
A near optimal test for structural breaks when

forecasting under squared error loss

Tom Boot∗ Andreas Pick†

February 15, 2016

Abstract

We propose a near optimal test for local structural breaks of unknown
timing when the purpose of the analysis is to obtain accurate forecasts.
Under mean squared forecast error loss, a bias-variance trade-off exists
where small structural breaks should be ignored. We study critical
break sizes, assess the relevance of the break location, and provide a
test to determine whether modeling a break will improve forecast ac-
curacy. Asymptotic critical values and weak optimality properties are
established allowing for a small break to occur under the null, where
the allowed break size varies with the break location. The results are
extended to a class of shrinkage forecasts with our test statistics as
shrinkage constants. Empirical results on a large number of macroe-
conomic time series show that structural breaks that are relevant for
forecasting occur much less frequently than indicated by existing tests.
JEL codes: C12, C53
Keywords: forecasting, squared error loss, structural break test

1 Introduction

Structural breaks present a major challenge to forecasters as they require
information about the time of the break and accurate parameter estimates
for the post-break sample. Mean square forecast error loss implies a bias-
variance trade-off, which suggests that ignoring breaks of a smaller magni-
tude will lead to more accurate forecasts. This is reflected in the literature,
where forecasts based on the full sample are frequently found to be more ac-
curate, see for example Pesaran and Timmermann (2005), even if structural
instabilities have been documented in many economic series, for example by
Stock and Watson (1996). Hence, it is clear that sufficiently small breaks can
be ignored, which yields the question: what constitutes sufficiently small?
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We develop a test for equal forecast accuracy that compares the ex-
pected mean square forecast error (MSFE) of a one-step-ahead forecast that
accounts for a break and that of a forecast that uses the full sample. Under
a known break date, the largest break size for which a linear model achieves
equal predictive accuracy can be calculated to be one standard deviation of
the distribution of the parameter estimates. Under local breaks of unknown
timing, the uncertainty surrounding the break dates increases the variance
of the forecast such that the critical break size is much larger, up to three
standard deviations in terms of the distribution of the parameter estimates.
Building subsequently on the work by Andrews (1993) and Piterbarg (1996),
we derive a weakly optimal test for the critical break size and argue that
this test is near optimal for conventional choices of the nominal size due to
the size of the breaks that are allowed under the null. This is confirmed
in simulations of asymptotic power. In the process, we show that the weak
optimality of the test follows from an optimality argument of the estimated
break date by maximizing a Wald test statistic. This optimality does not
depend on whether the Wald-statistic is used in its homoskedastic form or
whether a heteroskedastic version is used, as long as the estimator of the
variance is consistent. We also show that post-test inference following a
rejection remains standard if the size of the test is small.

While our test uses much of the asymptotic framework of Andrews
(1993), it is substantially different from extant break point tests, such as
those of Ploberger et al. (1989), Andrews (1993), Andrews and Ploberger
(1994), Elliott and Müller (2007), Elliott and Müller (2014), and Elliott
et al. (2015). While these tests focus on the difference between (sub-)sets
of parameters of a model before and after a break date, our measure is the
forecast accuracy of the entire model. Additionally, in line with the fore-
casting literature, our loss function is the mean squared forecast error, and
squared error loss has been shown to yield different conclusions than stan-
dard F -tests by Toro-Vizcarrondo and Wallace (1968) and Wallace (1972).

Our test is also different from forecast accuracy tests of the kind sug-
gested by Diebold and Mariano (1995) and extended by, among others, Clark
and McCracken (2001); a recent review is by Clark and McCracken (2013).
These tests assess forecast accuracy ex post. In contrast, the test we propose
in this paper evaluates ex ante the accuracy of forecasts of models that do
or do not account for breaks by comparing the respective expected MSFE.

Closer to our work is the paper by Giacomini and Rossi (2009), which
assesses forecast breakdowns in the sense that the forecast performance of
a model is not in line with the in-sample fit of the model. They consider
forecast breakdowns in historically made forecasts as well as prediction of
forecast breakdowns. Our approach is more targeted asking whether a struc-
tural beak, which is one of the possible sources of forecast breakdown, needs
to be addressed from a forecast perspective.

The competing forecasts in our test are those using the full sample and
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using the post-break sample. Recently, Pesaran et al. (2013) showed that
forecasts based on post-break samples can be improved by using all obser-
vations and weighting them such that the MSFE is minimized. We show
that this estimator can be written as a shrinkage estimator in the tradition
of Thompson (1968), where the shrinkage estimator averages between the
full sample estimator and post-break sample estimator with a weight that
is equivalent to the break point test statistic introduced in this paper.

Under a known break, the performance of shrinkage estimators is well
known, see for example Magnus (2002). However, their properties depend
critically on the fact that the break date is known, which implies that the
estimator from the post-break sample is unbiased. Under local breaks, a
shrinkage estimator averages between two biased estimators and its fore-
casting performance compared to the full sample forecast is not immedi-
ately clear. Since the estimator does not take break date uncertainty into
account, it is expected to put too much weight on the forecast that incor-
porates the break. We find that for small break sizes, where the break date
is not accurately identified, the shrinkage forecast is less accurate than the
full sample forecast. However, compared to the post-break sample forecast,
we find that the shrinkage estimator is almost uniformly more accurate. We
derive a second, near-optimal version of our test that compares the forecast
accuracy of the shrinkage estimator and the full sample forecast.

We apply our test to the macroeconomic time series in the FRED-MD
data set by McCracken and Ng (2014), which consists of 135 series divided
into eight categories. We find that breaks that are important for forecasting
under MSFE loss are between a factor four to five less frequent than the
usual sup-Wald test by Andrews (1993) would indicate. Incorporating only
the breaks suggested by our test substantially reduces the average MSFE
in this data set compared to the forecasts that take all breaks suggested by
Andrew’s sup-Wald test into account.

The paper is structured as follows. We start with the motivating example
of the linear regression model with one break of known timing in Section 2.
The model is generalized in Section 3 using the methodology of Andrews
(1993). In Section 4 we derive the test and show its weak optimality in
Section 5. Section 6 shows that the weak optimality of the test is in fact
quite strong, with power very close to the optimal, but infeasible test that
knows the true break date. Section 7 considers the optimal weights forecast
developed by Pesaran et al. (2013) and studies its asymptotic properties.
Finally, an application to the large set of macroeconomic time series in the
FRED-MD data set is considered in Section 8.
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2 Motivating example: Structural break of known
timing in a linear model

In order to gain intuition, initially consider a linear regression model with a
structural break at time Tb

yt = x′tβt + εt, εt ∼ N(0, σ2) (1)

with

βt =

{
β1 if t ≤ Tb
β2 if t > Tb

(2)

with xt a k×1 vector of exogenous regressors, βi a k×1 vector of parameters
and the break date Tb assumed to be known. The parameter vectors β1 and
β2 can be estimated by ordinary least squares (OLS) on the two subsamples.
Alternatively, a single set of parameter estimates, β̂F , can be obtained by
OLS using the full sample.

Denote V i = (Ti − Ti−1)Var(β̂i) for i = 1, 2, T0 = 0, T1 = Tb, T2 = T
and V F = TVar(β̂F ) as the estimated variances of the vectors of coeffi-
cient estimates. The expected mean squared forecast error (MSFE) for the
forecast that incorporates the break is

R(x′T+1β̂2) = E

[(
x′T+1β̂2 − x′T+1β2 − εT+1

)2
]

=
1

T − Tb
xT+1V 2xT+1 + σ2

(3)

The MSFE for forecast using the full sample estimate is

R(x′T+1β̂F ) = E

[(
x′T+1β̂F − x′T+1β2 − εT+1

)2
]

= E
[(
x′T+1β̂F − x′T+1β2

)]2
+

1

T
x′T+1V FxT+1 + σ2

=

[
Tb
T
x′T+1V FV

−1
1 (β1 − β2)

]2

+
1

T
x′T+1V FxT+1 + σ2

(4)

Comparing (3) with (4), we see that the full sample forecast is more accurate
than the post-break sample forecast if

ζ =
T 2
b

T 2

[
x′T+1V FV

−1
1 (β1 − β2)

]2
x′T+1

(
V 2
T−Tb −

V F
T

)
xT+1

= Tτ2
b

[
x′T+1V FV

−1
1 (β1 − β2)

]2
x′T+1

(
V 2

1−τb − V F

)
xT+1

a→ Tτb(1− τb)
[
x′T+1(β1 − β2)

]2
x′T+1V xT+1

≤ 1

(5)
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Table 1: Critical values for the χ2(1, 1) and χ2(1) distribution

0.90 0.95 0.99

χ2(1, 1) 5.22 7.00 11.07
χ2(1) 2.71 3.84 6.63

with τb = Tb/T and the third line assumes that the covariance matrices
asymptotically satisfy plimT→∞ V i → V for i = 1, 2, F . From (5) it can
be observed that, under H0 : ζ = 1, the size of the break x′T+1(β1 − β2) is
symmetric in τb. It is also clear from (3) that breaks that occur at the end
of the sample will lead tot a larger mean squared forecast error than breaks
that occur at the beginning.

A test that takes H0 : ζ = 1 can be carried out by noting that

ζ̂(τ) = Tτ2

[
x′T+1V̂ F V̂

−1
1 (β̂1 − β̂2)

]2

x′T+1

(
V̂ 2
1−τ − V̂ F

)
xT+1

=

[
x′T+1(β̂F − β̂2)

]2

x′T+1V̂ar(β̂F − β̂2)xT+1

a∼ χ2(1, ζ)

(6)

A more conventional, yet asymptotically equivalent, form of the test
statistic is

ζ̂(τ) = T

[
x′T+1(β̂1 − β̂2)

]2

x′T+1

(
V̂ 1
τ + V̂ 2

1−τ

)
xT+1

a∼ χ2(1, ζ) (7)

This is a standard Wald test using the regressors at t = T + 1 as weights.
It is clear that the results of the test will in general differ for two reasons

from the outcomes of the classical Wald test on the difference between the
parameter vectors β1 and β2. The first is that the multiplication by xT+1

can cause large breaks to become irrelevant for forecasting or small breaks to
become relevant. Especially the first scenario is expected due to the fact that
breaks in the coefficients of β can cancel in the inner product x′T+1β. The
second is that under H0 : ζ = 1, we compare the test statistic against the
critical values of the non-central χ2(1, 1) distribution, instead of the central
χ2(1) distribution. Table 1 provides a comparison of the critical values of
both distributions, which shows that the difference is substantial.

In the next section, we turn to a more general set-up that assumes the
break date to be unknown and considers the asymptotic limit where T →
∞. It is clear from (5) that if the difference in the parameters, β1 − β2,
converges to zero at a rate T−1/2+ε for some ε > 0, the test statistic diverges
to infinity. We therefore consider breaks which are local in nature, i.e.
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β2 = β1 + 1√
T
η, rendering a finite test statistic in the asymptotic limit.

Local breaks have been recently intensively studied, see for example Elliott
and Müller (2007), Elliott and Müller (2014) and Elliott et al. (2015). An
implication of local breaks is that no consistent estimator for the break date
is available. This mimics practical situations, where the break date is rarely
known with certainty. As a consequence, the forecast that results from a
model that incorporates the break will not be unbiased. One can expect
that this favors the full sample forecast, such that larger breaks are allowed
under the null of equal forecasting performance between a full sample and
post-break sample estimations.

3 General set-up

The general estimation considered in this paper is that used by Andrews
(1993). The observed data are given by a triangular array of random
variables {W t = (Y t,Xt) : 1 ≤ t ≤ T}, Y t = (y1, . . . yt) and Xt =
(x1, . . . ,xt)

′. Assumptions can be made with regard to the dependency of
W t such that the results below apply to a wide range of time series mod-
els. We make the following extra assumption on the noise and the relation
between yt, lagged values of yt and exogenous regressors xt

Assumption 1 The model for the dependent variable yt consists of a signal
and additive noise

yt = f(β, δ;Xt,Y t−1) + εt (8)

where the function f is fixed and differentiable with respect to the parameter
vector θ = (β′, δ′)′.

In the model (8), the parameter vector δ is known to be constant but
the parameter vector β could be subject to a subject to a structural break.
The parameters can be estimated by minimizing the sample analogue of the
population moment conditions

1

T

T∑
t=1

E[m(W t,β0, δ0)] = 0 (9)

which requires solving

1

T

∑
m(W t, β̂F , δ̂)

′γ̂
1

T

∑
m(W t, β̂F , δ̂) =

inf
β,δ

1

T

∑
m(W t,β, δ)′γ̂

1

T

∑
m(W t,β, δ)

(10)

where β̂F is estimator that uses the entire sample. We assume throughout
the weighting matrix γ = S−1 and

S = lim
T→∞

Var

(
1√
T

T∑
t=1

m(W t,β, δ)

)
(11)
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for which a consistent estimator is available.
The p parameters given by β might be subject to a structural break,

while the q parameters in δ are constant over the observed sample. As
discussed in the previous paragraph, we consider a null hypothesis that
allows local breaks, defined by

β1 = β2 +
1√
T
η(τ) (12)

where η(τ) = bI[τ < τb] and b is a vector of constants. The pre-break
parameters β1 and the post-break parameters β2 satisfy partial sample mo-
ment conditions given by

1

T

Tτ∑
t=1

m(W t,β1, δ) = 0,
1

T

T∑
t=Tτ+1

m(W t,β2, δ) = 0

Define

m̄(β1,β2, δ, τ) =
1

T

Tτ∑
t=1

(
m(W t,β1, δ)

0

)
+

1

T

T∑
t=Tτ+1

(
0

m(W t,β2, δ)

)
(13)

then, partial sum GMM estimators can be obtained by solving (10) with
m(·) replaced by m̄(·) and γ̂ replaced by

γ̂(τ) =

(
1
τ Ŝ
−1

0

0 1
1−τ Ŝ

−1

)
(14)

We are interested in comparing the mean squared error of forecasts based
on full sample moment conditions for estimation with those using partial
sample moment conditions. The forecasts are constructed as

ŷFT+1 = f(β̂F , δ̂;Xt,Y t−1)

ŷPT+1 = f(β̂2, δ̂;Xt,Y t−1)
(15)

Throughout, we condition on the both the exogenous and endogenous vari-
ables that are needed to construct the forecast. The comparison between
ŷFT+1 and ŷPT+1 is non-standard as, under a local break, even the parameters
of the model that incorporates the break are inconsistent.

In order to compare the forecasts in (15), we start by providing the
asymptotic properties of the estimators in a model that incorporates the
break and in a model that ignores the break. Proofs for weak convergence
of the estimators towards Gaussian processes indexed by the break date τ as
below, are given by Andrews (1993). The asymptotic distributions depend
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on the following matrices, for which consistent estimators are assumed to be
available,

M = lim
T→∞

1

T

T∑
t=1

E

[
∂m(W t,β0, δ0)

∂β

]

M δ = lim
T→∞

1

T

T∑
t=1

E

[
∂m(W t,β0, δ0)

∂δ

] (16)

To simplify the notation, define

X̄
′
= M ′S−1/2

Z̄
′
= M ′

δS
−1/2

(17)

Break model The partial-samples estimators converge to the following
Gaussian process indexed by τ

√
T

 β̂1(τ)− β2

β̂2(τ)− β2

δ̂ − δ

→
 τX̄

′
X̄ 0 τX̄

′
Z̄

0 (1− τ)X̄
′
X̄ (1− τ)X̄

′
Z̄

τZ̄
′
X̄ (1− τ)Z̄

′
X̄ Z̄

′
Z̄

−1

×

 X̄
′
B(τ) + X̄

′
X̄
∫ τ

0 η(s)ds

X̄
′
(B(1)−B(τ)) + X̄

′
X̄
∫ 1
τ η(s)ds

Z̄
′
B(1) + Z̄

′
X̄
∫ 1

0 η(s)ds


(18)

where we subtract β2 from both estimators β̂1 and β̂2 as our interest lies
in forecasting future observations, which are functions of β2 only, and the
remainder that arises if τ 6= τb, is absorbed in the integral on the right hand
side.

Define the projection matrix that projects off the columns of X̄ asM X̄ =
I − X̄(X̄

′
X̄)−1X̄

′
and, additionally,

V = (X̄
′
X̄)−1

Q = Z̄
′
M X̄Z̄

L = (X̄
′
X̄)−1X̄

′
Z̄(Z̄

′
M X̄Z̄)−1

Q̃ = (X̄
′
X̄)−1X̄

′
Z̄(Z̄

′
M X̄Z̄)−1Z̄

′
X̄(X̄

′
X̄)−1

(19)

The inverse in (18) can be calculated using blockwise inversion. The result

is the asymptotic variance covariance matrix of
(
β̂1(τ)′, β̂2(τ)′, δ̂

′)′

Σ =

 1
τV + Q̃ Q̃ −L

Q̃ 1
1−τV + Q̃ −L

−L′ −L′ Q−1

 (20)
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Hence,

√
T (β̂1(τ)− β2)→ 1

τ

[
(X̄
′
X̄)−1X̄

′
B(τ) +

∫ τ

0
η(s)ds

]
− (X̄

′
X̄)−1X̄

′
Z̄(Z̄

′
MXZ̄)−1Z̄

′
MXB(1)

√
T (β̂2(τ)− β2)→ 1

1− τ

[
(X̄
′
X̄)−1X̄

′
(B(1)−B(τ)) +

∫ 1

τ
η(s)ds

]
− (X̄

′
X̄)−1X̄

′
Z̄(Z̄

′
MXZ̄)−1Z̄

′
MXB(1)

√
T (δ̂ − δ)→ (Z̄

′
MXZ̄)−1Z̄

′
MXB(1)

(21)

Several terms can be recognized to be analogous to what would be obtained
in a multivariate regression problem using the Frisch-Waugh theorem.

Full-sample model Estimators that ignore the break converge to

√
T

(
β̂F − β2

δ̂ − δ

)
→
[
X̄
′
X̄ X̄

′
Z̄

Z̄
′
X̄ Z̄

′
X̄

]−1
[
X̄
′
B(1) + X̄

′
X̄
∫ 1

0 η(s)ds

Z̄
′
B(1) + Z̄

′
Z̄
∫ 1

0 η(s)ds

]
(22)

Using the notation defined in (19), the inverse in (22) can be written as

ΣF =

(
V + Q̃ −L
−L′ Q−1

)
(23)

and, therefore,

√
T
(
β̂F − β2

)
→ (X̄

′
X̄)−1X̄

′
B(1) +

∫ 1

0
η(s)ds

− (X̄
′
X̄)−1X̄

′
Z̄(Z̄

′
MXZ̄)−1Z̄

′
MXB(1)

√
T
(
δ̂ − δ

)
→ (Z̄

′
MXZ̄)−1Z̄

′
MXB(1)

(24)

Note that for the parameters δ̂, the expression is identical to case where we
model the break in β.

Later results require the covariance between the estimators from the
full-sample and the break model, which is

TCov(β̂2(τ), β̂F ) = V + Q̃ = TVar(β̂F ) (25)

which corresponds to the results by Hausman (1978) that under the null of no
misspecification, a consistent and asymptotically efficient estimator should
have zero covariance with its difference from an consistent but asymptoti-
cally inefficient estimator, i.e. Cov(β̂F , β̂F − β̂2(τ)) = 0. The difference is
that under a local structural break, both β̂F and β̂2(τ) are not consistent.
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4 Testing for a structural break

4.1 A break of known timing

Initially, we will assume that the timing of the break is known in order
to illustrate part of our approach, which we will then extend to breaks
of unknown timing. Following Assumption 1, forecasts are obtained by
applying a fixed, differentiable function to the p+q parameters of the model
conditional on a set of regressors of dimension k = p+ q by (xT+1, zT+1)

ŷT+1 = f(β̂2, δ̂) (26)

where we omit the dependence on the regressors for notational convenience.
For a known break date, the results of the previous paragraph imply the
following asymptotic distribution of the parameters

√
T

 β̂1 − β1

β̂2 − β2

δ̂ − δ

→ N

 0
0
0

 ,

 1
τV + Q̃ Q̃ −L
Q̃ 1

1−τV + Q̃ −L
−L′ −L′ Q−1


(27)

The full-sample estimator is given by

β̂F = β̂2 + τb(β̂1 − β̂2) (28)

and

√
T

(
β̂F − β2

δ̂ − δ

)
→ N

[(
τb(β1 − β2)

0

)
,

(
V + Q̃ −L
−L′ Q−1

)]
(29)

Define fβ2 = ∂f(β2,δ)
∂β2

and fδ = ∂f(β2,δ)
∂δ . Using a Taylor expansion and

the fact that the breaks are local in nature, we have that

√
T
(
f(β̂2, δ̂)− f(β2, δ)

)
=
√
T
[
f ′β2(β̂2 − β2) + f ′δ(δ̂ − δ) +O(T−1)

]
→ N

(
0, f ′β2Var(β̂2)fβ2 + q

)
√
T
(
f(β̂F , δ̂)− f(β2), δ)

)
=
√
T
[
f ′β2(β̂F − β2) + f ′δ(δ̂ − δ) +O(T−1)

]
→ N

(
τb(β1 − β2), f ′β2Var(β̂F )fβ2 + q

)
(30)

where q = f ′δVar(δ̂)fδ + 2f ′β2Cov(β̂F , δ̂)fδ will drop out later on, and we use

that, asymptotically, Cov(β̂F , δ̂) = Cov(β̂2, δ̂). Using previous results on
the covariance matrix of the estimators, and the notation in (19), we have

f ′β2Var(β̂2)fβ2 =
1

1− τb
f ′β2V fβ2 + f ′β2Q̃fβ2

f ′β2Var(β̂F )fβ2 = f ′β2V fβ2 + f ′β2Q̃fβ2

(31)
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For the expected MSFEs using β2 and βF , we have

TE

[(
f(β̂2, δ̂)− f(β2, δ)

)2
]

=
1

1− τb
f ′β2V fβ2 + f ′β2Q̃fβ2 + q

TE

[(
f(β̂F , δ̂)− f(β2, δ)

)2
]

=
[
τbf
′
β2(β1 − β2)

]2
+ f ′β2V fβ2 + f ′β2Q̃fβ2 + q

Hence, the full-sample based forecast improves over the post-break sample
based forecast if

ζ = T (1− τb)τb

[
f ′β2(β1 − β2)

]2

f ′β2V fβ2
≤ 1 (32)

Similar to Section 2, a test for H0 : ζ = 1 can be derived by by noting
that, asymptotically, Var(β̂1 − β̂2) = Var(β̂1) + Var(β̂2) − 2Cov(β̂1, β̂2) =

1
τb(1−τb)V and, therefore,

ζ̂ = T (1− τb)τb

[
f ′β2(β̂1 − β̂2)

]2

ω̂
∼ χ2(1, ζ) (33)

where ω̂ is a consistent estimator of f ′β2V fβ2 . The test statistic, ζ̂, can be

compared against the critical values of the χ2(1, 1) distribution to test for
equal forecast performance.

The above can be immediately applied to the simple structural break
model (1) where f(β̂2;xT+1) = x′T+1β̂2, and fβ2 = xT+1. The full-sample
forecast is more accurate if

ζ = Tτb(1− τb)
[
x′T+1(β1 − β2)

]2
x′T+1V xT+1

≤ 1 (34)

identical to the result in (5).

4.2 Forecasting under a local break of unknown timing

If the timing of the break is unknown and τ < τb, then the estimator of
β2 is biased as can be seen from the last term in (21). The difference in
expected asymptotic MSFE between the post-break sample based forecast
and the full-sample based forecast is

∆̃ = R(β̂2(τ̂), δ̂)−R(β̂F , δ̂)

= T
{

E
[
(f(β̂2(τ̂), δ̂)− f(β2, δ))2

]
− E

[
(f(β̂F , δ̂)− f(β2, δ))2

]}
= T

{
E

[(
f ′β2(β̂2(τ̂)− β2)

)2
]
− E

[
f ′β2(β̂F − β2)

]2
− f ′β2Var(β̂F )fβ2

}
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where R(θ̂) is the asymptotic MSFE under parameter estimates θ̂. The
derivations are provided in Appendix A. Standardizing by f ′β2V fβ2 yields

∆ =
R(β̂2(τ̂), δ̂)−R(β̂F , δ̂)

f ′β2V fβ2

= E


 1

1− τ̂
f ′β2V X̄

′
(B(1)−B(τ̂))√
f ′β2V fβ2

+
1

1− τ̂

∫ 1

τ̂

f ′β2η(s)√
f ′β2V fβ2

ds

2
−

∫ 1

0

f ′β2η(s)√
f ′β2V fβ2

ds

2

− 1 (35)

= Ef(τ̂)

{[
1

1− τ̂
(B(1)−B(τ̂)) + θ

τb − τ̂
1− τ̂

I[τ̂ < τb]

]2
}
− θ2τ2

b − 1

where θ =
f ′β2
η(τ)√

f ′β2
V fβ2

with the break defined as η(τ) = bI[τ < τb]. By a

continuous mapping theorem
f ′β2
V X̄

′
[B(1)−B(τ)]√
f ′β2
V fβ2

= B(1) − B(τ) with B(·)

a one-dimensional Brownian motion.1 If τ̂ = τb, the critical break size of
the previous section is obtained. However, under an unknown break date
τ̂ 6= τb in general and (35) cannot be immediately used for testing purposes.
However, since ∆ is symmetric around θ = 0, and ∆ > 0 for θ = 0 and (35)
quadratically decreases away from θ = 0, there is a unique break size |θ| for
each τb for which ∆ = 0. This makes the break size an excellent candidate as
a test statistic and consequently we consider as before the Wald test statistic

W (τ) = T

[
f ′β2(β̂2(τ)− β̂1(τ))

]2

f ′β2

(
V̂ 1
τ −

V̂ 2
1−τ

)
fβ2

(37)

analogous to (33) when the break date is known. As we show below, in case
of a rejection when testing at small enough size, this test statistic identifies

1Note that up to the last line of (35), we have not made assumptions regarding the

form of the instability, which is governed by η(τ). Defining J(τ) =
∫ 1

τ

f ′β2
η(s)√

f ′
β2
V fβ2

ds, we

would have

∆ = Ef(τ)

{[
1

1 − τ
(B(1) −B(τ)) +

1

1 − τ
J(τ)

]2}
− J(1)2 − 1 (36)

which could be used to test whether the use of a moving window will outperform an
expanding window under various forms of parameter instability. The expectation obviously
simplifies if the size of the moving window is exogenously set to some fraction of the total
number of observations.
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the true break date up to a constant that vanishes with decreasing size. This
establishes a weak form of optimality of the sup-Wald test. Since the break
size θ for which ∆ = 0 is different for each τb, our null hypothesis will change
with the unknown τb for which no consistent estimator is available. We will
show below how a test can be constructed in this scenario that maintains
this weak optimality.

Since the function f is fixed, the results in Andrews (1993) and the
continuous mapping theorem show that W (τ) in (37) converges to

Q∗(τ) =

(
B(τ)− τB(1)√

τ(1− τ)
+

√
1− τ
τ

∫ τ

0
η(s)ds−

√
τ

1− τ

∫ 1

τ
η(s)ds

)2

=

(
B(τ)− τB(1)√

τ(1− τ)
+ µ(τ ; θτb)

)2

(38)

For the optimality results below require the following assumption.

Assumption 2 The function µ(τ ; θτb) is maximized (or minimized) if and
only if τ = τb

The first term of (38) is a self-normalized Brownian bridge with expec-
tation zero and variance equal to one. For a fixed break date, Q∗(τ) follows
a non-central χ2 distribution with one degree of freedom and non-centrality
parameter µ(τ ; θτb)

2. We will now show that if we test at a small nominal
size, rejections are found only for break locations that are close to τb. We
provide explicit expressions for the region around τb in which rejections are
found. These results are used to show that we can set up a powerful test
even if the null hypothesis depends on the unknown break date.

Specializing to the structural break model, we have

µ(τ ; θτb) = θτb

[√
1− τ
τ

τbI[τb < τ ] +

√
τ

1− τ
(1− τb)I[τb ≥ τ ]

]
(39)

which indeed satisfies Assumption 2. The extremum value is µ(τb; θτb) =
θτb
√
τb(1− τb).

5 Weak optimality

The proof of weak optimality will proceed as follows. Using arguments of
Piterbarg (1996), we first prove that under a general form of instability,
only points in a small neighborhood around the maximum instability point
τb contribute to the probability of exceeding a constant boundary u in the
limit where u tends to infinity or, equivalently, the size of the test tends

13



to zero. In a second step, we extend the analysis by considering a null
hypothesis that depends on an unknown and weakly identified parameter
τb. In this case, critical values will also depend τb. Roughly speaking, if
the critical values vary ‘slowly’ with τb, than using an estimate τ̂ leads to a
weakly optimal test in the sense that it has larger or equal power compared
to the test that knows τb in the limit where the size of the test goes to zero.

Theorem 1 (Location concentration) Suppose Q∗(τ) = [Z(τ) + µ(τ ; θτb)]
2

where Z(τ) is a zero mean Gaussian process with variance equal to one and
|µ(τ ; θτb)| is a function that attains its unique maximum when τ = τb, then
as u→∞

P

(
sup
τ∈I

Q∗(τ) > u2

)
= P (Z(τ) > u− |µ(τ ; θτb)| for some τ ∈ I1) (1 + o(1))

where I = [τmin, τmax], I1 = [τb − δ, τb + δ] and

δ = u−1 log2 u

Proof: We start by noting that for τ ∈ [τmin, τmax]

P

(
sup
τ∈I

Q∗(τ) > u2

)
= P

(
sup
τ∈I

√
Q∗(τ) > u

)
= P

(
sup
τ∈I
|Z(τ) + µ(τ ; θτb)| > u

)
= P

(
sup
τ×c

[Z(τ) + µ(τ ; θτb)]c > u

)
with c = ±1

where the supremum is taken jointly over τ ∈ [τmin, τmax] and c.

Lemma 1 Suppose Z(τ) is a symmetric Gaussian process, i.e. P (Z(τ) >
u) = P (−Z(τ) > u), then

P

(
sup
τ×c

[Z(τ) + µ(τ ; θτb)]c > u

)
= P

(
sup
τ∈I

Z(τ) > u− |µ(τ ; θτb)|
)

(1 + o(1))

where c = ±1 and the supremum is taken jointly over τ ∈ I and c.

Proof: Consider first µ(τ ; θτb) > 0 then

P (Z(τ) + µ(τ ; θτb) > u, τ ∈ I) = P (Z(τ) > u− |µ(τ ; θτb)|, τ ∈ I)

P (−Z(τ)− µ(τ ; θτb) > u, τ ∈ I) = P (Z(τ) > u+ |µ(τ ; θτb)|, τ ∈ I)
(40)

where τ ∈ I is shorthand notation for “for some τ ∈ I”. When µ(τ ; θτb) < 0
we have

P (−Z(τ)− µ(τ ; θτb) > u, τ ∈ I) = P (Z(τ) > u− |µ(τ ; θτb)|, τ ∈ I)

P (Z(τ) + µ(τ ; θτb) > u, τ ∈ I) = P (Z(τ) > u+ |µ(τ ; θτb)|, τ ∈ I)
(41)
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The bounds in the second lines of (40) and (41) are equal or larger then
the bounds in the first lines. It follows from the results below that the
crossing probabilities over the larger bounds are negligible compared to the
crossing probabilities over the lower bounds. This implies that for any sign
of µ(τ ; θτb) as u→∞

P

(
sup
τ×c

[Z(τ) + µ(τ ; θτb)]c > u

)
= P

(
sup
τ∈I

Z(τ) > u− |µ(τ ; θτb)|
)

(1 + o(1))

(42)
We now continue to show that in (42), exceedances occur in a small subset
of I. For the theory to apply to the structural break model, we assume
Z(τ) to be a locally stationary Gaussian process with correlation function
r(τ, τ + s), defined as follows

Definition 1 (Local stationarity) A Gaussian process is locally station-
ary if there exists a continuous function C(τ) satisfying 0 < C(τ) <∞

lim
s→0

1− r(τ, τ + s)

|s|α
= C(τ) uniformly in τ ≥ 0

This implies that the correlation function can be approximated as

r(τ, τ + s) = 1− C(τ)|s|α + o(|s|α) as s→ 0

The standardized Brownian bridge that we encounter in the structural break
model is a locally stationary process with α = 1 and local covariance function
C(τ) = 1

2
1

τ(1−τ) . Since τ ∈ [τmin, τmax] with 0 < τmin < τmax < 1, it holds

that 0 < C(τ) <∞.

Lemma 2 Suppose Z(τ) is a locally stationary process with local covariance
function C(τ) then if δ(u)u2 →∞ and δ(u)→ 0 as u→∞

P

(
sup

[τ,τ+δ(u)]
Z(t) > u

)
=

1√
2π
δ(u)u exp

(
−1

2
u2

)
C(τ) (43)

Proof: see Hüsler (1990).

Proof of Theorem 1 (continued): The following is based on the approach
by Piterbarg (1996). Consider a region close to τb defined by I1 = [τb −
δ(u), τb + δ(u)]. We want to show that, if δ(u)→ 0 as u→∞ at an appro-
priate rate, then I1 contains all relevant information on the probability of
crossing the boundary. In I1, the minimum value of the boundary is given
by

c1 = inf
τ∈I1

[u− µ(τ ; θτb)] = u− |µ(τb; θτb)| (44)
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so that

PI1 = P (Z(τ) > u− |µ(τ ; θτb)| for some τ ∈ I1)

≤ P (Z(τ) > c1 for some τ ∈ I1)

= 2δ(u)c1
1√
2π

exp

(
−1

2
c2

1

)
C(τb − δ(u))

=
2δ(u)√

2π
exp

(
−1

2
c2

1 + log c1

)
C(τb − δ(u))

where the third line follows from (43).

Define now also regions that are increasingly further from τb as

Ik = {[τb − kδ(u), τb − (k − 1)δ(u)], [τb + (k − 1)δ(u), τb + kδ(u)]}

In Ik, the minimum value of the boundary satisfies

ck ≥ ck,min = u− |µ(τb + δ(u); θτb)| (45)

Taking a Taylor expansion of µ(τb + δ(u); θτb) around δ(u) = 0 gives

µ(τb + δ(u); θτb) = µ(τb; θτb) + γδ(u) +O(δ(u)2) (46)

where γ =
∂µ(τ ;θτb )

∂τ

∣∣∣
τ=τb

. Using (45) we have

PIk = P (Z(τ) > u− |µ(τ ; θτb)| for some τ ∈ Ik)
≤ P (Z(τ) > ck,min for some τ ∈ Ik)

=
δ(u)√

2π
exp

(
−1

2
c2

1 − c1γδ(u)− 1

2
γ2δ(u)2 + log(c1 + γδ(u))

)
C(τk)

(47)

with τk ∈ Ik, the precise value of τk is not essential to the proof. Then∑
k 6=1

PIk =
δ(u)√

2π
exp

(
−1

2
c2

1 − c1γδ(u)− 1

2
γ2δ(u)2 + log(c1 + γδ(u))

)∑
k 6=1

C(τk)

(48)
For the sum

∑
k 6=1C(τk) it is sufficient to note that it is independent of c1

and u. Compare (48) to the probability of a test with a known break date
to exceed the critical value

P0 = P (Z(τb) > u− |µ(τb; θτb)|) =
1√
2π

exp

(
−1

2
c2

1 − log(c1)

)
(49)

where we use that

1√
2π

∫ ∞
u

exp

(
−1

2
x2

)
dx =

1√
2πu

exp

(
−1

2
u2

)
as u→∞
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We see that (48) contains an extra term exp(−c1γδ(u)) compared to (49).
Using (44), this implies that

∑
k 6=1 PIk = o(P0) if

uδ(u)

log u
→∞

Subsequently, if
δ(u) = u−1 log2(u) (50)

then all intervals outside of I1 contribute o(P0) to the probability of crossing
the boundary u. Under (50), we have that for PI1 as u→∞

PI1 ≤ PI ≤ PI1 +
∑
k 6=1

PIk

≤ PI1 + o(P0)

We now only need to note that

PI1 = P (Z(τ) > u− |µ(τ ; θτb)| for some τ ∈ I1)

≥ P (Z(τb) > u− |µ(τb; θτb)|) = P0

To conclude that

P

(
sup
τ∈I

Z(τ) > u− |µ(τ ; θτb)|, τ ∈ I
)

= PI1(1 + o(1)) as u→∞

which completes the proof.

Note: In (48), the term that ensures that PIk = o(P1) is exp(c1δ(u))−γ . In
the structural break model, we see that (46) is given by µ(τb + δ(u); θτb) =
θτb
√
τb(1− τb)− 1

2θτb
1√

τb(1−τb)
δ(u) +O(δ(u)2). It is clear that γ scales lin-

early with the break size. Therefore, if the break size is sufficiently high, we
expect the optimality results to extend to the practical case when u is finite.
This is confirmed by the simulations of asymptotic power presented in 6.

Corollary 1 (Corollary 8.1 of Piterbarg (1996)) As u → ∞, the dis-
tribution of the break location denoted by D converges converges to a delta
function located at τ = τb for excesses over the boundary u2, i.e.

D

(
τ̂ : Q∗(τ̂) = sup

τ∈I
Q∗(τ)

∣∣∣∣sup
τ∈I

Q∗(τ) > u2

)
→ δτb as u→∞

This implies that post-test parameter inference after a rejection of the null
is standard. It also provides a weak form of optimality for the break date
that results from maximizing finite sample Wald statistics that converge to
Q∗ given by (38).
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The testing problem we consider is complicated by the fact that the
null hypothesis depend on the unknown break location. This translates
into critical values that will also depend on the unknown break date. The
location concentration theorem 1 indicates that plugging in the estimate of
the break date that maximizes the Wald statistic could be a viable strategy
to obtain a well behaved test. Indeed, this strategy is weakly optimal in the
sense of Andrews (1993) if the following assumption is satisfied

Assumption 3 (Slowly varying critical values) Suppose we test using
critical values that control size for every τb, i.e. u = u(τb) and

P

(
sup
τ
Q∗(τ) > u(τb)

)
= α

Then u(τ)−µ(τ ; θτb) should have a unique minimum on I1 = [τb−δ(u), τb+
δ(u)] at τ = τb.

Suppose that u(τb) a differentiable function with respect to τb, then a suf-
ficient condition is that the critical values are slowly varying with τb in
comparison with the derivative of the function µ(τ ; θτb) with respect to τ on
the interval [τb − δ, τb + δ], i.e.∣∣∣∣∂u(τb)

∂τb

∣∣∣∣ < ∣∣∣∣∂µ(τ ; θτb)

∂τ

∣∣∣∣
In the structural break model γ in (46) is given by γ =

∂µ(τ ;θτb)
∂τ = θτb

1√
τb(1−τb)

.

The slowly varying condition relates the dependence of the critical values
on τb to the identification strength of the break date as the derivative of
µ(τ ; θτb) with respect to τ scales linearly with the break size. For the break
size we know from section 2 that θτb

√
τb(1− τb) ≥ 1, where the equality

holds if the break date is known with certainty. Then

γ =
θτb√

τb(1− τb)
≥ 1

τb(1− τb)

The slowly varying assumption therefore holds if

∂u(τb)

∂τb
≤ 1

τb(1− τb)
(51)

which can be verified once critical values have been obtained.
We now provide a result on the optimality of the presented test under

Assumption 3.
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Theorem 2 (Weak optimality) Under a slowly varying boundary

PHa

(
sup
τ
Q∗(τ) > u(τ̂)2

)
− PHa(Q∗(τb) > v(τb))

≥ PHa(Q∗(τb) > u(τb))− PHa(Q∗(τb) > v(τb))

= 0

(52)

where τ̂ = arg supτ Q
∗(τ), P (Q∗(τb) > v(τb)) = α and PHa denotes the

crossing probability under the alternative.

Proof: As before

PHa

(
sup
τ
Q∗(τ) > u(τ̂)2

)
= PHa(Z(τ̂) > u(τ̂)− µ(τ̂ ; θτb))

Under the slowly varying assumption, u(τ̂)−µ(τ̂ ; θτb) has a unique minimum
on I1 at τ̂ = τb. Then taking the supremum necessarily leads to more
exceedances than only considering τ = τb, which proves the inequality in
(52). The last line of (52) is ensured by the following lemma

Lemma 3 (Convergence of critical values) Let u(τb) be the critical that
control size for each τb. Furthermore, let v(τb) be the critical values of the
test that considers the break date fixed at its true value, then u(τb)−v(τb)→
0.

Proof: By definition of the critical values

P (sup
τ
Q∗(τ) > u(τb)

2) = P (Z(τ) > u(τb)− |µ(τ ; θτb)| for some τ ∈ I1) = α

P (Q∗(τb) > v(τb)
2) = P (Z(τb) > v(τb)− |µ(τb; θτb)|) = α

Since τ in the first line is contained in I1, we have by a Taylor series expan-
sion of µ(τ ; θτb) around τb that max |µ(τ ; θτb)| − |µ(τb; θτb)| = O(δ(u)) and
consequently, maxu(τb)− v(τb) = O(δ(u)). In fact, by arguments similar to
those in the proof of Theorem 1 one could argue that maxu(τb) − v(τb) =
O(log(u)/u) which corresponds to the results in Andrews (1993). In any
case, since δ(u) = u−1 log2 u, we have that u(τb)− v(τb)→ 0 as u→∞.

Corollary 2 (A test statistic with critical values independent of τb)
A test statistic where the critical values are independent of τb for u→∞ is
given by

κ(τ̂) = sup
τ∈I

√
T

∣∣∣f ′β2 (β̂2(τ)− β̂1(τ)
)∣∣∣√

f ′β2

(
V̂ 1
τ + V̂ 2

1−τ

)
fβ2

− |µ(τ̂ ; θτ̂ )| (53)

where τ̂ maximizes the first term of κ, or equivalently the Wald statistic
(37).
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Figure 1: Break size for equal MSFE between the full sample and post-break
sample forecast
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Proof: The test statistic converges to κ(τ̂) → supτ |Z(τ) + µ(τ ; θτb)| −
|µ(τ̂ ; θτ̂ )| where τ̂ maximizes the first term. As shown before, exceedances
of a high boundary are concentrated in the region [τb−δ(u), τb+δ(u)] where
δ(u)→ 0 as u→∞. Then

P (κ(τ̂) > u) = P

(
sup
I1

|Z(τ) + µ(τ ; θτb)| − |µ(τ̂ ; θτ̂ )| > u

)
= P (Z(τ̂) > u− |µ(τ̂ ; θτb)|+ |µ(τ̂ ; θτ̂ )|)

Since the difference −|µ(τ̂ ; θτb)|+ |µ(τ̂ ; θτ̂ )| = O(δ(u)), the critical values of
κ(τ̂) are independent of τb in the limit where u→∞.

6 Simulations

Since our theory considers the case where the nominal size tends to zero, we
investigate how the weak optimality translates to conventional choice of the
size, α = {0.10, 0.05, 0.01, 0.005}, using simulations, where we use 200,000
repetitions for each break date and size. The [0, 1] interval is divided in 1,000
equally spaced parts, similar to Bai and Perron (1998). The possible break
dates are allowed to be on the interval [τmin, τmax] with τmin = 1 − τmax =
0.15.

6.1 Break size for equal forecast accuracy

The break size for which the full sample and the post-break sample achieve
equal predictive accuracy can be simulated using (35) and Figure 1 shows
the combinations of break size and break date for which the same MSFE is
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obtained. Note that the vertical axis is in units of the standardized break
size, so that it can be interpreted as a standard deviations from a standard
normal. The plot shows that the break size for τb = 0.15 is very large and
decreases as τb increases. As expected, the break size is uniformly larger
than 1, which is the break size under a known break date.

6.2 Critical values, size and power

After finding the line in (τb, θ) space for which ∆ = 0, we compute critical
values by simulating our Wald-type test statistic (37) and the α-asymptotic
statistic (53) for pairs of (τb, θ). Condition (51) which should hold for the
weak optimality results to apply is verified in Figure 9 in Appendix B.
Should either the distribution of τ̂ be very concentrated around τb or, alter-
natively, the dependence of the critical values on τb very weak, then, using
τ̂ , these critical values could be used without further correction. While the
approximation using τ̂ is indeed close, applying a small numerical correction
leads to size control uniformly over τb.

The critical values are displayed in Figure 2a. The large break size that
yields equal forecast accuracy implies that a major increase in critical values
compared to the standard values of Andrews (1993), which are for a size
of [0.10, 0.05, 0.01] equal to [7.17, 8.85, 12.35]. The critical values for the α-
asymptotic test statistic (53) are expected to be independent of τ̂ in the limit
where α→ 0 and can be compared to the usual critical values that would be
obtained under a known break date from a one-sided normal distribution,
i.e. [2.58, 2.33, 1.64, 1.28]. Figure 2c displays the critical values and it can
be seen that for finite α the dependence on τ̂ is considerably smaller than
for the Wald statistic. Also, size is controlled better for different values
of the true break date, even without numerical corrections. The results
in Section 5 suggest that the difference to the critical values diminishes as
α→ 0, and this is indeed what we can observe. In the plots in Figure 2, the
solid lines are obtained by numerically adjusting the critical values to ensure
size control over all values of τb, which can be seen to be very effective.

Given that the break sizes that lead to equal forecast performance are
reasonably large, we expect the test to have relatively good properties in
terms of power. This is confirmed in Figure 3, which shows that the power
of the test is close to the power of the optimal test which uses a known break
date. This is observed for all locations of the break and confirms that the
theoretical results for vanishing nominal size extend to conventional choices
of nominal size for break sizes considered under the null hypothesis of equal
forecast accuracy.
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Figure 2: Critical values and size for Wald test statistic (37) and α-
asymptotic test statistic (53)

(a) Critical values sup-Wald test

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
5

10

15

20

25

30

35

Estimated break date

(b) Size

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

True break date τ
b

(c) Critical values sup κ test

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1

1.5

2

2.5

3

3.5

Estimated break date

(d) Size

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.02

0.04

0.06

0.08

0.1

0.12

True break date τ
b

Note: Dashed lines are critical values that control size for each τb separately. The contin-

uous lines are obtained when adjusting the critical values to ensure size control uniformly

over τb. The pairs of lines are for α = 0.1, 0.05, 0.01, 0.005.
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Figure 3: Power curves for various values of τb for α = 0.05

(a) τb = 0.15
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(b) τb = 0.35
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(c) τb = 0.65
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(d) τb = 0.85

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Standardized break size

Note: Power of a test conditional on the break date is plotted in green. The power of the

test based on the Wald statistic (37) and (53) are not distinguishable and plotted in blue.
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7 Optimal weights and shrinkage forecasts

Pesaran et al. (2013) derived optimal weights for observations in the estima-
tion sample such that, in the presence of a structural break, the MSFE of
the one step ahead forecast is minimized. These weights were derived under
the assumption of a known break date and size, although they also derived
weights that were robust to break date uncertainty by integrating the break
date. A feature of the weights is that, conditional on a break date, they
take one value for the observations before the break and another value for
the observations after the break. It is then easy to show that the forecast
that uses the optimal weights can be expressed as a shrinkage forecast of
the form

ŷST+1 = ωx′T+1β1 + (1− ω)x′T+1β2

= ωx′T+1(β1 − β2) + x′T+1β2

Using that E[x′T+1(β̂1−β̂2)] = x′T+1(β1−β2), TVarβ̂1 = 1
τb
V , TVarβ̂2 =

1
1−τbV and TCov(β̂1, β̂2) = 0, we can derive the weights that minimize

E[(ŷT+1(ω)− yT+1)2] as

ω =
τb

1 +W (τ)

with W (τ) = Tτb(1−τb)
[x′T+1(β1−β2)]

2

x′T+1V xT+1
is our Wald-type test statistic. Given

that β̂F = τbβ̂1 + (1− τb)β̂2, we can derive the optimal weight that is given
to the full sample estimator, which is

ω =
1

1 +W (τb)
(54)

Plugging in estimates of the unknown quantities yields

x′T+1β̂S(τ̂) =
1

1 +W (τ̂)
x′T+1β̂F +

W (τ̂)

1 +W (τ̂)
x′T+1β̂2(τ̂)

By a continuous mapping theorem, under local breaks the weights converge
as

1

1 +W (τ)

T→∞→ 1

1 +Q∗(τ)

allowing for asymptotic analysis of these plug-in weights.
While the optimal weights take the estimation uncertainty around the

parameters into account, they are conditional on the break date. Ignoring
the estimation uncertainty around the break date will imply a too large
weight on the post-break forecast, which will suffer from imprecise break
date estimation whereas the full sample forecast does not require a break
date. The optimal weights forecast will therefore underperform for small,
poorly identified breaks.
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Figure 4: Break size of equal expected MSFE of full sample and optimal
weights forecast (green) and full sample and post-break forecast (blue)
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Similar to above, we can find the break size for which the optimal weights
estimator provides more accurate forecasts than the full sample estimator.
Figure 4 plots the combination of τb and break size for which the two fore-
casts have the same MSFE (green line) together with the line where the
post-break forecast and the full sample forecast have the same MSFE (blue
line). It can be seen that the line for the optimal weights forecast is below
the line for the post-break forecast, which implies that the optimal weights
forecast is more precise than the post-break forecast for smaller break sizes
for a given break date. However, the difference is relatively small and breaks
need to be quite large before the optimal weights estimator is more precise
than the full sample estimator.

In order to test the applicability of the optimal weights estimator, critical
values can be obtained in a similar fashion as before and are presented in
Figure 5. Since the break sizes for equal forecast performance in Figure 4
are close, it is not surprising that the properties in terms of size and power
of the test are be largely the same as those for the post-break forecast. The
critical values given in Figure 5a lead to excellent size control in Figure 5b.
Also, the power is near optimal, as shown in Figures 5c and 5d.

Additionally, we can investigate the break sizes that leads to equal fore-
cast performance of the the post-break forecast and the optimal weights
forecast. Figure 6 plots the ratio of the MSFE of the optimal weights fore-
cast over that of the post-break forecast. It turns out that for large breaks,
the post-break estimator outperforms the optimal weights. However, the
improvement in MSFE is relatively small.
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Figure 5: Critical values, size and power when testing between optimal
weights forecast and full stample forecast

(a) Critical values
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(c) Power for τb = 0.15
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(d) Power for τb = 0.85
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Solid lines in plots (a) and (b) are obtained after a numerical correction to ensure size
control uniformly over τb.
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Figure 6: Relative MSFE of optimal weights forecast to post-break forecast
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8 Application

We obtain a set of 135 macroeconomic and financial time series from the
St. Louis Federal Reserve database, which is a monthly updated database
described in detail by McCracken and Ng (2014).2 Various transformations
are applied to render the series stationary and to deal with discontinued
series or changes in classification. In the vintage used here, the data start
in 1959M01 and end in 2015M10.

The data are split into 8 groups: output and income (OI, 17 series),
labor market (LM, 32 series), consumption and orders (CO, 10 series), or-
ders and inventories (OrdInv, 14 series), money and credit (MC, 14 series),
interest rates and exchange rates (IRER, 22 series), prices (P, 21 series),
stock market (S, 4 series). Following Stock and Watson (1996), we focus on
linear autoregressive models of lag length p = 1 and 6. We estimate param-
eters on a moving windows of 120 observations to decrease the likelihood
of multiple breaks occurring. Test results are based on heteroskedasticity
robust Wald statistics, which use V̂ i = (X ′iXi)

−1X ′iΩ̂iXi(X
′
iXi)

−1 with
[Ω̂i]kl = ε̂2

k/(1−hk)2 if k = l and [Ω̂i]kl = 0 otherwise, and hk is the k-th di-
agonal element of PX = X(X ′X)−1X ′. See MacKinnon and White (1985)
and Long and Ervin (2000) for discussions of different heteroskedasticity
robust covariance matrices. We have also obtained test results and forecasts
using a larger window of 240 observations and using the homoskedastic Wald
test and, qualitatively, our results do not depend on these choices.

2https://research.stlouisfed.org/econ/mccracken/fred-databases/
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Table 2: Fractions of estimation samples with a significant structural break

AR(p) supW f-supW

1 0.306 0.068
6 0.172 0.008

Note: p refers to the number of lags of the estimated autoregressive model. supW refers

to the standard sup Wald test, while f-supW refers to the test developed in this paper.

All tests are carried out at α = 0.05.

Two pre-sample observations are required to transform the data to sta-
tionarity and additional p observations are used to initialize the AR(p)
model. After accounting for all necessary pre-samples, our first forecast
is for September 1979 and we recursively construct one-step ahead forecasts
until the end of the sample. If a missing value enters the moving window,
no forecast is made.

8.1 Structural break test results

In this forecast exercise, we will refer to the test of Andrews (1993) as supW
and to the test developed in this paper as f-supW. In Table 2, we report the
fraction of estimation samples where supW would indicate a break. This
is contrasted with the fraction where the two tests indicate a break at a
nominal size of α = 0.05. It is clear that the majority of the breaks picked
up by supW are judged as irrelevant for forecasting by f-supW. The fraction
of forecasts for which a break is indicated is lower by a factor of over four
for the AR(1) and by factor of twenty for the AR(6).

Figure 7 displays the number of estimation samples for which the tests
were significant, where within each category we sort the series based on the
fraction of breaks found by f-supW. For conciseness, we focus on the AR(1)
but the results for the AR(6) are qualitatively similar. Across all categories
the sup Wald test is more often significant than the f-supW test. Yet, we see
substantial differences between categories. Whereas in the labor market and
consumption and orders categories some of the series contain a significant
breaks in up to 40% of the estimation samples when the f-supW test is used,
the prices and stock market series hardly show any significant breaks from
a forecasting perspective. This finding concurs with the general perception
that, for these type of time series, simple linear models are very hard to beat
in terms of MSFE.

Figure 8 shows the occurrence of significant breaks over the different
estimation samples, with the end date of the estimation sample given on the
horizontal axis. It is clear that the supW test finds more breaks in every
single period. The periods of larger number of breaks is more persistent for
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Figure 7: Fraction of significant structural break test statistics per series
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Figure 8: Fraction of significant structural break test statistics over time
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the supW test than for the f-supW test, which confirms the finding that, for
forecasting, breaks are mainly of importance if the are late in the estimation
sample, and as time passes the same break will have a smaller influence on
the forecast accuracy. An example of this is the recent financial crisis, which
leads to an increase in detected breaks around 2009 for both tests. For the
f-supW test, however, after a few months the number of significant breaks
decreases again whereas for the supW test the number of breaks increases
further and most significant breaks occur towards the end of our sample.

8.2 Forecast accuracy

We consider a forecasting procedures that use structural break tests to de-
cide whether to model a break. The first uses Andrews’ supW test. If a
significant break is found, the forecast will be based on the post-break win-
dow, otherwise the full estimation window is used. The second uses our
f-supW test to decide between post-break and full sample windows. Next,
we use the optimal weights forecasts of Pesaran et al. (2013). In the first
variant we use apply optimal weights irrespective of whether a significant
break was found. The second variant applies optimal weights only if the
supW test finds a significant break, and the third variant only if the f-supW
test finds a significant break, where all tests are carried out at α = 0.05.

Table 3 reports the MSFE of the respective forecasting procedures rela-
tive to the MSFE of the forecast based on the supW test of Andrews with
the results for the AR(1) in the top panel and those for the AR(6) in the
bottom panel. For each model, we report the average relative MSFE over
all forecasts in the first line, followed by the average relative MSFE for the
series in the different categories. We show the results for all forecast periods
on the left side of the table. However, these results contain many forecasts
where both tests agree that no break is in the estimation sample and there-
fore both use the full estimation sample to yield identical results. To bring
the difference between the tests out more, we also report the results exclud-
ing forecasts when both tests reject the null of a break. These results are
on the right side of the table.

The second column of the table shows that using post-break estimation
samples using the f-supW test in place of the supW test reduces the MSFE
for both models on average and for all categories, with the exception of
money and credit when the AR(1) is used. Using optimal weight irrespective
of the significance of breaks leads to substantially less precise forecasts than
using post-break samples suggested by the supW test, and this is true for
both models and nearly all categories. Using optimal weights over post-break
window forecasts marginally reduces the MSFE for both models. When
using the f-supW test to decide on optimal weights the gain is much larger.

Considering the right hand side of the table, it is clear that the differ-
ences are much larger when forecasts from estimation sample that contain no
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Table 3: Relative MSFE of different forecast methods

All forecasts Forecasts with sign. break

post-break optimal weights post-break optimal weights

f-supW all supW f-supW f-supW supW f-supW

AR(1)

All series 0.981 1.016 0.995 0.981 0.942 0.987 0.938

OI 0.977 1.059 0.996 0.978 0.950 0.992 0.952
LM 0.971 1.042 0.998 0.967 0.937 0.994 0.929
CO 0.961 0.988 0.968 0.955 0.945 0.957 0.936
OrdInv 0.982 1.008 0.992 0.984 0.955 0.980 0.959
MC 1.001 1.080 1.001 1.001 1.016 1.005 1.011
IRER 0.988 0.997 1.000 0.987 0.921 1.007 0.917
P 0.998 1.049 0.999 0.998 0.932 0.987 0.941
S 0.983 1.023 0.998 0.984 0.904 0.986 0.913

AR(6)

All series 0.961 1.205 0.994 0.963 0.819 0.979 0.831

OI 0.941 1.216 0.985 0.941 0.762 0.952 0.761
LM 0.971 1.244 0.996 0.972 0.846 0.978 0.853
CO 0.902 1.108 0.972 0.907 0.779 0.939 0.789
OrdInv 0.945 1.137 0.996 0.945 0.827 0.998 0.828
MC 0.979 1.366 0.989 0.979 0.842 0.986 0.834
IRER 0.969 1.207 1.002 0.968 0.792 1.008 0.798
P 0.975 1.256 0.996 0.979 0.887 0.994 0.916
S 0.976 1.179 1.003 0.997 0.836 1.020 1.004

Note: Reported are the MSFEs of the respective forecast relative to that based on the post-
break forecast using the Andrews test at α = 0.05. The second columns, “f-supW”, gives
the relative MSFE of post-break sample forecasts based on our break-point test. “Optimal
weights” denotes forecasts from applying optimal weights to observations, where “all”
indicates that the optimal weights were used for all forecasts irrespective of significance of
the break point test, “supW” indicates that optimal weights were used when the Andrews
test was significant, and “f-supW” when our test was significant. The right side of the
table excludes observations where both tests were insignificant, in which case the forecasts
are identically based on the full sample. The acronyms in the first column: OI: output
and income (17 series), LM: labor market (32), CO: consumption and orders (10), OrdInv:
orders and inventories (14), MC: money and credit (14), IRER: interest rates and exchange
rates (22), P: prices (21), S: stock market (4).
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break according to both tests. Using the f-supW test in place of the supW
test leads to a 6% improvement in a accuracy on average for the AR(1) and
a 18% improvement in accuracy on average for the AR(6) model. These
large improvements are found for series in all categories with the exception
of the money and credit with the AR(1). Even in this category, the im-
provement from using the f-supW for the AR(6) is 16%. The results for the
optimal weights forecasts are similar in that the forecasts using the f-supW
are substantially more precise than those using the supW.

9 Conclusion

In this paper, we formalize the notion that small breaks might be better left
ignored when forecasting. We quantify the break size that leads to equal
forecast performance between a model based on the full sample and one
based on a post-break sample. This break size is substantial, which points
to a large penalty that is incurred by the uncertainty around the break
date. A second finding is that the break size that leads to equal forecast
performance depends on the unknown break date.

We derive a test for equal forecast performance. Under a local break no
consistent estimator is available for the break date. Yet, we are able to prove
weak optimality, in the sense that the power of a infeasible test conditional
on the break date is achieved when we consider a small enough nominal
size. This allows the critical values of the test to depend on the estimated
break date. We argue that under the break sizes we consider under our null
hypothesis, this optimality might be achieved relatively quickly, i.e. for finite
nominal size. Simulations confirm this argument and show only a minor loss
of power compared to the test is conditional on the true break date.

We apply the test on a large set of macroeconomic time series and find
that breaks that are relevant for forecasting are rare. Pretesting using the
test developed here also improves over pretesting using the standard test
of Andrews (1993) in terms of MSFE. Further improvements can be made
by considering an optimal weights or shrinkage estimator under the alterna-
tive. Applying the optimal weights/shrinkage estimator without pretesting
is argued not to be a fruitful strategy as it suffers too much from imprecise
break date estimation in the case of small breaks.
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A Derivation of (35)

Define ∆ = ∆1 −∆2 where

∆1 = TE

[(
∂β2f

′(β̂2(τ̂)− β2) + ∂δf
′(δ̂ − δ)

)2
]

= TE

[(
∂β2f

′(β̂2(τ̂)− β2)
)2

+
(
∂δf
′(δ̂ − δ)

)2
+ 2∂β2f

′(β̂2(τ̂)− β2)∂δf
′(δ̂ − δ)

]
(55)

and similarly for ∆2

∆2 = TE

[(
∂β2f

′(β̂F (τ̂)− β2) + ∂δf
′(δ̂ − δ)

)2
]

= TE

[(
∂β2f

′(β̂F − β2)
)2

+
(
∂δf
′(δ̂ − δ)

)2
+ 2∂β2f

′(β̂F − β2)∂δf
′(δ̂ − δ)

]
(56)

In addition, we define

a =
1

1− τ̂

[
∂β2f

′(X̄
′
X̄)−1X̄

′
(B(1)−B(τ̂)) +

∫ 1

τ̂
∂β2f

′η(s)ds

]
b = ∂β2f

′(X̄
′
X̄)−1X̄

′
Z̄(Z̄

′
M X̄Z̄)−1Z̄

′
MXB(1)

c = ∂δf
′(Z̄
′
MXZ̄)−1Z̄

′
M X̄B(1)

d = ∂β2f
′(X̄

′
X̄)−1X̄

′
B(1) +

∫ 1

∂β2f
′η(s)ds

(57)

Schematically, we have from (21) and (24) that
√
T∂β2f

′(β̂2 − β) = a − b,√
T∂β2f

′(β̂F − β2) = d− b and
√
T∂δf

′(δ̂ − δ) = c Then

∆1 = E[a2 + b2 − 2ab+ c2 + 2ca− 2cb]

∆2 = E[d2 + b2 − 2db+ c2 + 2cd− 2cb]
(58)

Now E[db] = E[cd] = 0 by the fact that E[B(1)] = 0, E[B(1)B(1)′] = I and

M X̄X̄ = O. Furthermore E[ab] = E[ac] = 0 since E
[

1
1−τ̂ (B(1)−B(τ̂))B(1)′

]
=

cst ·I by the fact that the elements of B(·) are identically and independently
distributed. Then

∆1 −∆2 = E[a2 − d2] (59)
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B Verifying condition (51)

Figure 9: Dependence of the critical values on the break date
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Note: equation (51) states that for weak optimality ∂u(τb)/∂τb < 1/τb(1 − τb). The

green line depicts the derivative of the critical values depicted in Figure 2 for α = 0.05

as a function of the break date τb. The blue line depicting the upper bound is clearly

sufficiently high such that (51) indeed is satisfied.
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Ploberger, W., Krämer, W., and Kontrus, K. (1989). A new test for struc-
tural stability in the linear regression model. Journal of Econometrics,
40(2):307–318.

Stock, J. H. and Watson, M. W. (1996). Evidence on structural instability
in macroeconomic time series relations. Journal of Business & Economic
Statistics, 14(1):11–30.

Thompson, J. R. (1968). Some shrinkage techniques for estimating the mean.
Journal of the American Statistical Association, 63(321):113–122.

Toro-Vizcarrondo, C. and Wallace, T. D. (1968). A test of the mean square
error criterion for restrictions in linear regression. Journal of the American
Statistical Association, 63(322):558–572.

Wallace, T. D. (1972). Weaker criteria and tests for linear restrictions in
regression. Econometrica, 40(4):689–698.

36


