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Abstract

This paper introduces a Markov-switching model in which transition probabilities
depend on higher frequency indicators and their lags throuly polynomial weight-
ing schemes. The MSV-MIDAS model is estimated via maximum kelihood (ML)
methods. The estimation relies on a slightly modi ed versian of Hamilton's recursive
lter. We use Monte Carlo simulations to assess the robustnss of the estimation
procedure and related test statistics. The results show thaML provides accurate
estimates, but they suggest some caution in interpreting tle tests of the parameters
involved in the transition probabilities. We apply this new model to the detection
and forecasting of business cycle turning points in the Uniéd States. We properly
detect recessions by exploiting the link between GDP growthand higher frequency
variables from nancial and energy markets. The spread termis a particularly use-
ful indicator to predict recessions in the United States. The empirical evidence also

supports the use of functional polynomial weights in the MIDAS speci cation of the
transition probabilities.
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1 Introduction

The failure to detect downturns in economic activity is a major soueeof error in macroe-
conomic forecasting. At the onset of the great recession, prainers in the United States

surveyed by theSurvey of Professional Forecastersn November 2007 believed that there
was an approximately 20 percent chance of negative growth in eagharter of 2008 and
believed that US activity would grow by 2.5 percent in 2008.

This paper introduces a new speci cation that could be useful for amitoring and
predicting business cycles. We consider a Markov-switching model which transition
probabilities depend on higher frequency indicators (MSV-MIDAS nuel). As done in
Diebold, Lee and Weinbach [1994] and Filardo [1994], the parametefdlee model depend
on an unobserved state variable following a rst-order Markov cha with time-varying
transition probabilities.? The innovation of this paper lies in specifying the transition
probabilities such that they depend on a set of exogenous indicasasampled at a higher
frequency. To address the discrepancy in the frequencies, welgpthe MIDAS (mixed-
data sampling) approach developed by Ghysels, Santa-Clara andIk&nov [2004] and
Ghysels, Sinko and Valkanov [2007]instead of converting the indicator involved in the
probabilities to the low frequency with an arbitrary weighting schemethe optimal weights
are estimated from the data.A parsimonious parameterization of the lagged coe cients of
the high-frequency variable is obtained through the use of functal polynomial weights.

The MSV-MIDAS speci cation can incorporate the signals produceby a wide range of
indicators of the current and future state of the economy into tl transition mechanism of
the system. In particular, there is extensive literature showing @t nancial indicators can
be used to predict business cycle turning points. The yield curve hglé prominent place
among these variables (see Estrella and Mishkin [1998], Kauppi andikkanen [2008],
Rudebusch and Williams [2009] and Croushore and Marsten [2015] argonany others),
but practitioners also follow other indicators such as stock and caonodity prices to predict
business cycle troughs and peaks (see Hamilton [2003], Hamilton [40did Kilian and
Vigfusson [2013] on the speci c role of oil prices). In this contexthe MIDAS structure
is useful, as these indicators are available at a higher frequency thare macroeconomic
variables. In this speci cation, it is not necessary to aggregate ¢h nancial indicators at
a lower frequency in the transition probabilities, which could lead to a & of a potential

1According to the NBER, the US recession began in December 2007 drended in June 2009. US
real GDP fell by 0.3% in 2008 and 2.8% in 2009 (BEA, June 2015).

2Markov-switching models with time-varying probabilities have been recently reconsidered by Kim,
Piger and Startz [2008] and Bazzi, Blasques, Koopman and Lucas [2@].
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useful information and, therefore, to ine cient and/or biased eimates (Andreou, Ghysels
and Kourtellos [2010]).

This paper is related to the literature using MIDAS regressions to skv that nan-
cial variables are useful predictors of GDP growth. Andreou, Gkgls and Kourtellos
[2013], Galvao [2013] and Ferrara, Marsilli and Ortega [2014] nd aasistically signif-
icant improvement in GDP forecast accuracy in the euro area, UK @aUS when using
models incorporating the forward-looking information contained inigh-frequency nan-
cial data. Moreover, Glerin and Marcellino [2013], Bessec and Bdudallah [2015] and
Barsoum and Stankiewicz [2015] use a MIDAS approach to show thatncial variables
help to predict turning points in the United Kingdom and in the United States. From
a methodological perspective, the present paper also contribatéo the recent literature
introducing time variation into MIDAS models. In the class of regimewsitching models,
Galvao [2013] includes a smooth transition model with high-frequenvariables among
the regressors and the threshold variable, while Gerin and Marit@o [2013] incorporate
high-frequency regressors in a Markov-switching model with invant transition probabil-
ities. More recently, Schumacher [2014] considers MIDAS regiiess with time-varying
parameters, estimated with a particle lter.

The MSV-MIDAS model introduced in this paper is estimated via maximin likelihood
methods. The estimation relies on a slightly modi ed version of the Ite in Hamilton
[1989]. Because the MSV-MIDAS model has never been consideredhim literature, we
use Monte Carlo simulations to investigate the small sample propersief the maximum
likelihood estimators of the parameters as well as related test sistics. The simulations
are conducted for various parameterizations and sample sizes.€elklonte Carlo evidence
shows that maximum likelihood provides accurate estimates. The aege bias of the
estimates and their volatilities are small and decrease with the sizetbé sample. However,
as shown by Psaradakis, Sola, Spagnolo and Spagnolo [2010] in Madwitching models
with variables sampled at the same frequency, the t-statistics dii¢ parameters involved in
the transition probabilities may not be reliable. The signi cance test®f these parameters
may lack power in small samples, especially in the shorter regime.

We apply the MSV-MIDAS model to US data. As leading indicators forle inference
of the future state, we consider monthly indicators from nancialand energy markets:
the interest rate, term spread, stock returns and oil prices. Tgse variables, widely rec-
ognized as business cycle predictors, are available without any pubtion lags and are
not subject to revisions. The evaluation of the model is based botin an in-sample and



an out-of-sample analysisWe compare the detection of the business cycle turning points
by the new speci cation and various benchmarks: several modelsthw xed transition
probabilities, as well as MSV-MIDAS models with unrestricted lag polyomials. The new
speci cation appears to provide better signals of economic dowmtuand recovery than
the usual models with constant probabilities.The results are also supportive of the use
of distributed lag functions in the MIDAS speci cation. Among the economic indicators
used to improve the transition mechanism, the slope of the yield cugvs a good candidate
for the United States, which is in line with the previous literature. Thee results hold
both in sample and out of sample.

The remainder of this paper proceeds as follows. In section 2, wegent the MSV-
MIDAS speci cation and describe the estimation techniques. In sgon 3, we use Monte
Carlo simulations to assess the robustness of the estimation prdaee and related test
statistics to make inferences. Section 4 is devoted to the empirieadplication to US data.
The nal section o ers some concluding remarks.

2 The MSV-MIDAS model

Let y; be a variable with dynamics that di er according to the state of the eonomy. The
unobserved state follows a rst-order Markov chain, the transibn probabilities of which
depend on a higher frequency indicatozt(m). In the following, the time index t denotes
the time unit of the low-frequency variabley; (a quarter in our application). The high-
frequency indicatorzt(m) is sampledm times between two time units ofy, e.g.,t andt 1

(m = 3 for monthly indicators, as in our application). The lag operatorL™™ operates
(m)

. <y IS Variable z observeds months before

at the higher frequency, e.g.L5=mzt(m) =z
quarter t.

The low-frequency variabley; follows an AR(p) process with a switching mean, as
motivated by Hamilton [1989]. The dynamics of an MSM(M)-AR(p) modkare described
by the following equation:

Vo= s+ 1t 1 st it ot p s )t (1)

where ¢ and represent the mean and standard deviation gf, ; with i = f1;:::;pgare
unknown autoregressive parameters affd! NID (0;1). The variables, = f1;2;:::; Mg
denotes the unobserved state of the process at timeThe mean value ¢, varies according
to the realized value of the state variable.



Following Diebold et al. [1994] and Filardo [1994], the variablg is assumed to follow
a rst-order Markov chain de ned with time-varying transition pro babilities. In the case
of two regimes M = 2), the four transition probabilities are expressed as follows:

P(st=1js 1=1;Z")= [ 1+ BLY™;) 2™
P(sc=2jsc 1=2:2") = [ 2+ B(L™) "
P(s=2js 1=1;z")=1 [ 1+ BL™™) "
P(s=1js 1=2iz")=1 [ 2+ B(L™) "

(2)

where is the logistic function ( x) =1=(1+ exp( X)), ; and ; are unknown param-
eters for regimes; = i and zt(m{ is an exogenous variable. In this model, the transition
probabilities are not time invariant. Instead, they depend on an exyenous variable and
its lags. When 4 is positive (negative), an increase irzfm{ increases (decreases) the
probability of staying in regimes;. If ;= , =0, the speci cation simpli es to the usual

model with constant transition probabilities.

The exogenous variablet(m) is sampled at a higher frequency. To keep the speci cation
parsimonious, functional lag polynomials are employed. The functidd(L™™; ) is the
exponential Almon lag with:

- X i 1= : exp( 1 + 2j?
BILS™ )= b ) L0 D b )= pom i T A
j=1 j=1 exm 1] + 2J )

3)

with s, = f1;2g in the case of two states. The weights de ned b{yj; ) are positive and
sum to one. The coe cient = f ;; ,gde nes the lag structure in the two regimes, and
the coe cient ¢ in equation (2) gives the overall impact of the weighted past values »
on the probability of staying in regimes;. If , < 0, the weight decreases with lap. In the
particular case in which = f0;0g, we obtain the standard equal weighting aggregation
scheme (the high-frequency variable is simply aggregated to the |dmequency with an
arithmetic average). As suggested by Andreou et al. [2010], thelhtypothesis for equal
weights can be tested with a standard LR test.

The lag function B(L¥™; ) allows a parsimonious speci cation because only two
coe cients are needed for theK lags. This is particularly interesting in regime-switching
models, in which the number of coe cients is largé. As indicated by Ghysels et al. [2007],

30ther possible speci cations of the MIDAS polynomials are based on bta or step functions. See
Ghysels et al. [2007] for a presentation of the various parameteraions of B (L1™™; ).
4In a linear context, Foroni, Marcellino and Schumacher [2015] compa MIDAS models with func-
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the use of distributed lag polynomials also avoids lag-length selecticor the variable in
the probabilities. The decay rate of the weights estimated from thdata determines the
number of lags of the high frequency indicator in the transition prodbilities. Hence,
the more or less persistent impact oit(m) can be captured according to the shape of the
function. This feature is attractive in our model because the infence on the transition
parameters is fragile, as shown by Psaradakis et al. [2010] in theea$ data sampled at
the same frequency. The next section of this study will con rm thigragility for models
involving data sampled at di erent frequencies.

The model is estimated by maximum likelihood. The likelihood is derived in a modi-
ed version of Hamilton's Iter to account for the variation in the tra nsition probabilities.
In the rst step of the lIter, the xed transition probabilities are r eplaced with time-
varying probabilities related to the high-frequency variablezt(m), as speci ed in equations
(2) and (3). The rest of the estimation procedure is similat. Newton's search method
is applied to nd the vector of parameters maximizing the function. he estimation al-
gorithm is initialized with several sets of parameters to avoid local ¢ima. A smoothing
algorithm is then applied to obtain a better estimation of the statesas described in
Kim [1994]. The standard errors of the parameters are obtainedofn the inverse of the
information matrix at the optimum. In the estimation procedure, the parameter , of
the Almon function is constrained to be negative, which guarantees both regimes, a

declining weight ofzt(m) as the lag length increases.

3 Monte Carlo simulations

In this section, we describe several Monte Carlo experiments tcsass the robustness of the
estimation procedure and explore the reliability of the usual test atistics for conducting
inference on the model parameters. A similar exercise is conducteyl Psaradakis and
Sola [1998] in MSM models with constant probabilities and by Psaradakes al. [2010]
in MSM models with time-varying probabilities. We extend their analysisa the case of
mixed-frequency data.

tional distributed lags to MIDAS models with unconstrained weights estimated by least squares. The
unconstrained speci cation performs well for small di erences in @ampling frequencieﬁln our model, this
alternative consists to replace s, B(L*™™; ) in the transition probabilities (2) with sz1 b LU DM,
As seen in the empirical section, this option is less attractive given tie high number of parameters already
involved in regime-switching models. The transition probabilities of the two-state model contains 2 + 2K
parameters instead of 6, e.g. 26 parameters instead of 6 f&¢ = 12 as studied later.

SWe use Matlab for all simulations and estimations.

6See the Appendix for a presentation of the Iter and the derivation of the log likelihood in the
MSV-MIDAS model.



3.1 Design of the Monte Carlo study

We use Monte Carlo experiments to investigate the small-sample prnies of the maxi-
mum likelihood (ML) estimators and related test statistics.

In the Monte Carlo study, we generate many realizations of the MSWIIDAS pro-
cess. The experiment involves the following steps. First, we simulatee high-frequency
variable z™ according to an autoregressive process:

Z(M = ¢+ Z(m)1+!u(m) =1;::5;T m (4)

As a second step, we generate a rst-order Markov chasy, t = 1 :::; T with time-varying
transition probabilities as de ned in equations (2) and (3). We consigf K = 12 lags in the
polynomial B(L*™; ). Finally, we simulate the low-frequency variable y;, t = 1:::;T
as a rst-order autoregressive process subject to Markov disifin mean as described in
equation (1). The residualss; and"; are i.i.d. standard normal and independent. They are
generated via a pseudo-random number generator. The rst 1@&mulated observations
of sy and y; and the rst 100 m observations ofz™ are discarded to reduce the e ect
of the initial conditions. We assume thatm = 3, which corresponds to a model mixing
guarterly and monthly data. We consider various sample sizds = f 200 400 800y, and
we use 1,000 Monte Carlo replications for each experiment.

[INSERT TABLE 1 HERE]

The values of the parameters in equations (1)-(4) are given in Table The benchmark
con guration (DGP1) is close to the empirical setting obtained for & data in section
4. The low-frequency variable follows an AR(1) process with a switcily mean. The
mean parameter is negative in the least persistent regime. The hiflequency indicator
positively a ects the transition probability of the favorable state and is negatively related
to the probability of staying in the recession state. In DGP1, the dyamics of the high-
frequency indicator is state-independent. Alternatively, in DGP2ye allow a switch in the
intercept and in the variance of equation (4). Allowing a change in the dynamics of the
high-frequency indicator is relevant since the leading indicators wbé¢o perform business
cycle inferences typically depend on the business cyclén DGP3, the high-frequency
indicator z is less persistent. In DGP4, the impact of the high-frequency vabée on

’The intercept and the variance parameters vary according to thevalue taken by a two-state rst-
order Markov chain. The probability of staying in the high-growth st ate is equal to 0.9 and the probability
of staying in the low-growth state is equal to 0.8.



the transition probabilities is weaker (lower ; and ). In DGP5, the di erence between
the mean parameters is smaller across the two regimes, which maywexdely a ect the
classi cation of the observations in the two regimes. Finally, DGP6 issed to investigate
the sensitivity of the results to the shape of the weighting functionin this last DGP, the
pro le is atter, with lower values of ; and »,, i.e., more uniform weights are assigned to
the K past values ofz.

3.2 Robustness of the ML estimates

In a rst step, we explore the nite sample performance of the ML stimator for the data
generating processes considered in Table 1.

The parameters of the models are estimated via a numerical optimizn of the log-
likelihood of the model. As starting values, we use the true vector ofie considered
parameters to generate the data, plus random values drawn froannormal distribution
with a standard deviation equal to 0.2 To gauge the robustness of ML estimates, we
examine the average bias of the estimated coe cients of the modahd the standard
deviations of the estimates in the 1,000 replications. To measure theality of the esti-
mated parameters involved in the transition probabilities, we reporadditional criteria.
For parameters = f ;; ,0, we provide an average measure of the error in the weights
given by: P, _ _

a0 ) G )]
T

Second, we compare the simulated transition probabilities with the &®ated ones using

errh =

()

mean absolute error statistic$:

errpu = ( 1+ B(LTT) zoy (Mo+ ABLE™ Y 2™
t=1
X (6)
err Py = T ( 2+ B(L¥™™) Zt(m]). (N o+ HBLYE™ Zt(m]).
t=1

This last criterion measures the e ect of the estimation error in pameters , and on
the time-varying transition probabilities. It gives the overall impact of errors in the set

8We do not assess the e ect of possible model misspeci cations on ¢éhestimation accuracy. The
model is estimated with the true number of autoregressive paranters and with the same parameters
subject to changes in regime.

9The mean squared errors of the probabilities are qualitatively similar. The results are available from
the author upon request.



of parameters in the transition probabilities on the identi cation of the state. We report
the average values of these criteria in the 1,000 Monte Carlo simulai®

[INSERT TABLE 2 HERE]

The results in Table 2 show that the estimation procedure provideseurate estimates
of the parameters present in the equation foy,. The average bias is generally very close
to zero, and the dispersion is low. The bias is slightly larger for in small samples. The
estimated parameters of the transition probabilities ; and ;, i = f1;2g, are less accurate,
especially for small values of , and the estimates of these four parameters show a higher
dispersion. The error in the weights is also larger for small samplesthaugh it is rather
limited, as shown by the relatively low values oérr_by. However, the mean absolute error
in the probabilities remains moderate, even for small values @f (less than 5 points for
p11:t and 11 points forp,z: when T = 200 and less than 3 and 6 points, respectively, in
the largest sample). Hence, the error in parameters, and has a limited impact on
the classi cation of the observations in the two regimes.

Comparing results across DGPs, the quality of parameter estimatén the transition
probabilities increases with less persistent dynamics pf(DGP3) or with more uniformly
distributed weights (DGP6). The average bias and the standard deviation of the estimated

iand ;,i = f1;2gis more limited. In DGP6, the average error in the weights is smaller
too for small samples.By contrast, considering a high-frequency indicator also subject to
changes in regime (DGP2) odecreasing the di erence between the parameters of the two
states (DGP5) has an adverse e ect on estimation accuracy. Iragicular, the parameters
entering the probabilities show a higher bias fof = 200 (e.g. in DGP2 and DGP5, the
bias in ; is twice that in the reference modeland are more volatile. The error in the
weights is also larger for smaller coe cients (DGP4). However, in all cases, the mean
absolute errors in the probabilities are close to those in DGPHence, the impact on the
identi cation of the regimes is rather limited relative to the benchmak.

3.3 Robustness of the tests

We now turn to the reliability of the t-statistics related to the parameters of the model.

The t-statistics associated with the estimated parameters of themodel are expected
to be approximately distributed asN (0;1). Francq and Roussignol [1998] and Douc,
Moulines and Ryden [2004] provide results concerning the consistgrand asymptotic
normality of the ML estimator in Markov-switching autoregressive radels with xed
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probabilities. As indicated in Psaradakis et al. [2010], no equivalent gt are available
on the distribution for the parameters in Markov-switching models wh time-varying
probabilities. However, practitioners generally rely on the normalisitribution when they
conduct signi cance tests in these models. To assess this propgeiable 3 reports some
characteristics of the sampling distribution of the t-statistics of he parameters obtained in
the Monte Carlo simulations: the mean, the standard deviation, thekewness, the excess
kurtosis, and the p-value of the Jarque-Bera test for normalitydr the 1,000 simulated
t-statistics. The t-statistics are computed as the ratio of the d@snation error to the
estimated standard error. The estimated standard errors areabed on the Hessian matrix
of the estimated log-likelihood function.

The results indicate some departure from normality in the distributia of the t-
statistics. The standard deviations of the 1,000 simulated t-stati€s are generally close
to one. However, the average t-statistics associated wifhin the equation fory; and with
A and % for i = f1;2g in the transition probabilities depart from zerd®. Moreover, the
skewness coe cient shows some asymmetry in the distributions olfi¢ t-statistics for %
and ", i = f1;2g. The distributions of "; and ", are also highly leptokurtic for small
values of T. As a consequence, the null of normality is strongly rejected by ¢éhJarque-
Bera test for A4 and ', even in large samples. The comparison across DGPs shows that
the deviation from normality is lower with less persistent dynamics of, (DGP3) or with
more uniformly distributed weights (DGP6). By contrast, the nornality is more rejected
when the high-frequency indicator is subject to changes in regimer smaller ; and
and closer ; and , (DGP2, 4 and 5).

[INSERT TABLE 3 HERE]

To assess the potential e ect of non-normality on the inferenceye investigate the
performance of the t-statistics over the 1,000 Monte Carlo simulains when we use stan-
dard normal critical values. Figure 1 provides the empirical size of the two-sided tests
of the equality of each parameter to its true value, as well as the @mical power of the
signi cance tests for each parameter at the 5% signi cance leveEl. The empirical sizes
are found close to the nominal level (5% However, as in Psaradakis et al. [2010], we

0psaradakis and Sola [1998] obtain similar results in Markov-switching radels with xed transition
probabilities, as do Psaradakis et al. [2010] in an MS model with time-veying probabilities.

1n contrast to the linear case, the particular test of the nullity of 1 in P(s; = 1js; 1 =1; zt(mi) ina
model with time-invariant weights does not involve non-identi ed par ameters under the null hypothesis,
as the vector is still present in the other transition probability P(s; = 2js; 1 = 2;zt(m£). The same
applies to ».

2The conclusions are similar at the 10% signi cance level. The results & available from the author
upon request.
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observe that the parameters entering the transition probabilitiesre more likely to be
insigni cant in small samples. Indeed, the frequency of rejectinghe nullity of , and »
in the shorter state is lower forT =200 and T = 400. For instance in DGP3, the nullity
of , is rejected in 35% of the cases and that of, in 53% of the cases fol = 200.
Considering lower values for coe cients in DGP4 leads to even smaller rejection rates
for , and , (28% and 47%), while the frequency of rejection is approximately Q%
for the other parameters. In sum, the t-statistics of the paramters ; and ; should be
interpreted with caution, especially in the shorter regime.

4  Application to US GDP

We now illustrate the empirical relevance of the MSV-MIDAS model ttough a business
cycle analysis of the United States.

4.1 Data and speci cations

The database consists of the quarterly growth rate of real GDPnd a set of monthly
nancial indicators for the United States. The dataset was colleed in July 2014.

The data on GDP cover the period from 1959Q1 to 2013Q4 (220 gtexs). This sample
includes 8 recessions. The business cycle chronology is taken fraeINBER. To account
for data revisions in the out-of-sample evaluation, we use vintagesoutput growth from
the real-time datasets constructed by Croushore and Stark [200and available on the
website of the Federal Reserve Bank of Philadelphtd.Our real time data-set for US GDP
growth consists of 291 vintages, released from January 1990 tadgh 2014. It might be
more challenging to identify a recession using the GDP data available e time due the
revision of GDP data, especially during recessionary periods. Ovéretperiod 1990-2010,
the quarterly growth rate of US GDP was revised by an average of2® points three years
after its rst publication. This revision reaches up to 0.37 points forthe recessionary
quarters, as opposed to 0.21 points during expansionary quager

We will assess whether monthly nancial indicators can help to detgcin real time,
the recessions for this country when they are incorporated intdi¢ transition probabilities
of the MSV-MIDAS model. The set of monthly indicators includes a shibterm interest
rate, the term spread, and stock and oil prices. Interest rateme considered in di erences
and the term spread in levels. Stock and oil prices are in log di erereeUS interest rates

Bhttp://www.philadelphiafed.org/research-and-data/re al-time-center/real-time-data/
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are released by the Federal Reserve Bank of Saint LotftsWe consider the e ective federal
funds rate and the slope of the yield curve measured as the di embetween the 10-Year
Treasury bond and the 3-month Treasury bill. The stock market indx SP500 is provided
by Yahoo Finance. Finally, we consider the Brent oil price in London @astream). We
assume that the nancial variables are not revised.

We consider two-state MSV-MIDAS models for GDP growth in which th transition
probabilities depend on one of the four monthly nancial variables. @ ensure exogeneity
with respect to the dependent variable, we lag the nancial indicats by one quarter in
the transition probabilities. We retain K = 12 lags in the Almon function, and hence the
probabilities may depend on the monthly indicators over the entire [ year. To select
the number of autoregressive terms, we use the AIC in the linearesp cation. Tests for
omitted autocorrelation are implemented to determine whether thee autoregressive orders
are su cient. We apply Ljung-Box tests either to the standardizel generalized residuals
(Gourieroux, Monfort, Renault and Trognon [1987]) or to standad-normal residuals con-
structed with the Rosenblatt transformation (Smith [2008]):> To check the gain due to
the use of mixed frequency data, we also conduct a test for thet aggregation scheme, as
suggested by Andreou et al. [2010] in the linear case. When #£0; Og, the high-frequency
indicator is converted to low-frequency data with a simple averag&he relevance of these
restrictions is tested with a standard LR test.

We compare the performance of the MSV-MIDAS speci cation withose of several
models. First, to assess the gain due to the inclusion of time-variation the transition
probabilities, the MSV-MIDAS model is compared with several bendharks with xed
transition probabilities (FTP). At this level, we consider the two-stde autoregressive
speci cation with a switching mean as in Hamilton [1989] (MSM2) and a tarstate model
with a switching mean and a switching variance (MSMH2). The shift in te variance
might be useful to capture the reduction in the volatility of businesgycle uctuations
starting in the mid-1980s. These speci cations are constrained reeons of the model
presented in section 2 when; and , are set to zero. We also consider three-state models

Yhttp://www.research.stlouisfed.org/fred2/
51n a MSM(M)-AR(p) model with p =1 lag, the standardized generalized residuals are obtained as:

PP
P(st = i;5s¢ 1= J 1t 1;) o i (Yt 1 i) ,» while the Rosenblatt residuals

i=1j=1
PP _ . ;
are dened as: ! P(st = i;S¢ 1= ] j 1t 13) e (Yo 1 j)) , with
i=1j=1
denoting the cumulative distribution function of the standard norm al distribution and 1; ; the observed
information on y and z available at time t 1. Using Monte Carlo experiments, Smith [2008] shows that
the test applied to the Rosenblatt transformation of standardized residuals performs well in detecting

autocorrelation in Markov-switching models.
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with switching mean and/or variance (MSM3 and MSMH3). The four mdels include two
autoregressive terms. Diagnostic tests do not show any sign ofma&ning autocorrelation
either in the generalized residuals or in the standard-normal residis constructed with
the Rosenblatt transformation as explained above.

Second, we include MSV-MIDAS model with unrestricted distributedags (MSV-
UMIDAS) in our comparison. The MIDAS polynomial in the time-varying transition
probabilities may impose a tight structure on the data in that there isa high degree of
non-linearity to estimate the MIDAS parameters (i.e., two ratios of gponential functions
to ensure that both the transition probabilities and the MIDAS weiglts are bounded be-
tween 0 and 1). To circumvent the use of MIDAS polynomial and simplifthe dynamics
of the transition probabilities, we use the unrestricted MIDAS appvach of Foroni et al.
[2015]. This approach does not resort to functional lag polynomialas the Almon lag
polynomial presented in section 2. Instead, the transition probdiiies are directly re-
lated to the monthly lags of the high frequency indicator with a linear orestricted lag
polynomial. This speci cation o ers more exibility and may be easier toestimate. Nev-
ertheless, it is also far less parsimonious when the impact of highefoency indicator on
the transitions is persistent. This may be problematic in regime-switing models where
the number of parameters is already high. To specify the lag ordexe use the AIC cri-
terion with a maximal number equal to 12. We retain 6 lags for stocketurns and term
spread, 7 lags for federal fund rate and 1 lag for oil prices.

4.2 Estimation results

In a rst step, we investigate the in-sample performance of the M&EMIDAS models in
tracking US GDP dynamics and identify the business cycle turning pdm in the entire
sample.

We estimate the MSV-MIDAS models using the full sample, from 1959 2013. The
estimation of the models is performed for a large set of initial conditis. Table 4 pro-
vides the models' estimates and signi cance tests. The at aggration and the residual
diagnostic tests are given in the second part of the table.

[INSERT TABLE 4 HERE]

The models are estimated with two lags, as found in the linear specittan. The
Ljung-Box tests applied to generalized or Rosenblatt residuals gugrt the assumption
of no remaining autocorrelation. We also observe a gain from incorating monthly
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indicators into the probabilities rather than converting them to thequarterly frequency
via the simple average. The LR test reported in the second part dfi¢ table (line LR at)
shows that, at the 5% or 10% signi cance level, the likelihood of the rdel is signi cantly
improved relative to a model estimated with = f0;0g. Hence, the usual weighting
scheme relying on equal weights is empirically rejected which is a rstidence in favour
of our approach. GDP exhibits a positive mean growth rate in the rst regime and decling
in the second state. The coe cients ; and , generally have opposite signs, showing that
a variation in z; leads to movements op;;; and p,2¢ in the opposite direction. Even when
the two coe cients have the same sign, the size of the coe cients islearly di erent. In
the shorter regime, the coe cient , is is often non-signi cant. However, the t-statistics
must be interpreted with caution given the possible lack of power in ghsigni cance tests,
as shown in the previous section. This caveat is particularly notablerfthe shorter regime.

The estimated parameters in the transition probabilities have the eected signs.
Lower stock returns increase the risk of recession;(> 0) while making a recovery
less likely (2 < 0). A similar pattern holds for term spread. The positive coe cient in
the expansion probability is consistent with the sharp decline in the gb@ of the yield
curve and, in some instances, the inversion of the yield curve obgst before economic
downturns. The coe cients for the central bank rates are nedave in the expansion prob-
ability and positive in the recession probability. In particular, policy tichtening increases
the probability of switching to a recessionary state (; < 0). Finally, the impact of oil
price is ambiguous. A rise in oil price increases the probability of enteg a recession
( 1 < 0). As noted in Hamilton [2013], a majority of US recessions have bepreceded
by a sharp rise in the price of crude petroleurtf. However, the impact on the probability
of remaining in recession is also negative < 0).

Table 5 presents the in-sample comparison of the MSV-MIDAS modelsth the two
sets of benchmarks. First, we use the usual Akaike and Hannan#@n information criteria
to confront the goodness-of- t of the MSV-MIDAS models with tle one of the models
with xed transition probabilities (FTP). We also compare the models stimated with
exponential Almon lags (MSV-MIDAS) and with unrestricted lags (M¥-UMIDAS).

Several results are worth commenting onThe models with time-varying probabilities
exhibit better t to GDP growth than do the FTP models with regime-independent
variance (MSM2 and MSM3). The information criteria reach their lowest values in the

16The only exception among the postwar recessions in the United Stas is the economic crisis of 1960.
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two models allowing for regime-dependent heteroscedasticity (M$M and MSMH3) but
we will see below that allowing a change in the variance has a detrimehtect on

the detection of turning points. Relative to MSM2 and MSM3, the impovement of the
log-likelihood is particularly strong when the probabilities are relatedd stock returns
and federal funds rate. When taking into account the number ofgsameters, the two
MSV-MIDAS models still provide substantially smaller AIC and HQC valus than in

MSM2 and MSMS3. This is also the case of the model including term speaven though
the AIC value is closer to that in MSM3. On the other side, the MSV-MDAS model
incorporating oil prices is outperformed by all speci cations. Turimg to the comparison
of MSV-MIDAS and MSV-UMIDAS models, the models with unrestrictd lags generally
show much higher information criteria than their constrained coumtrpart. This result

is particularly strong with the Hannan-Quinn criterion imposing a stramger penalty on
the number of parameters (the MSV-UMIDAS models including the st three nancial

indicators contain nearly twice as many parameters than the speciations with restricted

lags).

[INSERT TABLE 5 HERE]

Table 5 also reports criteria assessing the quality of the inferenca the state: the
guadratic probability score (QPS) and the area under the roc cuev(AUC). The quadratic
probability score is de ned as% tT:l(P(st =ijlt;) r)? with r, a dummy variable
equal to one if the regima is the true regime int and zero otherwise. The QPS value lies
in [0,2]. The lower the QPS, the better the state is estimatedThe roc curve is created by
plotting the true positive rate called sensitivity (that is the proportion of recessions that
are correctly identi ed as such) against the false positive rate or-4peci city (that is the
proportions of false signals) at various threshold settings (see Eig 2 for a representation
of the roc curves for all the models under consideration). The aeinder the roc curve
(AUC, also referred to AUROC) takes value between 0.5 and 1. An AT equal to 1
indicates a perfect classi cation of the states, while a value of 0.5rcesponds to a random
ranking.t’

According to the QPS and AUC criteria, high-frequency informatiorin the transition
probabilities helps to track the state of the US economy. Among thETP models, the

"Developed during World War Il to assess radar signals and then traitionally used in medicine,
radiology and biometrics, the receiver operating characteristic (ROC) analysis was introduced by Berge
and Jorda [2011] for the business cycle analysis. Candelon, Dumigstscu and Hurlin [2012] provide a
review of the ROC curve methodology, as well as other accuracy nasures of probabilistic forecasts. A
toolbox is provided by the authors to compute these criteria.
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two models with a constant variance (MSM2 and MSM3) are good corefitors, while
the heteroskedastic models (MSMH2 and MSHM3) do not perform ke The shift in
the variance captures the great moderation starting in the mid-B®Ds but deteriorates
the detection of turning points, especially in the two-state model. fAe models with
xed transition probabilities are outperformed by MSV-MIDAS modds. The information
provided by stock price and interest rates is particularly helpful. Te MSV-MIDAS model
with the term spread yields a lower QPS (0.121 versus 0.161 in the bEStP model MSM2)
and a higher AUC (0.970 against 0.939). The results for the federate are also supportive
of the new speci cation (QPS equal to 0.117 and AUC to 0.956§. On the other side, the
model with oil prices does not provide better signals of economic dawrn and recovery
than the usual models with constant probabilities. The QPS criteriois very close to the
one in MSM2 and the AUC is much lower than in the models with regime-ingendent
variance (MSM2 and MSM3).

The QPS and AUC criteria also support the use of functional lag polymials in the
MIDAS speci cation. In the MSV-UMIDAS models, the two criteria are never improved
with respect to their constrained counterparts (e.g. for the feztal rate, QPS and AUC
stand at 0.159 and 0.802 in the MSV-UMIDAS model against 0.117 and966 in the
MSV-MIDAS model). This low performance is illustrated in Figure 2. Thisgure shows
the ROC curves obtained in the FTP, MSV-MIDAS and MSV-UMIDAS speci cations.
The closer the ROC curve follows the left-hand border and then thep border, the more
accurate the model. With the exception of oil prices, the refereaenodel outperforms the
FTP models, while the signals provided by the unconstrained speci ian are clearly less
accurate. The outperformance of the constrained MSV-MIDAS aodels over the uncon-
strained speci cations is particularly striking for the federal rate This is not surprising
since this indicator has the most persistent impact on the transitioprobabilities, which
requires a high number of parameters to be estimated in the uncoraned version of the
model (21 parameters against 11 in the model with the exponentiAlmon function).

[INSERT FIGURE 2 HERE]

The good performance of the constrained MSV-MIDAS model in idefying past
recessions in the United States is also evident from Figures 3-4. $he gures display
the smoothed probabilities of being in the low-growth state obtaineth the FTP and in

8The MSV-MIDAS speci cations are also superior to a naive forecashg model assuming that econ-
omy is always in expansion regime. The naive model provides a QPS edui 0.275 superior to that
obtained in the MSV-MIDAS models.

16



the MSV-MIDAS models (Figure 3) and in the MSV-UMIDAS and MSV-MDAS models
(Figure 4), together with the NBER recession periodsWe focus on the results obtained
with the best performing model in each group in terms of AUC criterio: the two-state
model with a regime-switching mean MSM2 among the FTP models, the 3¥-MIDAS
model including term spread among the restricted models and the MSJMIDAS model
including term spread among the unconstrained speci cations. Interestingly in Figure 3,
spread improve the signals of the last three recessions, which were/en by nancial
factors (see Ng and Wright [2013]). In particular, the dot-com butde in 2000-01 is well
detected by the new speci cation, while the signal was almost nonestent in the FTP
model. As for the great recession, the probability of recession ingiMSV-MIDAS models
increases in summer 2007, as the rst signs of distress appear ire tmancial markets.
The signals obtained for the four episodes in the 1970s and 1980s also much clearer,
and a false signal in the fourth quarter of 1977 disappearsn Figure 4, the signals of
recession provided by the MSV-UMIDAS model are stronger but éhunconstrained model
gives a false signal of recession in the second and third quarterd®67 and a false signal
of recovery in the second quarter of 1982. Moreover, the resiess at the beginning of
the 1980s and the 1990s as well as the great recession are anoedirwith a signi cant
advance in the unconstrained speci cation.

[INSERT FIGURES 3-4 HERE]

4.3 Real time business cycle forecasting

Incorporating monthly indicators into the transition probabilities might help to improve
signals of future recessions. In this last section, we assess th#itglof the MSV-MIDAS
model to infer, in real-time, the current and future state of the eonomy.

We conduct an out-of-sample study with a recursive window scheme&he last obser-
vations of the sample are discarded for the forecasting exerciSehe forecasting window
spans from 1990Q1 to 2013Q4 and includes three recessions. Tdredasted chain is
sampled at a quarterly frequency, but the forecast can be updat every month after the
release of the monthly indicator included in the transition probabilities By contrast, the
update of the forecasts in the models with constant probabilities dnre ects the monthly
revisions of GDP data?® In this study, we focus on the forecast of each quarter made ffino

9The results obtained with the other models are available from the auhor upon request.
20The Bureau of Economic Analysis publishes an “advance' estimate ohe quarterly GDP about one
month after the end of the reference quarter. A “second' estima, including more complete product data
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6 months to a few days before the GDP release, approximately on@mth after the end

of the reference quarter. We recursively expand the estimatiorepod. The parameters of
the models are estimated using the only information available at the tienof the forecast.
The evaluation is conducted in real-time conditions. The models aretiesated from the

observations available at the time of the forecast. At this level, wese the vintages of
output growth provided by the Federal Reserve Bank for the UStife nancial variables

are assumed not to be subject to data revisions).

Table 6 shows the QPS and AUC criteria for the forecast state#gain, the results are
reported for the MSV-MIDAS models, as well as the models with caiasit probabilities
and the unrestricted MSV-UMIDAS models.

[INSERT TABLE 6 HERE]

The MSV-MIDAS models estimated with restricted lags of term sprehand stock
returns give the best forecasts of the recessionary state in thmited States. They out-
perform clearly the models with xed transition probabilities (among he FTP models,
the Hamilton speci cation MSM2 performs better as well as the MSMBI model at some
horizons). The QPS and AUC criteria are nearly always better in thewto MSV-MIDAS
models. One quarter ahead, the MSV-MIDAS model with term sprélaprovides better
signals of upcoming recessions than all FTP models with QPS and AUCuead| to 0.134
and 0.923 respectively (versus 0.191 and 0.849 in the best FTP mot#$M2). At the
one-month horizon, the QPS criterion is equal to 0.104 with stock kens and the AUC
criterion stands at 0.979 against 0.181 and 0.836 in the same benchiu

The out-of-sample results also favor the use of restricted lag potymials. The QPS
and AUC criteria deteriorate in the unrestricted version of the moel. The only exception
is the case of stock returns. The unrestricted model estimatedtiwvthis indicator displays
lower QPS values at intermediate horizons (e.g. 0.168 against 0.20@rfmonths before
the publication of GDP) and a highest AUC value at the shortest oned(973 versus 0.938).
On the other side, the worst performance is shown by the uncorsined model estimated
with the federal rate (QPS at 0.192 and AUC at 0.715 for the forests made a few

and the rst estimates of corporate pro ts is available at the end of the second month and a ‘third'
estimate based on more complete source data is disclosed at the enfithe third month.

21The two MSV-MIDAS models perform better than other benchmarks. A naive model forecasting
expansion regime at all quarters provides a QPS equal to 0.229, wheas the two MSV-MIDAS models
yield lower QPS values at all horizons. The performance at horizon 23 is also better than that of
the anxious index (the probability of a decline in real GDP, as reportel in the Survey of Professional
Forecasters in the second month of each quarter). On this basighe QPS computed for this indicator
over 1990Q1-2013Q4 is equal to 0.152.
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days before the GDP publication against 0.143 and 0.952 respectivetythe constrained
model). The model is even outperformed by the two-state modelittv xed transition
probabilities MSM2.

Overall it appears both in the in-sample and out-of-sample evaluaticthat the curse
of dimensionality due to the use of unrestricted lags is detrimentabtthe performance of
the MSV-MIDAS speci cation. Unconstrained MIDAS models requireghe estimation of
many parameters (twice as much in the model including the federalte), which introduces
some uncertainty in the model analysis and leads to less accurateeftasts. This result
might be due to the fragility of the inference on the parameters inWeed in the transition
probabilities, as shown in the Monte Carlo simulations. This contrastwith the more
favorable ndings of Foroni et al. (2015) to the unconstrained MDAS model in a linear
context, where the increase in the number of parameters is more iied and where the
weights can be estimated with ordinary least squares.

5 Concluding remarks

In this paper, we introduce the MSV-MIDAS model. This speci cationincorporates
higher frequency information in the transition mechanism of Markegwitching models.

The MSV-MIDAS model is estimated via ML methods. Monte Carlo evidece sug-
gests that our estimation procedure provides robust estimated the parameters of the
model. The Monte Carlo experiments also show that the t-statisticassociated with the
coe cients in the time-varying probabilities should be used with cautio. In the empirical
application, the new speci cation is applied to the detection and fomasting of business
cycle turning points. We nd that the MSV-MIDAS model detects recessions more suc-
cessfully than the speci cation with invariant transition probabilities in the United States.
The slope of the yield curve provides particularly useful signals fohé identi cation and
forecasting of economic downturns and recoveriesThe empirical results also support
the use of parsimonious lag functions in the time-varying transitionrpbabilities of the
models. These ndings hold both in sample and out of sample.

There are a number of potential extensions to this paper. We coduildcorporate several
leading indicators in the transition probabilities. This could help for sigaling oncoming
recessions, given the di erent sources and characteristics otessions. It would also be
interesting to include high-frequency regressors in the equatioarfGDP. Exploiting the
information provided by weekly or daily data is also on our research egda. Finally, this
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model could be applied to other areas of macroeconomics and nanc
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APPENDIX
Filter and derivation of the log-likelihood in the MSV-MIDA S model

Let fytgtT_1 be a time series following an MSM(M)-AR(p) process with transition probabilities

(m)

depending on a high-frequency indicatorz; "/, as described in section 2. The conditional log-

likelihood function of the observed data is given by:

X
L()= Inf (yijye 1 Zt ;)
t=p+l
with yi 1= fyt 1;::115y10, zt = zt(mi;::"zgm) the past of y; and z(m) and representing

the vector of parameters of the model.

The conditional log-likelihood function is derived from the following computations iterated for
t=p+1;:::;T. Ina rst step, we derive the joint probability:

P(st=iist 1= St p= Kiyk 1:24; )=

P(st=ijst 1= 5iz(™) P(st 1= st p=kiyr 1:2™; )

with i;j;k = f1;2;:::;M g and where the time-varying transition probabilities are expressed as
follows in the case of two regimesil = 2):

P(st = 1jst 1=1; "“’)—[ 1+ 1BLY™ )™
P(st=2jst 1=2:™)=[ 2+ BLF™ 2)z™
P(st=2jst 1=1;2™)=1 [ 1+ BLY™; 1)z{™
P(st=1jst 1=2;2™)=1 [ o+ BLYE™ )z{™

with the function B(L¥™; ) specied as:

- X - . exp( 1] + 2j°
B(Ll—m; ): b(J, ) L(J 1)—m; uj’ ) — P < p( 1J : 2] ) .
i=1 i1 exp( 1 + 2)9)

In a second step, the joint density is derived as follows:

fyse=iiSe 1= oSt p= Kiye 132 )=
flydst=iist 1= J;ii058t p= Kyt 150100 p.Zt(m%- ) P(st=1iis¢ 1=j:1; Stp—katlzt(m%- )
where the conditional density ofy; given the past and current statess;;s; 1;:::;st p and the
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past observations ofy and z(™ is given by:

(M),

f(ydstst 1058t pYt 1Y ;g1 )=
+= )
pzi exp Yt st 1yt 1 St21)2 Lo p(Yt p st p)

In a third step, the conditional density f (yijyt 1; zt(m{; ) is derived by summing over all possible

State sequences:

f (Ve . (m). — AN )M . - o e — i (M),
i=1 j=1 k=1

Finally, we derive the joint probability of the p states conditional upony; and zt(mi from:

. . P . .
P(st=jiiiiise prr = Kiysz™: ) = Mo P(st= st pa = Kise p= liys 2™ )
Py fOusizise = pa=kise p=liye 128" )

k=1 f(ytiyt 1;Zt(mi; )

The initialization of the Iter relies on the ergodic probab ilities of the state in the FTP model.

24



Table 1: Monte Carlo experiment - DGP

DGP1 | DGP2 | DGP3 | DGP4 | DGP5 | DGP6
c 0.1 | 0.5/-0.2 0.1 0.1 0.1 0.1
0.8 0.8 0.5 0.8 0.8 0.8
! 1.0 0.5/1.0 1.0 1.0 1.0 1.0
1 1.0 1.0 1.0 1.0 0.5 1.0
2| -0.8 -0.8 -0.8 -0.8 -0.4 -0.8
0.5 0.5 0.5 0.5 0.5 0.5
0.3 0.3 0.3 0.3 0.3 0.3
1 2.0 2.0 2.0 2.0 2.0 2.0
2 0.5 0.5 0.5 0.5 0.5 0.5
1 2.0 2.0 2.0 1.0 2.0 2.0
2| -1.0 -1.0 -1.0 -0.5 -1.0 -1.0
1 2.0 2.0 2.0 2.0 2.0 0.2
2 | -0.15 -0.15 -0.15 | -0.15 | -0.15 | -0.015

Note: This table details the parameterizations of the MSV-M  IDAS models used
to simulate the Monte Carlo samples.
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Table 2: Monte Carlo results - Estimate accuracy of the MSV-MIDASnodel

T 1 2 1 2 1 2 err.bj errpll errp22
200 0.000 0.001 -0.017 -0.003 0.115 -0.044 0.309 -0.214 0.20 0.04 0.09
4 (0.05) (0.06) (0.06) (0.02) (0.62) (0.44) (0.75) (0.56)
o 400 0.000 0.000 -0.010 0.000 0.060 -0.010 0.140 -0.070 0.09 0.03 0.06
8 (0.03) (0.04) (0.04) (0.01) (0.33) (0.28) (0.40) (0.29)
800 0.000 0.000 0.000 0.000 0.030 -0.010 0.060 -0.050 0.03 0.02 0.04
(0.02) (0.03) (0.03) (0.01) (0.21) (0.18) (0.26) (0.18)
200 -0.001 0.001 -0.013 -0.002 0.159 -0.092 0.615 -0.631 0.21 0.03 0.11
o (0.04) (0.09) (0.06) (0.02) (0.81) (1.99) (1.06) (4.93)
o 400 0.000 -0.001 -0.006 -0.002 0.064 0.014 0.218 -0.197 0.14 0.02 0.08
8 (0.03) (0.06) (0.04) (0.01) (0.48) (0.44) (0.54) (0.58)
800 0.000 -0.002 -0.004 0,000 0.037 -0.013 0.093 -0.083 0.07 0.01 0.06
(0.02) (0.04) (0.03) (0.01) (0.29) (0.29) (0.33) (0.27)
200 -0.002 -0.002 -0.016 -0.003 0.090 -0.012 0.248 -0.215 0.21 0.04 0.09
o (0.05) (0.06) (0.06) (0.02) (0.36) (0.38) (0.71) (0.71)
o 400 0.000 0.000 -0.005 -0.001 0.044 -0.006 0.107 -0.064 0.09 0.03 0.06
8 (0.03) (0.04) (0.04) (0.01) (0.24) (0.24) (0.45) (0.41)
800 0.001 0.001 -0.003 -0.001 0.017 -0.001 0.042 -0.029 0.04 0.02 0.04
(0.02) (0.03) (0.03) (0.01) (0.16) (0.16) (0.29) (0.27)
200 0.000 0.002 -0.011 -0.003 0.068 -0.062 0.170 -0.143 0.45 0.04 0.10
< (0.04) (0.06) (0.07) (0.02) (0.36) (0.40) (0.36) (0.41)
o 400 0.001 0.003 -0.009 -0.001 0.031 -0.031 0.058 -0.063 0.27 0.03 0.07
8 (0.03) (0.04) (0.04) (0.01) (0.23) (0.25) (0.22) (0.24)
800 0.000 0.001 -0.003 0.000 0.020 -0.007 0.028 -0.012 0.13 0.02 0.05
(0.02) (0.03) (0.03) (0.01) (0.16) (0.17) (0.15) (0.15)
200 0.000 0.001 -0.023 -0.002 0.272 -0.097 0.636 -0.380 0.25 0.05 0.11
o (0.05) (0.07) (0.08) (0.02) (0.99) (0.87) (1.32) (1.18)
a 400 0.001 0.002 -0.007 -0.001 0.096 -0.006 0.177 -0.114 0.13 0.04 0.07
8 (0.03) (0.05) (0.05) (0.01) (0.44) (0.34) (0.53) (0.39)
800 0.000 -0.001 -0.005 -0.001 0.052 -0.015 0.095 -0.054 0.05 0.03 0.05
(0.02) (0.03) (0.04) (0.01) (0.27) (0.22) (0.33) (0.24)
200 -0.001 0.000 -0.016 -0.003 0.133 -0.044 0.246 -0.150 0.14 0.04 0.09
© (0.05) (0.07) (0.06) (0.01) (0.48) (0.41) (0.67) (0.57)
a 400 0.001 -0.001 -0.008 -0.001 0.053 -0.044 0.099 -0.097 0.06 0.03 0.07
8 (0.03) (0.05) (0.04) (0.01) (0.28) (0.29) (0.40) (0.35)
800 0.001 0.001 -0.004 -0.001 0.033 -0.007 0.068 -0.038 0.03 0.02 0.05
(0.02) (0.03) (0.03) (0.01) (0.19) (0.20) (0.26) (0.23)

Note: This table provides the average bias and, in brackets,

the standard deviation of the parameter estimates of the MSV

MIDAS models for sample sizes T = f200; 400; 800g over 1,000 replications. The last three columns show the err or measures for

the weights (err _bj) and the transition probabilities (err
in the 1,000 Monte Carlo simulations.
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_pl11 and err_p22). We report the average values of these three criteria



Table 3: Monte Carlo results - Distribution of the t-statistics

T 1 2 1 2 1 2 1 2 1 2 1 2

DGP1 DGP2
mean 200 -0.01 0.00 -0.22 0.03 -0.05 0.23 -0.20 -0.03 0.01 -QL7 0.03 -0.08 0.37 -0.21
400 0.02 0.01 -0.12 0.08 -0.02 0.21 -0.10 0.01 -0.01 -0.10 0.9 0.01 0.20 -0.19
800 -0.04 -0.04 -0.12 0.07 -0.05 0.14 -0.16 -0.02 -0.06 -0.12 0.06 -0.06 0.14 -0.16
std 200 1.08 1.01 1.02 0.98 0.98 0.95 0.96 1.03 1.03 1.03 0.95 ®1 0.84 0.92
400 0.99 0.99 0.96 1.00 1.01 0.98 0.98 1.02 0.97 1.03 0.97 0.99 0.95 0.95
800 1.00 1.00 1.02 0.99 0.99 0.98 0.95 1.02 1.00 1.01 0.97 1.01 0.94 0.94
skew 200 -0.02 -0.04 -0.05 -0.30 0.05 -0.44 0.42 -0.12 0.03 @m4 -0.39 0.00 -0.78 0.74
400 0.05 -0.05 0.04 -0.15 0.05 -0.37 0.33 -0.05 0.04 0.03 -0 -0.02 -0.45 0.51
800 -0.09 0.04 0.06 -0.20 0.02 -0.26 0.40 0.11 -0.11 -0.14 -5 -0.11 -0.20 0.27
kurt 200 0.10 0.19 0.22 -0.16 -0.43 -0.13 0.06 0.24 -0.08 0.16 -0.42 -0.58 0.41 0.33
400 -0.02 0.09 0.46 0.10 -0.26 0.41 0.21 0.32 0.02 -0.03 -0.35 -0.54 -0.11 0.10
800 -0.03 0.10 -0.10 -0.3 -0.24 -0.08 0.28 0.34 0.05 -0.15 0.2 -0.27 -0.06 0.02
JB 200 0.78 0.41 0.29 0.00 0.02 0.00 0.00 0.08 0.82 0.50 0.00 @O 0.00 0.00
400 0.83 0.67 0.01 0.11 0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
800 0.54 0.69 0.61 0.00 0.30 0.00 0.00 0.03 0.38 0.11 0.14 0.08 0.04 0.00

DGP3 DGP4
mean 200 -0.05 -0.04 -0.21 0.13 -0.02 0.20 -0.14 0.00 0.03 -4  0.08 -0.12 0.32 -0.21
400 -0.01 0.00 -0.07 0.10 -0.01 0.11 -0.03 0.04 0.06 -0.18 0.6 -0.09 0.15 -0.14
800 0.05 0.03 -0.07 0.05 0.00 0.07 -0.01 0.01 0.04 -0.07 0.07 0G.02 0.10 0.01
std 200 1.06 1.05 0.98 0.98 1.01 1.02 1.03 1.03 1.01 1.04 0.99 o7 0.97 0.95
400 1.05 1.03 1.02 1.00 1.00 1.05 1.03 1.03 1.00 1.00 1.00 0.98 0.97 1.00
800 1.02 1.03 1.05 0.99 0.99 0.96 1.00 0.99 0.97 1.03 0.99 0.99 0.98 1.00
skew 200 0.04 -0.03 -0.08 -0.30 -0.05 -0.50 0.54 0.08 0.06 -a5 -0.21 0.03 -0.68 0.46
400 0.01 0.03 -0.04 -0.06 -0.20 -0.29 0.34 0.09 0.16 0.11 -0.8 0.03 -0.40 0.17
800 0.11 0.01 -0.06 -0.12 0.02 -0.07 0.26 -0.16 -0.01 -0.07 -7 0.05 -0.09 0.08
kurt 200 0.32 0.25 0.06 -0.19 -0.24 0.58 0.27 0.44 0.11 0.36 -033 -0.31 1.37 0.27
400 0.08 -0.11 -0.09 -0.18 -0.06 0.20 -0.07 0.16 0.42 -0.07 @7 0.06 0.88 0.01
800 0.45 -0.02 -0.17 -0.02 -0.24 -0.10 0.05 0.03 -0.05 0.10 a6 0.06 0.04 -0.25
JB 200 0.10 0.25 0.53 0.00 0.24 0.00 0.00 0.01 0.55 0.01 0.00 a3 0.00 0.00
400 0.86 0.70 0.75 0.36 0.04 0.00 0.00 0.28 0.00 0.34 0.05 0.84 0.00 0.08
800 0.01 0.98 0.39 0.29 0.29 0.51 0.00 0.12 0.95 0.52 0.05 0.77 0.52 0.17

DGP5 DGP6
mean 200 0.01 0.01 -0.25 0.08 -0.06 0.28 -0.17 -0.03 0.01 -0.2 0.13 -0.04 0.18 -0.07
400 0.05 0.03 -0.11 0.08 0.03 0.12 -0.08 0.02 -0.01 -0.15 0.08 -0.10 0.10 -0.13
800 0.01 -0.04 -0.11 0.09 -0.03 0.13 -0.08 0.06 0.04 -0.12 0.2 0.00 0.15 -0.05
std 200 1.04 1.07 1.06 1.01 0.94 0.99 1.01 1.07 1.04 0.99 0.98 ®0 0.94 0.98
400 1.03 1.00 0.94 1.00 0.99 0.98 1.02 0.97 1.06 1.00 0.97 1.00 0.96 1.01
800 0.99 1.00 1.03 1.00 0.99 0.98 1.03 1.04 0.96 1.05 1.00 1.03 0.97 1.05
skew 200 0.14 0.18 0.05 -0.56 0.14 -0.71 0.76 -0.05 0.01 -0.09 -0.32 -0.05 -0.64 0.52
400 0.00 0.05 0.03 -0.25 0.19 -0.60 0.52 -0.01 0.00 -0.04 -0 -0.05 -0.32 0.25
800 -0.04 0.15 0.04 -0.36 -0.10 -0.40 0.41 0.02 -0.04 0.04 -6 -0.06 -0.32 0.28
kurt 200 0.16 -0.07 -0.03 0.15 -0.49 0.15 0.57 0.31 -0.29 -0.¢ -0.26 -0.28 0.60 0.33
400 0.03 0.04 0.07 -0.23 -0.15 0.24 0.06 -0.04 -0.12 -0.07 -@®@5 -0.17 0.29 -0.20
800 -0.15 -0.07 -0.06 0.00 -0.25 0.18 0.08 -0.07 0.03 -0.08 a1 -0.06 0.08 -0.10
JB 200 0.10 0.06 0.78 0.00 0.00 0.00 0.00 0.10 0.18 0.53 0.00 a6 0.00 0.00
400 0.98 0.78 0.83 0.00 0.03 0.00 0.00 0.97 0.75 0.80 0.03 0.47 0.00 0.00
800 0.57 0.12 0.81 0.00 0.11 0.00 0.00 0.87 0.86 0.76 0.09 0.66 0.00 0.00

Notes: This table reports various results for the t-statist ics of the estimated coe cients of the MSV-MIDAS models inth e Monte
Carlo simulations. The t-statistics are computed as the rat io of the estimation error to the estimated standard error. W e report
the mean of the 1,000 simulated t-statistics (line mean), the standard deviation (line std), the skewness (line skew), the excess
kurtosis (line kurt) and the p-value of the Jarque-Bera test for normality (line  JB).
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Table 4: Estimation results of the MSV-MIDAS models on US data (1962013)

STOCK SPREAD RATE POIL
. 1.045%* 0.999%* 0.978% 0.914%*
(0.07) (0.084) (0.096) (0.089)
) -0.093 -0.232 -0.785** -0.804***
(0.119) (0.236) (0.188) (0.216)
. 0.106 0.138 0.261%+ 0.273%+
(0.068) (0.085) (0.071) (0.083)
) 0.127* 0.098 0,277+ 0.194**
(0.069) (0.085) (0.072) (0.082)
0.685%+ 0.692% 0.625%** 0.647*+
(0.034) (0.039) (0.034) (0.043)
. 8.125** 1.453 3.964%+* 3.047+
(3.837) (1.058) (0.648) (0.452)
) 4.380* 3.085* 1.231* -1.653
(1.765) (1.761) (0.732) (1.517)
. 3.401%* 2.969* -5.768%* -0.11*
(1.693) (1.689) (1.871) (0.059)
) -1.600%* -1.367 2.729* -2.325
(0.621) (0.921) (1.435) (1.815)
. 7.159 4.964 14.344 12.381
(2.124) (5.794) (12.554) (11.599)
) -1.040 -0.608 -1.2756 -1.090
(0.294) (0.638) (1.1095) (1.006)
LR at 0.01 0.10 0.00 0.06
LB1(4) 0.13 0.70 0.26 0.75
LB1(12) 0.10 0.43 0.65 0.12
LB1(20) 0.03 0.21 0.37 0.13
LB2(4) 0.15 0.67 0.60 0.71
LB2(12) 0.12 0.31 0.77 0.16
LB2(20) 0.03 0.13 0.50 0.12

Notes: This table shows the estimation results of the MSV-MI
STOCK), term spread (SPREAD), central bank rate (RATE) and o

DAS models including stock returns (column
il prices (POIL) for the US over the pe-

riod 1959Q1-2013Q4. The rst part gives the parameter estim ations and the associated standard errors in
brackets. Signi cance levels: *** if the coe cient is signi cant at a 1%, ** at a 5%, * at a 10% level. The
second part of the table shows the p-value of the LR test for th e null hypothesis of equal weights (line LR
at), the p-values of the Ljung-Box test for omitted autocor relation of order 1 to p in the generalized resid-
uals (lines LB1(p)) and in the Rosenblatt's residuals (line s LB2(p)).
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Table 5: In-sample evaluation on US data (1959-2013)

k LL AlIC HQC QPS AUC
MSV-MIDAS models (exponential Almon lag)
STOCK 11 -238.489 498.977 514.015 0.208 0.951
SPREAD 11 -242.712 507.423 522.462 0.120.970
RATE 11 -235.870 493.739 508.777 0.117 0.956
POIL 11 -247.742 517.484 532.521 0.159 0.808

Models with xed transition probabilities (FTP)
MSM2 7 -253.074 520.149 529.7180.161 0.939
MSMH2 8 -235.986 487.971 498.908 0.721 0.787
MSM3 12 -242.011 508.022 524.427 0.175 0.930
MSMH3 14 -231.835 491.669 510.808 0.208 0.689

MSV-UMIDAS models (unconstrained lags)
STOCK 19 -230.943 499.885 525.859 0.291 0.924
SPREAD 19 -234.110 506.220 532.194 0.188.934
RATE 21 -231.676 505.352 534.0600.159 0.802
POIL 9 -250.015 518.030 530.334 0.189 0.773

Notes: This table provides for each model the number of estim ated parameters (k), the
estimated log-likelihood (LL), the Akaike and Hannan-Quin n information criteria (AIC
and HQC), the QPS and AUC criteria for the estimated states in the US over the period
1959Q1-2013Q4. The results are reported for the model with  xed transition probabilities
(lines FTP) and the MSV-MIDAS models estimated with restric ~ ted (MSV-MIDAS) and un-
restricted lags (MSV-UMIDAS) of stock returns (lines STOCK ), term spread (SPREAD),
central bank rate (RATE) and oil prices (POIL). For each crit erion and each group of mod-
els, entries in bold indicate the best performing model.
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Table 6: Out-of-sample evaluation on US data (1990-2013)

h 2 5/3 4/3 1 2/3 1/3 0
MSV-MIDAS models (exponential Almon lag)

QPS STOCK 0.194 0.243 0.209 0.1590.121 0.104 0.079
SPREAD 0.184 0.183 0.175 0.134 0.141 0.152 0.043
RATE 0.230 0.236 0.271 0.190 0.191 0.206 0.143
POIL 0.211 0.202 0.196 0.167 0.167 0.149 0.068

AUC STOCK 0.898 0.832 0.838 0.923 0.967 0.979 0.938
SPREAD 0.793 0.803 0.791 0.911 0.910 0.851 0.990
RATE 0.677 0.595 0.629 0.839 0.702 0.740 0.952
POIL 0.631 0.702 0.642 0.738 0.840 0.80D2.996

Models with xed transition probabilities (FTP)

QPS MSM2 0.217 0.211 0.212 0.191 0.180 0.181 0.118
MSMH2 1.193 1.122 1.105 1.137 1.066 1.053 1.076
MSM3 1.431 1.464 1.433 0.343 0.353 0.347 0.150
MSMH3  0.289 0.260 0.290 0.195 0.198 0.188.075

AUC MSM2 0.633 0.654 0.657 0.849 0.838 0.836 0.944
MSMH2 0.511 0.638 0.649 0.587 0.716 0.737 0.647
MSM3 0.591 0.576 0.573 0.682 0.727 0.725 0.927
MSMH3 0.723 0.774 0.730 0.796 0.764 0.809 0.917

MSV-UMIDAS models (unconstrained lags)

QPS STOCK 0.213 0.190 0.168 0.079 0.084 0.068 0.086
SPREAD 0.251 0.236 0.247 0.218 0.159 0.16B.066
RATE 0.262 0.277 0.262 0.234 0.258 0.233 0.192
POIL 0.223 0.231 0.228 0.199 0.197 0.193 0.145

AUC STOCK 0.710 0.708 0.717 0.909 0.861 0.864 0.973
SPREAD 0.562 0.608 0.604 0.705 0.713 0.712 0.941
RATE 0.595 0.600 0.549 0.650 0.610 0.659 0.715
POIL 0.702 0.555 0.594 0.765 0.613 0.714 0.952

Notes: This table shows the QPS and AUC criteria for the forec ast states in the US over the period 1990Q1-
2013Q4. Forecasts are made at horizons h of 2 quarters to a few days before the GDP release. The re-
sults are reported for the MSV-MIDAS models, the four models  with xed transition probabilities (MSM2,
MSM3, MSMH2, MSMH3) and the MSV-MIDAS models estimated with restricted (MSV-MIDAS) and un-
restricted lags (MSV-UMIDAS) of stock returns (lines STOCK ), term spread (SPREAD), central bank rate
(RATE) and oil prices (POIL). For each criterion and each gro  up of models, entries in bold indicate the
best performing model.
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Figure 1: Size and power of the t-statistics (for a level of signi care = 5%)
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Notes: The graphs on the left plot the frequency of rejection of he equality of each coe cient to its
true value at the 5 percent signi cance level among the 1,000 simuladns. The horizontal line gives the
nominal level of the tests. The graphs on the right depict the frequency of rejection of the nullity of each
coe cient at the 5 percent signi cance level with the 1,000 simulated t-statistics.
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Figure 2: The ROC curve
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Notes: This gure depicts the ROC curves of the MSV-MIDAS models with constrained (MSV-MIDAS) and unrestricted weights (MSV-UM IDAS) and

the four models with xed transition probabilities (FTP): the two-st ate and three-state models with a regime-switching mean (MSM2 andMSM3) and the

two-state and three-state models with a regime-switching mean ath variance (MSMH2 and MSMH3). The best performing model has thdargest area under
the curve. An area of 100% represents the perfect classi catian



Figure 3: Smoothed US recession probabilities (1959-2013)

(a) Model with xed transition probabilities
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(b) MSV-MIDAS model (exponential almon lag)

Notes: This gure shows the smoothed recession probabilities in thé&nited States taken from the Hamil-
ton model with xed transition probabilities (MSM2) and the MSV-MID AS model including spread term.
The shaded areas represent recessions according to the NBER $iness cycle classi cation.
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Figure 4. Smoothed US recession probabilities (1959-2013)

(@) MSV-UMIDAS model (unconstrained lags)

(b) MSV-MIDAS model (exponential almon lag)

Notes: This gure shows the smoothed recession probabilities in théJnited States taken from the MSV-
UMIDAS and MSV-MIDAS models including spread term. The shaded aeas represent recessions ac-
cording to the NBER business cycle classi cation.
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