Assumption FM3-ii implies that
(
∑

T
s=1 γ2

N(s, t)
) 1

2 is bounded from above. Hence,

I = Op(T−1/2N2αC−1
NT ) following Lemma A.2. For III, in a similar way we can

write

|| 1
T

T

∑
s=1

( f̃s −H ′ fs)ζst ||≤

(
1
T

T

∑
s=1

|| f̃s −H ′ fs||2
) 1

2
(

1
T

T

∑
s=1

ζ
2
st

) 1
2

= Op(N2αC−1
NT )

 1
NT

T

∑
s=1

[
1√
N

N

∑
i=1

(eiseit −E(eiseit))

]2
 1

2

.

We have N−1/2
∑

N
i=1(eiseit −E(eiseit)) = Op(1) from Assumption FM3-iii, and

in turn it is implied that III = Op(N2α−1/2C−1
NT ).

Looking at VI and VIII, we see their limiting behavior changes by a factor N−α

in comparison to the case that Λ is the loading matrix. Using the rates obtained
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by Bai (2003) which are Op(N−1/2) and Op(N−1/2T−1/2) respectively, it follows

that V I = Op(N−α−1/2) and V III = Op(N−α−1/2T−1/2).

We now consider V and VII. Bai (2003) shows they both are Op(N−1/2C−1
NT ).

Following our argument about the changes in the rates due to the different con-

vergence rate for F̃ (N2αC−1
NT replaces C−1

NT ), as well as, use of Λ/Nα which

brings in a factor of N−α , we imply that V &V II = Op(N−1/2(N2αC−1
NT )N

−α) =

OP(Nα−1/2C−1
NT ).

Using V−1
NT = Op(N2α) from Lemma A.1, we finally obtain

f̃t −H ′ ft = Op(
N4α

C2
NT

)+Op(Nα−1/2). (22)

which completes the proof. Q.E.D.

The points (i) and (ii) in Corollary 1 are just implied from (22). Having the

results from Theorem 1, we can finally provide the proof for Theorem 2.

Proof of Theorem 2. Consider the least squares residuals using f̃t

êit = eit −
(

λ̂
′
N,i −λ

′
N,iH

′−1
)

f̃t −λ
′
N,iH

′−1 (
f̃t −H ′ ft

)
.

From the properties of the least squares method, we know λ̂ ′
N,i − λ ′

N,iH
′−1

=

Op(T−1/2). Furthermore, Lemma A.1 and Theorem 1 imply

λ
′
N,iH

′−1 (
f̃t −H ′ ft

)
= OP(N−α)

[
Op(

N4α

C2
NT

)+Op(Nα−1/2)

]
= Op(

N3α

C2
NT

)+Op(N−1/2).
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Thus, we obtain

êit − eit = Op(T−1/2)+Op(
N3α

C2
NT

)+Op(N−1/2).

PS show if êit − eit = Op(C−1
NT ), the probability of detecting zero factors in êt

approaches one using the criteria of Bai and Ng (2002) when N,T → ∞. To en-

sure this condition, we need α ∈ [0,1/6], as well as, some constraint on limiting

behavior of N relative to T . In particular, it is required that N/T → K < ∞. Note

this condition ensures N1−ε/T → K < ∞ for ε > 0 required for consistency of

the principal component method in Lemma A.2.

These results ensure the argument of PS holds even if factors are not strong as

long as α , N, and T satisfy the conditions mentioned. Then, the theorem simply

follows Theorem 1 of PS, that completes the proof. Q.E.D.
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