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Abstract

Although value at risk (VaR) is an intuitive and popular measure of risk,

it is inherently challenging to estimate, as it requires the forecasting of ex-

treme quantiles of the time series of daily returns. This paper estimates the

VaR for series of daily returns using the intra-day low and high time se-

ries, which are, respectively, the time series of lowest and highest log prices

occurring on each day. In contrast to intra-day observations, the intra-day

low and high are widely available for many financial assets. We discover

that extreme quantiles of the daily returns can be well approximated by

less extreme quantiles of the intra-day low and high series. Several condi-

tional autoregressive value at risk (CAViaR) time series models are used to

estimate the quantiles of the intra-day low and high series. In addition, two

novel multivariate multi-quantile (MV-MQ-CAViaR) models are proposed

to estimate the quantiles of the intra-day low and high series simultaneously.

We provide empirical support for the new proposals using daily stock index

data.

Keywords : Value at Risk; CAViaR; Quantile Regression; Intra-day Low

and High.

JEL: C22, C53, G10

2



1 Introduction

Value at risk (VaR) is currently the most prevalent risk measure and a standard tool

for risk management in financial and insurance institutions (Berkowitz et al. 2011). It

involves measuring the amount a certain portfolio can lose given a probability level.

Mathematically, VaR is defined to be the absolute value of the quantile of the distri-

bution of a financial return series, with the probability level usually chosen as 1% or

5%. The accurate forecasting of VaR is fundamental for internal risk control and fi-

nancial regulation. Despite the simplicity of the concept of VaR, its measurement is a

challenging problem and has received considerable attention in recent years.

The CAViaR models, which estimate the quantiles directly, have been shown to

perform competitively in comparison with other VaR models (Manganelli and Engle

2004; Chen et al. 2012). Our aim in this paper is to improve the CAViaR models to

generate more accurate VaR forecasts. First, we describe an interesting relationship

between the intra-day low and high series and the returns. In short, we find that the

quantiles of the intra-day low and high series are good approximations of the quantiles

of the returns. Secondly, we consider several CAViaR models to estimate the quantiles

of the intra-day low and high series, including the CAViaR models based on the returns

and the CAViaR models based on the intra-day data. In particular, we incorporate the

intra-day range, which is the difference between the intra-day high and the intra-day

low, and the overnight return, which is the difference between the log opening price on

one day and the log closing price on the previous day in the CAViaR models. Thirdly,

we propose two MV-MQ-CAViaR models based on the work of White et al. (2015)

to estimate the upper quantiles and the lower quantiles simultaneously to capture the

co-movements between the upper tails and the lower tails. We find that some of the

proposed methods are able to outperform the benchmark models in the empirical study.
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The remainder of the paper is organized as follows. Section 2 gives a brief review

of the established VaR methods. Section 3 introduces our proposed VaR approaches.

Section 4 uses five series of stock returns to evaluate the performance of the proposed

methods, and to compare their VaR estimation accuracy with the established models.

Section 5 provides a summary and some remarks.

2 Review of VaR Methods

2.1 Standard VaR Models

2.1.1 VaR Models Based on Daily Returns

We divide the standard VaR literature into three categories using the classification

of Manganelli and Engle (2004): parametric, nonparametric and semiparametric.

Parametric models involve a parameterization of the conditional volatility and a

specification of the shape of the distribution of a financial return. The VaR associated

with any probability level can then be obtained from the estimated distribution of

the return. Typical examples of the parameterization of the conditional volatility are

the GARCH models. As for the conditional distribution, a Gaussian distribution is

computationally convenient, but the fact that the distribution of the financial return is

often fat-tailed has prompted the use of the Student t distribution. Although parametric

models provide an estimate of the complete conditional distribution of the return series,

they usually suffer from some degree of misspecification, either from the model structure

or from the distributional assumption.

In contrast to the parametric models, nonparametric methods propose no param-

eterization for the conditional volatility and no assumption for the distribution of the

4



return. Historical simulation and kernel density estimation are two examples. With

historical simulation, the VaR estimates are generated as the quantiles of the sample

distribution of the return over some window length (Butler and Schachter 1997; Pritsker

2006). With kernel density estimation, the quantiles are forecasted from the estimated

distribution, which is constructed by assigning some kernel function (typically a Gaus-

sian density function) to each observation within some window length (Butler and

Schachter 1997). Nonparametric methods are model free and easy to implement, which

is appealing in practice (Manganelli and Engle 2004). However, the historical simula-

tion and the kernel density estimation methods require implicitly that the distribution

of the returns remain at least roughly the same within the specified window length,

which may be inappropriate (Manganelli and Engle 2004). Moreover, the choice of the

window length is a difficult task: a small number might result in sizeable sampling

errors while a large number may cause the model to adapt slowly to the changes in the

dynamics of the return.

Finally, semiparametric methods involve the use of extreme value theory or quantile

regression, such as the CAViaR models proposed by Engle and Manganelli (2004). The

CAViaR models involve an explicit modeling of the dynamics of the conditional quantile

but do not make any distributional assumption about the shape of the return. A generic

CAViaR model has the following expression:

qt(β) = f(yt−1,Ψt−1 . . . y1,Ψ1;β) (1)

where β is a vector containing the parameters, yt is the return and Ψt is a vector of

explanatory variables. In particular, Engle and Manganelli (2004) consider the following

four specifications of the generic CAViaR model:
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CAViaR Adaptive (CAViaR-Adaptive):

qt(β) = qt−1(β) + β1

[
θ − I(yt−1 < qt−1(β))

]
(2)

CAViaR Symmetric Absolute Value (CAViaR-SAV):

qt(β) = β1 + β2qt−1(β) + β3|yt−1| (3)

CAViaR Asymmetric Slope (CAViaR-AS):

qt(β) = β1 + β2qt−1(β) + β3(yt−1)
+ + β4(yt−1)

− (4)

CAViaR Indirect GARCH (CAViaR-IndG):

qt(β) = sgn(θ − 0.5)(β1 + β2qt−1(β)
2 + β3y

2
t−1)

1
2 (5)

where (x)+ = max(x, 0), (x)− = −min(x, 0), and θ is the probability level of interest.

The parameter vector β is chosen to be any vector that minimizes the following quantile

regression check loss function:

T∑
t=1

[
yt − qt(β)

][
θ − I(yt < qt(β))

]
(6)

where T is the number of the observations in the in-sample period.

The CAViaR models have many advantages. The fact that they make no distribu-

tional assumption avoids any potential misspecification of the shape of the distribution

of the return. They allow different quantiles to have distinct dynamics because the mod-

els associated with different probability levels can have different parameters. Moreover,

the CAViaR models allow the conditional distribution to be time-varying (Engle and
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Manganelli 2004).

2.1.2 VaR Models Based on Intra-day Range and Overnight Return

The unobservable nature of daily volatility is a challenge for volatility estimation.

Intra-day data provides information regarding the distribution of the price process

within a day, and this can be used to help provide insight into the understanding

of volatility. However, intra-day data, recorded at a relatively high frequency, such

as minute-by-minute, is generally expensive and not available for a long period. In

contrast, the daily opening, closing, intra-day high and intra-day low prices are readily

available for most tradable assets for the last thirty years. In this paper, we consider the

use of the intra-day range in quantile estimation, which is not only easily obtainable but

is also a highly efficient volatility estimator compared to the absolute return (Andersen

and Bollerslev 1998; Brandt and Jones 2006; Kumar and Maheswaran 2015). Although

an abundance of literature can be found in volatility estimation based on the intra-day

range (see, for example, Alizadeh et al. 2002; Brandt and Jones 2006; Corsi 2009),

surprisingly little attention has been devoted to improving quantile estimation models

using the intra-day range. Another variable we consider in this paper, which somehow

has not been widely studied in quantile regression models, is the overnight return,

despite its usefulness in volatility estimation. Hua and Manzan (2013) point out that

the positions of the investors, who hold their portfolios more than a few days, can be

affected by the market overnight variability. Hansen and Lunde (2006) find that ignoring

the overnight return in an intra-day volatility measure might lead to a improper proxy

for the true daily volatility. To the author’s knowledge, the only literature in quantile

forecasting, that consider the intra-day range, are the studies of Chen et al. (2012)

and Meng and Taylor (2015), and the only literature considering the overnight return

in quantile regression models is Meng and Taylor (2015). Chen et al. (2012) propose
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the following CAViaR models with range information, some of which are shown to

outperform the CAViaR models without range information. Meng and Taylor (2015)

add the overnight return to one of the models based on intra-day range proposed by

Chen et al. (2012), and they show that the inclusion of the overnight return improve

the VaR forecasting accuracy:

CAViaR Range Value (CAViaR-Range)

qt(β) = β1 + β2qt−1(β) + β3Ranget−1 (7)

CAViaR Threshold Range Value (CAViaR-Range-T):

qt(β) =


β1 + β2qt−1(β) + β3Ranget−1 if qt−1(β) ≤ γ

β4 + β5qt−1(β) + β6Ranget−1 if qt−1(β) > γ

(8)

CAViaR Threshold Range Indirect GARCH(1, 1) (CAViaR-Range-TIndG):

qt(β) =


sgn(θ − 0.5)

[
β1 + β2qt−1(β)

2 + β3Range
2
t−1

] 1
2

if yt−1 ≤ γ

sgn(θ − 0.5)
[
β4 + β5qt−1(β)

2 + β6Range
2
t−1

] 1
2

if yt−1 > γ

(9)

where γ is s a chosen constant value representing the threshold. The threshold value γ

comes from the idea that the quantiles might respond differently depending on the sign

of yt − γ.

The CAViaR model proposed by Meng and Taylor (2015) has the following form:

CAViaR model with the intra-day range and the overnight return (CAViaR-Range-N):

qt(β) = β1 + β2qt−1(β) + β3Ranget−1 + β4|yN,t−1| (10)
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where N denotes the overnight return, and yN,t−1 denote the overnight return, which is

defined as the log ratio between the opening price of day t− 1 and the closing price of

day t− 2.

2.2 Multivariate Multi-Quantile CAViaR Models

In many situations, it is desirable to estimate the quantiles corresponding to more

than one probability level. For example, quantiles of different probability levels can

represent some basic features of a distribution (Koenker 2005). While the parametric

models and the nonparametric methods produce the complete distribution of the re-

turns, from which multiple quantiles can be obtained easily, CAViaR models focus on

the quantile corresponding to just one probability level. To address this, White et al.

(2010) propose the MQ-CAViaR model. Essentially, a MQ-CAViaR model is a vector

version of a CAViaR model, which, for a single return series, simultaneously estimates

quantiles corresponding to several different probability levels. Let θ1, θ2, . . .θp denote

the probability levels of interest, let qj,t(β) be the estimated θjth quantile of yt at time

t, and let qt = (q1,t, q2,t, . . . , qp,t)
′ be the column vector of all quantiles of interest. A

generic linear MQ-CAViaR model can be expressed as follows1,

qj,t(β) = Ψ
′

tαj +
n∑
l=1

q
′

t−l(β)γj,l (11)

where n is the number of lags, Ψt is a vector of explanatory variables, αj and γj,l

are row vectors of parameters,and β is the column vector (α
′
1,γ

′
1,α

′
2,γ

′
2, . . .α

′
p,γ

′
p)
′.

In particular, White et al. (2010) consider a MQ-CAViaR model, where each model is

assumed to follow a CAViaR-SAV model. This model has the following expression:
1Expression (11) has a simple linear form, but the model is not linear since it is autoregressive.
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MQ-CAViaR symmetric absolute value (MQ-CAViaR-SAV):

qj,t(β) = αj,0 + αj,1|yt−1|+ q
′

t−1(β)γj (12)

Since the intra-day range and the overnight return have been shown to be useful for

VaR forecasting (Meng and Taylor 2015), we also consider the following MQ-CAViaR

model:

MQ-CAViaR model with intra-day range and the overnight return (MQ-CAViaR-

Range-N):

qj,t(β) = αj,0 + αj,1Ranget−1 + αj,2|Overnightt−1|+ q
′

t−1(β)γj (13)

where the parameters are estimated by minimizing the quantile regression check loss

function in expression (14).

The parameter vector β can be chosen as any solution that minimizes the following

quantile regression check loss function:

p∑
j=1

{
T∑
t=1

[
yt − qj,t(β)

][
θj − I(yt < qj,t(β))

]}
(14)

In other words, expression (14) is just the sum of expression (6) for each quantile.

White et al. (2015) generalize the MQ-CAViaR models to the MV-MQ-CAViaR

models to estimate different quantiles of different return series. Let y1,t, y2,t, . . . ym,t

denote the return series, let θi,1, θi,2, . . . θi,p denote the probability levels of interest of

yi,t, let qi,j,t be the θi,jth quantile of yi,t at time t, let qt = (q1,1,t, q1,2,t, . . . , qm,p,t)
′ be the

column vector of all quantiles. A generic linear2 multivariate MQ-CAViaR model can
2Expression (15) has a simple linear form, but the model is not linear since it is autoregressive.
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be expressed as follows,

qi,j,t(·,β) = Ψ
′

tαi,j +
n∑
l=1

q
′

t−l(·,β)γi,j,l (15)

where n is the number of lags, Ψt is a vector of explanatory variables, αi,j and γi,j,l are

row vector of parameters, and β is the column vector (α′1,1,γ
′
1,1,α

′
1,2,γ

1
1,2, . . .α

′
m,p,γ

1
m,p)

′.

Then β can be chosen as any solution that minimizes the following quantile regression

check loss function:

m∑
i=1

P∑
j=1

{
T∑
t=1

[yi,t − qi,j,t(β)][θi,j − I(yi,t < qi,j,t(β))]

}
(16)

3 Proposed Methods for Value at Risk

3.1 Data

We first describe the data we used to illustrate our proposed methods. We used the

daily opening, daily closing, intra-day high and intra-day low prices of the following five

stocks: S&P500, FTSE100, Nikkei225, DAX30, CAC40. The data were obtained from

the Oxford-Man Institute’s realized library Version 0.2 (Heber et al. 2009). The sample

period used in our study consisted of 15 years of data, from 2 Jan 2000 to 20 May 2014.

Note that different markets can have different numbers of observations within a certain

period because the public holidays of different markets can be different. We chose our

period so that the observations of the stocks shared the same end date. The numbers of

observations considered for each of the five stocks are 3513, 3513, 3476, 3526, and 3534,

respectively. We subtract the log closing price of the previous day from the intra-day

low and the intra-day high, so that the intra-day low and high series and the return can

be compared directly. Following Engle and Manganelli (2004), we multiply the return,
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the overnight return, the intra-day low, intra-day high, and the intra-day range by 100.

3.2 Motivation

The accuracy of VaR forecasting is influenced by the number of observations in the tail

of the distribution of the returns. When the data is scarce in the tail, the performance

of the VaR estimation methods, and even the estimates of the unconditional empirical

quantiles can be unreliable (Manganelli and Engle 2004). The unreliability could result

from the parameter estimation procedure rather than model misspecification. The

scarcity of observations in the tail of the daily returns distribution motivates us to

consider the series of intra-day high and low values. In the remainder of this section,

our discussion focuses on the intra-day low, but the ideas that we discuss are similar

for the intra-day high.

The main inspiration of this paper comes from some properties of a standard Brown-

ian motion. Brownian motion has been widely used to model the log price in the context

of stochastic volatility and option price modeling. It is a well-known result that the dis-

tribution of the infimum Lt of a standard Brownian motion ys over a closed interval [0, t]

and the distribution of yt are closely related via the expression, P (Lt < x) = 2P (yt < x)

for x < 0. This property can be easily derived using the reflection principle of Brow-

nian motion (see, for example, Mörters and Peres 2010). The expression implies that

the θth quantiles of the returns are equal to the (2θ)th quantiles of the intra-day low,

which means that we will have twice as many observations beyond the VaR if we use

the intra-day low series than if we use the daily returns series. This is very appealing

in terms of estimation accuracy. Moreover, suppose we use some CAViaR model to

estimate the θth quantiles of the returns and use the same model to estimate the (2θ)th

quantiles of the intra-day low, then it can be shown that it is more efficient to estimate
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Figure 1: The plot of #{Lt<x}
#{yt<x} for the lower tails.

the parameters for the intra-day low. Empirical evidence is that daily financial asset

returns do not precisely follow Brownian motion. In fact, provided the ratio P (Lt<x)
P (yt<x)

is

any constant, greater than 1, which is always true in practice, improved efficiency will

be achieved by estimating the quantile for the intra-day low series. We include a proof

in Appendix A.

The findings in Brownian motion prompt us to look for similar behavior in financial

data. To do this, we consider the ratio #{Lt<x}
#{yt<x} for each of the five data sets. We

calculate the values of the ratio from -0.5 to -5 (from 0.5 to 5 for the intra-day high), at

an interval of length 0.01. The resultant values are shown in Figure 1 and Figure 2. It

can be seen that the ratios are close to constants in the interval [−0.5,−2.5]. Beyond

-2.5, the ratios become unstable, which could result from the insufficient number of

observations.
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Figure 2: The plot of #{Ht>x}
#{yt>x} for the upper tails.

3.3 Proposed CAViaR Methods

Following the argument in Section 3.2, we propose to use the quantiles of the intra-

day low and high series as the approximations of the quantiles of the returns. The

probability levels corresponding to the quantiles of the intra-day low and high series

and the quantiles of the returns are different. In other words, we need to calculate

the ratio P(Lt<x)
P(yt<x)

. We approach this as follows. Suppose the θth (θ < 0.5) quantiles

of the returns are of interest, we determine the ratio by the empirical distribution in

the in-sample period, which is λ = #{Lt<x}
#{yt<x} , where x is the empirical θth quantile of

the returns in the in-sample period. Once the ratio λ is determined, we estimate the

(λθ)th quantiles of the intra-day low. Similarly, for θ > 0.5, it can be shown that the

corresponding probability level for the intra-day high is 1− #{Ht>x}
#{yt>x} . For simplicity, we

use θ̃ to denote the probability levels for the intra-day low and high series.
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Next, we need to estimate the quantiles of the intra-day low and high series. The

obvious candidates are the CAViaR models. For example, the CAViaR-SAV model for

the intra-day low is an option, which has the following form: q̃t(β) = β1 + β2q̃t−1(β) +

β3|Lt−1|, where ˜ is used to distinguish the quantiles of the intra-day low and high

series from the quantiles of the returns. But it is a poor model for the quantile of

the intra-day low and high series. Because the main purpose of the structure of the

CAViaR models is to capture the clustering effect of the daily volatility and the absolute

return or the intra-day range serves as the proxy for the daily volatility. On the other

hand, the intra-day low and high series are very poor proxies for the daily volatility.

For example, the intra-day low is zero if the market price increases monotonically in

one day, in which case the zero value of the intra-day low does not give the CAViaR

model any innovation. Therefore, we use the CAViaR models in Section 2, without any

modification, to model the quantiles of the intra-day low and high series. To stress the

fact that we are estimating the quantiles of the intra-day low and high series, we add

the word ‘LH’ at the end of the name of each model, where ‘LH’ stands for intra-day

low and intra-day high. In theory, any CAViaR model has its corresponding model for

the intra-day low and high, but in particular, we consider the following five models in

this paper:

CAViaR Symmetric Absolute Value for the intra-day low and high (CAViaR-SAV-LH):

q̃t(β) = β1 + β2q̃t−1(β) + β3|yt−1| (17)

CAViaR Asymmetric Slope for the intra-day low and high (CAViaR-AS-LH):

q̃t(β) = β1 + β2q̃t−1(β) + β3(yt−1)
+ + β4(yt−1)

− (18)
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CAViaR Indirect GARCH for for the intra-day low and high (CAViaR-IndG-LH):

q̃t(β) = sgn(θ − 0.5)(β1 + β2q̃t−1(β)
2 + β3y

2
t−1)

1
2 (19)

CAViaR model with the intra-day range for the intra-day low and high (CAViaR-Range-

LH ):

q̃t(β) = β1 + β2q̃t−1(β) + β3Ranget−1 (20)

CAViaR model with the intra-day range and the overnight return for the intra-day low

and high (CAViaR-Range-N-LH):

q̃t(β) = β1 + β2q̃t−1(β) + β3Ranget−1 + β4|yN,t−1| (21)

In addition to the above proposed new CAViaR models for the intra-day low and

high, we take the view that there is valuable and different information provided by

the intra-day data and the simultaneous modeling of the quantiles corresponding to

different probability levels, which leads us to consider the simultaneous estimation of

the quantiles of the intra-day low and the quantiles of the intra-day high based on

the intraday range and the overnight return. We consider a model, which takes the

structure of the MV-MQ-CAViaR model in expression (15), as the following form:

MV-MQ-CAViaR model with intra-day range and the overnight return for the intra-day

low and the intra-day high (MV-MQ-CAViaR-Range-N-LH):

q̃i,j,t(β) = αi,j,0 + αi,j,1Ranget−1 + αi,j,2|yN,t−1|+ q̃
′

t−1(β)γj (22)

where the notations are as in expression (15). We also consider a MV-MQ-CAViaR

model, similar to the MQ-CAViaR-SAV model in expression (12), for the intra-day low

and the intra-day high based on the returns, in which each quantile is assumed to follow
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a CAViaR-SAV type model. The model has the following form:

MV-MQ-CAViaR symmetric absolute value model for the intra-day low and the intra-

day high (MV-MQ-CAViaR-Range-N-LH):

q̃i,j,t(β) = αi,j,0 + αi,j,1|yi,t|+ q̃
′

t−1(β)γj (23)

In expression (22) and expression (23), the parameters are estimated by minimizing the

quantile regression check loss function in expression (16).

4 Empirical Study of VaR Estimation

To compare the accuracy of the quantile forecasts from our proposed methods with

benchmark methods, we used the data described in Section 3.1. We considered the

0.5%, 1%, 5%, 95%, 99% and 99.5% probability levels. A rolling window of 1800 days

was used for estimation, and a post-sample period of 1500 days was used to evaluate day-

ahead quantile estimation. The post-sample period covered the very volatile financial

crisis period and a recent relatively tranquil period.

4.1 Methods Used for Estimating VaR

4.1.1 Benchmark Methods

In this section, we describe the benchmark methods that are implemented in this study.

Note that the benchmark models can utilize the daily return as well as intra-day in-

formation, however, they are estimated using the daily return only. The nonpara-

metric benchmark methods performed very poorly, thus we omit the results from this
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paper. As benchmark methods, we implemented the GARCH(1,1) model, the GJR-

GARCH(1,1) model, and the FIGARCH(1,d,1) model. The error term of each model

was assumed to follow a Student t distribution. As semiparametric benchmarks, we

implemented three standard CAViaR models based on the daily return, one CAViaR

model based on intra-day range, and one CAViaR model based on the intra-day range

and the overnight return. The three standard CAViaR models are the CAViaR-SAV

model in expression (3), the CAViaR-AS model in expression (4) and the CAViaR-IndG

model in expression (5), the CAViaR model based on the intra-day range returns is the

CAViaR-Range model in expression (7), and the CAViaR model based on the intra-day

range and the overnight return is the CAViaR-Range-N model in expression (10). We

left out the CAViaR-Adaptive model expression (2) because this model is not good at

capturing the underlying dynamics of the quantiles, and has been shown to perform

not as competitively as the other CAViaR models (Manganelli and Engle 2004). The

five benchmark CAViaR models were estimated by minimizing the quantile regression

check loss function in expression (6), as used by Engle and Manganelli (2004). As

two additional benchmarks, we implemented two MQ-CAViaR models, with estimation

performed by following the approach of White et al. (2010), which involves minimizing

the quantile regression check loss function of expression (14). The first model is the

MQ-CAViaR-SAV model based on the returns in expression (12), and the second model

is the MQ-CAViaR-Range-N model based on the intra-day range and the overnight re-

turn in expression (13). Note that in a MQ-CAViaR model, the number of parameters

is 5 ∗ (k + 3), where k is the number of different quantiles involved. This number is

very large for k≥2, which makes the parameter estimation procedure numerically chal-

lenging. Therefore, in this paper, we only implemented a MQ-CAViaR model with two

probability levels, θ and 1− θ, where θ = 0.5%, 1 or 5%.
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4.1.2 Proposed Methods

Turning to our proposed new approaches, we implemented all the five CAViaR mod-

els and two MV-MQ-CAViaR models to estimate the quantiles of the intra-day low

and high series. The corresponding probability levels θ̃ were calculated as described in

Section 3.3, and they were also re-estimated for each new moving window. The five

CAViaR models for the intra-day low and high series, which essentially have the same

structure as the five benchmark CAViaR models for the returns, are as follows: the

CAViaR-SAV-LH in expression (17), the CAViaR-AS-LH model in expression (18), the

CAViaR-IndG-LH model in expression (19), the CAViaR-Range-LH model in expres-

sion (20), and the CAViaR-Range-N-LH model in expression (21). These models were

estimated by minimizing the quantile regression check loss function in expression (6),

with the returns replaced by intra-day low/high. Two MV-MQ-CAViaR models are the

MV-MQ-CAViaR-SAV-LH model in expression (23) and the MV-MQ-CAViaR-Range-

N-LH model in expression (22), with estimation performed by following the approach

of White et al. (2015), which involves minimizing the quantile regression check loss

function of expression (16). For the same consideration as the case of the MQ-CAViaR

models, we only implemented the MV-MQ-CAViaR models with two probability levels,

θ̃ and ˜1− θ.

All the CAViaR models were estimated using a procedure similar to that described

by Engle and Manganelli (2004). For each model, let d be the number of the parameters

involved in the model, then a total number of 10d+1 initial trial vectors of parameters

were uniformly randomly generated between 0 and 1. We calculated the value of the

corresponding quantile regression check loss function for each initial trial vector. The 24

vectors producing the lowest values of the quantile regression check loss function were

passed on to the Nelder-Mead algorithm as the starting vectors. The resulting vector

that produced the lowest quantile regression check loss function value was selected as
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the optimal parameter vector. For the MQ-CAViaR models and the MV-MQ-CAViaR

models, we adopted an approach similar to that described by White et al. (2015). We

took the parameter estimates of the corresponding CAViaR models and set the remain-

ing parameters to zero, and used the parameter values as the primal starting vector in

the Nelder-Mead optimization algorithm. To increase the accuracy of the estimation

procedure, we considered 42 different starting vectors near the primal starting vector in

the optimization routine, 21 of which were obtained by adding random vectors drawn

from a normal distribution with mean 0 and standard deviation 1
20
, and the rest of

which were obtained by adding random vectors drawn from a normal distribution with

mean 0 and standard deviation 1
50
. The numbers 1

20
and 1

50
were the choice of White

et al. (2015) in their Matlab code. We increased the number of the different starting

vectors, which is 20 in the Matlab code of White et al. (2015), to 42 in order to improve

the accuracy of the numerical estimation procedure. The number 42 is chosen so as to

fully utilize the parallel computing power on our computer with 6 core processors. Our

Matlab code is available on request.

4.2 Evaluation Methods

We evaluated the post-sample performance of the models using two back-testing meth-

ods: a test of unconditional coverage and the dynamic quantile test of Engle and Man-

ganelli (2004). The unconditional coverage test is based on the hit percentage, which

is the proportion of the observations of the returns that fell below the estimated quan-

tiles. For the quantile with probability level θ, the ideal value of the proportion is θ,

and this is the null hypothesis in a standard test for a sample proportion. The dynamic

quantile test, which jointly tests both the unconditional coverage and the independence
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of violations jointly, evaluates whether the random variable Hitt = I(yt < qt)−θ has an

i.i.d. Bernoulli distribution with parameter θ, and is independent of the lags of the Hitt

variable, and the lagged conditional quantile forecast. Following Engle and Manganelli

(2004), we set the number of lagged Hitt variables involved in the dynamic quantile

test to be four.

4.3 Post-Sample Results

In this section, we present our empirical results. Table 1 presents the parameters of the

MQ-CAViaR-Range-N model of expression (13) and the MV-MQ-CAViaR-Range-N-LH

model of expression (22). To save space, we only present the parameter estimates for the

FTSE100 series. Since the parameters are re-estimated for each rolling window, there

are 1500 different estimated parameter vectors, so we present the estimated parameters

derived using the first moving window of 1800 days. Table 2 presents the number of

rejections for the joint null hypothesis that the coefficients β5 and β9 equal zero at

the 5% level. These coefficients represent the co-movement between the quantiles. It

can be seen that the estimated parameters obtained using the two different estimation

methods are different. In each case, the joint null hypothesis that the coefficients β5

and β9, equal zero is rejected for the majority of cases, indicating that the MQ-CAViaR

and the MV-MQ-CAViaR modeling does enable a richer modeling of quantile dynamics

than the individual CAViaR modeling.

We now consider the post-sample evaluation results. We first report the evaluation

results for the FTSE100. Table 3 presents the hit percentage results, where the signif-

icance of the unconditional coverage test at 5% and 1% levels are indicated by * and

**, respectively. The p-values of the dynamic quantile test are presented in Table 4 for
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Table 1: Parameter estimates of the MQ-CAViaR-Range-N and the MV-MQ-CAViaR-
Range-N-LH for FTSE100, derived using the first moving window of 1800 days.

MQ-CAViaR-Range-N MV-MQ-CAViaR-Range-N-LH

100× θ 0.5 & 99.5 1 & 99 5 & 95 0.5 & 99.5 1 & 99 5 & 95

β1 0.160 0.020 0.057 0.138 0.039 -0.002
β2 0.643 0.451 0.246 0.444 0.366 0.200
β3 0.246 0.319 0.073 0.258 0.390 0.241
β4 0.547 0.777 0.911 0.820 0.768 0.956
β5 0.110 -0.051 -0.155 -0.138 -0.009 -0.166
β6 -0.007 0.034 0.036 0.079 0.028 -0.008
β7 0.211 0.266 0.179 0.274 0.253 0.183
β8 0.244 0.106 0.077 0.151 0.121 0.241
β9 0.051 0.004 -0.057 -0.088 -0.017 -0.029
β10 0.784 0.805 0.877 0.890 0.831 0.835

Table 2: Number of rejections for the joint null hypothesis that all off-diagonal coeffi-
cients β5 and β9 are equal to zero at the 5% level for the MQ-CAViaR-Range-N model
and the MV-MQ-CAViaR-Range-N-LH model.

MQ-CAViaR-Range-N MV-MQ-CAViaR-Range-N-LH

θ × 100 0.5 & 99.5 1 & 99 5 & 95 0.5 & 99.5 1 & 99 5 & 95
SP500 1487 1461 1498 1500 1498 1494
FTSE100 1490 1500 1492 1500 1500 1492
NIKKEI225 1101 851 1500 1263 1500 1484
DAX30 1490 1497 1500 1500 1500 1499
CAC40 1403 1500 1500 1489 1500 1499
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the FTSE 100. In Table 3 and Table 4, the numbers of rejections from the tests at 5%

significance level are reported in the final column. Larger p-values and smaller values

for the number of test rejections are preferred. Table 5 summarizes the unconditional

coverage and the dynamic quantile test results for the five stock indices. It is impres-

sive see that the performance is encouraging for the models that employ the intra-day

low and high series. Each CAViaR model, based on the intra-day low and high data,

outperforms the same model based on the daily returns. In other words, every model

with the notation ‘LH’ outperforms its counterpart without ‘LH’. For example, the

CAViaR-SAV-LH model outperforms the CAViaR-SAV model. The CAViaR-GARCH-

LH model performs the best among the CAViaR models. Moving to the MQ-CAViaR

models and the MV-MQ-CAViaR models, the MV-MQ-CAViaR-Range-N-LH model

outperforms the MQ-CAViaR-Range-N model, and the MV-MQ-CAViaR-SAV-LH and

the MQ-CAViaR-SAV model perform similarly. Overall, the MV-MQ-CAViaR-Range-

N-LH model and the CAViaRRange-LH model perform the best among all the VaR

models implemented.

To summarize, the results of the proposed methods are promising. It is encouraging

to find consistently good results from the CAViaR models based on the intra-day low

and high data. In fact, all of these CAViaR models and the MV-MQCAViaR-Range-

N-LH model outperform the CAViaR and MQCAViaR-Range models for the returns,

despite the fact that the quantiles of the intra-day low and high are only approxima-

tions of the quantiles of the returns. The only exception is the MV-MQCAViaR-SAV-

LH model, but it is reassuring to see that the MV-MQ-CAViaRSAV-LH model is not

outperformed by the MQ-CAViaR-SAV model.
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Table 3: Hit percentage, the unconditional coverage test results, and the number of test
rejections at 5% significance for the FTSE100.

θ × 100 0.5 1 5 95 99 99.5

Number
of

rejec-
tions

Benchmarks
GARCH-t 0.5 1.5 6.7**95.3 99.3 99.7 1
GJR-t 0.8 1.5 6.1 95.5 99.5*99.7 1
CAViaR-SAV 0.5 0.9 5.9 94.9 98.7 99.3 0
CAViaR-AS 0.9 1.1 5.2 94.3 98.3*98.8** 2
CAViaR-IndG 0.4 0.7 5.7 95.1 98.8 99.3 0
CAViaR-Range 0.7 0.9 5.7 95.0 98.4*99.0* 2
CAViaR-Range-N 0.7 1.1 5.1 95.3 98.5 98.9** 1
MQ-CAViaR-SAV 0.5 1.0 5.9 94.8 98.5 99.4 0
MQ-CAViaR-Range-N 0.6 1.3 5.4 95.1 98.6 99.1* 1

Proposed Models for Intra-day Low/High
CAViaR-SAV-LH 0.3 0.8 5.4 94.9 98.9 99.6 0
CAViaR-AS-LH 0.9 1.1 5.2 94.4 98.9 99.4 0
CAViaR-IndG-LH 0.3 0.7 5.4 94.8 99.1 99.4 0
CAViaR-Range-LH 0.4 0.7 6.1 94.9 98.9 99.5 0
CAViaR-Range-N-LH 0.5 0.8 5.8 95.1 98.7 99.5 0
MV-MQ-CAViaR-SAV-LH 0.4 0.8 5.5 94.7 98.9 99.3 0
MV-MQ-CAViaR-Range-N-LH 0.5 0.9 5.6 94.5 98.7 99.5 0
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5 Conclusion

In this paper, we have introduced a new approach to estimating conditional VaR using

quantile regression. The main contribution of this paper is that we show that we have

found an interesting relationship between the intra-day low and high series and the daily

returns, that is, the quantiles of the intra-day low and high are good approximations of

the quantiles of the returns. Several CAViaR models and MV-MQ-CAViaR models are

proposed to estimate the quantiles of the intra-day low and high series. A further con-

tribution of the paper is that we have found that the intra-day range and the overnight

return are two useful explanatory variables for VaR estimation. Our empirical study

suggests that the proposed methods improve the VaR forecasting accuracy.
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Appendix A: Proofs

In this appendix, we show that if the conditions P (Lt < x) = λP (yt < x) and P (Ht >

x) = λP (yt > x) hold, then the parameter estimation of any (MV-MQ-) CAViaR model

for the intra-day low and high series is more efficient than the parameter estimation of

the same (MQ-) CAViaR model for the returns. We start with the CAViaR models, in

which case we only establish the result for the lower quantiles without loss of generality.

Theorem 1. Let qt(β) = f(yt−1,Ψt−1 . . . y1,Ψ1;β) be any CAViaR model for the

θth quantiles of the returns, and let q̃t(β̃) = f(yt−1,Ψt−1 . . . y1,Ψ1; β̃) be the same

model for the (λθ)th quantiles of the intra-day low. In other words, qt(β) and q̃t(β̃)

have the same structure, and only differ by the parameters. By Theorem 2 in Engle

and Manganelli (2004), we can obtain the asymptotic covariance matrices of β and

β̃, which are denotes as D−1T ATD
−1
T and D̃−1T ÃTD̃

−1
T . Then it can be shown that

D−1T ATD
−1
T − D̃

−1
T ATD̃

−1
T is positive definite.

Proof of Theorem 1

Proof. Since P (Lt < x) = λP (yt < x), we have that the θ̃th quantiles of Lt equal

to the θth quantiles of yt. Since qt(β) and q̃t(β̃) have the same model structure, so

β̃0 = β0 by the unique identification condition Assumption E7 in Engle and Manganelli

(2004), where β̃0 and β0 are the true underlying parameter vectors of q̃t(β̃) and qt(β),

respectively. Consequently, ∇qt(β̃0) = ∇qt(β0).

Since AT = E

[
θ(1 − θ)

T∑
t=1

∇qt(β0)∇′qt(β0)

]
and ÃT = E

[
λθ(1 − λθ)

T∑
t=1

∇qt(β1)

∇′qt(β1)

]
, it can be shown that Ã−1T = (1−θλ)λ

(1−θ) (AT )
−1. Similarly, we can get D̃−1T =

1
λ
(DT )

−1. Therefore, D̃−1T ÃTD̃
−1
T = (1−θλ)λ

(1−θ) D
−1
T ATD

−1
T . Since λ is always larger than
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1 by its definition, (1−θλ)λ
(1−θ) is always positive:

(1− θλ)λ
(1− θ)

> 1

⇐⇒ (1− θλ)λ > 1− θ

⇐⇒ θλ− λ+ (1− θ) < 0

⇐⇒ (λ− 1)[θλ− (1− θ)] < 0

⇐⇒ λ ∈ (1,
1− θ
θ

)

So, D̃−1T ÃTD̃
−1
T −D

−1
T ATD

−1
T = positive constant ×D−1T ATD

−1
T , which is positive

definite by Assumption AN3 in Engle and Manganelli (2004).

Next, we establish the relative efficiency for the MV-MQ-CAViaR models against

the MQ-CAViaR model. The comparison is more difficult than the CAViaR models,

so we only establish the results for the bivariate case considered in the empirical study,

where the θth and the (1− θ)th quantiles for the returns, where θ < 0.5:

Theorem 2. Let qi,t(β) = f(yt−1,Ψt−1 . . . y1,Ψ1;β) be any CAViaR model for the θth

quantiles and the (1−θ)th quantiles of the returns, and let q̃i,j,t(β̃) = f(yt−1,Ψt−1 . . . y1,

Ψ1; β̃) be the same model for the (λθ)th quantiles of the intra-day low and the (1−λθ)th

of the intra-day high. That is, qi,t(β) and q̃i,t(β̃) have the same structure, and only

differ by the parameters. Note that j is 1 since there is only one probability level

corresponding to the intra-day low or the intra-day high, so we omit the indicator j for

simplicity, in which case q̃i,j,t(β̃) is denoted by q̃i,,t(β̃). By Theorem 2 in White et al.

(2015), we can obtain the asymptotic covariance matrices of β and β̃, which are denotes

asD−1T ATD
−1
T and D̃−1T ÃTD̃

−1
T . Then it can be shown thatD−1T ATD

−1
T −D̃

−1
T ATD̃

−1
T
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is positive definite.3

Before we proceed to prove Theorem 2, an extra condition, which seems always to

be satisfied in practice, needs to be imposed. We also state two lemmas that are used

in the proof. In the MV-MQ-CAViaR model, we use ỹ1,t and ỹ2,t to denote Lt and Ht

respectively, and we use θ1and θ2 to denote θ and 1− θ respectively.

Assumption 1. For any return series, let q∗1,t and q∗2,t be the true θth and (1 − θ)th

quantiles of the return series, the quantity 1− P({Lt<q∗1,t}∩{Ht>q∗2,t})
λ(λ−1)θ is positive.

Assumption 1 seems to be always met in practice when θ is sufficiently small. For

the all five series considered, we found P({Lt<q∗1,t}∩{Ht>q∗2,t})
θ

< 0.15 for θ ≤ 2.5% (see Fig-

ure 3), and λ > 1.154 (see Figure 1), in which case P({Lt<q∗1,t}∩{Ht>q∗2,t})
λ(λ−1)θ ≤ 0.15

(1.154−1)1.153 <

0.85 < 1.

Next, we state a few lemmas that are used in our proof:

Lemma 1. IfA andB are two symmetric matrices of the same size, ifA is nonsingular

and B is semi-positive definite, then ABA is semi-positive definite. In particular, if

B is positive definite, then ABA is also positive definite.

Proof. If B is semi-positive definite, we show that xtABAx is non-negative for any

column vector x. Since A is symmetric, (Ax)t = xtA. Let y = Ax, we obtain

xtABAx = ytBy. As B is semi-positive definite, xtABAx = ytBy is always non-

negative. If B is positive definite, let x be a nonzero vector, then y = Ax is nonzero

since A is nonsingular. Therefore, ytBy is positive by the positive definiteness of B,

which completes the proof.
3Note that AT (ÃT ) and DT (D̃T ) are the matrices V ∗ and Q∗ in Theorem 2 in White et al. (2015).

We choose these notations so as to be consistent with Theorem 1 in this paper.
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Figure 3: The ratio P({Lt<q1,t}∩{Ht>q2,t})
θ
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Lemma 2. Suppose the model considered is a bivariate MQ-CAViaR model, thenAT =
2∑
i=1

2∑
j=1

E

{{
−θjθi + min(θj, θi)

}
∇qj,t(β0)∇′qi,t(β0)

}
and ÃT =

2∑
i=1

2∑
j=1

E

{{
−θ̃j θ̃i +

P({ỹi,t < q̃j,t(β̃
0))}∩{ỹj,t < q̃i,t(β̃

0)}
}
∇q̃j,t(β̃0)∇′ q̃i,t(β̃0)

}
, where AT and ÃT are as

in Theorem 2.

Proof. We first compute ÃT = E(ηtη
′
t), where ηt =

2∑
j=1

∇q̃j,t(β̃0)ψθj(ỹj,t − q̃j,t(β̃0)) as

in Theorem 2 in White et al. (2015):

ÃT =
2∑
i=1

2∑
j=1

E

{
∇q̃j,t(β̃0)ψθ̃j(ỹj,t − q̃j,t(β̃

0))ψθ̃i(ỹi,t − q̃i,t(β̃
0))∇′ q̃i,t(β̃0)

}

=
2∑
i=1

2∑
j=1

E

{
ψθ̃j(ỹj,t − q̃j,t(β̃

0))ψθ̃i(ỹi,t − q̃i,t(β̃
0))∇q̃j,t(β̃0)∇′ q̃i,t(β̃0)

}

=
2∑
i=1

2∑
j=1

E

{{
ψθ̃j(ỹj,t − q̃j,t(β̃

0))ψθ̃i(ỹi,t − q̃i,t(β̃
0))

}{
∇q̃j,t(β̃0)∇′ q̃i,t(β̃0)

}}

=
2∑
i=1

2∑
j=1

E

{
ψθ̃j(ỹj,t − q̃j,t(β̃

0))ψθ̃i(ỹi,t − q̃i,t(β̃
0))

}
E

{
∇q̃j,t(β̃0)∇′ q̃i,t(β̃0)

}

=
2∑
i=1

2∑
j=1

E

{
−θ̃j θ̃i + θ̃iI(ỹj,t < q̃j,t(β̃

0)) + θ̃jI(ỹi,t < q̃i,t(β̃
0))

+I(ỹi,t < q̃i,t(β̃
0))I(ỹj,t < q̃j,t(β̃

0))

}
E

{
∇q̃j,t(β̃0)∇′ q̃i,t(β̃0)

}}
=

2∑
i=1

2∑
j=1

{
−θ̃j θ̃i + P({ỹi,t < q̃i,t(β̃

0)}∩{ỹj,t < q̃j,t(β̃
0)})

}
E

{
∇q̃j,t(β̃0)∇′ q̃i,t(β̃0)

}

The fourth line uses the fact that the random variable ψθ̃j(ỹj,t − q̃j,t(β̃
0)) is indepen-

dent of the past information and that ∇q̃j,t(β̃0)∇′ q̃i,t(β̃0) is determined by the past

information, and the last line uses the fact that E
{
I(ỹj,t < q̃j,t(β̃

0))

}
= θ̃j and

34



E

{
I(ỹi,t < q̃i,t(β̃

0))I(ỹj,t < q̃j,t(β̃
0))

}
= P({ỹi,t < q̃j,t(β̃

0)}∩{ỹj,t < q̃i,t(β̃
0)}).

The derivation for AT is similar. We replace θ̃j by θ, ỹj,t by yt, and ∇q̃j,t(β̃0) by

qj,t(β
0) in the above equations, and also use the face that P({yt < qi,t(β

0)}∩{yt <

qj,t(β
0)}) = min(θi, θj).

Proof of Theorem 2

Proof. For simplicity, letCi,j denote∇qi,t(β0)∇′qj,t(β0) and let c denote the probability

P({Lt < q1,t(β̃
0)}∩{Ht > q2,t(β̃

0)}). By the assumption that P (Lt < x) = λP (yt < x)

and P (Ht > x) = λP (yt > x), we have that the (θ̃j)th quantiles of yj,t equal to the

(θj)th quantiles of yt. So q̃j,t(β̃0) = qj,t(β
0), and by the unique identification condition

Assumption 4 in White et al. (2015) we have β̃0 = β0. So ∇q̃j,t(β̃0) = ∇qj,t(β0), and

hence D̃T = λDT . So it is equivalent to show thatD−1T ATD
−1
T − 1

λ2
D−1T ÃTD

−1
T is semi-

positive definite. Note that DT is symmetric by its definition, and it is positive definite

hence nonsingular by Assumption 6 in White et al. (2015). By Lemma 1, it suffices to

show that AT − 1
λ2
ÃT is semi-positive definite. Suppose 0 < θ1 < 0.5 < θ2 < 1, we

calculate AT − 1
λ2
ÃT using Lemma 2:

AT −
1

λ2
ÃT =

2∑
i=1

2∑
j=1

{
θjθi −min(θj, θi)

}
E

{
Ci,j

}
−

1

λ2

2∑
i=1

2∑
j=1

{
θ̃j θ̃i − P({ỹi,t < q̃i,t(β̃

0)}∩{ỹj,t < q̃j,t(β̃
0)})

}
E

{
Ci,j

}
= E

{
θ(1− θ)C11 + θ(1− θ)C22 + θ2(C12 +C21)

− 1

λ2

{
λθ(1− λθ)C11 + λθ(1− λθ)C22

+

{
−θ̃1θ̃2 + P({Lt < q̃1,t(β̃

0)}∩{Ht < q̃2,t(β̃
0)})(C12 +C21)

}}
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= E

{{
θ(1− θ)− λθ(1− λθ)

λ2

}
C11 +

{
θ(1− θ)− λθ(1− λθ)

λ2

}
C22 +{

θ2 − −θ̃1θ̃2 + P({Lt < q̃1,t(β̃
0)}∩{Ht < q̃2,t(β̃

0)})
λ2

}
(C12 +C21)

}
= E

{{
θ(1− θ)− λθ(1− λθ)

λ2

}
C11 +

{
θ(1− θ)− λθ(1− λθ)

λ2

}
C22 +{

θ2 − −θ̃1θ̃2 + P(Lt < q̃1,t(β̃
0))

λ2

+
−P({Lt < q̃1,t(β̃

0)}∩{Ht > q̃2,t(β̃
0)})

λ2
(C12 +C21)

}
= E

{{
θ(1− θ)− θ(1− λθ)

λ

}
C11 +

{
θ(1− θ)− θ(1− λθ)

λ

}
C22 +{

θ2 − −θ̃1θ̃2 + θ̃1 − c
λ2

}
(C12 +C21)

}
= E

{{
θ(1− θ)− θ(1− λθ)

λ

}
C11 +

{
θ(1− θ)− θ(1− λθ)

λ

}
C22 +{

θ2 − θ̃1(1− θ̃2)− c
λ2

}
(C12 +C21)

}
= E

{{
θ(1− θ)− θ(1− λθ)

λ

}
C11 +

{
θ(1− θ)− θ(1− λθ)

λ

}
C22 +{

(1− λ2

λ2
)θ2 +

c

λ2

}
(C12 +C21)

}
= E

{
(
λ− 1

λ
θ)C11 + (

λ− 1

λ
θ)C22 +

c

λ2
(C12 +C21)

}
= (

λ− 1

λ
θ)E

{
C11 +C22 +

c

λ(λ− 1)θ
(C12 +C21)

}

Note that λ−1
λ
θ > 0 since λ > 1. We show that E

{
C11+C22+

c
λ(λ−1)θ (C12+C21)

}
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is semi-positive definite:

E

{
C11 +C22 +

c

λ(λ− 1)θ
(C12 +C21)

}
=

c

λ(λ− 1)θ
E

{
C11 +C22 + (C12 +C21)

}
+

{
1− c

λ(λ− 1)θ

}
E

{
C11 +C22

}
=

c

λ(λ− 1)θ
E

{{√
c

λ
∇q1,t(β0) +

√
c

λ
∇q2,t(β0)

}{√
c

λ
∇′q1,t(β0) +

√
c

λ
∇′q2,t(β0)

}}
+

{
1− c

λ(λ− 1)θ

}
E

{
C11 +C22

}

In the last equation, both terms are semi-positive definite, since any matrix of the form

AA
′ is semi-positive definite and hence so is its expectation, and 1− c

h(h−1)θ is positive

by Assumption 1. Therefore,D−1T ATD
−1
T −(D̃T )

−1ÃT (D̃T )
−1 is semi-positive definite.
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