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Abstract

This paper introduces a Markov-switching model in which transition probabilities
depend on higher frequency indicators and their lags through polynomial weight-
ing schemes. The MSV-MIDAS model is estimated via maximum likelihood (ML)
methods. The estimation relies on a slightly modi�ed version of Hamilton's recursive
�lter. We use Monte Carlo simulations to assess the robustness of the estimation
procedure and related test statistics. The results show that ML provides accurate
estimates, but they suggest some caution in interpreting the tests of the parameters
involved in the transition probabilities. We apply this new model to the detection
and forecasting of business cycle turning points in the United States. We properly
detect recessions by exploiting the link between GDP growthand higher frequency
variables from �nancial and energy markets. The spread termis a particularly use-
ful indicator to predict recessions in the United States. The empirical evidence also
supports the use of functional polynomial weights in the MIDAS speci�cation of the
transition probabilities.

JEL Classi�cation : C22, E32, E37

Keywords: Markov-switching, mixed frequency data, business cycles

� Universit�e Paris Dauphine, PSL Research University, LEDa, email: marie.bessec@dauphine.fr.
I am grateful to Denisa Banulescu, Gorkem Celik, Fr�ed�eric Karam�e, Siem Jan Koopman, Yannick Le
Pen and Thomas Ra�not for their useful comments and suggestions. I also thank the participants of the
8th Financial Risks International Forum in Paris 2015, the 64th annual meeting of the French Economic
Association in Rennes 2015, the 3e Journ�ee d'Econom�etrie Appliqu�ee �a la Macro�economie in Paris 2015,
and 9th International Conference on Computational Financial Econometrics (CFE) in London 2015. The
usual disclaimers apply.

1



1 Introduction

The failure to detect downturns in economic activity is a major source of error in macroe-

conomic forecasting. At the onset of the great recession, practitioners in the United States

surveyed by theSurvey of Professional Forecastersin November 2007 believed that there

was an approximately 20 percent chance of negative growth in eachquarter of 2008 and

believed that US activity would grow by 2.5 percent in 2008.1

This paper introduces a new speci�cation that could be useful for monitoring and

predicting business cycles. We consider a Markov-switching model inwhich transition

probabilities depend on higher frequency indicators (MSV-MIDAS model). As done in

Diebold, Lee and Weinbach [1994] and Filardo [1994], the parameters of the model depend

on an unobserved state variable following a �rst-order Markov chain with time-varying

transition probabilities.2 The innovation of this paper lies in specifying the transition

probabilities such that they depend on a set of exogenous indicators sampled at a higher

frequency. To address the discrepancy in the frequencies, we apply the MIDAS (mixed-

data sampling) approach developed by Ghysels, Santa-Clara and Valkanov [2004] and

Ghysels, Sinko and Valkanov [2007].Instead of converting the indicator involved in the

probabilities to the low frequency with an arbitrary weighting scheme, the optimal weights

are estimated from the data.A parsimonious parameterization of the lagged coe�cients of

the high-frequency variable is obtained through the use of functional polynomial weights.

The MSV-MIDAS speci�cation can incorporate the signals producedby a wide range of

indicators of the current and future state of the economy into the transition mechanism of

the system. In particular, there is extensive literature showing that �nancial indicators can

be used to predict business cycle turning points. The yield curve holds a prominent place

among these variables (see Estrella and Mishkin [1998], Kauppi and Saikkonen [2008],

Rudebusch and Williams [2009] and Croushore and Marsten [2015] among many others),

but practitioners also follow other indicators such as stock and commodity prices to predict

business cycle troughs and peaks (see Hamilton [2003], Hamilton [2011] and Kilian and

Vigfusson [2013] on the speci�c role of oil prices). In this context,the MIDAS structure

is useful, as these indicators are available at a higher frequency than are macroeconomic

variables. In this speci�cation, it is not necessary to aggregate the �nancial indicators at

a lower frequency in the transition probabilities, which could lead to a loss of a potential

1According to the NBER, the US recession began in December 2007 and ended in June 2009. US
real GDP fell by 0.3% in 2008 and 2.8% in 2009 (BEA, June 2015).

2Markov-switching models with time-varying probabilities have been recently reconsidered by Kim,
Piger and Startz [2008] and Bazzi, Blasques, Koopman and Lucas [2014].
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useful information and, therefore, to ine�cient and/or biased estimates (Andreou, Ghysels

and Kourtellos [2010]).

This paper is related to the literature using MIDAS regressions to show that �nan-

cial variables are useful predictors of GDP growth. Andreou, Ghysels and Kourtellos

[2013], Galv~ao [2013] and Ferrara, Marsilli and Ortega [2014] �nd a statistically signif-

icant improvement in GDP forecast accuracy in the euro area, UK and US when using

models incorporating the forward-looking information contained in high-frequency �nan-

cial data. Moreover, Gu�erin and Marcellino [2013], Bessec and Bouabdallah [2015] and

Barsoum and Stankiewicz [2015] use a MIDAS approach to show that�nancial variables

help to predict turning points in the United Kingdom and in the United States. From

a methodological perspective, the present paper also contributes to the recent literature

introducing time variation into MIDAS models. In the class of regime-switching models,

Galv~ao [2013] includes a smooth transition model with high-frequency variables among

the regressors and the threshold variable, while Gu�erin and Marcellino [2013] incorporate

high-frequency regressors in a Markov-switching model with invariant transition probabil-

ities. More recently, Schumacher [2014] considers MIDAS regressions with time-varying

parameters, estimated with a particle �lter.

The MSV-MIDAS model introduced in this paper is estimated via maximum likelihood

methods. The estimation relies on a slightly modi�ed version of the �lter in Hamilton

[1989]. Because the MSV-MIDAS model has never been considered inthe literature, we

use Monte Carlo simulations to investigate the small sample properties of the maximum

likelihood estimators of the parameters as well as related test statistics. The simulations

are conducted for various parameterizations and sample sizes. The Monte Carlo evidence

shows that maximum likelihood provides accurate estimates. The average bias of the

estimates and their volatilities are small and decrease with the size ofthe sample. However,

as shown by Psaradakis, Sola, Spagnolo and Spagnolo [2010] in Markov-switching models

with variables sampled at the same frequency, the t-statistics of the parameters involved in

the transition probabilities may not be reliable. The signi�cance testsof these parameters

may lack power in small samples, especially in the shorter regime.

We apply the MSV-MIDAS model to US data. As leading indicators for the inference

of the future state, we consider monthly indicators from �nancialand energy markets:

the interest rate, term spread, stock returns and oil prices. These variables, widely rec-

ognized as business cycle predictors, are available without any publication lags and are

not subject to revisions. The evaluation of the model is based bothon an in-sample and

3



an out-of-sample analysis.We compare the detection of the business cycle turning points

by the new speci�cation and various benchmarks: several models with �xed transition

probabilities, as well as MSV-MIDAS models with unrestricted lag polynomials. The new

speci�cation appears to provide better signals of economic downturn and recovery than

the usual models with constant probabilities.The results are also supportive of the use

of distributed lag functions in the MIDAS speci�cation. Among the economic indicators

used to improve the transition mechanism, the slope of the yield curve is a good candidate

for the United States, which is in line with the previous literature. These results hold

both in sample and out of sample.

The remainder of this paper proceeds as follows. In section 2, we present the MSV-

MIDAS speci�cation and describe the estimation techniques. In section 3, we use Monte

Carlo simulations to assess the robustness of the estimation procedure and related test

statistics to make inferences. Section 4 is devoted to the empiricalapplication to US data.

The �nal section o�ers some concluding remarks.

2 The MSV-MIDAS model

Let yt be a variable with dynamics that di�er according to the state of the economy. The

unobserved state follows a �rst-order Markov chain, the transition probabilities of which

depend on a higher frequency indicatorz(m)
t . In the following, the time index t denotes

the time unit of the low-frequency variableyt (a quarter in our application). The high-

frequency indicatorz(m)
t is sampledm times between two time units ofy, e.g., t and t � 1

(m = 3 for monthly indicators, as in our application). The lag operatorL1=m operates

at the higher frequency, e.g.,L s=mz(m)
t = z(m)

t � s=m is variable z observeds months before

quarter t.

The low-frequency variableyt follows an AR(p) process with a switching mean, as

motivated by Hamilton [1989]. The dynamics of an MSM(M)-AR(p) model are described

by the following equation:

yt = � st + � 1(yt � 1 � � st � 1 ) + : : : + � p(yt � p � � st � p ) + �" t (1)

where� st and � represent the mean and standard deviation ofyt , � i with i = f 1; : : : ; pg are

unknown autoregressive parameters and" t ! NID (0; 1). The variablest = f 1; 2; : : : ; M g

denotes the unobserved state of the process at timet. The mean value� st varies according

to the realized value of the state variable.
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Following Diebold et al. [1994] and Filardo [1994], the variablest is assumed to follow

a �rst-order Markov chain de�ned with time-varying transition pro babilities. In the case

of two regimes (M = 2), the four transition probabilities are expressed as follows:

P(st = 1jst � 1 = 1; z(m)
t � 1) = �[ � 1 + � 1B(L1=m ; �) z(m)

t � 1]

P(st = 2jst � 1 = 2; z(m)
t � 1) = �[ � 2 + � 2B(L1=m ; �) z(m)

t � 1]

P(st = 2jst � 1 = 1; z(m)
t � 1) = 1 � �[ � 1 + � 1B(L1=m; �) z(m)

t � 1 ]

P(st = 1jst � 1 = 2; z(m)
t � 1) = 1 � �[ � 2 + � 2B(L1=m; �) z(m)

t � 1 ]

(2)

where � is the logistic function �( x) = 1 =(1 + exp(� x)), � i and � i are unknown param-

eters for regimest = i and z(m)
t � 1 is an exogenous variable. In this model, the transition

probabilities are not time invariant. Instead, they depend on an exogenous variable and

its lags. When � st is positive (negative), an increase inz(m)
t � 1 increases (decreases) the

probability of staying in regimest . If � 1 = � 2 = 0, the speci�cation simpli�es to the usual

model with constant transition probabilities.

The exogenous variablez(m)
t is sampled at a higher frequency. To keep the speci�cation

parsimonious, functional lag polynomials are employed. The functionB(L1=m ; �) is the

exponential Almon lag3 with:

B(L1=m; �) =
KX

j =1

b(j; �) L (j � 1)=m ; b(j; �) =
exp(� 1j + � 2j 2)

P K
j =1 exp(� 1j + � 2j 2)

(3)

with st = f 1; 2g in the case of two states. The weights de�ned byb(j; �) are positive and

sum to one. The coe�cient � = f � 1; � 2g de�nes the lag structure in the two regimes, and

the coe�cient � st in equation (2) gives the overall impact of the weighted past values of z

on the probability of staying in regimest . If � 2 < 0, the weight decreases with lagj . In the

particular case in which � = f 0; 0g, we obtain the standard equal weighting aggregation

scheme (the high-frequency variable is simply aggregated to the lowfrequency with an

arithmetic average). As suggested by Andreou et al. [2010], the null hypothesis for equal

weights can be tested with a standard LR test.

The lag function B(L1=m ; �) allows a parsimonious speci�cation because only two

coe�cients are needed for theK lags. This is particularly interesting in regime-switching

models, in which the number of coe�cients is large.4 As indicated by Ghysels et al. [2007],

3Other possible speci�cations of the MIDAS polynomials are based on beta or step functions. See
Ghysels et al. [2007] for a presentation of the various parameterizations of B (L 1=m ; �).

4In a linear context, Foroni, Marcellino and Schumacher [2015] compare MIDAS models with func-
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the use of distributed lag polynomials also avoids lag-length selection for the variable in

the probabilities. The decay rate of the weights estimated from thedata determines the

number of lags of the high frequency indicator in the transition probabilities. Hence,

the more or less persistent impact ofz(m)
t can be captured according to the shape of the

function. This feature is attractive in our model because the inference on the transition

parameters is fragile, as shown by Psaradakis et al. [2010] in the case of data sampled at

the same frequency. The next section of this study will con�rm thisfragility for models

involving data sampled at di�erent frequencies.

The model is estimated by maximum likelihood.5 The likelihood is derived in a modi-

�ed version of Hamilton's �lter to account for the variation in the tra nsition probabilities.

In the �rst step of the �lter, the �xed transition probabilities are r eplaced with time-

varying probabilities related to the high-frequency variablez(m)
t , as speci�ed in equations

(2) and (3). The rest of the estimation procedure is similar.6 Newton's search method

is applied to �nd the vector of parameters maximizing the function. The estimation al-

gorithm is initialized with several sets of parameters to avoid local optima. A smoothing

algorithm is then applied to obtain a better estimation of the states,as described in

Kim [1994]. The standard errors of the parameters are obtained from the inverse of the

information matrix at the optimum. In the estimation procedure, the parameter� 2 of

the Almon function is constrained to be negative, which guarantees, in both regimes, a

declining weight ofz(m)
t as the lag length increases.

3 Monte Carlo simulations

In this section, we describe several Monte Carlo experiments to assess the robustness of the

estimation procedure and explore the reliability of the usual test statistics for conducting

inference on the model parameters. A similar exercise is conductedby Psaradakis and

Sola [1998] in MSM models with constant probabilities and by Psaradakiset al. [2010]

in MSM models with time-varying probabilities. We extend their analysis to the case of

mixed-frequency data.

tional distributed lags to MIDAS models with unconstrained weights estimated by least squares. The
unconstrained speci�cation performs well for small di�erences in sampling frequencies.In our model, this
alternative consists to replace� st B (L 1=m ; �) in the transition probabilities (2) with

P K
j =1 bj;s t L

( j � 1)=m .
As seen in the empirical section, this option is less attractive given the high number of parameters already
involved in regime-switching models. The transition probabilities of the two-state model contains 2 + 2K
parameters instead of 6, e.g. 26 parameters instead of 6 forK = 12 as studied later.

5We use Matlab for all simulations and estimations.
6See the Appendix for a presentation of the �lter and the derivation of the log likelihood in the

MSV-MIDAS model.
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3.1 Design of the Monte Carlo study

We use Monte Carlo experiments to investigate the small-sample properties of the maxi-

mum likelihood (ML) estimators and related test statistics.

In the Monte Carlo study, we generate many realizations of the MSV-MIDAS pro-

cess. The experiment involves the following steps. First, we simulatethe high-frequency

variable z(m)
� according to an autoregressive process:

z(m)
� = c + �z (m)

� � 1 + !u (m)
� � = 1; : : : ; T � m (4)

As a second step, we generate a �rst-order Markov chainst , t = 1 : : : ; T with time-varying

transition probabilities as de�ned in equations (2) and (3). We consider K = 12 lags in the

polynomial B(L1=m ; �). Finally, we simulate the low-frequency variable yt , t = 1 : : : ; T

as a �rst-order autoregressive process subject to Markov shifts in mean as described in

equation (1). The residualsut and" t are i.i.d. standard normal and independent. They are

generated via a pseudo-random number generator. The �rst 100simulated observations

of st and yt and the �rst 100 � m observations ofz(m)
� are discarded to reduce the e�ect

of the initial conditions. We assume thatm = 3, which corresponds to a model mixing

quarterly and monthly data. We consider various sample sizesT = f 200; 400; 800g, and

we use 1,000 Monte Carlo replications for each experiment.

[INSERT TABLE 1 HERE]

The values of the parameters in equations (1)-(4) are given in Table1. The benchmark

con�guration (DGP1) is close to the empirical setting obtained for US data in section

4. The low-frequency variable follows an AR(1) process with a switching mean. The

mean parameter is negative in the least persistent regime. The high-frequency indicator

positively a�ects the transition probability of the favorable state and is negatively related

to the probability of staying in the recession state. In DGP1, the dynamics of the high-

frequency indicator is state-independent. Alternatively, in DGP2,we allow a switch in the

intercept and in the variance of equation (4).7 Allowing a change in the dynamics of the

high-frequency indicator is relevant since the leading indicators used to perform business

cycle inferences typically depend on the business cycle.In DGP3, the high-frequency

indicator zt is less persistent. In DGP4, the impact of the high-frequency variable on

7The intercept and the variance parameters vary according to thevalue taken by a two-state �rst-
order Markov chain. The probability of staying in the high-growth st ate is equal to 0.9 and the probability
of staying in the low-growth state is equal to 0.8.
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the transition probabilities is weaker (lower� 1 and � 2). In DGP5, the di�erence between

the mean parameters is smaller across the two regimes, which may adversely a�ect the

classi�cation of the observations in the two regimes. Finally, DGP6 is used to investigate

the sensitivity of the results to the shape of the weighting function. In this last DGP, the

pro�le is atter, with lower values of � 1 and � 2, i.e., more uniform weights are assigned to

the K past values ofz.

3.2 Robustness of the ML estimates

In a �rst step, we explore the �nite sample performance of the ML estimator for the data

generating processes considered in Table 1.

The parameters of the models are estimated via a numerical optimization of the log-

likelihood of the model. As starting values, we use the true vector ofthe considered

parameters to generate the data, plus random values drawn froma normal distribution

with a standard deviation equal to 0.1.8 To gauge the robustness of ML estimates, we

examine the average bias of the estimated coe�cients of the modeland the standard

deviations of the estimates in the 1,000 replications. To measure thequality of the esti-

mated parameters involved in the transition probabilities, we reportadditional criteria.

For parameters � = f � 1; � 2g, we provide an average measure of the error in the weights

given by:

err bj =

P K
j =1 [b(j; �̂) � b(j; �)] 2

P K
j =1 b(j; �) 2

(5)

Second, we compare the simulated transition probabilities with the estimated ones using

mean absolute error statistics:9

err p11 =
1
T

TX

t=1

�
�
� �( � 1 + � 1B(L1=m; �) z(m)

t � 1) � �( �̂ 1 + ^� 1B(L1=m; �̂) z(m)
t � 1)

�
�
�

err p22 =
1
T

TX

t=1

�
�
� �( � 2 + � 2B(L1=m; �) z(m)

t � 1) � �( �̂ 2 + ^� 2B(L1=m; �̂) z(m)
t � 1)

�
�
�

(6)

This last criterion measures the e�ect of the estimation error in parameters� , � and � on

the time-varying transition probabilities. It gives the overall impact of errors in the set

8We do not assess the e�ect of possible model misspeci�cations on the estimation accuracy. The
model is estimated with the true number of autoregressive parameters and with the same parameters
subject to changes in regime.

9The mean squared errors of the probabilities are qualitatively similar.The results are available from
the author upon request.
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of parameters in the transition probabilities on the identi�cation of the state. We report

the average values of these criteria in the 1,000 Monte Carlo simulations.

[INSERT TABLE 2 HERE]

The results in Table 2 show that the estimation procedure provides accurate estimates

of the parameters present in the equation foryt . The average bias is generally very close

to zero, and the dispersion is low. The bias is slightly larger for� in small samples. The

estimated parameters of the transition probabilities� i and � i , i = f 1; 2g, are less accurate,

especially for small values ofT, and the estimates of these four parameters show a higher

dispersion. The error in the weights is also larger for small samples, although it is rather

limited, as shown by the relatively low values oferr bj . However, the mean absolute error

in the probabilities remains moderate, even for small values ofT (less than 5 points for

p11;t and 11 points forp22;t when T = 200 and less than 3 and 6 points, respectively, in

the largest sample). Hence, the error in parameters� , � and � has a limited impact on

the classi�cation of the observations in the two regimes.

Comparing results across DGPs, the quality of parameter estimates in the transition

probabilities increases with less persistent dynamics ofzt (DGP3) or with more uniformly

distributed weights (DGP6). The average bias and the standard deviation of the estimated

� i and � i , i = f 1; 2g is more limited. In DGP6, the average error in the weights is smaller

too for small samples.By contrast, considering a high-frequency indicator also subject to

changes in regime (DGP2) ordecreasing the di�erence between the parameters of the two

states (DGP5) has an adverse e�ect on estimation accuracy. In particular, the parameters

entering the probabilities show a higher bias forT = 200 (e.g. in DGP2 and DGP5, the

bias in � 1 is twice that in the reference model)and are more volatile. The error in the

weights is also larger for smaller coe�cients� (DGP4). However, in all cases, the mean

absolute errors in the probabilities are close to those in DGP1.Hence, the impact on the

identi�cation of the regimes is rather limited relative to the benchmark.

3.3 Robustness of the tests

We now turn to the reliability of the t-statistics related to the parameters of the model.

The t-statistics associated with the estimated parameters of themodel are expected

to be approximately distributed as N (0; 1). Francq and Roussignol [1998] and Douc,

Moulines and Ryden [2004] provide results concerning the consistency and asymptotic

normality of the ML estimator in Markov-switching autoregressive models with �xed
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probabilities. As indicated in Psaradakis et al. [2010], no equivalent results are available

on the distribution for the parameters in Markov-switching models with time-varying

probabilities. However, practitioners generally rely on the normal distribution when they

conduct signi�cance tests in these models. To assess this property, Table 3 reports some

characteristics of the sampling distribution of the t-statistics of the parameters obtained in

the Monte Carlo simulations: the mean, the standard deviation, theskewness, the excess

kurtosis, and the p-value of the Jarque-Bera test for normality for the 1,000 simulated

t-statistics. The t-statistics are computed as the ratio of the estimation error to the

estimated standard error. The estimated standard errors are based on the Hessian matrix

of the estimated log-likelihood function.

The results indicate some departure from normality in the distribution of the t-

statistics. The standard deviations of the 1,000 simulated t-statistics are generally close

to one. However, the average t-statistics associated witĥ� in the equation foryt and with

�̂ i and �̂ i for i = f 1; 2g in the transition probabilities depart from zero10. Moreover, the

skewness coe�cient shows some asymmetry in the distributions of the t-statistics for �̂ i

and �̂ i , i = f 1; 2g. The distributions of �̂ 1 and �̂ 2 are also highly leptokurtic for small

values ofT. As a consequence, the null of normality is strongly rejected by the Jarque-

Bera test for ^� i and �̂ i , even in large samples. The comparison across DGPs shows that

the deviation from normality is lower with less persistent dynamics ofzt (DGP3) or with

more uniformly distributed weights (DGP6). By contrast, the normality is more rejected

when the high-frequency indicator is subject to changes in regime, for smaller � 1 and � 2

and closer� 1 and � 2 (DGP2, 4 and 5).

[INSERT TABLE 3 HERE]

To assess the potential e�ect of non-normality on the inference,we investigate the

performance of the t-statistics over the 1,000 Monte Carlo simulations when we use stan-

dard normal critical values. Figure 1 provides the empirical size of the two-sided tests

of the equality of each parameter to its true value, as well as the empirical power of the

signi�cance tests for each parameter at the 5% signi�cance level.11 The empirical sizes

are found close to the nominal level (5%).12 However, as in Psaradakis et al. [2010], we
10Psaradakis and Sola [1998] obtain similar results in Markov-switching models with �xed transition

probabilities, as do Psaradakis et al. [2010] in an MS model with time-varying probabilities.
11In contrast to the linear case, the particular test of the nullity of � 1 in P(st = 1 jst � 1 = 1 ; z(m )

t � 1 ) in a
model with time-invariant weights does not involve non-identi�ed par ameters under the null hypothesis,
as the vector � is still present in the other transition probability P(st = 2 jst � 1 = 2 ; z(m )

t � 1 ). The same
applies to � 2.

12The conclusions are similar at the 10% signi�cance level. The results are available from the author
upon request.
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observe that the parameters entering the transition probabilitiesare more likely to be

insigni�cant in small samples. Indeed, the frequency of rejecting the nullity of � 2 and � 2

in the shorter state is lower forT = 200 and T = 400. For instance in DGP3, the nullity

of � 2 is rejected in 35% of the cases and that of� 2 in 53% of the cases forT = 200.

Considering lower values for� coe�cients in DGP4 leads to even smaller rejection rates

for � 2 and � 2 (28% and 47%), while the frequency of rejection is approximately 100%

for the other parameters. In sum, the t-statistics of the parameters � i and � i should be

interpreted with caution, especially in the shorter regime.

4 Application to US GDP

We now illustrate the empirical relevance of the MSV-MIDAS model through a business

cycle analysis of the United States.

4.1 Data and speci�cations

The database consists of the quarterly growth rate of real GDP and a set of monthly

�nancial indicators for the United States. The dataset was collected in July 2014.

The data on GDP cover the period from 1959Q1 to 2013Q4 (220 quarters). This sample

includes 8 recessions. The business cycle chronology is taken from the NBER. To account

for data revisions in the out-of-sample evaluation, we use vintagesof output growth from

the real-time datasets constructed by Croushore and Stark [2001] and available on the

website of the Federal Reserve Bank of Philadelphia.13 Our real time data-set for US GDP

growth consists of 291 vintages, released from January 1990 to March 2014. It might be

more challenging to identify a recession using the GDP data available atthe time due the

revision of GDP data, especially during recessionary periods. Over the period 1990-2010,

the quarterly growth rate of US GDP was revised by an average of 0.26 points three years

after its �rst publication. This revision reaches up to 0.37 points forthe recessionary

quarters, as opposed to 0.21 points during expansionary quarters.

We will assess whether monthly �nancial indicators can help to detect, in real time,

the recessions for this country when they are incorporated into the transition probabilities

of the MSV-MIDAS model. The set of monthly indicators includes a short-term interest

rate, the term spread, and stock and oil prices. Interest ratesare considered in di�erences

and the term spread in levels. Stock and oil prices are in log di�erences. US interest rates

13http://www.philadelphiafed.org/research-and-data/re al-time-center/real-time-data/
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are released by the Federal Reserve Bank of Saint Louis.14 We consider the e�ective federal

funds rate and the slope of the yield curve measured as the di�erence between the 10-Year

Treasury bond and the 3-month Treasury bill. The stock market index SP500 is provided

by Yahoo Finance. Finally, we consider the Brent oil price in London (datastream). We

assume that the �nancial variables are not revised.

We consider two-state MSV-MIDAS models for GDP growth in which the transition

probabilities depend on one of the four monthly �nancial variables. To ensure exogeneity

with respect to the dependent variable, we lag the �nancial indicators by one quarter in

the transition probabilities. We retain K = 12 lags in the Almon function, and hence the

probabilities may depend on the monthly indicators over the entire past year. To select

the number of autoregressive terms, we use the AIC in the linear speci�cation. Tests for

omitted autocorrelation are implemented to determine whether these autoregressive orders

are su�cient. We apply Ljung-Box tests either to the standardized generalized residuals

(Gourieroux, Monfort, Renault and Trognon [1987]) or to standard-normal residuals con-

structed with the Rosenblatt transformation (Smith [2008]).15 To check the gain due to

the use of mixed frequency data, we also conduct a test for the at aggregation scheme, as

suggested by Andreou et al. [2010] in the linear case. When � =f 0; 0g, the high-frequency

indicator is converted to low-frequency data with a simple average.The relevance of these

restrictions is tested with a standard LR test.

We compare the performance of the MSV-MIDAS speci�cation with those of several

models. First, to assess the gain due to the inclusion of time-variation in the transition

probabilities, the MSV-MIDAS model is compared with several benchmarks with �xed

transition probabilities (FTP). At this level, we consider the two-state autoregressive

speci�cation with a switching mean as in Hamilton [1989] (MSM2) and a two-state model

with a switching mean and a switching variance (MSMH2). The shift in the variance

might be useful to capture the reduction in the volatility of businesscycle uctuations

starting in the mid-1980s. These speci�cations are constrained versions of the model

presented in section 2 when� 1 and � 2 are set to zero. We also consider three-state models
14http://www.research.stlouisfed.org/fred2/
15In a MSM(M)-AR(p) model with p = 1 lag, the standardized generalized residuals are obtained as:

MP

i =1

MP

j =1
P(st = i; s t � 1 = j j I t � 1; �) � � � 1

�
" t � � i � � (yt � 1 � � j )

�
, while the Rosenblatt residuals

are de�ned as: � � 1
� MP

i =1

MP

j =1
P(st = i; s t � 1 = j j I t � 1; �) � �

�
� � 1(" t � � i � � (yt � 1 � � j ))

� �
, with �

denoting the cumulative distribution function of the standard norm al distribution and I t � 1 the observed
information on y and z available at time t � 1. Using Monte Carlo experiments, Smith [2008] shows that
the test applied to the Rosenblatt transformation of standardized residuals performs well in detecting
autocorrelation in Markov-switching models.
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with switching mean and/or variance (MSM3 and MSMH3). The four models include two

autoregressive terms. Diagnostic tests do not show any sign of remaining autocorrelation

either in the generalized residuals or in the standard-normal residuals constructed with

the Rosenblatt transformation as explained above.

Second, we include MSV-MIDAS model with unrestricted distributedlags (MSV-

UMIDAS) in our comparison. The MIDAS polynomial in the time-varying transition

probabilities may impose a tight structure on the data in that there isa high degree of

non-linearity to estimate the MIDAS parameters (i.e., two ratios of exponential functions

to ensure that both the transition probabilities and the MIDAS weights are bounded be-

tween 0 and 1). To circumvent the use of MIDAS polynomial and simplify the dynamics

of the transition probabilities, we use the unrestricted MIDAS approach of Foroni et al.

[2015]. This approach does not resort to functional lag polynomials,as the Almon lag

polynomial presented in section 2. Instead, the transition probabilities are directly re-

lated to the monthly lags of the high frequency indicator with a linear unrestricted lag

polynomial. This speci�cation o�ers more exibility and may be easier toestimate. Nev-

ertheless, it is also far less parsimonious when the impact of high-frequency indicator on

the transitions is persistent. This may be problematic in regime-switching models where

the number of parameters is already high. To specify the lag order,we use the AIC cri-

terion with a maximal number equal to 12. We retain 6 lags for stock returns and term

spread, 7 lags for federal fund rate and 1 lag for oil prices.

4.2 Estimation results

In a �rst step, we investigate the in-sample performance of the MSV-MIDAS models in

tracking US GDP dynamics and identify the business cycle turning points in the entire

sample.

We estimate the MSV-MIDAS models using the full sample, from 1959 to 2013. The

estimation of the models is performed for a large set of initial conditions. Table 4 pro-

vides the models' estimates and signi�cance tests. The at aggregation and the residual

diagnostic tests are given in the second part of the table.

[INSERT TABLE 4 HERE]

The models are estimated with two lags, as found in the linear speci�cation. The

Ljung-Box tests applied to generalized or Rosenblatt residuals support the assumption

of no remaining autocorrelation. We also observe a gain from incorporating monthly
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indicators into the probabilities rather than converting them to thequarterly frequency

via the simple average. The LR test reported in the second part of the table (line LR at)

shows that, at the 5% or 10% signi�cance level, the likelihood of the model is signi�cantly

improved relative to a model estimated with � = f 0; 0g. Hence, the usual weighting

scheme relying on equal weights is empirically rejected which is a �rst evidence in favour

of our approach.GDP exhibits a positive mean growth rate in the �rst regime and declines

in the second state. The coe�cients� 1 and � 2 generally have opposite signs, showing that

a variation in zt leads to movements ofp11;t and p22;t in the opposite direction. Even when

the two coe�cients have the same sign, the size of the coe�cients isclearly di�erent. In

the shorter regime, the coe�cient � 2 is is often non-signi�cant. However, the t-statistics

must be interpreted with caution given the possible lack of power in the signi�cance tests,

as shown in the previous section. This caveat is particularly notable for the shorter regime.

The estimated parameters in the transition probabilities have the expected signs.

Lower stock returns increase the risk of recession (� 1 > 0) while making a recovery

less likely (� 2 < 0). A similar pattern holds for term spread. The positive coe�cient in

the expansion probability is consistent with the sharp decline in the slope of the yield

curve and, in some instances, the inversion of the yield curve observed before economic

downturns. The coe�cients for the central bank rates are negative in the expansion prob-

ability and positive in the recession probability. In particular, policy tightening increases

the probability of switching to a recessionary state (� 1 < 0). Finally, the impact of oil

price is ambiguous. A rise in oil price increases the probability of entering a recession

(� 1 < 0). As noted in Hamilton [2013], a majority of US recessions have beenpreceded

by a sharp rise in the price of crude petroleum.16 However, the impact on the probability

of remaining in recession is also negative (� 2 < 0).

Table 5 presents the in-sample comparison of the MSV-MIDAS modelswith the two

sets of benchmarks. First, we use the usual Akaike and Hannan-Quinn information criteria

to confront the goodness-of-�t of the MSV-MIDAS models with the one of the models

with �xed transition probabilities (FTP). We also compare the models estimated with

exponential Almon lags (MSV-MIDAS) and with unrestricted lags (MSV-UMIDAS).

Several results are worth commenting on.The models with time-varying probabilities

exhibit better �t to GDP growth than do the FTP models with regime-in dependent

variance (MSM2 and MSM3). The information criteria reach their lowest values in the

16The only exception among the postwar recessions in the United States is the economic crisis of 1960.
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two models allowing for regime-dependent heteroscedasticity (MSMH2 and MSMH3) but

we will see below that allowing a change in the variance has a detrimental e�ect on

the detection of turning points. Relative to MSM2 and MSM3, the improvement of the

log-likelihood is particularly strong when the probabilities are related to stock returns

and federal funds rate. When taking into account the number of parameters, the two

MSV-MIDAS models still provide substantially smaller AIC and HQC values than in

MSM2 and MSM3. This is also the case of the model including term spread, even though

the AIC value is closer to that in MSM3. On the other side, the MSV-MIDAS model

incorporating oil prices is outperformed by all speci�cations. Turning to the comparison

of MSV-MIDAS and MSV-UMIDAS models, the models with unrestricted lags generally

show much higher information criteria than their constrained counterpart. This result

is particularly strong with the Hannan-Quinn criterion imposing a stronger penalty on

the number of parameters (the MSV-UMIDAS models including the �rst three �nancial

indicators contain nearly twice as many parameters than the speci�cations with restricted

lags).

[INSERT TABLE 5 HERE]

Table 5 also reports criteria assessing the quality of the inference on the state: the

quadratic probability score (QPS) and the area under the roc curve (AUC). The quadratic

probability score is de�ned as2
T

P T
t=1 (P(st = i j I T ; �) � r t )2 with r t a dummy variable

equal to one if the regimei is the true regime int and zero otherwise. The QPS value lies

in [0,2]. The lower the QPS, the better the state is estimated.The roc curve is created by

plotting the true positive rate called sensitivity (that is the proportion of recessions that

are correctly identi�ed as such) against the false positive rate or 1-speci�city (that is the

proportions of false signals) at various threshold settings (see Figure 2 for a representation

of the roc curves for all the models under consideration). The area under the roc curve

(AUC, also referred to AUROC) takes value between 0.5 and 1. An AUC equal to 1

indicates a perfect classi�cation of the states, while a value of 0.5 corresponds to a random

ranking.17

According to the QPS and AUC criteria, high-frequency informationin the transition

probabilities helps to track the state of the US economy. Among theFTP models, the

17Developed during World War II to assess radar signals and then traditionally used in medicine,
radiology and biometrics, the receiver operating characteristic (ROC) analysis was introduced by Berge
and Jorda [2011] for the business cycle analysis. Candelon, Dumistrescu and Hurlin [2012] provide a
review of the ROC curve methodology, as well as other accuracy measures of probabilistic forecasts. A
toolbox is provided by the authors to compute these criteria.
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two models with a constant variance (MSM2 and MSM3) are good competitors, while

the heteroskedastic models (MSMH2 and MSHM3) do not perform well. The shift in

the variance captures the great moderation starting in the mid-1980s but deteriorates

the detection of turning points, especially in the two-state model. The models with

�xed transition probabilities are outperformed by MSV-MIDAS models. The information

provided by stock price and interest rates is particularly helpful. The MSV-MIDAS model

with the term spread yields a lower QPS (0.121 versus 0.161 in the bestFTP model MSM2)

and a higher AUC (0.970 against 0.939). The results for the federalrate are also supportive

of the new speci�cation (QPS equal to 0.117 and AUC to 0.956).18 On the other side, the

model with oil prices does not provide better signals of economic downturn and recovery

than the usual models with constant probabilities. The QPS criterionis very close to the

one in MSM2 and the AUC is much lower than in the models with regime-independent

variance (MSM2 and MSM3).

The QPS and AUC criteria also support the use of functional lag polynomials in the

MIDAS speci�cation. In the MSV-UMIDAS models, the two criteria are never improved

with respect to their constrained counterparts (e.g. for the federal rate, QPS and AUC

stand at 0.159 and 0.802 in the MSV-UMIDAS model against 0.117 and 0.956 in the

MSV-MIDAS model). This low performance is illustrated in Figure 2. This�gure shows

the ROC curves obtained in the FTP, MSV-MIDAS and MSV-UMIDAS speci�cations.

The closer the ROC curve follows the left-hand border and then thetop border, the more

accurate the model. With the exception of oil prices, the reference model outperforms the

FTP models, while the signals provided by the unconstrained speci�cation are clearly less

accurate. The outperformance of the constrained MSV-MIDAS models over the uncon-

strained speci�cations is particularly striking for the federal rate. This is not surprising

since this indicator has the most persistent impact on the transitionprobabilities, which

requires a high number of parameters to be estimated in the unconstrained version of the

model (21 parameters against 11 in the model with the exponentialAlmon function).

[INSERT FIGURE 2 HERE]

The good performance of the constrained MSV-MIDAS model in identifying past

recessions in the United States is also evident from Figures 3-4. These �gures display

the smoothed probabilities of being in the low-growth state obtainedin the FTP and in

18The MSV-MIDAS speci�cations are also superior to a naive forecasting model assuming that econ-
omy is always in expansion regime. The naive model provides a QPS equal to 0.275 superior to that
obtained in the MSV-MIDAS models.
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the MSV-MIDAS models (Figure 3) and in the MSV-UMIDAS and MSV-MIDAS models

(Figure 4), together with the NBER recession periods.We focus on the results obtained

with the best performing model in each group in terms of AUC criterion: the two-state

model with a regime-switching mean MSM2 among the FTP models, the MSV-MIDAS

model including term spread among the restricted models and the MSV-UMIDAS model

including term spread among the unconstrained speci�cations.19 Interestingly in Figure 3,

spread improve the signals of the last three recessions, which weredriven by �nancial

factors (see Ng and Wright [2013]). In particular, the dot-com bubble in 2000-01 is well

detected by the new speci�cation, while the signal was almost nonexistent in the FTP

model. As for the great recession, the probability of recession in the MSV-MIDAS models

increases in summer 2007, as the �rst signs of distress appear in the �nancial markets.

The signals obtained for the four episodes in the 1970s and 1980s are also much clearer,

and a false signal in the fourth quarter of 1977 disappears.In Figure 4, the signals of

recession provided by the MSV-UMIDAS model are stronger but the unconstrained model

gives a false signal of recession in the second and third quarters of1967 and a false signal

of recovery in the second quarter of 1982. Moreover, the recessions at the beginning of

the 1980s and the 1990s as well as the great recession are announced with a signi�cant

advance in the unconstrained speci�cation.

[INSERT FIGURES 3-4 HERE]

4.3 Real time business cycle forecasting

Incorporating monthly indicators into the transition probabilities might help to improve

signals of future recessions. In this last section, we assess the ability of the MSV-MIDAS

model to infer, in real-time, the current and future state of the economy.

We conduct an out-of-sample study with a recursive window scheme. The last obser-

vations of the sample are discarded for the forecasting exercise.The forecasting window

spans from 1990Q1 to 2013Q4 and includes three recessions. The forecasted chain is

sampled at a quarterly frequency, but the forecast can be updated every month after the

release of the monthly indicator included in the transition probabilities. By contrast, the

update of the forecasts in the models with constant probabilities only reects the monthly

revisions of GDP data.20 In this study, we focus on the forecast of each quarter made from

19The results obtained with the other models are available from the author upon request.
20The Bureau of Economic Analysis publishes an `advance' estimate of the quarterly GDP about one

month after the end of the reference quarter. A `second' estimate, including more complete product data
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6 months to a few days before the GDP release, approximately one month after the end

of the reference quarter. We recursively expand the estimation period. The parameters of

the models are estimated using the only information available at the time of the forecast.

The evaluation is conducted in real-time conditions. The models are estimated from the

observations available at the time of the forecast. At this level, we use the vintages of

output growth provided by the Federal Reserve Bank for the US (the �nancial variables

are assumed not to be subject to data revisions).

Table 6 shows the QPS and AUC criteria for the forecast states.Again, the results are

reported for the MSV-MIDAS models, as well as the models with constant probabilities

and the unrestricted MSV-UMIDAS models.

[INSERT TABLE 6 HERE]

The MSV-MIDAS models estimated with restricted lags of term spread and stock

returns give the best forecasts of the recessionary state in theUnited States. They out-

perform clearly the models with �xed transition probabilities (among the FTP models,

the Hamilton speci�cation MSM2 performs better as well as the MSMH3 model at some

horizons). The QPS and AUC criteria are nearly always better in the two MSV-MIDAS

models. One quarter ahead, the MSV-MIDAS model with term spread provides better

signals of upcoming recessions than all FTP models with QPS and AUC equal to 0.134

and 0.923 respectively (versus 0.191 and 0.849 in the best FTP modelMSM2). At the

one-month horizon, the QPS criterion is equal to 0.104 with stock returns and the AUC

criterion stands at 0.979 against 0.181 and 0.836 in the same benchmark.21

The out-of-sample results also favor the use of restricted lag polynomials. The QPS

and AUC criteria deteriorate in the unrestricted version of the model. The only exception

is the case of stock returns. The unrestricted model estimated with this indicator displays

lower QPS values at intermediate horizons (e.g. 0.168 against 0.209 four months before

the publication of GDP) and a highest AUC value at the shortest one (0.973 versus 0.938).

On the other side, the worst performance is shown by the unconstrained model estimated

with the federal rate (QPS at 0.192 and AUC at 0.715 for the forecasts made a few

and the �rst estimates of corporate pro�ts is available at the end of the second month and a `third'
estimate based on more complete source data is disclosed at the endof the third month.

21The two MSV-MIDAS models perform better than other benchmarks. A naive model forecasting
expansion regime at all quarters provides a QPS equal to 0.229, whereas the two MSV-MIDAS models
yield lower QPS values at all horizons. The performance at horizon 2=3 is also better than that of
the anxious index (the probability of a decline in real GDP, as reported in the Survey of Professional
Forecasters in the second month of each quarter). On this basis,the QPS computed for this indicator
over 1990Q1-2013Q4 is equal to 0.152.
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days before the GDP publication against 0.143 and 0.952 respectivelyin the constrained

model). The model is even outperformed by the two-state model with �xed transition

probabilities MSM2.

Overall it appears both in the in-sample and out-of-sample evaluation that the curse

of dimensionality due to the use of unrestricted lags is detrimental to the performance of

the MSV-MIDAS speci�cation. Unconstrained MIDAS models requirethe estimation of

many parameters (twice as much in the model including the federal rate), which introduces

some uncertainty in the model analysis and leads to less accurate forecasts. This result

might be due to the fragility of the inference on the parameters involved in the transition

probabilities, as shown in the Monte Carlo simulations. This contrastswith the more

favorable �ndings of Foroni et al. (2015) to the unconstrained MIDAS model in a linear

context, where the increase in the number of parameters is more limited and where the

weights can be estimated with ordinary least squares.

5 Concluding remarks

In this paper, we introduce the MSV-MIDAS model. This speci�cationincorporates

higher frequency information in the transition mechanism of Markov-switching models.

The MSV-MIDAS model is estimated via ML methods. Monte Carlo evidence sug-

gests that our estimation procedure provides robust estimates of the parameters of the

model. The Monte Carlo experiments also show that the t-statisticsassociated with the

coe�cients in the time-varying probabilities should be used with caution. In the empirical

application, the new speci�cation is applied to the detection and forecasting of business

cycle turning points. We �nd that the MSV-MIDAS model detects recessions more suc-

cessfully than the speci�cation with invariant transition probabilities in the United States.

The slope of the yield curve provides particularly useful signals for the identi�cation and

forecasting of economic downturns and recoveries.The empirical results also support

the use of parsimonious lag functions in the time-varying transition probabilities of the

models. These �ndings hold both in sample and out of sample.

There are a number of potential extensions to this paper. We couldincorporate several

leading indicators in the transition probabilities. This could help for signaling oncoming

recessions, given the di�erent sources and characteristics of recessions. It would also be

interesting to include high-frequency regressors in the equation for GDP. Exploiting the

information provided by weekly or daily data is also on our research agenda. Finally, this
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model could be applied to other areas of macroeconomics and �nance.

References

Andreou, E., E. Ghysels, and A. Kourtellos, Regression models with mixed sampling

frequencies,Journal of Econometrics, 2010,158, 246{261.

, , and , Should macroeconomic forecasters use daily �nancial data and

how?,Journal of Business and Economic Statistics, 2013,31 (2), 240{251.

Barsoum, F. and S. Stankiewicz, Forecasting GDP growth using mixed-frequency models

with switching regimes,International Journal of Forecasting, 2015,31, 33{50.

Bazzi, M., F. Blasques, S.J. Koopman, and A. Lucas,Time Varying Transition Proba-

bilities for Markov Regime Switching Models, Tinbergen Institute Discussion Paper

072 2014.

Berge, T.J. and O. Jorda, Evaluating the Classi�cation of Economic Activity into Reces-

sions and Expansions,American Economic Journal: Macroeconomics, 2011,3 (2),

246{277.

Bessec, M. and O. Bouabdallah, Forecasting GDP over the businesscycle in a multi-

frequency and data-rich environment,Oxford Bulletin of Economics and Statistics,

2015,77 (3), 360{84.

Candelon, B., E. Dumistrescu, and C. Hurlin, How to Evaluate an EarlyWarning System?

Towards a Uni�ed Statistical Framework for Assessing Financial Crises Forecasting

Methods, IMF Economic Review, 2012,60 (1), 75{113.

Croushore, D. and K. Marsten, Reassessing the relative power ofthe yield spread in

forecasting recessions,Journal of Applied Econometrics, 2015.

and T. Stark, A real-time data set for macroeconomists,Journal of Econometrics,

2001,105 (1), 111{130.

Diebold, F.X., J.H. Lee, and G.C. Weinbach, Regime switching with time varying tran-

sition probabilities, in C.P. Hargreaves, editor,Nonstationary Time Series Analysis

and Cointegration, Oxford University Press: Oxford (UK), 1994, pp. 283{302.

20



Douc, R., E. Moulines, and T. Ryden, Asymptotic properties of the maximum likelihood

estimator in autoregressive models with Markov regime,The Annals of Statistics,

2004,32 (5), 2254{2304.

Estrella, A. and F.S. Mishkin, Predicting U.S. Recessions: Financial Variables as Leading

Indicators, Review of Economics and Statistics, 1998,80, 45{61.

Ferrara, L., C. Marsilli, and J.P. Ortega, Forecasting growth duringthe Great Recession:

is �nancial volatility the missing ingredient?, Economic Modelling, 2014,36, 44{50.

Filardo, A.J., Business-cycle phase and their transitional dynamics,Journal of Business

and Economic Statistics, 1994,12 (3), 299{308.

Foroni, C., M. Marcellino, and C. Schumacher, Unrestricted mixed data sampling (MI-

DAS): MIDAS regressions with unrestricted lag polynomials,Journal of the Royal

Statistical Society: Series A (Statistics in Society), 2015,178 (1), 57{82.

Francq, C. and M. Roussignol, Ergodicity of Autoregressive Processes with Markov-

Switching and Consistency of the Maximum-Likelihood Estimator,Statistics: A

Journal of Theoretical and Applied Statistics, 1998,32 (2), 151{173.

Galv~ao, A.B., Changes in predictive ability with mixed frequency data,International

Journal of forecasting, 2013,29, 395{410.

Ghysels, E., A. Sinko, and R. Valkanov, MIDAS regressions: Further results and new

directions, Econometric Reviews, 2007,26 (1), 53{90.

, P. Santa-Clara, and R. Valkanov,The MIDAS touch: mixed data sampling regres-

sion models, Cirano working paper 2004.

Gourieroux, C., A. Monfort, E. Renault, and A/ Trognon, Generalised residuals,Journal

of Econometrics, 1987,34 (1-2), 5{32.

Gu�erin, P. and M. Marcellino, Markov-Switching MIDAS models, Journal of Business

and Economic Statistics, 2013,31 (1), 45{56.

Hamilton, J.D., A new approach to the economic analysis of nonstationary time series

and the business cycle,Econometrica, 1989,57, 357{384.

, What is an Oil Shock?,Journal of Econometrics, 2003,113, 363{398.

21



, Nonlinearities and the Macroeconomic E�ects of Oil Prices,Macroeconomic Dy-

namics, 2011,15, 364{378.

, Historical Oil Shocks, in R.E. Parker and R. Whaples, editors,Routledge Handbook

of Major Events in Economic History, New York: Routledge Taylor and Francis

Group, 2013, pp. 239{365.

Kauppi, H. and P. Saikkonen, Predicting U.S. recessions with dynamicbinary response

models,Review of Economics and Statistics, 2008,90 (4), 777{791.

Kilian, L. and R.J. Vigfusson, Do Oil Prices Help Forecast U.S. Real GDP? The Role of

Nonlinearities and Asymmetries,Journal of Business and Economic Statistics, 2013,

31 (1), 78{93.

Kim, C.J., Dynamic linear models with Markov-switching, Journal of Econometrics,

1994,60 (1-2), 1{22.

, J. Piger, and R. Startz, Estimation of Markov regime-switching regression models

with endogenous switching,Journal of Econometrics, 2008,143, 263{273.

Ng, S. and J.H. Wright, Facts and Challenges from the Great Recession for Forecasting

and Macroeconomic Modeling, NBER Working Paper 19469 2013.

Psaradakis, Z. and M. Sola, Finite-Sample Properties of the MaximumLikelihood Es-

timator in Autoregressive Models with Markov Switching,Journal of Econometrics,

1998,86, 369{386.

, , F. Spagnolo, and N. Spagnolo,Some cautionary results concerning Markov-

switching models with time-varying transition probabilities, mimeo 2010.

Rudebusch, G.D. and J.C. Williams, Forecasting Recessions: The Puzzle of the Enduring

Power of the Yield Curve,Journal of Business and Economic Statistics, 2009,27 (4),

492{503.

Schumacher, C.,MIDAS regressions with time-varying parameters: An application to

corporate bond spreads and GDP in the Euro area, mimeo 2014.

Smith, D.R., Evaluating speci�cation tests for Markov-Switching time-series models,

Journal of time series analysis, 2008,29 (4), 629{652.

22



APPENDIX

Filter and derivation of the log-likelihood in the MSV-MIDA S model

Let f ytg
T
t=1 be a time series following an MSM(M)-AR(p) process with transition probabilities

depending on a high-frequency indicatorz(m)
t , as described in section 2. The conditional log-

likelihood function of the observed data is given by:

L (� ) =
TX

t= p+1

ln f (yt jyt � 1; z(m)
t � 1 ; � )

with yt � 1 = f yt � 1; : : : ; y1g, z(m)
t � 1 =

n
z(m)

t � 1 ; : : : ; z(m)
1

o
, the past of yt and z(m)

t , and � representing

the vector of parameters of the model.

The conditional log-likelihood function is derived from the following computations iterated for

t = p + 1 ; : : : ; T . In a �rst step, we derive the joint probability:

P(st = i; s t � 1 = j; : : : ; s t � p = kjyt � 1; z(m)
t � 1 ; � ) =

P(st = i jst � 1 = j; z (m)
t � 1 ) � P(st � 1 = j; : : : ; s t � p = kjyt � 1; z(m)

t � 2 ; � )

with i; j; k = f 1; 2; : : : ; M g and where the time-varying transition probabilities are expressed as

follows in the case of two regimes (M = 2):

P(st = 1 jst � 1 = 1 ; z(m)
t � 1 ) = �[ � 1 + � 1B (L 1=m ; � 1)z(m)

t � 1 ]

P(st = 2 jst � 1 = 2 ; z(m)
t � 1 ) = �[ � 2 + � 2B (L 1=m ; � 2)z(m)

t � 1 ]

P(st = 2 jst � 1 = 1 ; z(m)
t � 1 ) = 1 � �[ � 1 + � 1B (L 1=m ; � 1)z(m)

t � 1 ]

P(st = 1 jst � 1 = 2 ; z(m)
t � 1 ) = 1 � �[ � 2 + � 2B (L 1=m ; � 2)z(m)

t � 1 ]

with the function B (L 1=m ; �) speci�ed as:

B (L 1=m ; �) =
KX

j =1

b(j; �) L (j � 1)=m ; b(j; �) =
exp(� 1j + � 2j 2)

P K
j =1 exp(� 1j + � 2j 2)

In a second step, the joint density is derived as follows:

f (yt ; st = i; s t � 1 = j; : : : ; s t � p = kjyt � 1; z(m)
t � 1 ; � ) =

f (yt jst = i; s t � 1 = j; : : : ; s t � p = k; yt � 1; : : : ; yt � p; z(m)
t � 1 ; � )� P(st = i; s t � 1 = j; : : : ; s t � p = kjyt � 1; z(m)

t � 1 ; � )

where the conditional density of yt given the past and current statesst ; st � 1; : : : ; st � p and the
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past observations ofy and z(m) is given by:

f (yt jst ; st � 1; : : : ; st � p; yt � 1; : : : yt � p; z(m)
t � 1 ; � ) =

1
p

2��
exp

(
yt � � st � � 1(yt � 1 � � st � 1 ) � : : : � � p(yt � p � � st � p )

2� 2

)

In a third step, the conditional density f (yt jyt � 1; z(m)
t � 1 ; � ) is derived by summing over all possible

state sequences:

f (yt jyt � 1; z(m)
t � 1 ; � ) =

MX

i =1

MX

j =1

: : :
MX

k=1

f (yt ; st = i; s t � 1 = j; : : : ; s t � p = kjyt � 1; z(m)
t � 1 ; � )

Finally, we derive the joint probability of the p states conditional upon yt and z(m)
t � 1 from:

P(st = j; : : : ; s t � p+1 = kjyt ; z(m)
t � 1 ; � ) =

P M
k=1 P(st = j; : : : ; s t � p+1 = k; st � p = l jyt ; z(m)

t � 1 ; � )

=
P M

k=1

f (yt ;st = i;s t � 1= j;:::;s t � p+1 = k;s t � p= l jyt � 1;z( m )
t � 1 ;� )

f (yt jyt � 1 ;z( m )
t � 1 ;� )

The initialization of the �lter relies on the ergodic probab ilities of the state in the FTP model.
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Table 1: Monte Carlo experiment - DGP

DGP1 DGP2 DGP3 DGP4 DGP5 DGP6
c 0.1 0.5/-0.2 0.1 0.1 0.1 0.1
� 0.8 0.8 0.5 0.8 0.8 0.8
! 1.0 0.5/1.0 1.0 1.0 1.0 1.0
� 1 1.0 1.0 1.0 1.0 0.5 1.0
� 2 -0.8 -0.8 -0.8 -0.8 -0.4 -0.8
� 0.5 0.5 0.5 0.5 0.5 0.5
� 0.3 0.3 0.3 0.3 0.3 0.3
� 1 2.0 2.0 2.0 2.0 2.0 2.0
� 2 0.5 0.5 0.5 0.5 0.5 0.5
� 1 2.0 2.0 2.0 1.0 2.0 2.0
� 2 -1.0 -1.0 -1.0 -0.5 -1.0 -1.0
� 1 2.0 2.0 2.0 2.0 2.0 0.2
� 2 -0.15 -0.15 -0.15 -0.15 -0.15 -0.015

Note: This table details the parameterizations of the MSV-M IDAS models used
to simulate the Monte Carlo samples.
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Table 2: Monte Carlo results - Estimate accuracy of the MSV-MIDASmodel

T � 1 � 2 � � � 1 � 2 � 1 � 2 err bj err p11 err p22

D
G

P
1

200 0.000 0.001 -0.017 -0.003 0.115 -0.044 0.309 -0.214 0.20 0.04 0.09
(0.05) (0.06) (0.06) (0.02) (0.62) (0.44) (0.75) (0.56)

400 0.000 0.000 -0.010 0.000 0.060 -0.010 0.140 -0.070 0.09 0.03 0.06
(0.03) (0.04) (0.04) (0.01) (0.33) (0.28) (0.40) (0.29)

800 0.000 0.000 0.000 0.000 0.030 -0.010 0.060 -0.050 0.03 0.02 0.04
(0.02) (0.03) (0.03) (0.01) (0.21) (0.18) (0.26) (0.18)

D
G

P
2

200 -0.001 0.001 -0.013 -0.002 0.159 -0.092 0.615 -0.631 0.21 0.03 0.11
(0.04) (0.09) (0.06) (0.02) (0.81) (1.99) (1.06) (4.93)

400 0.000 -0.001 -0.006 -0.002 0.064 0.014 0.218 -0.197 0.14 0.02 0.08
(0.03) (0.06) (0.04) (0.01) (0.48) (0.44) (0.54) (0.58)

800 0.000 -0.002 -0.004 0,000 0.037 -0.013 0.093 -0.083 0.07 0.01 0.06
(0.02) (0.04) (0.03) (0.01) (0.29) (0.29) (0.33) (0.27)

D
G

P
3

200 -0.002 -0.002 -0.016 -0.003 0.090 -0.012 0.248 -0.215 0.21 0.04 0.09
(0.05) (0.06) (0.06) (0.02) (0.36) (0.38) (0.71) (0.71)

400 0.000 0.000 -0.005 -0.001 0.044 -0.006 0.107 -0.064 0.09 0.03 0.06
(0.03) (0.04) (0.04) (0.01) (0.24) (0.24) (0.45) (0.41)

800 0.001 0.001 -0.003 -0.001 0.017 -0.001 0.042 -0.029 0.04 0.02 0.04
(0.02) (0.03) (0.03) (0.01) (0.16) (0.16) (0.29) (0.27)

D
G

P
4

200 0.000 0.002 -0.011 -0.003 0.068 -0.062 0.170 -0.143 0.45 0.04 0.10
(0.04) (0.06) (0.07) (0.02) (0.36) (0.40) (0.36) (0.41)

400 0.001 0.003 -0.009 -0.001 0.031 -0.031 0.058 -0.063 0.27 0.03 0.07
(0.03) (0.04) (0.04) (0.01) (0.23) (0.25) (0.22) (0.24)

800 0.000 0.001 -0.003 0.000 0.020 -0.007 0.028 -0.012 0.13 0.02 0.05
(0.02) (0.03) (0.03) (0.01) (0.16) (0.17) (0.15) (0.15)

D
G

P
5

200 0.000 0.001 -0.023 -0.002 0.272 -0.097 0.636 -0.380 0.25 0.05 0.11
(0.05) (0.07) (0.08) (0.02) (0.99) (0.87) (1.32) (1.18)

400 0.001 0.002 -0.007 -0.001 0.096 -0.006 0.177 -0.114 0.13 0.04 0.07
(0.03) (0.05) (0.05) (0.01) (0.44) (0.34) (0.53) (0.39)

800 0.000 -0.001 -0.005 -0.001 0.052 -0.015 0.095 -0.054 0.05 0.03 0.05
(0.02) (0.03) (0.04) (0.01) (0.27) (0.22) (0.33) (0.24)

D
G

P
6

200 -0.001 0.000 -0.016 -0.003 0.133 -0.044 0.246 -0.150 0.14 0.04 0.09
(0.05) (0.07) (0.06) (0.01) (0.48) (0.41) (0.67) (0.57)

400 0.001 -0.001 -0.008 -0.001 0.053 -0.044 0.099 -0.097 0.06 0.03 0.07
(0.03) (0.05) (0.04) (0.01) (0.28) (0.29) (0.40) (0.35)

800 0.001 0.001 -0.004 -0.001 0.033 -0.007 0.068 -0.038 0.03 0.02 0.05
(0.02) (0.03) (0.03) (0.01) (0.19) (0.20) (0.26) (0.23)

Note: This table provides the average bias and, in brackets, the standard deviation of the parameter estimates of the MSV -
MIDAS models for sample sizes T = f 200; 400; 800g over 1,000 replications. The last three columns show the err or measures for
the weights (err bj) and the transition probabilities (err p11 and err p22). We report the average values of these three criteria
in the 1,000 Monte Carlo simulations.
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Table 3: Monte Carlo results - Distribution of the t-statistics
T � 1 � 2 � � 1 � 2 � 1 � 2 � 1 � 2 � � 1 � 2 � 1 � 2

DGP1 DGP2
mean 200 -0.01 0.00 -0.22 0.03 -0.05 0.23 -0.20 -0.03 0.01 -0.17 0.03 -0.08 0.37 -0.21

400 0.02 0.01 -0.12 0.08 -0.02 0.21 -0.10 0.01 -0.01 -0.10 0.04 0.01 0.20 -0.19
800 -0.04 -0.04 -0.12 0.07 -0.05 0.14 -0.16 -0.02 -0.06 -0.12 0.06 -0.06 0.14 -0.16

std 200 1.08 1.01 1.02 0.98 0.98 0.95 0.96 1.03 1.03 1.03 0.95 0.91 0.84 0.92
400 0.99 0.99 0.96 1.00 1.01 0.98 0.98 1.02 0.97 1.03 0.97 0.99 0.95 0.95
800 1.00 1.00 1.02 0.99 0.99 0.98 0.95 1.02 1.00 1.01 0.97 1.01 0.94 0.94

skew 200 -0.02 -0.04 -0.05 -0.30 0.05 -0.44 0.42 -0.12 0.03 0.04 -0.39 0.00 -0.78 0.74
400 0.05 -0.05 0.04 -0.15 0.05 -0.37 0.33 -0.05 0.04 0.03 -0.15 -0.02 -0.45 0.51
800 -0.09 0.04 0.06 -0.20 0.02 -0.26 0.40 0.11 -0.11 -0.14 -0.15 -0.11 -0.20 0.27

kurt 200 0.10 0.19 0.22 -0.16 -0.43 -0.13 0.06 0.24 -0.08 0.16 -0.42 -0.58 0.41 0.33
400 -0.02 0.09 0.46 0.10 -0.26 0.41 0.21 0.32 0.02 -0.03 -0.35 -0.54 -0.11 0.10
800 -0.03 0.10 -0.10 -0.3 -0.24 -0.08 0.28 0.34 0.05 -0.15 0.02 -0.27 -0.06 0.02

JB 200 0.78 0.41 0.29 0.00 0.02 0.00 0.00 0.08 0.82 0.50 0.00 0.00 0.00 0.00
400 0.83 0.67 0.01 0.11 0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
800 0.54 0.69 0.61 0.00 0.30 0.00 0.00 0.03 0.38 0.11 0.14 0.08 0.04 0.00

DGP3 DGP4
mean 200 -0.05 -0.04 -0.21 0.13 -0.02 0.20 -0.14 0.00 0.03 -0.14 0.08 -0.12 0.32 -0.21

400 -0.01 0.00 -0.07 0.10 -0.01 0.11 -0.03 0.04 0.06 -0.18 0.06 -0.09 0.15 -0.14
800 0.05 0.03 -0.07 0.05 0.00 0.07 -0.01 0.01 0.04 -0.07 0.07 -0.02 0.10 0.01

std 200 1.06 1.05 0.98 0.98 1.01 1.02 1.03 1.03 1.01 1.04 0.99 0.97 0.97 0.95
400 1.05 1.03 1.02 1.00 1.00 1.05 1.03 1.03 1.00 1.00 1.00 0.98 0.97 1.00
800 1.02 1.03 1.05 0.99 0.99 0.96 1.00 0.99 0.97 1.03 0.99 0.99 0.98 1.00

skew 200 0.04 -0.03 -0.08 -0.30 -0.05 -0.50 0.54 0.08 0.06 -0.15 -0.21 0.03 -0.68 0.46
400 0.01 0.03 -0.04 -0.06 -0.20 -0.29 0.34 0.09 0.16 0.11 -0.18 0.03 -0.40 0.17
800 0.11 0.01 -0.06 -0.12 0.02 -0.07 0.26 -0.16 -0.01 -0.07 -0.17 0.05 -0.09 0.08

kurt 200 0.32 0.25 0.06 -0.19 -0.24 0.58 0.27 0.44 0.11 0.36 -0.33 -0.31 1.37 0.27
400 0.08 -0.11 -0.09 -0.18 -0.06 0.20 -0.07 0.16 0.42 -0.07 0.07 0.06 0.88 0.01
800 0.45 -0.02 -0.17 -0.02 -0.24 -0.10 0.05 0.03 -0.05 0.10 0.16 0.06 0.04 -0.25

JB 200 0.10 0.25 0.53 0.00 0.24 0.00 0.00 0.01 0.55 0.01 0.00 0.13 0.00 0.00
400 0.86 0.70 0.75 0.36 0.04 0.00 0.00 0.28 0.00 0.34 0.05 0.84 0.00 0.08
800 0.01 0.98 0.39 0.29 0.29 0.51 0.00 0.12 0.95 0.52 0.05 0.77 0.52 0.17

DGP5 DGP6
mean 200 0.01 0.01 -0.25 0.08 -0.06 0.28 -0.17 -0.03 0.01 -0.21 0.13 -0.04 0.18 -0.07

400 0.05 0.03 -0.11 0.08 0.03 0.12 -0.08 0.02 -0.01 -0.15 0.08 -0.10 0.10 -0.13
800 0.01 -0.04 -0.11 0.09 -0.03 0.13 -0.08 0.06 0.04 -0.12 0.10 0.00 0.15 -0.05

std 200 1.04 1.07 1.06 1.01 0.94 0.99 1.01 1.07 1.04 0.99 0.98 0.90 0.94 0.98
400 1.03 1.00 0.94 1.00 0.99 0.98 1.02 0.97 1.06 1.00 0.97 1.00 0.96 1.01
800 0.99 1.00 1.03 1.00 0.99 0.98 1.03 1.04 0.96 1.05 1.00 1.03 0.97 1.05

skew 200 0.14 0.18 0.05 -0.56 0.14 -0.71 0.76 -0.05 0.01 -0.09 -0.32 -0.05 -0.64 0.52
400 0.00 0.05 0.03 -0.25 0.19 -0.60 0.52 -0.01 0.00 -0.04 -0.17 -0.05 -0.32 0.25
800 -0.04 0.15 0.04 -0.36 -0.10 -0.40 0.41 0.02 -0.04 0.04 -0.16 -0.06 -0.32 0.28

kurt 200 0.16 -0.07 -0.03 0.15 -0.49 0.15 0.57 0.31 -0.29 -0.04 -0.26 -0.28 0.60 0.33
400 0.03 0.04 0.07 -0.23 -0.15 0.24 0.06 -0.04 -0.12 -0.07 -0.25 -0.17 0.29 -0.20
800 -0.15 -0.07 -0.06 0.00 -0.25 0.18 0.08 -0.07 0.03 -0.08 0.11 -0.06 0.08 -0.10

JB 200 0.10 0.06 0.78 0.00 0.00 0.00 0.00 0.10 0.18 0.53 0.00 0.16 0.00 0.00
400 0.98 0.78 0.83 0.00 0.03 0.00 0.00 0.97 0.75 0.80 0.03 0.47 0.00 0.00
800 0.57 0.12 0.81 0.00 0.11 0.00 0.00 0.87 0.86 0.76 0.09 0.66 0.00 0.00

Notes: This table reports various results for the t-statist ics of the estimated coe�cients of the MSV-MIDAS models in th e Monte
Carlo simulations. The t-statistics are computed as the rat io of the estimation error to the estimated standard error. W e report
the mean of the 1,000 simulated t-statistics (line mean), the standard deviation (line std), the skewness (line skew), the excess
kurtosis (line kurt ) and the p-value of the Jarque-Bera test for normality (line JB ).
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Table 4: Estimation results of the MSV-MIDAS models on US data (1959-2013)

STOCK SPREAD RATE POIL
� 1 1.045*** 0.999*** 0.978*** 0.914***

(0.07) (0.084) (0.096) (0.089)
� 2 -0.093 -0.232 -0.785*** -0.804***

(0.119) (0.236) (0.188) (0.216)
� 1 0.106 0.138 0.261*** 0.273***

(0.068) (0.085) (0.071) (0.083)
� 2 0.127* 0.098 0.277*** 0.194**

(0.069) (0.085) (0.072) (0.082)
� 0.685*** 0.692*** 0.625*** 0.647***

(0.034) (0.039) (0.034) (0.043)
� 1 8.125** 1.453 3.964*** 3.047***

(3.837) (1.058) (0.648) (0.452)
� 2 4.380** 3.085* 1.231* -1.653

(1.765) (1.761) (0.732) (1.517)
� 1 3.401** 2.969* -5.768*** -0.11*

(1.693) (1.689) (1.871) (0.059)
� 2 -1.600*** -1.367 2.729* -2.325

(0.621) (0.921) (1.435) (1.815)
� 1 7.159 4.964 14.344 12.381

(2.124) (5.794) (12.554) (11.599)
� 2 -1.040 -0.608 -1.2756 -1.090

(0.294) (0.638) (1.1095) (1.006)
LR at 0.01 0.10 0.00 0.06
LB1(4) 0.13 0.70 0.26 0.75
LB1(12) 0.10 0.43 0.65 0.12
LB1(20) 0.03 0.21 0.37 0.13
LB2(4) 0.15 0.67 0.60 0.71
LB2(12) 0.12 0.31 0.77 0.16
LB2(20) 0.03 0.13 0.50 0.12

Notes: This table shows the estimation results of the MSV-MI DAS models including stock returns (column
STOCK), term spread (SPREAD), central bank rate (RATE) and o il prices (POIL) for the US over the pe-
riod 1959Q1-2013Q4. The �rst part gives the parameter estim ations and the associated standard errors in
brackets. Signi�cance levels: *** if the coe�cient is signi �cant at a 1%, ** at a 5%, * at a 10% level. The
second part of the table shows the p-value of the LR test for th e null hypothesis of equal weights (line LR
at), the p-values of the Ljung-Box test for omitted autocor relation of order 1 to p in the generalized resid-
uals (lines LB1(p)) and in the Rosenblatt's residuals (line s LB2(p)).
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Table 5: In-sample evaluation on US data (1959-2013)

k LL AIC HQC QPS AUC
MSV-MIDAS models (exponential Almon lag)

STOCK 11 -238.489 498.977 514.015 0.208 0.951
SPREAD 11 -242.712 507.423 522.462 0.1210.970
RATE 11 -235.870 493.739 508.777 0.117 0.956
POIL 11 -247.742 517.484 532.521 0.159 0.808

Models with �xed transition probabilities (FTP)
MSM2 7 -253.074 520.149 529.7180.161 0.939
MSMH2 8 -235.986 487.971 498.908 0.721 0.787
MSM3 12 -242.011 508.022 524.427 0.175 0.930
MSMH3 14 -231.835 491.669 510.808 0.208 0.689

MSV-UMIDAS models (unconstrained lags)
STOCK 19 -230.943 499.885 525.859 0.291 0.924
SPREAD 19 -234.110 506.220 532.194 0.1830.934
RATE 21 -231.676 505.352 534.0600.159 0.802
POIL 9 -250.015 518.030 530.334 0.189 0.773

Notes: This table provides for each model the number of estim ated parameters (k), the
estimated log-likelihood (LL), the Akaike and Hannan-Quin n information criteria (AIC
and HQC), the QPS and AUC criteria for the estimated states in the US over the period
1959Q1-2013Q4. The results are reported for the model with � xed transition probabilities
(lines FTP) and the MSV-MIDAS models estimated with restric ted (MSV-MIDAS) and un-
restricted lags (MSV-UMIDAS) of stock returns (lines STOCK ), term spread (SPREAD),
central bank rate (RATE) and oil prices (POIL). For each crit erion and each group of mod-
els, entries in bold indicate the best performing model.
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Table 6: Out-of-sample evaluation on US data (1990-2013)

h 2 5/3 4/3 1 2/3 1/3 0
MSV-MIDAS models (exponential Almon lag)

QPS STOCK 0.194 0.243 0.209 0.1590.121 0.104 0.079
SPREAD 0.184 0.183 0.175 0.134 0.141 0.152 0.043
RATE 0.230 0.236 0.271 0.190 0.191 0.206 0.143
POIL 0.211 0.202 0.196 0.167 0.167 0.149 0.068

AUC STOCK 0.898 0.832 0.838 0.923 0.967 0.979 0.938
SPREAD 0.793 0.803 0.791 0.911 0.910 0.851 0.990
RATE 0.677 0.595 0.629 0.839 0.702 0.740 0.952
POIL 0.631 0.702 0.642 0.738 0.840 0.8020.996

Models with �xed transition probabilities (FTP)
QPS MSM2 0.217 0.211 0.212 0.191 0.180 0.181 0.118

MSMH2 1.193 1.122 1.105 1.137 1.066 1.053 1.076
MSM3 1.431 1.464 1.433 0.343 0.353 0.347 0.150
MSMH3 0.289 0.260 0.290 0.195 0.198 0.1840.075

AUC MSM2 0.633 0.654 0.657 0.849 0.838 0.836 0.944
MSMH2 0.511 0.638 0.649 0.587 0.716 0.737 0.647
MSM3 0.591 0.576 0.573 0.682 0.727 0.725 0.927
MSMH3 0.723 0.774 0.730 0.796 0.764 0.809 0.917

MSV-UMIDAS models (unconstrained lags)
QPS STOCK 0.213 0.190 0.168 0.079 0.084 0.068 0.086

SPREAD 0.251 0.236 0.247 0.218 0.159 0.1650.066
RATE 0.262 0.277 0.262 0.234 0.258 0.233 0.192
POIL 0.223 0.231 0.228 0.199 0.197 0.193 0.145

AUC STOCK 0.710 0.708 0.717 0.909 0.861 0.864 0.973
SPREAD 0.562 0.608 0.604 0.705 0.713 0.712 0.941
RATE 0.595 0.600 0.549 0.650 0.610 0.659 0.715
POIL 0.702 0.555 0.594 0.765 0.613 0.714 0.952

Notes: This table shows the QPS and AUC criteria for the forec ast states in the US over the period 1990Q1-
2013Q4. Forecasts are made at horizons h of 2 quarters to a few days before the GDP release. The re-
sults are reported for the MSV-MIDAS models, the four models with �xed transition probabilities (MSM2,
MSM3, MSMH2, MSMH3) and the MSV-MIDAS models estimated with restricted (MSV-MIDAS) and un-
restricted lags (MSV-UMIDAS) of stock returns (lines STOCK ), term spread (SPREAD), central bank rate
(RATE) and oil prices (POIL). For each criterion and each gro up of models, entries in bold indicate the
best performing model.
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Figure 1: Size and power of the t-statistics (for a level of signi�cance = 5%)

(a) Size (T=200) (b) Power (T=200)

(c) Size (T=400) (d) Power (T=400)

(e) Size (T=800) (f) Power (T=800)

Notes: The graphs on the left plot the frequency of rejection of the equality of each coe�cient to its
true value at the 5 percent signi�cance level among the 1,000 simulations. The horizontal line gives the
nominal level of the tests. The graphs on the right depict the frequency of rejection of the nullity of each
coe�cient at the 5 percent signi�cance level with the 1,000 simulated t-statistics.
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Figure 2: The ROC curve

(a) Stock returns (b) Spread

(c) Base rate (d) Oil prices

Notes: This �gure depicts the ROC curves of the MSV-MIDAS models with constrained (MSV-MIDAS) and unrestricted weights (MSV-UM IDAS) and
the four models with �xed transition probabilities (FTP): the two-st ate and three-state models with a regime-switching mean (MSM2 andMSM3) and the
two-state and three-state models with a regime-switching mean and variance (MSMH2 and MSMH3). The best performing model has thelargest area under
the curve. An area of 100% represents the perfect classi�cation.
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Figure 3: Smoothed US recession probabilities (1959-2013)

(a) Model with �xed transition probabilities

(b) MSV-MIDAS model (exponential almon lag)

Notes: This �gure shows the smoothed recession probabilities in theUnited States taken from the Hamil-
ton model with �xed transition probabilities (MSM2) and the MSV-MID AS model including spread term.
The shaded areas represent recessions according to the NBER business cycle classi�cation.
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Figure 4: Smoothed US recession probabilities (1959-2013)

(a) MSV-UMIDAS model (unconstrained lags)

(b) MSV-MIDAS model (exponential almon lag)

Notes: This �gure shows the smoothed recession probabilities in theUnited States taken from the MSV-
UMIDAS and MSV-MIDAS models including spread term. The shaded areas represent recessions ac-
cording to the NBER business cycle classi�cation.
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