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Abstract

Based on unique data we show that the default rate and loss given default of bank loans

share a cyclical component that is related to the business cycle. We infer this cycle based

on a new model that distinguishes loans with either large or small losses. The variation

in the proportion of these two types drives the cyclic behavior of the loss given default,

and constitutes the links with the default rate and macro variables. These links vary

according to loan and lender characteristics. During downturns, the proportion of loans

with large losses increases, but within this group the distribution stays constant. Our

model implies substantial time variation in banks’ capital reserves, and helps predicting

the losses. Though loans are monitored more closely than bonds, their cycle resembles the

cycle for bonds, albeit around a lower average loss.
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1 Introduction

Recent advances in the risk management of bank loans, such as stress tests for the banking

sector, highlight the importance of investigating their risk in relation to the macroeconomic

environment. As stated in the Basel II Accord, risk measures should “reflect economic downturn

conditions where necessary to capture the relevant risks” (BCBS, 2005). Though loan defaults

occur more frequently during economic downturns, it is neither clear whether the losses resulting

from these defaults also show cyclical behavior, nor whether they are related to the business

cycle.

In this paper, we analyze the cyclical variation in bank loan losses, their relation to the

business cycle and differences across loan categories, and show that this information can improve

the risk management of banks. We base our analysis on a large sample of 22,000 defaults from

Global Credit Data1, spanning the period 2003–2010. This database contains default rate and

loss given default (LGD) data, and information on the seniority of the loans, and the industry,

country and size of the lenders. To exploit this detailed information, we build a model that can

accommodate both time variation and cross-sectional variation in the default rate and the LGD.

Moreover, the model can link the behavior of the LGD, the default rate and macroeconomic

variables. The parameter estimates reveal how strong and significant these links are, and how

they differ depending on loan characteristics. We also show how the model can be used for

forecasting and risk management.

Our research brings new insights for two reasons. First, the cyclicality of bank loan losses

might be very different from the more commonly studied bond losses, whose LGD and default

rates are cyclical, related to the business cycle and positively correlated with each other.2 Bank

loans differ in several fundamental respects from bonds. Banks monitor their loans more closely

than bond owners. Their loans are often more senior than other forms of credit and are more

often backed by collateral. Further, they can postpone the sale of a borrower’s assets until a

favorable economic state, hoping to receive a higher price.3 As a consequence, the default rate

and LGD for bank loans can be lower, less cyclical and less interrelated in comparison to bonds.

Besides, our research is based on the actual workout LGD, whereas the research on bond losses

1In March 2015, the consortium changed its name to Global Credit Data from Pan European Credit Data
Consortium.

2See the surveys by Allen and Saunders (2003) and Schuermann (2004). Pesaran et al. (2006), Duffie et al.
(2007) and Azizpour et al. (2015) model the relation between the default rate and macro variables, whereas Frye
(2000) and Creal et al. (2014) also include the LGD in their models.

3Acharya et al. (2007) shows the importance of the fire-sales effect for the LGD of bonds.
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use the expected or market-implied LGD shortly after default.

Second, research on bank loans is scarce because data on defaulted bank loans are not easily

available and typically constitute samples that are either short or focus on a single country

or loan type, see, for example, Grunert and Weber (2009), Calabrese and Zenga (2010) and

Hartmann-Wendels et al. (2014). We instead study a unique and rich data set that contains

default data for multiple countries and multiple loan types over a period of eight years. Our

approach can reveal the interplay of time variation and loan characteristics. The behavior of

LGD may be more or less cyclical depending on characteristics like size and seniority, or be

adapted to different cycles depending on the industry or country to which the lender belongs.

An initial inspection of our data shows that the LGD on bank loans can exceed 100% or

fall below 0%, whereas the LGD on bonds always lies within this interval. If the LGD exceeds

100%, the bank loses more than the initial loan, for example because of principal advances (the

bank lends an additional amount to the borrower for recovery). If the LGD falls below 0%,

the bank recovers more than the initial loan, for example because it is entitled to penalty fees,

additional interest or because of recovered principal advances. The inspection also shows that

the distribution of the LGD is bimodal, with most loans being close to either a full recovery or

a full loss. Schuermann (2004) shows this bimodality for the LGD on bonds.

Our model links the default rate, the LGD and macroeconomic variables, and allows for

cross-sectional differences in these links. The central component of the model is a latent factor

that follows an autoregressive process, and which we interpret as the credit cycle. We adapt

the LGD, the default rate and the macroeconomic variables to this cycle. While this set-up has

been used before (see e.g. Pesaran et al., 2006; Koopman et al., 2012), the LGD component in

our model is new. We model the LGD as a mixture of two normal distributions that differ in

their means. The low-mean distribution corresponds to good loans with a low loss, whereas the

high-mean distribution relates to bad loans with a high loss.4 The credit cycle influences the

probability that a loan is good or bad. The parameters that relate the LGD and the default

rate to the credit cycle can depend on loan characteristics.

Because the model is not a standard linear Gaussian state space model, we can neither

use the Kalman filter to infer the latent process, nor use straightforward maximum likelihood

estimation to determine the parameters of our model. Instead, we derive how to use the

simulation-based methods of Jungbacker and Koopman (2007) to infer the latent process and

4Knaup and Wagner (2012) also distinguish good and bad loans to derive a bank’s credit risk indicator.
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the Expectation Maximization algorithm of Dempster et al. (1977) to estimate the parameters.

Our results show that the default rate, the LGD and the macro variables are all significantly

related to the inferred credit cycle. It leads to fluctuations in the default rate between 0.2

and 7% and in the LGD between 14 and 29%. A bad credit environment with a high default

rate and high LGD is related to an economic downturn characterized by falling growth rates

of GDP and industrial production, and an increasing unemployment rate. Our inferred credit

cycle leads the unemployment rate by four quarters.

The time variation in the LGD is driven by the time variation in the probability of a defaulted

loan being good or bad. We do not find evidence that the average LGD for either good or bad

loans varies over time. When the credit cycle deteriorates the fraction of bad loans increases,

but the LGD conditional on a defaulted loan being good or bad does not vary. Monitoring

should therefore concentrate on determining the loan type.

Loan and lender characteristics influence the cyclical variation in the LGD. A collateralized

loan has on average a lower LGD, but it fluctuates more strongly over the credit cycle. Loans to

small and medium enterprises exhibit stronger fluctuations in both their default rates and LGDs

compared to large corporates. They also have a stronger link with the unemployment rate. The

differences across loan and lender characteristics also offer clear diversification benefits. When

we distinguish the industry in which a firm is active, we find that the cycle for firms active in

consumer staples is quite different from industrial and financial firms. It shows more persistence

and weaker relations with the macro variables.

We use our model to determine the capital reserve required for a fictional loan portfolio

as in Miu and Ozdemir (2006). We calculate the economic capital as the difference between

the portfolio loss with a cumulative probability of 99.9% and the expected loss. From peak to

bottom of the cycle, the economic capital increases from 0.15% to 2.23% of the total value of the

loan portfolios, an increase of a factor 15. This increase shows the importance of incorporating

cyclicality in risk management models. We also show that our model can reduce the uncertainty

in LGD predictions. Because resolving loan defaults can take a couple of years, the macro

variables in our model help predicting LGD.

Our findings contribute to the literature on credit risk in three ways. First, our study shows

that the losses on bank loans have a cyclical component that influences both their default rate

and LGD, and is related to the macroeconomy. Bank loan LGD is generally much lower than

for a typical bond, but can still double in times of distress. Whereas the average bond LGD
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varies from 25% to 80% as reported by Schuermann (2004), Altman et al. (2005), and Bruche

and González-Aguado (2010), we find that loan LGD varies from 14% to 29% over time though

the periods that these authors study do not fully match with ours.5

We also show in more detail how loan and lender characteristics affect the LGD and

its correlation with the default rate and macro variables, whereas other papers either only

report how industry characteristics influence the (average) LGD (Schuermann, 2004; Acharya

et al., 2007) or how the impact of seniority varies over the business cycle (Bruche and

González-Aguado, 2010). Neither paper analyzes how industries affect the relation with the

credit cycle.

Second, we develop a new model that exploits both cross-sectional as well as time variation

in bank loan losses. Though simpler models and analyses can be used, we argue that these

cannot fully answer our research questions. First, a model that aggregates the data over the

cross section can also show time variation in average LGD, but can neither be used to distinguish

good and bad loans, nor how loan characteristics affect the time variation. Second, an analysis

per time period can reveal the cross-sectional variation in LGD, but does not give a model

of the time variation in LGD and its relation to default rates and macroeconomic variables.

Third, instead of a latent factor to link the LGD, the default rate and the macro variables, a

direct dependence of the LGD and default rate on the macro variables can be used. Such a

model imposes that any time variation in the LGD and default rate must directly be related

to macroeconomic variables, which does not need to hold. In these alternatives, the richness of

the data set is not fully exploited, which leads to a loss of efficiency.

Our model differs from other advanced models that have recently been proposed. We

generalize Koopman and Lucas (2008), who only model the default rate, and Koopman et al.

(2012), who add macro variables, by modeling the LGD as well. We also extend Calabrese

(2014a), who only models the LGD. Though her model also accommodates a mixture of good

and bad loans, the mixture probability is constant, whereas we explicitly model its cyclical

behavior and link it to the default rate and macro variables.

We make different modeling choices than Creal et al. (2014) and Bruche and

González-Aguado (2010). They both model the LGD using a standard Beta distribution

which bounds it between zero and one, whereas our mixture of normals can accommodate

5Schuermann (2004) also reports variation in LGD between 20% and 55% for traded bank loans, whereas our
loans are not traded.
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the observations outside this interval. Bruche and González-Aguado (2010) let the default rates

of bonds and their LGDs jointly depend on a latent Markov chain, whereas we (as in Creal et al.,

2014) use an autoregressive process. Contrary to the abrupt switches between the states that

are implied by a Markov chain, our approach implies gradual changes in the credit cycle that

can more easily be linked to the gradual changes in macroeconomic variables. Our approach

also differs from Pesaran et al. (2006), who use a Merton-type model based on equity returns

to link credit risk to macroeconomic variables. We cannot use their approach, because most of

the borrowers in our sample do not have traded equity.

As the final contribution, our application shows the flexibility and the added value of our

model for risk management. We show how characteristics of the loan or the borrower such

as its security, size or industry influence the LGD and default rate. Our model can easily

accommodate other characteristics that banks may additionally have on their borrowers to

improve their assessments of the risk on bank loans.

2 Data

In 2004, several banks cooperated to establish (what was later named) Global Credit Data

(GCD), a cross border initiative to help measure credit risk to support statistical research for

the advanced internal ratings-based approach (IRB) under Basel II. The members pool their

resolved defaults to create a large anonymous database. A resolved default is a default that is

no longer in the recovery process and thus the final loss given default (LGD) is known.

Every member gets access to part of the database, depending on its contribution. The

number of contributing banks is around 45 and stable over time. We have access to the subset

available to NIBC, which contains 46,628 counterparties and 92,797 loans.6 Details such as the

default and resolution date are available, as well as loan characteristics such as seniority, security,

asset class and industry. We investigate the behavior of LGD for these groups separately. The

fraction of the database that is available to NIBC varies per asset class, but overall its subset

represents a large proportion of the GCD database.

In case of a default, the lender can incur losses, because the borrower is unable to meet

its obligations. The LGD is the amount lost as a fraction of the exposure at default (EAD).

The LGD in the database is the economic LGD, defined as a sum of cash flows or payments

6Members receive a new version semi-annually. Our sample is a subset of the June 2014 version.

6



discounted to the default date. We follow industry practice by applying a discount rate that

is a combination of the two year swap rate with the six month EURIBOR and the contractual

spread at default. If the contractual spread is unavailable, an average is used.

The default rate (DR) gives the number of defaulted loans as a fraction of the number

of loans at the start of the year. Whereas GCD was founded to pool observed defaults, not

default rates, they expanded to include an observed DR database in 2009.7 The DR database

contains default rates per asset class and industry, which we match to the LGD observations

of the groups. Default rates per seniority or security are not available, because (i) they are not

considered to be default rate drivers and (ii) defaults are defined at the corporate level, whereas

seniority and security are loan level characteristics.

2.1 Sample Selection

We apply filters to the LGD dataset, following mostly NIBC’s internal policy, to exclude

non-representative observations. For details, see appendix A.

The LGD on bank loans can fall outside the interval between 0 (no loss) and 1 (a total

loss) due to principal advances, legal costs or penalty fees. A principal advance is an additional

amount loaned to aid the recovery of the defaulted borrower. If none of it is paid back, the losses

are larger than EAD and LGD is larger than 1. If on the other hand the full debt is recovered,

including penalty fees, legal costs and principal advances, the amount received during recovery

is larger than EAD and the LGD is negative. We restrict the LGD between −0.5 and 1.5,

similar to Höcht and Zagst (2007) and Hartmann-Wendels et al. (2014). Figure 1(a) presents

the empirical LGD distribution, and shows that we can not ignore this, because over 10% of

the LGDs lie outside the [0, 1] interval.

We restrict our analysis to the period 2003–2010. The LGD database for resolved defaults

contains details of defaults from 1983 to 2014. Figure 2(a) shows the average LGD per year.

The number of defaults in the database is small until the early 2000s and the average LGD is

noisy because of it. The first defaults have been submitted by the banks in 2005. Not all banks

might have databases with all relevant details of many years ago and most observations in the

years before 2000 are the substantial losses with a long workout period still in the books.

The workout period is the main difference between bonds and bank loans. Bond holders

directly observe a drop in value as trading continues and the price is discounted by the expected

7Members receive a new version annually. We use the June 2013 version.
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recovery rate. For defaulted bank loans, a recovery process starts that should lead to debt

repayment. When no more payments can be obtained, the default is resolved and the recovery

process ends. The period from the default date to the resolved date is called the workout period.

Most defaults are resolved within one to three years after default, but figure 1(b) shows that

the recovery process can last more than five years.

Table I shows that the LGD is significantly higher for longer workout periods, which explains

the high average LGD in figure 2(a) before 2003. The higher LGD for loans with longer workout

periods is partly explained by discounting. The cash flows are discounted over a longer workout

period, thus reducing the recovery and increasing the LGD. Additionally, the workout period

is an indication of how hard it is to recover the outstanding debt. If the recovery takes time, it

can be due to issues with restructuring or selling of the assets. If demand for an asset is high,

it will be sold or restructured faster and its value will be higher.

The database only contains resolved defaults, for which the recovery process has ended, and

therefore, by definition, the later years of the database (2011 to 2014) only contain defaults

with shorter workout periods. Because a shorter workout period is related to a smaller LGD,

the LGD is underestimated in the final years. The average LGD and number of defaults in 2011

is small compared to the previous years, see figure 2(a). Therefore, we restrict our analysis to

the period 2003–2010.

Figure 2(b) shows the yearly default rate. In general, the default rate is relatively small

with values mostly around 1%. The default rate increases during the financial crises, peaking

in 2009 at a default rate of 2.2%, more than twice the default rate in the period 2003–2007.

The figure shows that the total number of loans is large in 2003 and increases over time. This is

mostly because the number of participating banks increases as well. To match the time period

of the LGD dataset, we use the period 2003–2010.

The LGD sample after applying the sample selection consists of 22,080 observations of

mostly European defaults, one of the most comprehensive datasets for bank loan LGD studied

thus far. Grunert and Weber (2009) summarize the empirical studies on bank loan recovery

rates. The largest dataset they found studies 5,782 observations over the period 1992–1995.

More recently, Calabrese and Zenga (2010), Calabrese (2014a) and Calabrese (2014b) study a

portfolio of 149,378 Italian bank loan recovery rates resolved in 1999 and Hartmann-Wendels

et al. (2014) consider 14,322 defaulted German lease contracts from mainly 2001–2009. However,

these studies focus on defaults from a single country or a single type whereas our dataset is
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more extensive.

[Figure 1 about here.]

[Table 1 about here.]

[Figure 2 about here.]

2.2 Sample Characteristics

In this section, we discuss the empirical LGD distribution, the pattern over time and differences

across loan characteristics for our sample.

It is a stylized fact that LGD follows a bimodal distribution with most observations close

to 0 or 1, see for example Schuermann (2004). In most cases, there is either no or a full loss on

the default. Figure 1(a) shows that this also holds for our sample. By far most losses are close

to 0, but there is an additional peak at 1. The data is limited to the interval −0.5 to 1.5. Still,

12.52% of the observations are outside the [0, 1] interval.

In our analysis, defaults are aggregated per quarter to have both a sufficient number of time

periods and a sufficient number of observations per period. An advantage of aggregation by

quarter is that it matches the frequency of macroeconomic variables. Figure 2(a) shows the

average LGD for defaults per quarter. The LGD starts with a relatively large value in 2003

and gradually decreases until 2007. From 2007, the average LGD increases due to the financial

crisis. The level is back at its pre-crisis average in 2009. We observe the same pattern for the

default rate in figure 2(b).

Figure 3 provides a more in-depth view of the time variation of the LGD. It shows how the

empirical distribution varies from quarter to quarter for the period 2003–2010. All quarters

display the bimodal shape with peaks at 0 and 1. The increased number of defaults due to the

financial crisis is visible, as well as the increase of the height of the peak around a LGD of 1

for the period 2007–2009. The large proportion of full losses explains the large average LGD in

those years. Our modeling framework exploits both the bimodality of and the time variation in

the LGD.

Summary statistics of the sample and subsets based on loan characteristics are presented in

table II. As expected, the LGD for unsecured loans is on average larger than for secured loans

because the former are not backed by collateral or a guarantor. Also, the average LGD is larger

for subordinated loans than for senior loans. For some groups not many defaults are available.
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Therefore, we limit our analysis of groups to those with on average at least 100 observations

per quarter.

Table II shows that unimodality is rejected by Hartigan and Hartigan’s (1985) dip test for

the full sample as well as for subsamples, unless the number of defaults is small. The fraction of

defaults with an LGD larger than 0.5 is reported to illustrate the close relation with the average

LGD.

Because we want to compare multiple means and the LGD is not normally distributed, we

use the Kruskal-Wallis (KW) test to test for differences in location of multiple distributions.

The KW test is a nonparametric test based on ranks. It tests for the null hypothesis of identical

distributions against the alternative of at least two distributions differing in location.

A KW test on the selected groups shows a significant difference between the senior secured

and senior unsecured loans, with a p-value of 0.000. Even though the absolute difference between

the average of SME and large corporate seems small, the p-value of the KW test is 0.000, strongly

rejecting the null hypothesis of equal distributions. For the industries, the LGD for financials

is significantly larger than for the industrials and consumer staples industries.

[Figure 3 about here.]

[Table 2 about here.]

2.3 Macroeconomic Variables

Allen and Saunders (2003), Pesaran et al. (2006), Duffie et al. (2007), Creal et al. (2014),

Azizpour et al. (2015) and others show that bond defaults are related to the business cycle.

We include macroeconomic variables to analyze this behavior for bank loans. We consider the

same set of variables as Creal et al. (2014) to represent the state of the economy: the gross

domestic product (GDP), industrial production (IP) and the unemployment rate (UR). The

series included are the growth compared to the same quarter in the previous year, seasonally

adjusted. To match the mostly European default dataset, we use macro variables of European

OECD countries or the European union.

3 Model specification

We propose a ‘mixed-measurement’ model (Creal et al., 2014), where the observations can follow

different distributions, but depend on the single latent factor αt. The latent factor follows an
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AR(1) process,

αt+1 = γ + ραt + ηt, (1)

with ηt ∼ N(0, ω2). The initial state α1 follows the unconditional distribution of the latent

proces, α1 ∼ N
(
γ/(1− ρ), ω2/(1− ρ2)

)
.

3.1 Loss given default

Based on the empirical distribution in figure 1(a), we propose a mixture of two normals for the

LGD and define distributions 0 and 1 as the distributions for good and bad loans,8

yl
it ∼

 N
(
µj0, σ

2
j

)
if sit = 0 (good loan),

N
(
µj1, σ

2
j

)
if sit = 1 (bad loan),

(2)

with yl
it the LGD of loan i that defaulted at time t for i = 1, . . . , N l, j = 1, . . . , J and t = 1, . . . T .

We treat sit as the unobserved state that is 1 if loan i at time t is a bad loan and 0 otherwise.

The probability that LGD is a bad loan varies across loan characteristics, such as industry or

seniority, and across time. We define the sets of loans belonging to the categories of a loan

characteristic as Cj for j = 1, . . . , J . For example, we have the categories large corporate and

SME for loan characteristic asset class. If the loan i defaulted at time t belongs to the category

Cj , then the probability of a bad loan is

P (sit = 1|i ∈ Cj) = pjt = Λ
(
βl
j0 + βl

j1αt

)
, (3)

where Λ(x) = exp(x)/
(
1 + exp(x)

)
is the logistic function. The model has one factor αt, such

that differences between groups are due to coefficients βl
j0 and βl

j1.

The distribution can change in three ways, influencing the average LGD: (i) a change in the

mixture probability P (sit = 1), (ii) a change in the mean of good loans µj0 and/or (iii) a change

in the mean of bad loans µj1. Most LGDs are (close to) 0 or 1, see figure 1(a), so we do not

expect the means to vary much. This is supported by figure 3, where the modes stay at 0 and

1, but the (relative) height of the peaks varies over time. Therefore, we propose that a larger

(smaller) average LGD in a time period is caused by an increase (decrease) in the proportion

8In section 6.3, we consider a mixture of Student’s t distributions.
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of bad to good loans. We examine the alternative of time-varying means in section 6.2. We

restrict the variance to be equal across the mixture components for identification of the modes

and µj0 < µj1 to interpret good and bad loans.

3.2 Default rate

The default of loan i at time t follows a Bernoulli distribution. Given the assumption that

the defaults are independent conditional on the latent factor, this implies that the number of

defaults in period t is a realization of a binomial distribution, as in Bruche and González-Aguado

(2010). The distribution depends on the latent signal αt through the probability of default qjt,

yd
jt ∼ Binomial(Ljt, qjt), (4)

qjt = Λ
(
βd
j0 + βd

j1αt

)
, (5)

with yd
jt the number of defaults and Ljt the number of loans of group j at time t for j = 1, . . . , Nd

and t = 1, . . . T . If it is available from the DR database, we use the group specific default rate

to match the J groups in the LGD component, otherwise we use the full sample default rate.

Hence, Nd is either 1 or J , which is for example three for industries.

The defaults and loans are observed yearly, not quarterly. We set the third quarter equal to

the yearly observation, because this is approximately the middle of year, and define the other

quarters as missing.9 Using the same method, Bernanke et al. (1997) construct a monthly time

series from a quarterly observed variable.

3.3 Macroeconomic variables

To relate the latent factor to the state of the economy, we add macroeconomic variables to the

model,

ym
t = βm

0 + βm
1 αt + νt, (6)

where ym
t is the Nm × 1 observation vector of the macro variables at time t and νt ∼ N(0,Σ)

for t = 1, . . . , T . The macro variables are standardized to have zero mean and unit variance,

such that we can easily compare the relation with the latent factor across the macro variables.

9If we set the second quarter equal to the yearly observation, we get similar results.
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3.4 Missing values and identification

We do not observe multiple defaults per loan. We treat the loans for which the default date

is not in period t as missing during that quarter. For each loan, we have one observed and

T −1 missing values. One of the advantages of a state space model is its ability to easily handle

missing values. The densities are cross-sectionally independent given αt, such that

log p(yt|αt) =

N l∑
i=1

δit log p(yl
it|αt) +

Nd∑
j=1

δjt log p(yd
jt|αt) + log p(ym

t |αt), (7)

where yt = (y1t, . . . , yNt)
′ , N = N l + Nd + Nm is the number of observations and δit (δjt) is

an indicator function which is 1 if yl
it (yd

jt) is observed and 0 otherwise. Therefore, only the

observed values determine the loglikelihood. The loglikelihood consists of the sum of the model

components. The different components are given in appendix C.1.

Without restrictions, the latent factor α and the coefficients β0 and β1 are not identified.

For identification of β0, we set the intercept γ = 0 in equation (1). To make sure β1 is identified,

we standardize the signal variance ω2 = 1. Finally, we restrict one element of β1 to be positive

to identify the sign of the signal.

3.5 Discussion of modeling choices

Our model is designed to get a detailed view of the variation in LGDs and default rates, both

over time and in relation to loan characteristics, and also of the interplay between these two

sources of variation. Though simpler analyses are available, they cannot satisfactorily answer

our research questions. In general, these simpler research designs do not fully exploit the richness

of our data set. We discuss three alternatives below, and then indicate how our model deviates

from the other advanced alternatives that have been proposed recently.

The first alternative research design consists of averaging the LGD per time period and then

modeling the time variation in the average LGD. However, this design is unable to distinguish

between good and bad loans, whereas variation in the probability of a good versus a bad loan

is the source of time variation in the LGD. It also makes it impossible to analyze the interplay

between loan characteristics and cyclical variation, even though Schleifer and Vishny (1992)

argue that credit cycles only exist within industries. Additionally, using the average LGD leads

to a generated regressor problem as in Pagan (1984), which complicates statistical inference.

A second alternative design estimates a separate mixture of normals for each time period.
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The drawback of this set-up is that it cannot model the time-variation in the LGD and its link

to the default rate and macro-economic variables. Of course, the variation in the estimated

parameters can show the presence of time-variation. However, this design lacks the framework

of a model to distinguish possible different sources of time variation, and consequently does not

allow tests to determine their importance. Also, modeling the time-variation in the estimated

parameters per cross-section again leads to a generated regressor problem.

A third alternative model directly links the probability of default and the probability of a bad

loan to macroeconomic variables instead of a latent factor. However, such a model imposes that

all time variation in the probabilities is only related to the time variation in the macroeconomic

variables which is not necessarily the case. In our model, the credit cycle can vary a lot over

time but still be unrelated to the macro cycle.

We now turn to the deviations from the other more advanced models that have been

proposed. First, we do not use a standard Beta distribution for the LGD as in Creal et al.

(2014) and Bruche and González-Aguado (2010) or a mixture of point masses at 0 and 1 and

a Beta distribution as in Calabrese (2014b). Fitting a Beta or discrete-continuous distribution

requires a transformation of the data, because figure 1(a) shows that over 10% of the LGD

observations are outside the [0, 1] interval, whereas the distributions only have support on the

unit interval. The results for the discrete-continuous distribution are also difficult to interpret,

since the LGDs drawn from the Beta component can be arbitrarily close to 0 and 1.

Second, we choose an autoregressive process for our latent variable instead of a

Markov-switching process as in Bruche and González-Aguado (2010). An autoregressive process

more naturally links the gradual changes in the macroeconomic variables to the gradual changes

in our latent variable, compared to the abrupt changes in the latent Markov chain. Another

advantage is that we can detect small changes in the credit cycle.

Third, our model is more general than Calabrese (2014a), who models only the loss given

default using a mixture of good and bad loans with a constant mixture probability. We explicitly

model the cyclical behavior of the mixture probability and its link to the default rate and macro

variables. In fact, we find that almost all time-variation in the LGDs comes from the time

variation in the mixture probabilities.

Our model can easily be further extended by making the parameters µ, σ and p a function

of a set of observable variables X instead of fixing them for a groups of loans. In our current

set-up, this set only contains categorical variables (seniority, industry and asset class) because
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other information is not available, but banks might have additional information on their loans.

3.6 Estimation

Estimation of the parameters, denoted by θ, is done using maximum likelihood. Analytical

solutions are not available and direct numerical optimization is infeasible, due to the

dimensionality of the optimization problem. Because it would be possible to optimize for

the parameters θ if α were known and vice versa, we employ the Expectation Maximization

(EM) algorithm, introduced by Dempster et al. (1977) and developed for state space

models by Shumway and Stoffer (1982) and Watson and Engle (1983). The algorithm is a

well-known iterative procedure consisting of repeating two steps, which is proven to increase

the loglikelihood for every iteration.

The m-th iteration of the EM algorithm is

1. E-step: Given the estimate of the m-th iteration θ(m), take the expectation of the complete

data loglikelihood `c (θ|Y ,S,α),

Q(θ|θ(m)) = Eθ(m) [`c (θ|Y ,S,α)] . (8)

Evaluating the expected value of the complete data loglikelihood implies that we need

expected values for the states S and the latent signal α given the observed LGD, defaults

and macro variables. Because the mixed-measurement model is a nonlinear non-Gaussian

state space model, methods for linear Gaussian state space models like the Kalman filter

are invalid. Following Jungbacker and Koopman (2007), we therefore apply importance

sampling to get a smoothed estimate of the expected value, variance and autocovariance of

α, the probability of a bad loan P (sit = 1|Y ,α) and its cross-product. We draw from an

approximating Gaussian state space model as importance density. Appendix B provides

an outline of the method. The expected loglikelihood (8) is derived in appendix C.2 and

C.3. Derivations for mode estimation of α, used to get the approximating Gaussian state

space model, are in appendix C.4. We set the number of replications R = 1000 and

employ four antithetic variables in the importance sampling algorithm. Increasing R does

not impact the results.

2. M-step: Obtain a new estimate θ(m+1) by maximizing the expected loglikelihood with
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respect to θ,

θ(m+1) = arg max
θ

Q(θ|θ(m)). (9)

Solving equation (9) involves the method of maximum likelihood. We use analytical

solutions for the parameters if possible because the EM algorithm is already an iterative

optimization. That is, we numerically optimize ρ, βl
j0 and βl

j1 for j = 1, . . . , J , and βd
j0

and βd
j1 for j = 1, . . . , Nd, and use analytical solutions for the other parameters. The

analytical solutions are conditional on the other parameters, which makes the two-step

procedure an ECM algorithm (Meng and Rubin, 1993).

These steps are repeated until the stopping criterion is met. If the loglikelihood increase after

the m-th step, denoted by `
(
θ(m)|Y

)
− `
(
θ(m−1)|Y

)
, is smaller than ε = 10−3, we switch to

direct numerical optimization of the loglikelihood until the loglikelihood increase is less than

ε = 10−6. Increasing the precision does not impact results.

Following Ho et al. (2012), we initialize the EM algorithm by 2-means clustering with random

starting values. Then, starting values for µj0 and µj1 are the sample mean of the two clusters

and σ2
j their average variance. We set Λ(βl

j0) equal to the group proportions from 2-means

clustering, Λ(βd
j0) to the average default rate and βm

i0 = 0. Finally, βl
j1 = 1 for all j = 1, . . . , J ,

βd
j1 = 1 for all j = 1, . . . , Nd, βm

i1 = 1 for all i = 1, . . . , Nm, and the factor is initialized at zero.

4 Results

4.1 LGD and DR

First, we discuss results for the model without cross-sectional variation, i.e. we do not use

different factors or coefficients for groups such as industries or asset classes. The LGD parameter

estimates are presented in the first column of table III. Appendix D presents summary statistics

on the convergence.

The parameter estimates clearly distinguish two distributions. The estimate for the mean

of a good loan is 0.072 and for the mean of a bad loan 0.828. The estimates for the means

confirm our interpretation of the components as the distributions of good and bad loans and

captures the stylized fact that most LGDs are either close to 0 or 1. The mean for bad loans is
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not exactly 1, because of the observations between 0 and 1.10

We cannot directly compare the sensitivities towards the factor of LGD and the defaults

via the coefficients βl
1 and βd

1 because of the nonlinearity of the logistic function. Instead, we

compare the average marginal effect of the signal, given by the average of the first derivative

of the probability function with respect to the signal αt, 1/T
∑T

t=1 ∂pt/∂αt. We present these

effects in panel F of table III.

The coefficients βl
1 and βd

1 are both significantly positive, which means that the probabilities

of a bad loan pt and of a default qt move in the same direction. The significant effect of the

factor is strengthened by a large average marginal effect of 0.041 for pt, which means that a

rise of the factor by one standard deviation increases the probability of a bad loan by 4.1%.

It indicates that the factor has a stronger effect on the probability of a bad loan than for the

default probability, where the effect is 1.2%, so pt fluctuates more than qt. They follow the

same pattern over time, but at a different level, see figure 4. This is in line with research on

losses on bonds, where DR and LGD are time-varying through a common cyclical component.

The factor underlying the probability of a bad loan is presented in figure 4(a). Due to

the monotonicity of the logistic transformation, interpreting the factor and its coefficients is

straightforward. The positive estimate for βl
1 means that an increase of the factor corresponds

with an increase in the ex ante probability of a bad loan and a default.

The estimated factor resembles the average LGD. The first few years are characterized by

a downward trend until 2007. In 2007 the level increases, after which in 2009 it decreases

slightly. It differs however, for a couple of reasons. First, the factor is a combination of the

LGD, the default rates and macroeconomic variables and is estimated using all three sources

of information. Second, the factor is a smoothed estimate, which means that it is conditional

on all information of the complete sample period. It is not simply the average of the LGD

at the particular point in time, but contains information from the preceding and following

observations.

Figure 5 shows the fit of the mixture for two quarters. The difference between the two

panels is the ex ante probability of a bad loan pt, which is larger in the second quarter of 2008,

such that the relative height of the mode for bad loans compared to good loans is higher. The

10To fit the observations between the modes, the means are shrunk to 0.5. The shrinkage is stronger for µ1

because the number of observations with an LGD near 1 is smaller than the number of defaults with an LGD
near 0, see figure 5. The estimates of the means are closer to 0 and 1 if we replace the mixture of normals by a
mixture of Student’s t distributions, see section 6.3.
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relatively high mode for bad loans corresponds with the relatively large fraction of high LGD

observations in the second quarter of 2008. Further, for both quarters, the location of the

distribution of good loans captures the large peak at 0 and the distribution of bad loans fits the

high LGD observations. It captures the stylized fact and the changes across time match what

we observe in the empirical distribution.

Similar to losses on bonds, the defaults show cyclical behavior. Higher default rates are

accompanied by a higher probability of a bad loan, hence aggravating the loss during bad

times. This time variation should be taken into account. The claim that LGD estimates should

“reflect economic downturn conditions where necessary to capture the relevant risks” (BCBS,

2005) is mostly motivated by research on bonds. We provide evidence that it holds for bank

loans as well.

[Table 3 about here.]

[Figure 4 about here.]

[Figure 5 about here.]

4.2 Relation with Macroeconomic Variables

Research on losses on bonds reports a link with macroeconomic variables, see e.g. Allen and

Saunders (2003). Here, we investigate this link for losses on bank loans. The coefficients in panel

D of table III indicate a relation between the state of the economy and credit conditions. They

are significantly different from zero and have the expected sign. GDP and IP are negatively

related, whereas the UR is positively related to the factor. Because a high factor implies more

bad loans and a high default rate, this finding implies that both the number of defaults and the

proportion of bad loans increase when the economy is in a bad state.

The first two columns of table III and figure 6 show that including the macro variables

alters the factor only slightly. The factor of the model with macro variables in figure 6 is almost

identical to the factor of the model without macro variables: the correlation between both

factors is 0.996. Further, the coefficients of the LGD and DR only vary slightly. The macro

variables support the shape of the factor we find, but do not drive the results.

The model includes contemporaneous macro variables, but the actual relation between the

economy and the credit conditions may exhibit leading or lagging behavior. On the one hand,

it could be that if the economy deteriorates, it takes a few months before companies are affected
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and go into default. On the other hand, the default of many companies could turn the economy

into distress. The workout period further distorts the relation. The LGD are grouped by default

date, but are a combination of cash flows in the recovery period, which depend on the state of

the economy during the recovery period. The workout period can be less than a year or take

up to five years.

Figure 7 presents the correlation of the factor for the model with default rate and macro

variables with the macroeconomic variables for different leads and lags. The correlations with

both GDP and IP show that the factor is contemporaneously related to the state of the economy.

The unemployment rate is strongly related to the factor lagged three or four periods, in line

with the other correlations because UR lags the state of the economy. Figure 7 confirms the

significant relation we find from the estimates in table III, but also shows that the link between

macro variables and credit conditions is more complicated than indicated by the model.

[Figure 6 about here.]

[Figure 7 about here.]

4.3 Loan Characteristics

We expect differences in credit conditions across loan characteristics, such as seniority and

industry. We examine two possibilities: (i) one factor is underlying all groups, but the

parameters vary depending on the characteristics, or (ii) every category has a different

underlying factor. The first model type implies that the underlying credit conditions change in

the same way for all industries, but the sensitivities towards it can vary. The second model type

allows for different credit cycles per group. Under this model type, it could be that industry A

is in distress, whereas the credit conditions in industry B are not irregular. We investigate how

related the group-specific credit conditions are. If there are differences, banks can exploit this to

diversify their portfolio. The characteristics we look into are security, seniority, asset class and

industry, but only select categories with on average at least 100 observations per quarter. For

the different asset classes and industries, we use group-specific default rates. Macro variables

are included to compare the relation with the business cycle.

The parameter estimates for the first model type, with a single common factor for all groups,

are presented in the first column in tables IV–VI. The parameter estimates for the second model

type, with a different latent factor per group, are presented in the remaining columns. The main
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differences in LGD across groups are the coefficients βl
j0 and βl

j1, which determine the relation

between the factor and the probability of a bad loan. The identification of the distributions of

good and bad loans holds for all subsamples. The means for good loans are estimated between

0.05 and 0.09 and for bad loans between 0.79 and 0.86.

First, consider the difference between senior secured and unsecured loans in table IV. The

intercept βl
j0 is more negative for senior secured loans than for unsecured loans which means

that the average LGD is smaller for secured loans. The average marginal effect is almost twice

as high for senior secured loans than for unsecured loans, which implies a higher sensitivity for

the time variation in the latent factor. This is reflected in the high estimate for βl
j1 for senior

secured loans. Figure 8(a) shows that the pattern over time is much alike for the for the senior

secured and unsecured factors. The correlation between the factors is 0.84. The finding that

senior secured defaults are more time-varying than unsecured defaults is in contrast with the

findings of Araten et al. (2004). An explanation is that the values of the securities backing the

loan are cyclical. For example, demand for the collateral may vary depending on the state of

the economy and its value therefore changes substantially over time.

Second, we consider the asset classes large corporate (LC) and small and medium enterprises

(SME), where we have group-specific default rates. Table V presents the parameter estimates.

If we consider different factors per group, the mean marginal effect for the LGD is approximately

the same. However, the factor for SME is more connected with macroeconomic conditions. In

particular the difference in the relation with UR is substantial, see panel D of table V. Given the

estimates of βl
j0, βl

j1 and the average marginal effect in the model with one common factor, the

LGD for SME loans is slightly higher and more sensitive to changes in the factor. In contrast,

the mean marginal effect for the default rate of LC is much higher than for SME. The estimate

for βd
j0 is higher for LC than for SME, which implies that bank loans on LC default relatively

more often.

The time variation of credit conditions for asset classes LC and SME differs in pattern and

in size. The correlation between the factors for LC and SME in figure 8(b) is only 0.59. The

LGD for SME is slightly more time-varying than for LC, but the default rate for LC is much

more time-varying than for SME.

Third, we study the difference in cyclicality across industries, for which we also have the

industry-specific default rates. Consumer staples (CS) should be an industry with relatively

stable credit conditions over time, because it produces goods such as food and household
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supplies. Demand will exist, independent of the economic situation. On the other hand,

financials (FIN) are expected to be volatile, especially because the time period includes the

financial crisis of 2007–2009.

The estimate of coefficient βl
j1 in table VI is largest for FIN, which induces the high mean

marginal effect of 0.049. As expected, the LGD for FIN is most sensitive to changes in the

factor. The estimate of βl
j0 is smaller than that of the other industries. Hence, the probability

of a bad loan is in general smaller for FIN, but more sensitive to economic conditions. The time

variation explains the significantly larger average LGD over the full sample in section 2.2.

If we consider industry-specific factors, the mean marginal effect is smallest for CS, both

for the LGD and the default rate. The estimates for the coefficients βl
j1 and βd

j1 are both

approximately 0.05 in the second column of table VI. If we allow for a single factor, the mean

marginal effects are larger, but still small compared to FIN.

For industrials (IND), the LGD is less time-varying compared to other industries. The

estimate of βl
j1 for the model with a single factor is smaller than for CS. If all industries have

a different factor, the time-varying effect is stronger for IND. On the other hand, the default

rate is sensitive to credit conditions. The default rate has the highest mean marginal effect for

IND, slightly higher than for FIN, in both the model with an industry-specific factor and the

model with a single factor.

The difference between industries is further illustrated by the relation with the

macroeconomic variables. Panel D of table VI shows that the factor underlying the industries

FIN and IND is closer related to the macroeconomic variables than for CS. The coefficients for

GDP and IP are estimated almost twice as high for FIN and IND. The credit conditions of CS

are less related to the macroeconomic variables than for the other industries.

Figure 8(c) presents the single factor and the industry-specific factors. The industry factors

move in the same direction over time, as the recent crisis hit all of the considered industries.

But they are far from identical, with correlations from 0.52 between the factors of CS and IND

to 0.81 between those of FIN and IND. The response of the factor of CS is lagged, but stronger

than for the other industries. The increase of the factor of CS is larger than for other industries,

but the mean marginal effect on the probability of a bad loan is only 0.007. This is due to the

small estimate for the coefficient βl
j1.

The results indicate that it is important to consider the portfolio composition of defaults.

We find that there is not a single credit cycle. The credit conditions across loan characteristics
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do share a common component, but clear differences exist. The probability of a bad loan

determines most variation across groups, in terms of level and time variation. Senior secured

loans vary more over time, whereas unsecured loans have a higher average probability of a bad

loan. Especially the time variation across industries is important for banks focusing on a small

set of sectors. Financials are sensitive to macro conditions, while consumer staples are more

stable over time.

Banks gain a more in-depth view of the risk of the loan portfolio and how sensitive it

is to macro conditions by taking the loan characteristics into account. For example, they can

anticipate industry-specific time variations and adjust their risk parameters accordingly to more

accurately estimate the loan-specific risk. Further, they can diversify some of their time-varying

risk by investing in different industries or asset classes.

[Table 4 about here.]

[Table 5 about here.]

[Table 6 about here.]

[Figure 8 about here.]

4.4 Relation with Financial Variables

The latent factor underlies both the default rates and the loss given default. Therefore, we

interpret the factor as a measure for credit conditions and we expect it to have a relation with

other financial variables. We examine this by adding financial variables to the vector ym
t in

equation (6). We select the long-term interest rate (LIR), the credit spread (CRS) and the

yield spread (YLS). The LIR is the yield on the Euro area 10-years government bond, the CRS

is the difference between the yield on the IBOXX European corporate 10+-years BBB-rated

bond index and the LIR, and the YLS is the difference between the LIR and the yield on the

3-month Euro Interbank Offered Rate (Euribor).

The last column of table III presents the estimates of the model including the financial

variables. The estimates in panel E of table III indicate a significant positive relation between

the factor and the financial variables. In particular, we observe a strong connection with the

credit spread, given the estimate of 0.578 for βm
1 . This strong connection is not surprising,

because the credit spread represents the market’s expectation of credit risk, in terms of default

rate and LGD.
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Further, adding the financial variables does not affect the relation of the LGD, defaults and

macro variables with the factor. The latent factor is virtually unchanged with a correlation of

0.997 with the factor from the model without financial variables.

The results validate our interpretation of the factor for credit conditions given the strong

relation with the credit spread.

5 Applications in Risk Management

Banks can apply the model to assess their risks. The model can be used in a stress testing

exercise or to formulate a downturn LGD (see e.g. Calabrese, 2014a). Below, we illustrate its

use to determine economic capital and show how we can predict future credit conditions.

5.1 Economic Capital

Economic capital is an internal risk measure used by banks. It represents the amount of capital

that the bank should hold in order to remain solvent, accounting for unexpected losses due

to their exposure to risks. Given an estimate for the latent factor, we simulate realizations

of defaults and LGD. In particular, it yields the economic capital, which is computed as the

difference between the loss at a particular quantile in the right tail, usually at 99.9%, and the

expected loss. For a given loan portfolio, based on simulated losses, we get the corresponding

loss distribution.

We draw 50,000 times for every time period a portfolio of 2,000 loans, each with an exposure

at default (EAD) of e1, similar to the portfolio considered by Miu and Ozdemir (2006) in their

simulation exercise. Further, we consider the latent factor distributed as the one inferred in

section 4.1, from the model including macro variables but without differences per group, such

that we do not have to make assumptions on the portfolio composition over industry and asset

class.

The results show that changes in credit conditions can have severe consequences for the

portfolio loss. First, figure 9(a) shows the loss distribution for two quarters. The two

distributions are clearly different, only due to a difference in credit conditions, given by the

level of the latent factor. In the fourth quarter of 2005, when the factor is low (see figure 4(a)),

most losses are (close to) 0 and barely exceed 0.25% of the loan amount. On the other hand, in

the second quarter of 2008, when the factor is high, the losses are more dispersed and almost
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always larger than 1% of the loan amount.

Figure 9(b) presents the loss distribution over time, and confirms the vast differences in

loss distribution. The expected loss is mostly between 0% and 0.25% of the loan amount, but

increases to 2% in 2008. The entire 95% confidence interval of losses in the second and fourth

quarter of 2008 is larger than the maximum loss of the 95% interval for the period up to 2008,

and 2010.

Finally, figure 9(c) presents the economic capital at 99.9% over time and shows that the

right tail becomes fatter during bad credit conditions. The economic capital varies much over

time with a maximum of 2.23% of the loan amount, approximately 15 times the minimum of

0.15%. Ignoring the fluctuation induces large uncovered potential losses.

An advantage of our model is its easy adaptation to a specific portfolio, the composition

of loans over asset class, industry or other characteristics, because we can distinguish between

different groups as in section 4.3. The loss distribution and economic capital varies per portfolio

and sampling from a more tailored portfolio yields a more accurate loss distribution. Using a

tailored model yields insight in the bank’s risk and how it changes by adjusting the strategy,

moving in or out a particular sector.

[Figure 9 about here.]

5.2 Prediction

The previous section shows that we can calculate the economic capital based on simulations for

the estimation period, using information on the resolved defaults. It takes some time before all

defaults are resolved and the economic LGD is observed. Due to the workout period, the

estimation period excludes the most recent years, see section 2.1. We would like to have

information on the losses on the unresolved defaults that occurred in the recent years, and

predict future losses. Banks can form an expectation of the write-offs for unresolved defaults

and construct scenarios for future credit conditions. In this section, we propose two methods to

predict future credit conditions, such that we can determine the economic capital out-of-sample.

The first method predicts the factor based on the autoregressive process in equation (1),

such that the factor predicted h periods ahead is given by αT+h|T = ρhαT |T . A disadvantage

of this method is that it ignores the available information in the recent years. The prediction

of the factor at time T + h, for forecast horizon h > 0, is only based on the information in the

estimation period, the period up to time T .
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A second method uses the information available in the out-of-sample period. For example,

we can use the macroeconomic information to update the prediction of the latent factor. An

advantage of using macro variables is that they are reported quarterly, whereas credit data such

as the default rate is usually only available at the end of the year. Another advantage is that if

we only use the macro variables, the model reduces to a linear Gaussian state space model and

we can apply straightforward methods such as the Kalman filter to update the prediction.

The method involves updating the prediction of the factor at time T + h to get a filtered

estimate, based on the information up to time T+h. The factor estimate from the autoregressive

process at each one-step ahead forecast is adjusted based on the prediction error for the

macroeconomic variables, given the relation in equation (6).

We compare both prediction methods by considering the out-of-sample period 2011–2013,

for which macro information is available. Figure 10(a) shows that using the macro information

strongly decreases the variance of the forecasted factor. For period T + 1, the first quarter

of 2011, the variance of the filtered factor is only 56% of the variance of the predicted factor,

based on information up to and including 2010, time T . Further, the credit conditions are

forecasted to be worse, whereas we cannot infer anything on the direction of the factor from the

prediction based on information without out-of-sample macro information. The prediction of

the first method is not far from the long-run average partly because the factor is already close

to 0 at the end of the in-sample period. The prediction starts at the level of the factor at time

T and converges to the long-run average with the rate of the AR coefficient ρ as the forecast

horizon increases.

Figure 10(b) illustrates the difference in terms of economic capital for a portfolio of 2,000

loans, each with an EAD of e1, simulated 50,000 times. The economic capital at 99.9%

increases quickly with the forecast horizon if the macro information is ignored, due to the

added uncertainty. On the other hand, if the macro information is taken into account, the

economic capital does not explode. The variance of the filtered estimate does not increase with

the forecast horizon, such that the difference in economic capital is only due to a change in the

level of the factor.

Alternatively, we could have included financial variables, such as the credit spread, yield

spread and long-term interest rate from section 4.4. Macro variables are reported with a lag,

whereas the financial variables are available instantaneously and can be used to predict in real

time. Further, we could include lagged macro variables such that the information we need to
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predict the credit conditions at time T + 1 is available at time T .

[Figure 10 about here.]

6 Alternative Specifications

The current model for LGD proposes time variation in the probability of a bad loan in a

mixture of normals. In this section, we challenge the proposed model by considering alternative

specifications. First, we test whether the distribution is time-varying and consider time-varying

means to introduce time variation into the mixture. Second, we check whether a mixture of

Student’s t distributions provides a better fit.

6.1 No Time Variation

To test whether the time variation is present in our sample, we estimate a mixture of normals

on the full set of LGD observations using a standard EM algorithm for mixtures.

The results in table VII confirm that the probability of a bad loan is time-varying. The large

difference in loglikelihood provides significant evidence of time variation in our LGD sample.

Even if we account for the larger number of parameters, the model where the probability of a

bad loan can vary over time provides a better fit in terms of BIC. Hence, this time variation

should be taken into account when constructing LGD estimates.

[Table 7 about here.]

6.2 Time-Variation in the Mean

The model for the LGD includes a time-varying probability of a bad loan. Here, we introduce

time variation through the mean of a good or bad loan. We replace equations (2) and (3) by a

mixture of normals with P (sit = 1) = p and µ0t = µ0+βl
1αt and/or µ1t = µ1+βl

1αt. To estimate

the parameters and the latent factor, we combine the state space methods for dynamic linear

models of Shumway and Stoffer (1991) and the univariate treatment of Durbin and Koopman

(2012). The univariate treatment can be applied because the observations are independent

conditional on the latent factor.

First, table VII shows that the parameter estimates for βl
1 are very small. This indicates

that the time-varying aspect in the means is not important. Second, table VII shows that the
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models with time-varying mean are barely able to improve the fit in terms of loglikelihood, and

are even worse compared to the model without time variation when accounting for the increased

number of parameters. Third, figure 6 shows that models with (one of) the means time-varying

underestimate the observed time variation in the average LGD. The difference with the sample

average is almost 0.1 on a scale of 0 to 1 during very good or bad times. An error of this size

on the LGD leads to under- or overestimation of the expected losses on a portfolio, especially

during times when it matters most. Only the model with time-varying probability of a bad loan

is able to replicate the pattern of the average LGD over time.

These results confirm that the time variation is due to changes in the probability of a bad

loan, and not due to shifts of the location of the distributions.

[Figure 11 about here.]

6.3 Mixture of Student’s t Distributions

To test whether a different distribution than the normal provides a better fit, we replace the

mixture of normals in equation (2) by a mixture of Student’s t distributions. The probability of

a bad loan remains time-varying. To estimate the parameters and the latent factor, we use the

ECM algorithm of Basso et al. (2010)11 in combination with the importance sampling methods

described in appendix B.

The last column of table VII presents the parameter estimates. The peaks of the empirical

distribution are better identified compared to the mixture of normals with means equal to 0.03

and 0.99. The fit is improved, as reflected in a higher loglikelihood. Figure 12 shows the fit for

the same quarters as figure 5 and clearly illustrates that the empirical distribution is described

better by a mixture of Student’s t distributions. Not only the location, but also the peakedness

of the modes is captured. The improved identification could imply a more accurate estimate of

the probability of a bad loan and the latent factor. However, figure 13 shows that the factor is

largely unaffected by changes in distribution. The correlation between the factor with a mixture

of normals and the factor from the model with a mixture of Student’s t distributions is 0.99.

Using the model with the Student’s t distribution comes with some disadvantages. Due to

the large peakedness at 0 and 1 and the observations between the modes, the degrees of freedom

are estimated close to 1 for good loans and even below 1 for bad loans. None of the moments

are defined for a distribution with less than 1 degree of freedom, which makes it difficult to

11The ECM algorithm is implemented using a Matlab translation of the R package by Prates et al. (2011).
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interpret µ0 and µ1. Further, a default observed with an LGD larger than 1 could be identified

as a good loan by the model, although it clearly is not because more than the full exposure is

lost. Figure 14(b) shows that this happens because the smoothed probabilities of a bad loan

π̂it = P (sit = 1|yl
it, αt) decrease (increase) for LGD values larger (smaller) than the mean of

the distribution of bad (good) loans due to the fat tails. None of the issues occur if we use the

mixture of normals, see figure 14(a).

The model with the mixture of normals is preferred over the mixture of Student’s t

distributions. Even though the model with the fat-tailed distribution provides a better fit, it is

difficult to interpret due to the low degrees of freedom and because some loans are obviously

misidentified by the model. Further, the gains in terms of identification of the latent signal are

limited, because the factor is very similar to a specification with a mixture of normals.

[Figure 12 about here.]

[Figure 13 about here.]

[Figure 14 about here.]

7 Conclusion

The loss given default and the default rate on bank loans are both cyclical. We infer a common

underlying factor that is a measure for the credit conditions and related to the business cycle.

The time variation in the loss given default is explained by changes in the probability of a bad

loan. Banks should take this into account when determining the risk parameters.

We propose a model that describes the stylized facts of the loss given default on bank loans

well. It captures the bimodal shape of the empirical distribution and provides an interpretation

of the components, by explicitly modeling the extremes of no and full loss. It is flexible

enough to include the differences across loan characteristics that we find. Further, the model

has applications in risk management, such as the calculation of the economic capital and the

prediction of future credit conditions.
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Appendix A Data Filter

Following Höcht and Zagst (2007), who also use data from the Global Credit Data Consortium,

and NIBC’s internal policy, we apply the following filters to the LGD database.

• EAD ≥ e100,000. The paper focuses on loans where there has been an actual (possible)

loss, so EAD should be at least larger than 0. Furthermore, there are some extreme LGD

values in the database for small EAD. To account for this noise, loans with EAD smaller

than e 100,000 are excluded.

• −10% <
(
(CF + CO) − (EAD − EAR)

)
/(EAD + PA) < 10%, where CF cash flows, CO

charge-offs and PA principal advances. The cash flows that make up the LGD should be

plausible, because they are the major building blocks of the LGD. A way of checking this

is by looking at under-/overpayments. The difference between the EAD and the exposure

at resolution (EAR), where resolution is the moment where the default is resolved, should

be close to the sum of the cash flows and charge-offs. The cash flow is the money coming

in and the charge-off is the acknowledgement of a loss in the balance sheet, because the

exposure is expected not to be repaid. Both reduce the exposure and should explain the

difference between EAD and EAR. There might be an under- or overpayment, resulting

in a difference. To exclude implausible cash flows, these loans are excluded when they are

more than or equal to 10% of the EAD and principal advances (PA). The 10% is a choice

of the Global Credit Data Consortium.

• −0.5 ≤ LGD ≤ 1.5. Although theoretically, LGD is expected between 0 and 1, it is

possible to have an LGD outside this range, e.g. due to principal advances or a profit on

the sale of assets. Abnormally high or low values are excluded. They are implausible and

influence LGD statistics too much.

• No government guarantees. The database contains loans with special guarantees from the

government. Most of the loans are subordinated, but due to the guarantee, the average of

the subordinated LGD is lower than expected. Because the loans are very different from

others with the same seniority and to prevent underestimation of the subordinated LGD,

these loans are excluded from the dataset.

Some consortium members also filter for high principle advances ratios, which is the sum

of the principal advances divided by the EAD. Even though high ratios are plausible, they
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are considered to influence the data too much and therefore exclude loans with ratios larger

than 100%. NIBC does include these loans, because they are supposed to contain valuable

information and the influence of outliers is mitigated because they cap their LGD to 1.5. The

data shows that the principal advances ratio does not exceed 100%, so applying the filter does

not affect the data and is therefore not considered.

Appendix B Importance Sampling

We outline the simulation based method of importance sampling, which we use to evaluate the

non-Guassian state space model. For more information on importance sampling for state space

models, see for example Durbin and Koopman (2012).

Consider the following nonlinear non-Gaussian state space model with a linear and Gaussian

signal,

yt ∼ p(yt|αt), (10)

αt+1 = ραt + ηt, (11)

with ηt ∼ NID(0, ω2) for t = 1, . . . , T , where yt is an N ×1 observation vector and αt the signal

at time t. For notational convenience, we express the state space model in matrix form. We

stack the observations into an N × T observation matrix Y = (y1, . . . ,yT )′ and T × 1 signal

vector α = (α1, . . . , αT )′ such that we have

Y ∼ p(Y |α), (12)

α ∼ N(µ,Ψ). (13)

The method of importance sampling is a way of evaluating integrals by means of simulation.

It can be difficult or infeasible to sample directly from p(α|Y ), which is the case for non-Gaussian

state space models. Therefore, an importance density g(α|Y ) is used to approximate the p(α|Y )

from which it is easier to sample. In particular, consider the evaluation of the expected value

of the function x(α),

x̄ = E [x(α)|Y ] =

∫
x(α)p(α|Y )dα =

∫
x(α)

p(α|Y )

g(α|Y )
g(α|Y )dα = Eg

[
x(α)

p(α|Y )

g(α|Y )

]
. (14)
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For a non-Gaussian state space model with Gaussian signal, this can be rewritten into

x̄ =
Eg [x(α)w(α,Y )]

Eg [w(α,Y )]
, (15)

w(α,Y ) =
p(Y |α)

g(Y |α)
, (16)

which contains densities that are easy to sample from. Then x̄ is estimated by replacing the

expectations with its sample estimates.

The function to be estimated x(α) can be any function of α. For example, the mean is

estimated by setting x(α) = α. For the estimation of the likelihood L(θ|Y ) = p(Y |θ) we have

L(θ|Y ) =

∫
p(α,Y )

g(α|Y )
g(α|Y )dα = g(Y )

∫
p(α,Y )

g(α,Y )
g(α|Y )dα = Lg(θ|Y )Eg [w(α,Y )] , (17)

where Lg(θ|Y ) = g(Y ) is the likelihood of the approximating Gaussian model. This is estimated

by the sample analog L̂g(θ)w̄, with w̄ = (1/R)
∑R

r=1w(α(r),Y ) where α(r), r = 1, . . . , R,

are independent draws from g(α|Y ), using the simulation smoother. Its log version is

log L̂(θ|Y ) = log L̂g(θ|Y ) + log w̄.

B.1 Mode Estimation

The importance density g(α|Y ) must be chosen such that it is easy to sample from and

approximates the target density well. If the importance density does not share the support

of the target density, the estimation will be inaccurate. An example of a suitable importance

density is to take a Gaussian density that has the same mean and variance as the target density.

It is possible to sample from p(α|Y ) for a Gaussian state space model using the simulation

smoother developed by De Jong and Shephard (1995). Therefore, we would like to get a

Gaussian model that approximates the non-Gaussian model, defined by equations (10) and

(11).

The approximating Gaussian model can be obtained by mode estimation. It is a

Newton-Raphson procedure to get the mode of signal α for a non-Gaussian state space

model. The procedure of mode estimation is outlined below, including how it results into

an approximating Gaussian state space model.

Given an initial guess g for the mode of α, for example based on knowledge of the data, we
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have the following Newton-Raphson procedure to get a new estimate of the mode,

g+ = g − (p̈(α|Y )|α=g)
−1ṗ(α|Y )|α=g, (18)

with ṗ(·|·) = ∂ log p(·|·)/∂α, a T × 1 vector, and p̈(·|·) = ∂2 log p(·|·)/∂α∂α′, a T × T matrix.

We cannot directly apply the procedure because p(α|Y ) is unknown, but Bayes’ rule enables

us to rewrite the smoothed log density as

log p(α|Y ) = log p(Y |α) + log p(α)− log p(Y ), (19)

where log p(Y |α) =
∑T

t=1 log p(yt|αt) =
∑T

t=1

∑N
i=1 log pi(yit|αt), p(α) is given in equation

(13) and the last term does not depend on α and can thus be left unspecified. The distribution

pi(yit|αt) may vary over i, so observations are allowed have different distributions. We get

ṗ(α|Y ) = ṗ(Y |α)−Ψ−1(α− µ), (20)

p̈(α|Y ) = p̈(Y |α)−Ψ−1, (21)

where ṗ(Y |α) = (ṗ1(y1|α1), . . . , ṗT (yT |αT ))′ and p̈(Y |α) = diag(p̈1(y1|α1), . . . , p̈T (yT |αT )),

with ṗt(·|·) = ∂ log p(·|·)/∂αt and p̈t(·|·) = ∂2 log p(·|·)/∂αt∂α′t. If we plug in the expressions

(20) and (21) in equation (18), we get

g+ = g −
(
p̈(Y |α)|α=g −Ψ−1

)−1 (
ṗ(Y |α)|α=g −Ψ−1(α− µ)

)
= (Ψ−1 +A−1)−1(A−1z + Ψ−1µ), (22)

z = g +Aṗ(Y |α)|α=g, (23)

A = −(p̈(Y |α)|α=g)
−1, (24)

where z = (z1, . . . , zT )′ a T × 1 vector and A = diag(A1, . . . , AT ) a T × T matrix.

It can be shown that equation (22) is the output from the Kalman filter and smoother

for a linear Gaussian model with ‘observation’ vector z and ‘variance’ matrix A. From mode

estimation, we have thus obtained the following approximating Gaussian model,

zt = αt + ut, (25)

αt+1 = ραt + ηt, (26)
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where ut ∼ NID(0, At) and ηt ∼ NID(0, ω2) for t = 1, . . . , T , with zt and At defined in equations

(23) and (24). The Newton-Raphson procedure described above is equivalent to repeatedly

applying the Kalman filter and smoother to this model. The density p(α|z) from the model

is Gaussian and approximates the non-Gaussian target model well, because it has the same

mean and variance. Therefore, the density p(α|z) from equations (25) and (26) is suitable as

an importance density.

Appendix C EM Equations

C.1 Observed Data Loglikelihood

The likelihood of the observed data Y , which includes the LGD, the defaults and the macro

variables, conditional on the latent factor α and the parameters θ is given by the product of

the densities,

L(Y |α,θ) =

T∏
t=1

N l∏
i=1

(
log p(yl

it|αt)
)δit T∏

t=1

Nd∏
j=1

(
log p(yd

jt|αt)
)δjt T∏

t=1

log p(ym
t |αt), (27)

where δit (δjt) is 1 if yl
it (yd

jt) is observed and 0 if it is missing or unobserved. The conditional

loglikelihood is then given by

`(θ|Y ,α) =

T∑
t=1

N l∑
i=1

δit log p(yl
it|αt) +

T∑
t=1

Nd∑
j=1

δjt log p(yd
jt|αt) +

T∑
t=1

log p(ym
t |αt), (28)

log p(yl
it|αt) =

J∑
j=1

ζij log
(

(1− pjt)φj0(yl
it) + pjtφj1(yl

it)
)
, (29)

log p(yd
jt|αt) = log

Ljt
yd
jt

+ yd
jt log(qjt) + (Ljt − yd

jt) log(1− qjt), (30)

log p(ym
t |αt) = −N

m

2
log(2π)− 1

2
log |Σ| − 1

2
(ym

t − βm
0 − βm

1 αt)
′Σ−1(ym

t − βm
0 − βm

1 αt), (31)

where ζij is 1 if loan i belongs to group j and 0 otherwise, and φjk(·) is the normal density

function with mean µjk and variance σ2
j given that sit = k, for k = 0, 1. Groups are defined by

the characteristics of the loans, for example industry, country or seniority.

The observed data loglikelihood is obtained by integrating out the stochastic latent factor
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out of the joint density of the observations and this latent factor,

p(Y |θ) =

∫
p(Y ,α|θ)dα =

∫
p(Y |α,θ)p(α|θ)dα. (32)

This observed data loglikelihood has no closed form expression because α enters the likelihood

non-linearly. The likelihood will be evaluated using the importance sampling methods of

appendix B.

C.2 Complete Data Loglikelihood

The joint density of the model, including the states and latent factor, is given by

p(Y ,S,α) = p(α1)

T∏
t=2

p(αt|αt−1)

T∏
t=1

N l∏
i=1

(
p(yl

it, sit|αt)
)δit

×
T∏
t=1

Nd∏
j=1

(
log p(yd

jt|αt)
)δjt T∏

t=1

log p(ym
t |αt),

(33)

where we have for the joint density of the observed LGD and the unobserved states

p(yl
it, sit|αt) = p(yl

it|αt, sit)p(sit) =
J∏
j=1

{
(pjtφj1)sit ((1− pjt)φj0)1−sit

}ζij

=
J∏
j=1


 exp

(
βl
j0 + βl

j1αt

)
1 + exp

(
βl
j0 + βl

j1αt

)φj1
sit 1

1 + exp
(
βl
j0 + βl

j1αt

)φj0
1−sit

ζij

.

(34)
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Further, we have a Gaussian signal following an AR(1) process. This means that the complete

data loglikelihood for the parameter vector θ is

`c(θ|Y ,S,α) = p(α1) +

T∑
t=2

log p(αt|αt−1) +

T∑
t=1

N l∑
i=1

δit log p(yit, sit|αt) (35)

+
T∑
t=1

Nd∑
j=1

δjt log p(yd
jt|αt) +

T∑
t=1

log p(ym
t |αt), (36)

log p(α1) = −1

2
log(2π)− 1

2
log(P1)− 1

2P1
(α1 − a1)2, (37)

log p(αt|αt−1) = −1

2
log(2π)− 1

2
log(ω2)− 1

2ω2
(αt − ραt−1)2, (38)

log p(yl
it, sit|αt) =

J∑
j=1

ζij

{
sit(β

l
j0 + βl

j1αt)− log
(

1 + exp(βl
j0 + βl

j1αt)
)

+ (1− sit)
(
− 1

2
log(2π)− 1

2
log(σ2

j )−
1

2σ2
j

(yl
it − µj0)2

)
+ sit

(
− 1

2
log(2π)− 1

2
log(σ2

j )−
1

2σ2
j

(yl
it − µj1)2

)}
,

(39)

and log p(yd
jt|αt) and log p(ym

t |αt) given in equations (30) and (31).
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C.3 Expected Loglikelihood

The expected loglikelihood, also known as the Q-function, given the m-th step estimate for θ(m)

for our model is given by

Q
(
θ|θ(m)

)
= constant− 1

2
log

(
1

1− ρ2

)
− 1− ρ2

2
(P1|T + α2

1|T )

− 1

2
(ê00 − 2ρê10 + ρ2ê11)

+

T∑
t=1

N l∑
i=1

δit

{
J∑
j=1

ζij

{
π̂itβ

l
j0 + βl

j1E[sitαt|Y ])

− Eα|Y

[
log
(

1 + exp(βl
j0 + βl

j1αt)
)]

+ (1− π̂it)
(
− 1

2
log(σ2

j )−
1

2σ2
j

(yl
it − µj0)2

)
+ π̂it

(
− 1

2
log(σ2

j )−
1

2σ2
j

(yl
it − µj1)2

)}}

+
T∑
t=1

Nd∑
i=1

δjt

{
yd
jt(β

d
j0 + βd

j1αt|T )

− LjtEα|Y
[
log
(

1 + exp(βd
j0 + βd

j1αt)
)]}

+

T∑
t=1

{
− 1

2
log |Σ| − 1

2
tr{Σ−1βm

1 Pt|T (βm
1 )′}

− 1

2
tr{Σ−1(ym

t − βm
0 − βm

1 αt|T )(ym
t − βm

0 − βm
1 αt|T )′}

}
,

(40)

where the constant does not depend on any of the latent variables or parameters and we set the

parameters a1 = 0, P1 = 1/(1− ρ2) and ω2 = 1 for identification, see section 3.4. Further,

ê10 =

T∑
t=2

Pt−1,t|T + αt−1|Tαt|T , (41)

ê11 =

T∑
t=2

Pt−1|T + α2
t−1|T =

T−1∑
t=1

Pt|T + α2
t|T , (42)

with αt|T = E[αt|Y ] the smoothed factor and Pt|T = Var(αt|Y ) and Pt,t−1|T = Cov(αt, αt−1|Y )

its variance and autocovariance. The probability of the states sit depends on the mean and

variance of the mixture components and the ex ante mixture probability pjt, which is a function

of αt. Therefore, the posterior mixture probabilities π̂it = E[sit|yl
it, αt] = P (sit = 1|yl

it, αt) and

the expectation of the cross-product of the states and the signal E[sitαt|yl
it] are computed using

the law of iterated expectations: E[sitαt|yl
it] = E

[
E[sit|αt, yl

it]αt|yl
it

]
. The expected values are
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calculated using importance sampling, using that for the expectation of a function of the states

and the latent factor x(S,α) conditional on the observed data, we have

E[x(S,α)] =

∫ ∫
x(S,α)p(S,α|Y )dSdα

=

∫ ∫
x(S,α)p(S|Y ,α)p(α|Y )dSdα

=

∫ (∫
x(S,α)p(S|Y ,α)dS

)
p(α|Y )dα. (43)

Using moments of the log-normal distribution, a first order Taylor approximation E[log(X)] ≈

log(E[X])− 1
2Var(X)/(E[X])2 and define θjt = βd

j0 + βd
j1αt for notational convenience, we get

Eα|Y

[
log
(

1 + exp(βd
j0 + βd

j1αt)
)]
≈ log

(
Eα|Y [1 + exp(θjt)]

)
− 1

2

Var (1 + exp(θjt))(
Eα|Y [1 + exp(θjt)]

)2
= log(1 + exp(θj,t|T +

1

2
Var(θj,t|T )))

− 1

2

exp
(
2θj,t|T + Var(θj,t|T )

)(
1 + exp

(
θj,t|T + 1

2Var(θj,t|T )
))2

× (exp(Var(θj,t|T ))− 1)

= log

(
1 + exp(βd

j0 + βd
j1αt|T +

1

2
(βd
j1)2Pt|T )

)

− 1

2

exp
(

2(βd
j0 + βd

j1αt|T ) + (βd
j1)2Pt|T

)
(

1 + exp(βd
j0 + βd

j1αt|T + 1
2(βd

j1)2Pt|T )
)2

×
(

exp((βd
j1)2Pt|T )− 1

)
,

(44)

and Eα|Y

[
log
(

1 + exp(βl
j0 + βl

j1αt)
)]

defined similarly.

C.4 Mode Estimation - Derivatives

For the mode estimation algorithm we need to derive the first and second derivative of the

distribution of the observed variable conditional on the signal. The log of the density of yit

given αt is given in equations (29)–(31). We rewrite the loglikelihood for the LGD observations

in equation (29) as

log p(yl
it|αt) =

J∑
j=1

ζij

{
− log(1 + exp(βl

j0 + βl
j1αt))

+ log
(

exp(βl
j0 + βl

j1αt)φj1(yl
it) + φj0(yl

it)
)}

.

(45)
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The first derivative is

ṗt(yt|αt) =
N l∑
i=1

δitṗ(y
l
it|αt) +

Nd∑
j=1

δjtṗ(y
d
jt|αt) + ṗ(ym

t |αt), (46)

ṗt(y
l
it|αt) =

J∑
j=1

ζij

{
−
βl
j1 exp(βl

j0 + βl
j1αt)

1 + exp(βl
j0 + βl

j1αt)

+
βl
j1 exp(βl

j0 + βl
j1αt)φj1(yl

it)

exp(βl
j0 + βl

j1αt)φj1(yl
it) + φj0(yl

it)

}
,

(47)

ṗt(y
d
jt|αt) = yd

jtβ
d
j1 − βd

j1Ljt
exp(βd

j0 + βd
j1αt)

1 + exp(βd
j0 + βd

j1αt)
, (48)

ṗt(y
m
t |αt) = (βm

1 )′Σ−1(ym
t − βm

0 − βm
1 αt|T ), (49)

and the second derivative is

p̈t(yt|αt) =
N l∑
i=1

δitp̈(y
l
it|αt) +

Nd∑
j=1

δjtp̈(y
d
jt|αt) + p̈(ym

t |αt), (50)

p̈t(y
l
it|αt) =

J∑
j=1

ζij

− (βl
j1)2 exp(βl

j0 + βl
j1αt)(

1 + exp(βl
j0 + βl

j1αt)
)2

+
(βl
j1)2 exp(βl

j0 + βl
j1αt)φj0(yl

it)φj1(yl
it)(

exp(βl
j0 + βl

j1αt)φj1(yl
it) + φj0(yl

it)
)2

 ,

(51)

p̈t(y
d
jt|αt) = (βd

j1)2Lit
exp(βd

j0 + βd
j1αt)

(1 + exp(βd
j0 + βd

j1αt))
2
, (52)

p̈t(y
m
t |αt) = −(βm

1 )′Σ−1βm
1 , (53)

where we use ∂
∂x [exp(ax)/(c+ b exp(ax))] = exp(ax)ac/(c+ b exp(ax))2.

C.5 Maximum Likelihood Estimates

The maximum likelihood estimator (MLE) of the means of the normal distributions in the

mixture of normals conditional on the other parameters are

µ̂j0 =

∑T
t=1

∑N l

i=1 δitζij(1− π̂it)yl
it∑T

t=1

∑N l

i=1 δitζij(1− π̂it)
, (54)

µ̂j1 =

∑T
t=1

∑N l

i=1 δitζij π̂ity
l
it∑T

t=1

∑N l

i=1 δitζij π̂it
, (55)
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for all j = 1, . . . , J . The conditional MLE for the variance of the normal distributions is

σ̂2
j =

1

N l

T∑
t=1

N l∑
i=1

δit

{
ζij

{
(1− π̂it)

(
yl
it − µj0

)2
+ π̂it

(
yl
it − µj1

)2
}}

. (56)

The conditional MLE of the parameters for the macroeconomic variable are

β̂
m

0 =
1

T

T∑
t=1

ym
t − βm

1 αt|T , (57)

β̂
m

1 =
1

ê0

T∑
t=1

(ym
t − βm

0 )αt|T , (58)

Σ̂ =
1

T

T∑
t=1

{
βm

1 Pt|T (βm
1 )′ + (ym

t − βm
0 − βm

1 αt|T )(ym
t − βm

0 − βm
1 αt|T )′

}
, (59)

where ê0 =
∑T

t=1 Pt|T + α2
t|T .

For the other parameters, the MLE cannot be solved analytically and need to be optimized

numerically. We split the parameter space into independent subspaces over which we maximize.

Hence, we optimize the expected loglikelihood (40) for AR coefficient ρ in the state equation,

coefficients βl
j0 and βl

j1, and βd
j0 and βd

j1 separately.

Appendix D Convergence

Section 3.6 describes the estimation procedure. The EM algorithm is iterated until the

loglikelihood is converged up to 10−3, followed by iterations of direct numerical optimization

until convergence of 10−6 is reached.

Figure 15 shows that the gains in terms of loglikelihood are greatest in the first few iterations.

The EM algorithm converges in 38 iterations and achieves first order optimality, the sum of the

gradient, of 12.5. The numerical optimization of the maximum likelihood further increases the

loglikelihood by 0.733 in 166 iterations, corresponding to first order optimality of 0.109.

[Figure 15 about here.]
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Figure 1. Empirical distribution LGD and workout period

(a) Loss given default
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The figures show the empirical distribution of the loss given default (a) and the workout period
(b) for the defaults from the period 2003–2010, after applying the data filter in appendix A.
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Figure 2. Default data time series

(a) Loss given default
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(b) Default rate
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Panel a presents the average loss given default and the number of observations per year for the
period 1983–2011 from the Global Credit Data LGD database, after applying the data filter in
appendix A. Panel b presents the number of loans and the observed default rate per year for
the period 2003–2012 from the Global Credit Data DR database.
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Figure 3. Empirical distribution LGD over time

(a) (b)

Panel a presents the empirical distribution of the LGD per quarter for the period 2003–2010
after applying the data filter in appendix A. Panel b presents the standardized empirical
distribution, where every quarter is divided by the number of observations per period such
that the distributions are comparable across time. It is rotated by 90 degrees compared to
panel a.
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Figure 4. Factor and ex ante probabilities

(a) Latent factor
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Panel a presents the smoothed factor α (solid line) with 95% confidence bounds (dashed
lines) for the general model, without cross-sectional variation but including default rates and
macroeconomic variables. Panel b presents the ex ante probabilities, defined as Λ

(
β0 + β1α

)
,

where Λ(x) = exp(x)/
(
1 + exp(x)

)
is the logistic function. They are based on the smoothed

factor α from panel a and the estimates from table III for the parameters βl
0 and βl

1 for the
probability of bad loan pt, and βd

0 and βd
1 for the default rate qt.
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Figure 5. Mixture fit

(a) Q4-2005
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The figures present the fit of the mixture of normals for the fourth quarter of 2005 (a) and the
second quarter of 2008 (b) for the model without cross-sectional variation but with default rates
and macro variables.
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Figure 6. Latent factor with and without macro variables
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The figure presents the smoothed latent factor α, for the model with (orange line) and without
(blue line) the macroeconomic variables GDP, industrial production and unemployment rate.
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Figure 7. Correlation between factor and macroeconomic variables

(a) GDP
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(b) Industrial production
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(c) Unemployment rate
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The figures present the correlation of αt, the latent factor for the model with default rate and
macroeconomic variables, including 95% confidence intervals, with ym

t+k, the macroeconomic
variables GDP (a), industrial production (b) and unemployment rate (c), all in difference to
the same period in the previous year, for different leads and lags, k. The x-axis presents the
leads and lags of the macro variable, k, such that positive k reflects the correlation between the
factor and future macro conditions.
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Figure 8. Factors per loan characteristic

(a) Security/seniority
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The figures present the factor per loan characteristic, where we have (i) a single factor underlying
all categories with different coefficient or (ii) a different factor for category. Panel a shows the
factor per seniority and security. Panel b shows the factor per asset classes large corporate (LC)
and small and medium enterprises (SME). Panel c shows the factor per industries consumer
staples (CS), financials (FIN) and industrials (IND).
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Figure 9. Loss simulation

(a) Loss distribution
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(b) Losses over time
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(c) Economic capital over time
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Panel a presents the loss distribution from simulating 50,000 times a portfolio of 2,000 loans,
each with an EAD of e1, of the model defined by equations (1)–(6) for the fourth quarter of
2005 (blue line) and the second quarter of 2008 (orange line). Panel b presents the expected
loss (solid line), including a 95% confidence interval (dashed lines), and panel c the economic
capital at 99.9%.
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Figure 10. Prediction
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Panel a presents the predicted factor (solid line) for the period 2011–2013, including a 95%
confidence interval (dashed lines), given the information up to and including 2010, time T , (blue
line) and given the information up to and including 2010, time T , plus the macro variables at
time T +h, where h is the forecast horizon (orange line). Panel b presents the economic capital
at 99.9%, based on simulating 50,000 times a portfolio of 2,000 loans, each with an EAD of e1,
given the predicted and macro-filtered factor in panel a.
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Figure 11. Implied average LGD
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The figure presents the average LGD per quarter and the average LGD implied by the estimation
of the model defined by equations (1)–(3), with time variation assumed in the probability of a
bad loan p, mean of a good loan µ0 and/or mean of a bad loan µ1.
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Figure 12. Mixture fit: mixture of Student’s t distributions
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The figures present the fit for the fourth quarter of 2005 (a) and the second quarter of 2008 (b)
for the model defined by equations (1)–(3), without the default rates and macro variables, with
the mixture of normals replaced by a mixture of Student’s t distributions.
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Figure 13. Latent factor: normal versus Student’s t distribution
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The figure presents the latent factor for the model defined by equations (1)–(3), without the
default rates and macro variables, with a mixture of normals (blue line) and with a mixture of
Student’s t distributions (orange line) for the LGD.
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Figure 14. Smoothed state probability: normal versus Student’s t distribution

(a) Normal
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(b) Student’s t
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The figures present the smoothed state probabilities P (sit = 0|yl
it, αt) (blue line) and

P (sit = 1|yl
it, αt) (orange line) for the model defined by equations (1)–(3), with a mixture of

normals (a) and with a mixture of Student’s t distributions (b) for the LGD. The probabilities
are for the first quarter of 2003.
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Figure 15. Likelihood convergence
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(b) From iteration 10
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The figures present the likelihood for all iterations (a) and from the tenth iteration (b) of the
estimation algorithm. The blue lines are iterations of the EM algorithm and the orange lines of
the direct numerical maximum likelihood optimization (ML).
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Table I. LGD versus workout period

The table presents the number of defaults and the average LGD for different workout periods
from the period 2003–2010, after applying the data filter in appendix A.

Workout period (years) Defaults Average LGD

0-1 10,464 0.119
1-2 6,258 0.232
2-3 2,794 0.284
3-5 2,208 0.383
>5 356 0.432
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Table II. Summary statistics

The table presents the number of defaults, the average, the fraction of defaults with an LGD
larger than 0.5 and the p-value of the Hartigan and Hartigan’s (1985) dip statistic (HDS) using
500 bootstraps, to test the null hypothesis of a unimodal distribution versus the alternative of a
multimodal distribution, for different subsets of the 2003–2010 sample after applying the data
filter in appendix A. Groups with on average at least 100 defaults per quarter, indicated by a
∗, are selected for analysis with our model in section 4.3.

Group Defaults Average Fraction HDS
LGD > 0.5 p-value

Total 22,080 0.204 0.170 0.000

Panel A: Seniority and security

Senior unsecured∗ 12,011 0.222 0.191 0.000
Senior secured∗ 9,723 0.175 0.138 0.000

Subordinated 236 0.427 0.419 0.000
Subordinated Secured 110 0.289 0.255 0.002

Panel B: Asset class

SME∗ 12,028 0.193 0.164 0.000
Large Corporate∗ 6,496 0.199 0.159 0.000

Real Estate Finance 2,068 0.326 0.284 0.000
Aircraft Finance 556 0.088 0.045 0.000
Shipping Finance 331 0.077 0.054 0.100
Project Finance 302 0.177 0.132 0.002
Banks 276 0.286 0.286 0.000
Public Services 23 0.246 0.174 0.234

Panel C: Industries

Industrials∗ 6,944 0.178 0.150 0.000
Financials∗ 4,629 0.217 0.178 0.000
Consumer Staples∗ 3,232 0.186 0.162 0.000

Unknown 2,817 0.309 0.279 0.000
Information Technology 1,384 0.188 0.155 0.000
Consumer Discretionary 1,089 0.196 0.128 0.034
Other 606 0.147 0.102 0.000
Telecommunication Services 410 0.203 0.183 0.304
Utilities 391 0.145 0.079 0.280
Health Care 366 0.123 0.082 0.086
Materials 212 0.147 0.127 0.534
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Table III. Parameter estimates

The table presents the parameter estimates for the model defined by equations (1)–(6). The standard errors are
in parentheses next to the estimates. Panel A presents the parameter estimate of the factor component, the AR
coefficient ρ. Panel B presents the parameter estimates of the LGD components, a mixture of two normals with
the same variance σ2, for good (µ0) and bad (µ1) loans, where µ0 < µ1. The probability of a bad loan is given
by pt = Λ

(
βl
0 + βl

1αt

)
, where Λ(x) = exp(x)/

(
1 + exp(x)

)
is the logistic function. Panel C presents parameter

estimates of the default rate component where the number of defaults follows a binomial distribution with default
probability qt = Λ

(
βd
0 + βd

1αt

)
. Panel D presents the parameter estimates of the macroeconomic component,

the intercepts β0 and the coefficients β1, with the variables gross domestic product (GDP), industrial production
(IP) and unemployment rate (UR), all in difference to the same period in the previous year and standardized to
have zero mean and unit variance. Panel E presents the estimates of the the intercepts β0 and the coefficients
β1 of the financial component, with the variables long-term interest rate (LIR), credit spread (CRS) and the
yield spread (YLS). Panel F presents the mean marginal effects, defined as the average over the marginal effects
∂Λ(β0 + β1αt)/∂β1, for all t = 1, . . . , T , for the probability of a bad loan p and the probability of default q.
Finally, the bottom of the table presents the loglikelihood and the number of observations, given by the sum of
the LGD, default rate, macroeconomic and financial observations.

Parameter LGD + DR LGD + DR LGD + DR
+ Macro + Macro

+ Financial

Panel A: Factor

ρ 0.484 (0.162) 0.449 (0.167) 0.524 (0.156)

Panel B: Loss given default

µ0 0.072 (0.001) 0.072 (0.001) 0.072 (0.001)
µ1 0.828 (0.002) 0.828 (0.002) 0.828 (0.002)
σ 0.131 (0.001) 0.131 (0.001) 0.131 (0.001)

βl
0 −1.656 (0.102) −1.652 (0.100) −1.657 (0.107)

βl
1 0.299 (0.044) 0.311 (0.045) 0.291 (0.043)

Panel C: Default rate

βd
0 −4.526 (0.284) −4.545 (0.310) −4.505 (0.279)

βd
1 0.809 (0.181) 0.931 (0.248) 0.743 (0.149)

Panel D: Macro variables

βGDP
0 −0.005 (0.218) −0.003 (0.226)
βGDP
1 −0.499 (0.070) −0.491 (0.067)
βIP
0 −0.004 (0.204) −0.002 (0.210)
βIP
1 −0.408 (0.059) −0.403 (0.057)
βUR
0 0.004 (0.205) 0.003 (0.211)
βUR
1 0.415 (0.060) 0.411 (0.058)

Panel E: Financial variables

βLIR
0 0.002 (0.194)
βLIR
1 0.293 (0.043)
βCRS
0 0.004 (0.243)
βCRS
1 0.579 (0.075)
βYLS
0 0.001 (0.176)
βYLS
1 0.092 (0.014)

Panel F: Mean marginal effects

p 0.041 0.042 0.039
q 0.012 0.015 0.011

Loglikelihood 3,884 3,940 3,825
Observations 22,184 22,088 22,280

60



Table IV. Parameter estimates: security/seniority

The table presents the parameter estimates for the model defined by equations (1)–(6) for senior secured (1) and
senior unsecured (2) loans, where we have (i) a single factor underlying all categories with different coefficient
or (ii) a different factor for category. The standard errors are in parentheses next to the estimates. Panel A
presents the parameter estimate of the factor component, the AR coefficient ρ. Panel B presents the parameter
estimates of the LGD components, a mixture of two normals with the same variance σ2

j , for good (µj0) and
bad (µj1) loans, where µj0 < µj1, for all groups j = 1, . . . , J . The probability of a bad loan is given by
pjt = Λ

(
βl
j0 + βl

j1αt

)
, where Λ(x) = exp(x)/

(
1 + exp(x)

)
is the logistic function. Panel C presents parameter

estimates of the default rate component where the number of defaults follows a binomial distribution with default
probability qt = Λ

(
βd
0 + βd

1αt

)
. Panel D presents the parameter estimates of the macroeconomic component,

the intercepts β0 and the coefficients β1, with the variables gross domestic product (GDP), industrial production
(IP) and unemployment rate (UR), all in difference to the same period in the previous year and standardized to
have zero mean and unit variance. Panel E presents the mean marginal effects, defined as the average over the
marginal effects ∂Λ(β0 +β1αt)/∂β1, for all t = 1, . . . , T , for the probabilities of a bad loan pj and the probability
of default q. Finally, the bottom of the table presents the loglikelihood and the number of observations, given by
the sum of the LGD, default rate and macroeconomic observations.

Parameter Single factor Senior secured Senior unsecured

Panel A: Factor

ρ 0.529 (0.157) 0.624 (0.144) 0.478 (0.184)

Panel B: Loss given default

µ10 0.070 (0.002) 0.070 (0.002)
µ11 0.766 (0.004) 0.765 (0.004)
σ1 0.129 (0.001) 0.129 (0.001)

βl
10 −1.927 (0.184) −1.937 (0.206)

βl
11 0.504 (0.075) 0.452 (0.071)

µ20 0.071 (0.001) 0.071 (0.001)
µ21 0.858 (0.003) 0.858 (0.003)
σ2 0.130 (0.001) 0.130 (0.001)

βl
20 −1.501 (0.067) −1.505 (0.065)

βl
21 0.172 (0.005) 0.182 (0.040)

Panel C: Default rate

βd
0 −4.463 (0.214) −4.403 (0.177) −4.618 (0.263)

βd
1 0.575 (0.076) 0.383 (0.030) 0.676 (0.164)

Panel D: Macro variables

βGDP
0 −0.013 (0.225) −0.016 (0.259) 0.004 (0.217)
βGDP
1 −0.505 (0.068) −0.497 (0.060) −0.501 (0.076)
βIP
0 −0.010 (0.206) −0.012 (0.229) 0.004 (0.210)
βIP
1 −0.395 (0.055) −0.384 (0.049) −0.454 (0.070)
βUR
0 0.012 (0.218) 0.015 (0.254) −0.003 (0.193)
βUR
1 0.461 (0.063) 0.477 (0.059) 0.322 (0.053)

Panel E: Mean marginal effects

p1 0.058 0.052
p2 0.026 0.027
q 0.008 0.005 0.008

Loglikelihood 4,208 2,317 1,763
Observations 21,838 9,827 12,115
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Table V. Parameter estimates: asset class

The table presents the parameter estimates for the model defined by equations (1)–(6) for loans of asset classes
large corporate (LC, 1) and small and medium enterprises (SME, 2), where we have (i) a single factor underlying
all categories with different coefficient or (ii) a different factor for category. The standard errors are in parentheses
next to the estimates. Panel A presents the parameter estimate of the factor component, the AR coefficient ρ.
Panel B presents the parameter estimates of the LGD components, a mixture of two normals with the same
variance σ2

j , for good (µj0) and bad (µj1) loans, where µj0 < µj1, for all groups j = 1, . . . , J . The probability of
a bad loan is given by pjt = Λ

(
βl
j0 + βl

j1αt

)
, where Λ(x) = exp(x)/

(
1 + exp(x)

)
is the logistic function. Panel

C presents parameter estimates of the default rate component where the number of defaults follows a binomial
distribution with default probability qit = Λ

(
βd
i0 + βd

i1αt

)
, for all groups i = 1, . . . , Nd. Panel D presents the

parameter estimates of the macroeconomic component, the intercepts β0 and the coefficients β1, with the variables
gross domestic product (GDP), industrial production (IP) and unemployment rate (UR), all in difference to the
same period in the previous year and standardized to have zero mean and unit variance. Panel E presents the
mean marginal effects, defined as the average over the marginal effects ∂Λ(β0 + β1αt)/∂β1, for all t = 1, . . . , T ,
for the probabilities of a bad loan pj and the probabilities of default qi. Finally, the bottom of the table presents
the loglikelihood and the number of observations, given by the sum of the LGD, default rate and macroeconomic
observations.

Parameter Single factor Large corporate SME

Panel A: Factor

ρ 0.406 (0.177) 0.358 (0.200) 0.604 (0.163)

Panel B: Loss given default

µ10 0.075 (0.002) 0.075 (0.002)
µ11 0.849 (0.005) 0.849 (0.005)
σ1 0.126 (0.001) 0.126 (0.001)

βl
10 −1.778 (0.094) −1.788 (0.094)

βl
11 0.289 (0.053) 0.312 (0.059)

µ20 0.062 (0.001) 0.062 (0.001)
µ21 0.849 (0.003) 0.849 (0.003)
σ2 0.124 (0.001) 0.124 (0.001)

βl
20 −1.643 (0.093) −1.635 (0.123)

βl
21 0.305 (0.014) 0.282 (0.050)

Panel C: Default rate

βd
10 −2.676 (0.296) −2.706 (0.230)

βd
11 0.948 (0.271) 0.739 (0.173)

βd
20 −6.690 (0.237) −6.665 (0.182)

βd
21 0.754 (0.178) 0.405 (0.053)

Panel D: Macro variables

βGDP
0 −0.006 (0.202) −0.005 (0.192) −0.015 (0.244)
βGDP
1 −0.469 (0.071) −0.414 (0.068) −0.469 (0.061)
βIP
0 −0.005 (0.194) −0.004 (0.185) −0.013 (0.226)
βIP
1 −0.388 (0.060) −0.328 (0.055) −0.397 (0.053)
βUR
0 0.005 (0.195) 0.003 (0.180) 0.015 (0.245)
βUR
1 0.399 (0.062) 0.243 (0.043) 0.473 (0.061)

Panel E: Mean marginal effects

p1 0.036 0.039
p2 0.042 0.039
q1 0.072 0.050
q2 0.001 0.001

Loglikelihood 4,287 1,435 2,801
Observations 18,636 6,600 12,132
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Table VI. Parameter estimates: industry

The table presents the parameter estimates for the model defined by equations (1)–(6) for loans of industries
consumer staples (CS, 1), financials (FIN, 2) and industrials (IND, 3), where we have (i) a single factor underlying
all categories with different coefficient or (ii) a different factor for category. The standard errors are in parentheses
next to the estimates. Panel A presents the parameter estimate of the factor component, the AR coefficient ρ.
Panel B presents the parameter estimates of the LGD components, a mixture of two normals with the same
variance σ2

j , for good (µj0) and bad (µj1) loans, where µj0 < µj1, for all groups j = 1, . . . , J . The probability of

a bad loan is given by pjt = Λ
(
βl
j0 + βl

j1αt

)
, where Λ(x) = exp(x)/

(
1 + exp(x)

)
is the logistic function. Panel

C presents parameter estimates of the default rate component where the number of defaults follows a binomial
distribution with default probability qit = Λ

(
βd
i0 + βd

i1αt

)
, for all groups i = 1, . . . , Nd. Panel D presents the

parameter estimates of the macroeconomic component, the intercepts β0 and the coefficients β1, with the variables
gross domestic product (GDP), industrial production (IP) and unemployment rate (UR), all in difference to the
same period in the previous year and standardized to have zero mean and unit variance. Panel E presents the
mean marginal effects, defined as the average over the marginal effects ∂Λ(β0 + β1αt)/∂β1, for all t = 1, . . . , T ,
for the probabilities of a bad loan pj and the probabilities of default qi. Finally, the bottom of the table presents
the loglikelihood and the number of observations, given by the sum of the LGD, default rate and macroeconomic
observations.

Parameter Single factor Consumer staples Financials Industrials

Panel A: Factor

ρ 0.491 (0.170) 0.933 (0.048) 0.742 (0.133) 0.373 (0.234)

Panel B: Loss given default

µ10 0.056 (0.002) 0.056 (0.002)
µ11 0.851 (0.006) 0.851 (0.006)
σ1 0.120 (0.002) 0.120 (0.002)
βl
10 −1.662 (0.106) −1.642 (0.113)
βl
11 0.276 (0.056) 0.052 (0.017)

µ20 0.085 (0.003) 0.084 (0.003)
µ21 0.796 (0.006) 0.795 (0.006)
σ2 0.144 (0.002) 0.144 (0.002)
βl
20 −1.796 (0.190) −1.824 (0.265)
βl
21 0.539 (0.049) 0.407 (0.090)

µ30 0.056 (0.002) 0.056 (0.002)
µ31 0.836 (0.004) 0.836 (0.004)
σ3 0.119 (0.001) 0.119 (0.001)
βl
30 −1.773 (0.092) −1.781 (0.089)
βl
31 0.248 (0.012) 0.288 (0.070)

Panel C: Default rate

βd
10 −4.561 (0.126) −4.484 (0.087)
βd
11 0.346 (0.035) 0.044 (0.000)
βd
20 −5.311 (0.393) −5.120 (0.314)
βd
21 1.092 (0.328) 0.481 (0.061)
βd
30 −4.268 (0.301) −4.463 (0.336)
βd
31 0.835 (0.192) 0.937 (0.352)

Panel D: Macro variables

βGDP
0 −0.016 (0.219) −0.104 (0.495) −0.062 (0.315) −0.001 (0.198)
βGDP
1 −0.498 (0.070) −0.248 (0.013) −0.452 (0.048) −0.467 (0.076)
βIP
0 −0.013 (0.204) −0.083 (0.410) −0.050 (0.273) −0.001 (0.190)
βIP
1 −0.402 (0.058) −0.199 (0.012) −0.362 (0.040) −0.376 (0.063)
βUR
0 0.014 (0.207) 0.123 (0.574) 0.056 (0.292) 0.001 (0.185)
βUR
1 0.419 (0.061) 0.293 (0.012) 0.404 (0.044) 0.319 (0.056)

Panel E: Mean marginal effects

p1 0.037 0.007
p2 0.068 0.049
p3 0.031 0.036
q1 0.004 0.000
q2 0.010 0.013
q3 0.016 0.016

Loglikelihood 3,145 781 329 1,922
Observations 14,925 3,336 4,733 7,048
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