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Abstract

I study the usefulness of Google Trends data in nowcasting the US jobless initial claims and

employment in a factor model. In contrast to what has been established in the literature that

relevant Google search terms or search term categories improve the forecast performance, I show the

improvement is minimal, if any, when also considering other conventional macroeconomic data. This

paper provides a useful framework incorporating new data sources, which could be at weekly or daily

frequency, for nowcasting purpose. Some suggestion on the use of Google Trends series is given.
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1 Introduction

Monetary policy decisions in real time are made based on economic statistics. Because economic data are

often released with significant delay and subsequently revised, how to form early and accurate predictions

of economic conditions in the current quarter (nowcasting) and in a longer run (forecasting) becomes

crucial to central banks and markets.

The recent surge in big data may largely help in forming these predictions. Particularly, web-based

search data have drawn lots of attention of academic researchers and central bankers, and they have been

used as extra explanatory variables in forecasting models and shown to improve the forecast performance.

See, for instance, the seminal work by Choi and Varian (2012), and working papers of Bank of England

(McLaren and Schabhogue, 2011), Bank of Italy (D’Amuri and Marcucci, 2015), Bank of Spain (Artola

and Galan, 2012), Central Bank of Chile (Carrière-Swallow and Labbé, 2010), Central Bank of the

Republic of Turkey (Chadwick and Sengül, 2012), Bank of Isreal (Suhoy, 2009).

∗I thank Nikoleta Anesti, Fabrizio Dell’Acqua, Raffaella Giacomini, Matthew Harding, Sebastian Hohmann, Silvia
Miranda Agrippino, Michael McCracken, Michele Modugno, Athanasios Orphanides, Lucrezia Reichlin, the seminar partic-
ipants at Now-casting, DIW Macroeconometric workshop 2015, LBS Brownbag, for helpful comments and discussion. Part
of this paper was written during my visit to the Bank of England. I thank for their hospitality and the view of this paper
does not necessarily reflect those of the Bank of England. Email: xli@london.edu.

1



However, two aspects of search data are of great interest but they have not been addressed in the

literature. Intuitively, these data can be helpful in roughly two ways: first, they might be able to measure

some economic activities that traditional measures or methods fail to capture, and second, these data

are released without much delay. The first point refers to their actual efficacy. Bean (2015) discusses the

falling response rates to traditional survey questionnaires and internet-based services that are not picked

up by conventional approaches. This is where query data can be helpful. But given they may already

have a large set of economic data at hand that may contain very similar information, what can policy

makers or economic decision makers make of this new type of data? Most literature has said nothing

about this, as the forecasting models so far used in the literature are not able to incorporate data series

of different frequencies and of large dimensions.

The second point is timeliness. National statistical institutes usually publish economic data with

material delay. For example, the first estimate of the US gross domestic product (GDP) is published about

30 days after the reference quarter. In fact, traditional data sources face a trade-off between timeliness

and accuracy: early estimates based on incomplete information will be less reliable than later ones based

on more complete information. Bean (2015, Chart 2.A) shows the quantity of information available

for measures of UK GDP increases following the end of the reference quarter. The first (preliminary)

estimate, which comes out 25 days after the reference quarter, includes roughly 47% of output data for

that quarter. By the time the third estimate is published, 89 days after the end of the reference quarter,

well over 90% of the data is available. But the longer a decision maker has to wait for the statistics,

the less useful are they likely to be. Survey data are more timely: it is possible to get survey results

around five to ten days before the reference period. And previous studies have shown the indispensable

role of survey data for GDP forecast when their timely publication is taken into account properly (see,

for instance, Bańbura and Rünstler, 2011). New data sources, such as web-based query data, have a big

advantage in terms of timeliness. Thank to technological advances, these data are ready for publication

nearly instantaneously upon occurrence of real economic activities and they do not require subsequent

revisions. This could be exploited to get more timely predictions. Again, in presence of other variables,

does their timely publication improve forecast? This question requires a model that can take into account

constant information flows.

In this paper, I address these two questions using a state-of-art factor model as in Bańbura et al

(2013). I need to emphasize the difference between this approach and what has been established in the

literature. In most of the papers that study the use of query data in nowcasting for forecasting (see,

e.g. Choi and Varian, 2012; D’Amuri and Marcucci, 2015, Doornik, 2009), only very simple time series

models are used, such as AR or ARMA, and search data enter the models as extra predictors. These

models have a few drawbacks in our nowcasting context: they are not able to take into account of a large

number of series and facilitate comparison of their information content; they can use only a monthly
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series of search data (typically weekly) by selecting one or two specific weeks or by averaging weeks over

a month or a quarter to retain the same frequency as the forecast target leads to impoverishment of the

data (Fondeur and Karamé, 2013).

The factor model used in this paper can overcome these drawbacks. The idea is that in this model the

unconventional search data are put together with other key economic variables and the data are potentially

(i) of large dimension and (ii) of mixed frequencies and are released (iii) at different publication lags

(‘ragged edge problem). The forecast is updated upon every release and forecast accuracy is measured.

This mimics the information flows in real time and facilitates assessment of the usefulness of the new

data. Furthermore, this model allows for counterfactual analysis in the sense that we can easily push

forward or backward the publication date so that the timeliness of data can be promoted or deduced.

Then we will be able to discern whether improvement in forecast accuracy, if any, is attributed to efficacy

or timeliness.

Factor models, featured as a parsimonious scheme, have been shown as successful in summarizing

information, as well as nowcasting, and they have been widely used in academic literature and in central

banks (see also Boivin and Ng, 2005; Forni et al., 2005b; D’Agostino and Giannone, 2006; Giannone et

al., 2008; Marcellino et al., 2003; Stock and Watson 2002a, b).

Within this framework, I show an application of Google Trends data to the US labour market. To

be exact, I take the two indices used in an influential paper in this literature, Choi and Varian (2012),

put them together with other 29 economic variables, which are often used in a factor model for nowcast-

ing purpose, and forecast the US jobless initial claims and employment. Then I compare the forecast

performance of the model with Google search data and without. This exercise has various purposes.

First, Google Trends query data have received an enormous amount of attention and have led to rather

fruitful research. Second, the application to labour variables is steadily backed by the theory: in a classic

search-and-match model, the number of newly matched pairs of vacancies and workers is a function of

the workers that have been searching for a job and the vacancies that have been posted by companies

(see, e.g. Pissarides, 2000). Therefore, Google Trends series that are a direct measure of search intensity

should shed some light on employment condition. This application seems somehow more natural than

GDP forecasting.

The framework is so flexible that applications can be easily done to other forecast target, regardless

of its frequency and publication lags, or to data of other countries, though it might require some careful

selection of the search keywords. It is likely that this type of new data should be more helpful when data

quality is poor or publication lags are significant.

Another contribution of this paper is a rather comprehensive literature review. I discuss the platform

of Google Trends and of Google Correlate, and their applications in different fields. Several issues that

may influence robustness of forecast results, such as variable selection and sampling error, are discussed
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in detail and suggestion to tackle these issues is provided.

The remaining part of the paper is organized as follows: Section 2 gives an introduction to Google

Trends and Google Correlate, Section 3 discusses various issues of the data, and reviews the applications

and the methodology, Section 4 sets up a dynamic factor model, Section 5 reviews the data, Section 6

shows the empirical results, and Section 7 concludes.

2 Google Trends and Google Correlate

2.1 Google Trends

Understanding the data series we are working with is necessary, especially when the data source is

unconventional. So in this section I give an introduction to how Google Trends and Google Correlate

are constructed and what can be achieved from the their websites. A part of the description is borrowed

from D’Amuri and Marcucci (2015).

The Google Trends website gives how often a particular term is searched relative to the total search

volume over a certain period of time in a certain geographical region. It gives an index, instead of the

absolute number of searches, due to privacy reason. Particularly, the index is constructed in the following

way: the search share Sd,r for a particular keyword in day d, in region r, is given by the number of web

searches containing that keyword, Vd,r, divided by the total number of web searches performed through

Google in the same day in that area Td,r, i.e. Sd,r = Vd,r/Td,r . A week is defined to start on Sunday

and end on Saturday. Then the search share of week w is given by the weekly average

Sw,r =
1

7

Sat∑
d∈w,d=Sun

Sd,r.

Upon request, the Google Trends website produces an index, with the largest Sw,r in the requested period

scaled to 100. To be precise, if a user requests the Google Trends index over weeks that are in a set

[w,w], then the Google Trends website will give the index GIw,r as

GIw,r =
100

max
i∈[w,w]

Si,r
Sw,r, w ∈ [w,w].

Data are gathered using IP address information and are made available to the public if the number of

search terms exceeds a certain undeclared threshold. Repeated queries from a single IP address within

a short period of time are eliminated to avoid a single person or a robot sending identical queries over a

short period to bias the sample.

The data is available since Jan 04, 2004. The index for j-th week is available at the beginning (with

Sunday as the first day) of the (j + 1)-th week. This timely release enables us to conduct early forecast,
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as argued in Choi and Varian (2012). By default, the data exported from the website is weekly if the

requested period is longer than three months. For instance, if one requests the search index for the word

‘Jobs’ from Jan 04, 2004 to present, the dataset will be weekly. However, the website will generate daily

index if the requested time span is less or equal to three months. With the transformation specified

in Appendix B, it is possible to achieve a daily version of the index. Depending on the purpose, one

can decide which frequency to use. Obviously high-frequency data contains more noise, for instance, the

search category ‘Jobs’ exhibits strong seasonality during a week, with clear troughs on weekends.

Apart from time span, Google Trends also provides options on countries, regions, cities, categories,

and languages, if one has particular interest in these features. There are altogether 25 categories and

about 200 subcategories. When a category is requested, the index will be given in the percentage change

of the index (over the previous period) with the observation of the week starting on Jan 04, 2004 initialized

as 0%.

2.2 Google Correlate

Google Correlate is a tool that allows users to upload their data series of interest, and it computes

the Pearson Correlation between the data of interest and the search intensity of every query in Google

database, then shows the queries whose search intensity over time is most correlated with the data of

interest (Vanderkam et al, 2013).

Google Correlate provides data of two kinds: spatial and temporal. The spatial one allows us to

upload a dataset by US state. Then it gives the queries whose search intensity across states is most

correlated with the data of interest. The temporal one allows us to upload a time series starting from

Jan 04, 2004. It allows for weekly and monthly frequency. And therefore it gives the queries who search

intensity over time is most correlated and these queries are of the same frequency as the series of interest.

The search intensity again is an index instead of an absolute number. Figure 1 gives an example of a

Google Correlate request. The target variable, the US unemployment rate (seasonally unadjusted) has

been uploaded and Google Correlate produces a list of 100 search terms whose search intensity is most

positively correlated with the target. And beneath the list, the plot shows the search intensity of one of

the terms, together with the target.

3 Literature: issues, applications and methods

In this section, I discuss the various issues with Google Trends and Google Correlate data and review

how the literature tackles these issues. In the meantime, I review the applications and methods that have

been established in the literature.
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3.1 Variable Selection

Variable selection has to do with two questions. One question is how Google applies its algorithm to

millions of queries and form the indices in Google Trends and Google Correlate. It is unknown to us how

the algorithm is designed and whether the algorithm is stable over time. Lazer et al (2014) discuss this

algorithm dynamics problem.

Another question is how we economists select variables from the output of Google Trends and Google

Correlate. Judgment is involved in most of the existing literature when it comes to select predictors. See,

for instance, Choi and Varian (2012). Da et al (2015) take the well-known dictionaries in the finance and

textual analytics literature (Tetlock 2007) as a starting point, where the latter provides a better ground

for keyword selection. However, there are a few studies trying to automatize the variable selection

procedure. In their seminal work, Ginsberg et al (2009) automatically pick 45 queries from 50 million

candidate queries based on the fit against out-of-sample influenza-like illness data. So their method is

automatic but exhaustive. Scott and Varian (2014) also make the attempt to construct a more robust and

automatic system selecting predictors for nowcasting weekly initial claims and monthly retail sales. They

build a state space model with a time series part that captures the trend and seasonality in the data and

a regression part that includes predictors from Google Trends and Google Correlate. Bayesian shrinkage

is used in the regression part for variable selection. They show that adding the regression part can reduce

the forecast error. However, there is still another problem with Google Correlate, which is that the 100

queries might not have economic meaning. As Scott and Varian (2014) argue, in case of nowcasting

weekly initial claims (seasonally unadjusted), ‘of the 100 top predictors from Google Correlate, 14 were

queries for unemployment for a specific state’. But this is not true in case of the weekly jobless claims

(seasonally adjusted) or unemployment rate (seasonally adjusted or unadjusted). Take unemployment

rate (seasonally unadjusted) as an example. Figure 1 shows the Google Correlate output when the US

unemployment rate (seasonally unadjusted) is the target: out of the top ten most relevant search terms,

only ‘alabama unemployment’ is economically meaningful. If we included all these terms in our regression

model, the regression would be spurious and it is quite unlikely that the predictors can add any predictive

power. Though they do not discuss this problem explicitly, Scott and Varian (2014) add Google Trends

data with economic meaning as predictors when nowcasting monthly retail sales, which does slightly

better than only using Google Correlate data.

3.2 Sampling Error

To increase the response speed, Google currently calculates the index based on a random sample from the

historical data and this will result in sampling error. This is hard to detect because if a user sends the

same request from the same gmail account, from the same IP address on the same day, Google will give

the same index value. This is why most papers in the literature do not mention this. Choi and Varian

6



(2012) mention that ‘Google Trends data is computed using a sampling method and therefore vary a few

percent from day to day’. Da et al (2015) also realize the sampling issue but they believe that the impact

of such sampling error is small for their study and it should bias against finding significant results.

On the other hand, Carrière-Swallow and Labbé (2010) notice that the sampling appears to take

place daily, such that requesting an identical query on different days returns slightly different series.

They downloaded the series on 17 occasions during May and June 2010 and compute the cross-sectional

mean at each time t. They also plot the signal-to-noise ratio of the series and they conclude the signal is

strong according to the Rose criterion. D’Amuri and Marcucci (2015) point out that the indices can vary

depending on the download date and the IP address. Therefore, they take the average of 24 downloads

carried out on 12 different days from two IP addresses, and they argue the correlation between these

downloads are never lower than 0.99. McLaren and Schabhogue (2011) also notice the sample is drawn

daily and they take the average of the data generated on seven consecutive days. However, in their

application to housing market, they notice Google Trends data of certain search terms vary significantly

when downloaded on different days, perhaps because of low search volumes and this volatility affects the

robustness of the result. Instead, they choose a search term more stable when downloaded on different

days to circumvent this problem.

In order to gauge the magnitude of the sampling error and to assess its impact on forecast performance,

I did two exercises. The first exercise is to download multiple samples on the same day. The purpose

of this is, first, to mimic the real-time nowcasting practice, that is, once a data point comes out, it

should be immediately incorporated into the model, as opposed to downloading the data over multiple

days as in Carrière-Swallow and Labbé (2010) and McLaren and Schabhogue (2011). Of course, one can

argue that the latter approach might help mitigate the sampling error, but there is always a trade off

between timeliness and signal precision. The second purpose is that if the sampling error turned out to

be large, we could consider using sample mean of these multiple downloads as the data to incorporate

into the forecasting model instead of a single download. Precisely, I focus on the same two categories,

‘Jobs & Education\Jobs’ and ‘Law & Government\Social Services\Welfare & Unemployment’ as

in Choi and Varian (2012). And I downloaded 52 samples, using four different gmail accounts, from 13

different IP address, on Dec 25, 2015. In this way, most of the samples are identical 1. The original data

used in Choi and Varian (2012) is available from Hal Varian’s website. In Figure 2 and 3, the upper

panels show the raw data series from Choi and Varian (2012) and the sample mean of 52 samples and

the lower panels show the standard deviation of the samples. Three points emerge: first, the within-day

sampling error is not as large, compared to the magnitude of the index. The standard deviation of

Jobs stabilizes around 0.6, and the standard deviation of Welfare & Unemployment ranges from 1 to

1I also tried downloading the data from different gmail accounts, from different IP, but on different days in November
2015 and it turns out that samples between days vary a bit more than within days. The standard deviation of Jobs is
around 1.5 while the standard deviation of Welfare & Unemployment still ranges from 1 to 5. If plotted, though, these
samples look nearly identical because the variation is yet small compared to the absolute magnitude of the indices.
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5. Second, the between-day variation seems more important, and particularly, the variation caused by

dynamic algorithm as mentioned in Section 3.1 seems to be the main source of such variation, instead

of between-day sampling error. This is because the data downloaded over a shorter period of time, say,

a month, vary much less than the data downloaded over a longer elapse (e.g. compare my samples with

Choi and Varian (2012)). Third, the magnitude of sampling error may vary a lot across indices. As

mentioned in McLaren and Schabhogue (2011), some search terms might be too volatile to facilitate any

forecast. Therefore a careful study into the sampling error is essential, prior to any application of such

data.

The second exercise is to assess the impact of sampling error on nowcasting. To this end, I do a

baseline forecast evaluation, following Choi and Varian (2012), using the data available at these two

vintages. Table 1 shows the mean absolute error (MAE) and root mean square error (RMSE) of 1-

step-ahead forecast of initial claims using a random walk without drift (RW), a random walk with drift

(RW with drift), an AR(1), an AR(1) augmented by Google Trends series ‘Jobs’ and ‘Welfare &

Unemployment’. Further, the augmented AR model takes the Google Trends series with three variations:

(a) the same data used in Choi and Varian (2012), deseasonalized using stl command with the smoothing

parameter s.window=‘periodic’, (b) the same data used in Choi and Varian (2012), deseasonalized using

stl command with the smoothing parameter s.window=7, (c) one data sample 2 that was downloaded on

Dec 25, 2015, deseasonalized using stl with the smoothing parameter s.window=‘periodic’. The sample

period is Jan 10, 2004 to Jul 01, 2011 and the evaluation periods are listed in the table. These are

the same in Choi and Varian (2012). As we can see, their original result is not very robust to different

vintages, and several 1-ratios that are less than one become larger with the new data.

From the previous exercises it is clear that depending on the search term, sampling error can vary and

the forecast performance may be affected by sampling error. Given the sampling approach of Google,

downloading the series from multiple IP addresses over a short period of time and getting the average

seems a good solution. However, when the target variable of forecast comes at a high frequency, e.g.

weekly, then downloading over days or weeks is not timely any more; it has to be done with a day or so.

This, in turn, requires a large number of gmail accounts and IP addresses and hence web crawling might

be worth trying. But again, as we do not know the ‘true’ dataset, there is no way of know what is the

sufficient sampling size.

3.3 Individual and Social Searching

Ormerod et al (2014) point out that people may search for a phrase because they genuinely want the

information (independent searching) or they may search simply because others are searching for it (social

searching), and this may affect forecasting result. Using the Bass diffusion model, they show that the

2The result using the sample mean is very similar to the result using one single sample.
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independent search for information motive was much stronger in the cases of accurate prediction than

in the inaccurate ones and social search was stronger in the cases of inaccurate prediction. Then an

important task is therefore to give some indication about the relative importance of the individual and

social motives for the searches, in the early phase of a rise in search activity. Bentley and Ormerod

(2010) show that using the Bass model a rapid rise followed by a slow decline indicates more independent

motives, whereas a symmetrical outcome indicates more social motives. But they do not provide a way

for diagnosis ex ante.

3.4 Seasonality

Seasonality is a prominent feature of Google Trends data. Figure 2 shows the strong seasonal component

in ‘Jobs’, while it is not the case with ‘Welfare & Unemployment’ in Figure 3.

In presence of such seasonality, it is natural to deseasonalize the data before using it. Choi and

Varian (2012) use a command stl in R for seasonal adjustment, which is essentially a local regression

method (Cleveland et al, 2009). Shimshoni et al (2009) also use the stl command, but they choose the

smoothing parameter values to minimize the MAE. D’Amuri and Marcucci (2015) claim that they use

X-13 ARIMA-SEATS method to deseasonalize monthly and weekly variables 3.

However, there are some issues with this type of methods. First, the methods mentioned above are

essentially applying a two-sided filter on the raw data, which might cause material impact on the value

at the end of the sample, while the value at the end of the sample turns out to be crucial to our forecast.

Therefore applying a two-sided filter might not be appropriate in the context of forecast. Second, the

choice of smoothing parameter value might also be a bit arbitrary and perhaps influence the forecast

performance.

To examine the impact of seasonal adjustment on forecast performance, in Table 1 I show the 1-

step-ahead forecast performance using (b) the same data used in Choi and Varian (2012), deseasonalized

using stl command with the smoothing parameter s.window=7 and their original result (a) is not very

robust. Figure 4, 5, 6, and 7 plot the raw data against the trend, seasonal and remainder part of the data,

using different values for the smoothing parameter s.window. It is clear that when s.window=‘periodic’,

there is still some seasonal component in the remainder part of ‘Jobs’, while it is much reduced when

s.window=7. This is why I choose this value of 7 as an experiment. Overall, the choice of this parameter

requires careful inspection into the characteristics of the data and can be decided by a diagnostic method

described in Cleveland et al (1990).

Given the pitfalls of filter-type seasonal adjustment, perhaps a better approach is to model the sea-

sonal component explicitly. Fondeur and Karamé (2013) incorporate trend and the seasonal component

3But X-13 ARIMA-SEATS is not designed to deseasonalize weekly variables. It can only deseasonlize monthly or
quarterly variables. Therefore the Bureau of Labor Statistics uses their own program MoveReg to deseasonalize weekly
variables, e.g. initial claims.
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in a state-space model. Scott and Varian (2014) also model the trend, seasonal and the regression part

in a state space as in Harvey (1990). This leaves us with some important questions: how does seasonal

adjustment affect forecast? How to do seasonal adjustment properly in order to get the optimal forecast?

Given the surging interest in low frequency econometrics and its application in forecasting and uncer-

tainty measurement (e.g. Müller and Watson, 2013, 2015), this could yield very important theoretical

contribution, which I leave for future research.

3.5 Nowcasting Applications

Starting from Ginsberg et al (2009) predicting influenza-like illness, one main strand of application of

Google Trends and Google Correlate data is nowcasting. The main idea is that Google search data reflects

people’s attention or interest, which is usually hard to measure. The information content of the search

data could thus be unique and useful. And also because Google produces the search data in a timely

fashion as elaborated in Section 2, the timeliness can be exploited for nowcasting.

There have been nowcasting applications on various topics: labor, consumption and consumer senti-

ment, housing, tourism, epidemics. Now I review the literature on these applications by topics.

One leading application is the nowcast of the unemployment rate or initial claims. Ettredge et al

(2005) examine whether rates of employment-related searches by Internet users are associated with un-

employment levels disclosed by the U.S. government in subsequent monthly reports. A positive, significant

association is found between the job-search variables and the official unemployment data. They also ob-

serve longer lead times are associated with lower explanatory power. Following this branch of interest,

Askitas and Zimmermann (2009) find strong correlations between keyword searches and monthly German

unemployment rate. D’Amuri and Marcucci (2015) find models augmented with Google data outperform

the traditional ones in predicting the US unemployment rate. Fondeur and Karamé (2013) get similar

result from a state space model nowcasting youth unemployment in France. With Israeli data, Suhoy

(2013) concludes Google query indices, from human resources (amongst others) are helpful in drawing

inferences about the state of current economic growth, given the fact that official data are released with

a delay. Choi and Varian (2012) use the query category ‘Jobs’ and ‘Welfare & Unemployment’ from

Google Trends to help predicting the initial claims in the US. Scott and Varian (2014) use a structural

time series model with a regression component capturing the contribution of Google Correlate data and

forecast initial claims. Bughin (2010) does the nowcasting exercise for Belgian, Chadwick and Sengül

(2012) for Turkey, and McLaren and Schabhogue (2011) for the UK.

On consumer behavior, Della Penna and Huang (2009) construct a consumer sentiment index for

U.S. using Google Searches. Goel et al (2010) show that what consumers are searching for online can

also predict their collective future behavior days or even weeks in advance. Kholodilin, Podstawski and

Siliverstoves (2011) find Google search activity can help in nowcasting the year-on-year growth rates
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of monthly US private consumption using a real-time data set. Vosen and Schmidt (2009) introduce

a new indicator for private consumption based on search queries provided by Google Trends and this

indicator outperforms other survey-based indicators both in-sample and out-of-sample. Carrière-Swallow

and Labbé (2010) conduct similar out-of-sample evaluation for forecasting automobile sales in Chile.

Scott and Varian (2014) use a structural time series model to nowcast retail sales. Choi and Varian

(2012) show various examples for nowcasting motor sales, travel, and consumer confidence using Google

Trends data.

On housing market, Kulkarni et al (2009) use Google search index at the city level to predict to predict

change in the seasonally adjusted Case-Shiller index for 20 cities. Wu and Brynjolfsson (2014) find that

a housing search index is strongly predictive of future housing market sales and prices. McLaren and

Schabhogue (2011) use housing related search terms to predict housing price in the UK.

Other nowcasting applications are: inflation expectation (Guzman, 2011), epidemics (Ginsberg et al,

2009, Dukic et al, 2012), Birth (Billari, D’Amuri and Marcucci, 2013), tourism (Song, Pan and Ng, 2009,

Choi and Liu, 2011), and special events (Schmidt and Vosen, 2012).

So far the literature seems to have suggested the usefulness of Google Trends and Google Correlate

data in nowcasting, however, we can easily see why it might not be the case by reviewing the models

primarily used in the literature. Typically, most of the papers in the literature use the following model:

φ(L)yt = α+ βxt + θ(L)εt. (1)

where yt is the variable to forecast, φ(L) and θ(L) are lag polynomials. Some papers take φ(L) = 1− aL

and θ(L) = 1 (e.g. Choi and Varian, 2012) or use information criteria to select the model (e.g. Schmidt

and Vosen (2009)). D’Amuri and Marcucci (2015) run a horserace among various AR and ARMA models

and select the one with the smallest MSE. xt stands for extra predictors consisting of Google queries. It

is important to keep in mind that the reason we can do this regression with contemporaneous xt is that

the release of xt is more timely than yt (Choi and Varian, 2012). xt can either be the query index of a

single word, such as ‘jobs’, or it can be the index for relevant categories or subcategories, such as ‘Luxury

goods’, ‘Home furnishing’ as in Della Penna and Huang (2009), or principal components extracted

from the high dimensional Google search series as in Schmidt and Vosen (2009) and Kholodilin et al

(2010). Then the out-of-sample performance of this augmented model is compared with a benchmark

AR(1) model. 4

4There are some exceptions though. Fondeur and Karamé (2013) use weekly series of web queries and monthly series of
unemployment, extract the unobserved components with a modified Kalman filter so that both nonstationarity and multiple
frequencies are taken into account. But just as Fondeur and Karamé (2013) admit in their paper that ‘the choice of keywords
is of course crucial for the study’, in these works researchers select predictors using their own judgment of relevance to the
particular prediction problem. Apparently, a big problem with this approach is that it does not easily scale to models where
the number of possible predictors exceeds the number of observations. For this reason, Scott and Varian (2014) adopt three
Bayesian techniques: Kalman filtering, spike-and-slab regression, and model averaging. Koop and Onorante (2013) conduct
nowcasting with dynamic model selection (DMS) method, which allow for model switching between time-varying parameter
regression models and therefore it might be helpful in an environment of coefficient instability and over-parameterization.
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Clearly, there are several issues with this approach in the context of nowcasting. The most prominent

problem is that this approach has not taken into account other available information that could be

potentially useful for nowcasting, whereas using large panels is very standard in the nowcasting literature

and proves to be successful. See, e.g. Giannone et al (2008), Bańbura et al (2013). It is unlikely that in

presence of other information, Google query can still be useful. One easy way to think of this is that,

instead of Equation (1), we consider

φ(L)yt = α+ βxt + γFt + θ(L)εt (2)

where Ft is the principal component of a large panel (See e.g. Stock and Watson, 2008) and it is very

likely that β will not be significantly different from zero and therefore xt will add minimal marginal

predictive power.

Second, the mixed frequency has not been addressed. It is crucial to keep in mind, in line with the title

of Castle et al (2009), that ‘nowcasting is not just contemporaneous forecasting’, as nowcasting makes use

of the release of contemporaneous data and thus the treatment to these timely but not necessarily accurate

time series is crucial in forecasting accuracy. When the forecast target variable and the regressors are

of different frequencies, most papers simply take the monthly or quarterly average of the weekly Google

data or select one or two specific weeks (See e.g. Choi and Varian, 2012, D’Amuri and Marcucci, 2015,

Doornik, 2009). Fondeur and Karamé (2013) realize the dataset is generally ‘impoverished’ by doing so.

Therefore their state space model is very suitable to solve the mixed-frequency problem. The state space

model in Scott and Varian (2014) should also be able to incorporate mixed frequencies, but they do not

really tackle this issue.

Given the limitations of the literature, I aim to answer three questions in this paper:

1. Are Google query data useful if we do not include other variables? (Sometimes yes, but not always

robust. See Section 3.2 and 3.4)

2. Are Google query data useful if we do include other variables, given Google is more timely? (No.)

3. Are Google query data useful if we do include other variables, given Google’s timeliness is removed?

(No. This is not surprising given the answer to the second question is no. But if the answer to

the second question was yes, then this question would clarify whether Google’s advantage is due to

timeliness or informativeness.)

3.6 Other Applications

There are also other applications of Google Trends and Google Correlate data, which do not fall into

the realm of nowcasting: investor sentiment (Da et al, 2011, Da et al 2014, Siganos, 2013), market
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volume (Bordino et al, 2012), volatility (Risteski and Davcev, 2014, Vlastakis and Markellos, 2012), risk

diversification (Kristoufek, 2013), home bias in international investment (Mondria et al, 2010), forward

looking and GDP (Preis et al, 2012), unemployment insurance and job search (Baker and Fradkin, 2015,

Stevenson, 2008), Birth (Billari et al, 2013). Given the rich structure of Google Trends and Google

Correlate, that is, they allow for spatial and temporal comparison and comparison across search terms,

I think exploiting these variation could lead to very promising and fruitful research.

4 The Model

In this section I show how to assess the usefulness of Google Trends data in presence of other information

source by using a dynamic factor model. Before I start with the specification of the model, it is worthwhile

to emphasize the features of a nowcasting problem with information flows arriving constantly and in a

non-synchronized fashion. A dynamic factor model is suitable to tackle such a problem and using a

dynamic model to assess the usefulness of Google search data seems appropriate.

First, as mentioned in Section 3.5, it is standard in the nowcasting literature to use large panels

(large n) to extract information and a suitable model should be able to handle a large panel and yet

remain parsimonious. For instance, in the practice of nowcasting real economic activities, the number of

variables is normally of two digits (e.g. Bańbura et al, 2013, n = 24, Giannone et al, 2008, n is about

200, Bańbura and Modugno, 2013, n ranges from 14 to 101, Bańbura and Rünstler, 2011, n = 76), and

hence the factor model emerges as a parsimonious way of summarizing information from these variables,

compared to the VAR model, which produces unstable estimates as the number of lags varies, which by

essence is a typical syndrome of over-parameterization.

Second, the variables used for nowcasting are released in a nonsynchronized manner. In the context

of standard forecasting, we do not care too much of the release dates of different variables, as timeliness

is not the focus of medium-term or long-term forecasting, while for nowcasting, timeliness becomes

important and therefore newly released data must be taken into account to revise the nowcast figure.

With ‘jagged-edged’ data, Kalman filter is a natural tool to take into account of the missing value. This is

implemented by putting a variance of infinity in the measurement equation when the datum is missing, or

by not aggregating this datum in the Kalman filter iteration5.In the same way, the missing values in the

beginning of the time series due to different availability of the data can be properly handled. Typically

the data used for economic forecasting are of different lengthy and it is not justifiable to disregard any

useful information. Apart from the unavailable data at the beginning and at the end of the times series,

the Kalman filter can also deal with missing data in any arbitrary pattern. This point is made clear by

5This is to say, in practice, one can put a very large number for the variance. Or equivalently, when the Kalman filter gets
updated, the time series which is not yet released at the time of estimation is omitted from the iteration. The equivalence
is due to the way the observed data enter the equation: they enter the measurement equation as precision-weighted sum,
and therefore a datum with infinite variance will enter the equation as zero. This will become clear in the remaining part
of this section.
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Bańbura and Modugno (2013).

Third, variables are of mixed frequencies. This problem was first addressed by Mariano and Murasawa

(2003), in which they combine monthly time series with quarterly GDP growth and construct a new

coincident index of business cycles. Their motivation is to exploit the information content in real GDP,

which turns out to be one of the most important coincident business cycle indicators but somewhat

ignored by previous literature. With similar rationale, we want to exploit the information from variables

at different frequencies. However, The difficulty of having multiple frequencies, e.g. weekly and daily,

is that Mariano and Murasawa (2003) approach will result in a high dimensional state space, with the

dimension of the state variables increasing at a rate of N . Bańbura et al (2013) solve this problem with

a recursive representation that gives rise to a smaller state vector, and therefore faster computation 6.

This idea can date back to Harvey (1990).

As emphasized earlier, the real-time data flow is inherently high dimensional and therefore the factor

model, featured as parsimonious, is particularly suitable in this context. The model used in this paper is

borrowed from Bańbura et al (2013), but I will lay out the key equations here.

In a dynamic factor model, the observed time series are decomposed into two orthogonal parts: one

is the common components, which is a product of the factor loadings and the factors, and the other is

the idiosyncratic terms. The idea is that the factors should capture most of the variation if the observed

series do co-move to a large extent. To be precise, we denote Y d
t as the most frequently (demeaned,

standardized) observed variables (in this paper, the most frequently observed data are daily, denoted

with a superscript of d), Λd the factor loading, and F d
t the factors, Ed

t the idiosyncratic term, and we

allow for an autoregressive structure on the factors with A(L) as the lag polynomial and Ud
t as the error

term:

Y d
t = ΛdF d

t + Ed
t (3)

F d
t = A(L)F d

t−1 + Ud
t (4)

with Ed
t

Ud
t

 ∼ i.i.d. N

0

0

 ,

Rt 0

0 Qt


 (5)

Now we specify how to integrate data of different frequencies into one state-space representation.

First we distinguish between stock and flow variables. Modugno (2011) develops a nowcasting model

with daily, weekly and monthly data. In the same fashion, Bańbura et al (2013) seek for a representation

of the less frequently observed variables as an exact aggregation of their corresponding latent, unobserved

6In Mariano and Murasawa (2003), with monthly and quarterly data, N = 5, and one factor with AR(1) dynamics, the
dimension of the state variable is 5+5N = 30. If with daily frequency, the dimension would be roughly 5+5(2×30−1) = 300.
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variables. This treatment is aimed to reduce the dimension of the state variable. Particularly, assume

that for a variable Y k,.
t that is observable every k period, for k = kw, km, kq. The subscripts w,m, q stand

for weekly, monthly and quarterly, respectively, and the dot in the superscript can either be f for a flow

variable or s for a stock variable. Y d
t is the corresponding underlying unobservable series. For instance,

initial jobless claims is a weekly flow variable, kw = 7 days, Y kw,f
t is the flow variable, with Y d

t as the

underlying unobservable daily jobless claim. As shown in Appendix A.1, the less frequently observed

variables can be represented with a weighted sum of the underlying:

Y k,s
t =

k−1∑
i=0

1︸︷︷︸
=ws

i

Yt−i =

k−1∑
i=0

ws
i (ΛdF kd

t−i + Ekd
t−i)

Y k,f
t =

k−1∑
i=−k+1

(k − |i|)︸ ︷︷ ︸
=wf

i

Yt−k+1+i =

2k−2∑
j=0

ws
j−k+1(ΛdF kd

t−j + Ekd
t−j)

Then the measurement equation can be written as follows (see Appendix A.2 for details):



Y
kq,f
t

Y
kq,s
t

Y km,f
t

Y km,s
t

Y kw,f
t

Y kw,s
t

Y kd
t



=



Λ̃q,f

Λq,s 0

Λ̃m,f

Λm,s

Λ̃w,f

0 Λw,s

Λd





F̃
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t

F
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t

F̃ km,f
t

F km,s
t

F̃ kw,f
t

F kw,s
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t



+



E
kq,f
t

E
kq,s
t

Ekm,f
t
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t

Ekw,f
t

Ekw,s
t

Ekd
t



(6)

I need to emphasize that with daily variables, i.e. the variables that are observable at the highest

frequency, we do not distinguish between flow and stock variables, as whether they are stock or flow

variables will not matter variables always observed, i.e. not regularly missing. The transition equation is



I2r 0 0 0 0 0 W
kq,f
t

0 Ir 0 0 0 0 W
kq,s
t

0 0 I2r 0 0 0 W km,f
t

0 0 0 Ir 0 0 W km,s
t

0 0 0 0 I2r 0 W kw,f
t

0 0 0 0 0 Ir W kw,s
t

0 0 0 0 0 0 Ir





F̃
kq,f
t

F
kq,s
t

F̃ km,f
t

F km,s
t

F̃ kw,f
t

F kw,s
t

F kd
t



=



Ikq,f
t 0 0 0 0 0 0

0 Ikq,s
t 0 0 0 0 0

0 0 Ikm,f
t 0 0 0 0

0 0 0 Ikm,s
t 0 0 0

0 0 0 0 Ikw,f
t 0 0

0 0 0 0 0 Ikw,s
t 0

0 0 0 0 0 0 A





F̃
kq,f
t−1

F
kq,s
t−1

F̃ km,f
t−1

F km,s
t−1

F̃ kw,f
t−1

F kw,s
t−1

F kd
t−1



+



0

0

0

0

0

0

Ut


(7)

Equation (3)-(7) complete the model and the estimation is done by the EM algorithm. The consistency

properties of the estimator are studied in Doz et al (2012).
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5 Data

We consider 29 macroeconomic series, which include components of output, labor market indicators,

price indices, surveys on the economic outlook, equity and commodity price indices. Table 2 gives

the name of the variables, their frequencies, the publication delay in number of days to the reference

period, transformation of the data and whether they are stock or flow variables. After the transformation

indicated, variables then get standardized to have zero mean and unit standard deviation.

There are a few remarks on the choice of the data series. First, depending on the objective of forecast

(in this case employment and initial claims), I choose only the real variables, as nominal variables do

not add too much predictive power if the target of forecast is real. Second, I choose only the ‘headline’

variables. By this I mean instead of including all the subcategories, I tend to only include the aggregates.

For instance, I use industrial production total index but not the sectoral disaggregates. Giannone, Reichlin

and Small (2008) use about 200 variables and show that disaggregates do not add too much marginal

predictive power. Bańbura and Modugno (2010) and Bańbura, Giannone and Reichlin (2011) analyse

the marginal influence of disaggregate data on the nowcast precision and show that it is minimal, which

supports the argument that the markets only focus on the headline of each report. The same author

also show that inclusion of these disaggregates does not deteriorate the forecast result. This, in turn,

supports the robustness of the factor model to data selection. Third, only monthly, weekly and daily

variables are used in the model while one important quarterly variable, GDP, is left out. This is due

to the consideration of quarterly variables might contain too many missing values at a daily frequency

and therefore we might risk inaccurate estimation of the parameters, while someone might have in mind,

instead, Okun’s Law that tells us when an economy’s unemployment rate falls by 1 %, its GNP rises by

3 %, which might be a reason to include GDP growth.

In terms of the query data, regardless the various issues that have been discussed in Section 3, in this

paper I use the same series as in Choi and Varian (2012) and process the data in the same way, aiming to

separate these issue from nowcasting. To be precise, I downloaded the two Google Trends series ‘Jobs’

and ‘Welfare & Unemployment’ on Dec 25, 2015 from one single IP address and seasonally adjusted

them using the stl function with the same smoothing parameters as Choi and Varian (2012). These are

the series that finally enter the model.

6 Empirical Results

6.1 Forecasting Initial Claims with a Dynamic Factor Model

Now I show the forecast performance of initial claims (FRED ticker: ICSA) from the daily dynamic

factor model, with or without the Google Trends data. The forecast exercise is designed in the following
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way: the forecast starts two weeks before the reference week and the backcast continues till one week

after the reference week as the initial claims data will be released the following Thursday. In the model

with Google Trends data, I evaluate the forecast on Mondays when Google Trends data are released

and on Thursdays when initial claims are released, while in the model without, we evaluate the forecast

only on Thursday when initial claims are released. Therefore we will have a two-step-ahead forecast

(W(-2)MON, W(-2)THU), a one-step-ahead forecast (W(-1)MON, W(-1)THU), a nowcast (W(0)MON,

W(0)THU) and a backcast (W(+1)MON, W(+1)THU). Table 3 shows the root mean forecast squared

error (RMSE) of these two specifications and Figure 8 is the bar chart of this result with time on the x

coordinate. Table 3 also shows the RMSE of an AR(1) model and a random walk (RW) with drift on

Thursdays when initial claims data is released.

To further explain why search data do not add much predictive power, we need to further look through

the evolvement of our forecast. Bańbura and Modugno (2014) denote Ωv as the information set available

at vintage v, and Iv+1 = Ωv+1\Ωv as the updated information between v and v+ 1. Then from v to v+ 1

the revision to the forecast of a variable’s realization at time t, yt, is given by

E(yt|Ωv+1)︸ ︷︷ ︸
new forecast

= E(yt|Ωv)︸ ︷︷ ︸
old forecast

+E(yt|Iv+1)︸ ︷︷ ︸
revision

and the revision part can be further decomposed as

E(yt|Iv+1) = E(ytIv+1)E(Iv+1I
′
v+1)−1Iv+1

This is saying that the revision depends on two components, news and weight. News is defined as the

difference between the realization and the projection on the previous vintage, that is to say, the news is

the part that has not been captured by the model. And weight is the correlation between news and the

forecast target. Basically these two measures can tell us why or why not some certain variable makes

a difference to the forecast: in case that a variable leads to a large revision to the forecast, it is either

because the variable contains news that is large in its magnitude, i.e. this variable provides very important

new information, even on top of other variables, or because the news is very correlated with the forecast

target and therefore even small surprise can lead to a large revision to the forecast. Figure 10 and Figure

11 show the news and weights of some selected variables. In these two graphs, both news and weights

are adjusted by variables’ standard deviations so that the bars are comparable. From Figure 10 we can

see that the magnitude of news are similar across all the selected variables while Figure 11 gives us quite

a different picture: variables, such as Industrial Production Index, Unemployment rate, employment,

have rather big weights and therefore the impact of these variables on revision to the forecast is large;

variables, such as the search series Jobs and Welfare & Unemployment, oil price, have smaller weights,

which are less than 0.01. It is interesting to see that in terms of weight, search data is similar to financial
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data. This tells us the reason why search data fail to improve the forecast because though they contain

significant amount of surprise the surprise is not very correlated to the forecast target itself. This result

is robust to other specifications of the model: removing all the financial variables, or putting real and

nominal (in this case only financial variables) in separate blocks.

6.2 Forecasting Employment with a Dynamic Factor Model

It is also interesting to discern whether the Google Trends data will improve the forecast of another key

variable, employment (FRED ticker: PAYEMS). The forecast starts from one month before the reference

month and the backcast continue till one month after the reference month as the employment data will

be released seven days after the reference month. And we do the evaluation on the 7th, 14th, 21st and

28th of a month to look closely at the impact of information release. Figure 9 shows the root mean

forecast squared error (RMSE) of these two specifications. Similarly to the result of initial claims, the

specifications yields similar forecast performance.

7 Conclusion

This paper studies the usefulness of Google Trends in forecasting the US weekly jobless claims and

monthly employment payrolls. To assess, particularly, the usefulness of these search data in presence of

other conventional macroeconomic data, the econometric framework used is a dynamic factor model that

can take into account (i) a large panel, (ii) mixed frequencies and (iii) non-synchronized publication lags.

I show that at least in the US Google Trends data do not improve the forecast accuracy of initial claims

and employment significantly.

This result contradicts the general conclusion in the literature, however, the key difference between

my approach and the ones prevailing in the literature is that instead of solely considering search data

in over-simplified econometric models, I embed them in a large dataset, which is very conventional in

todays forecast practice of central banks and markets, and assess their additional predictive power.

In turn, this calls for our reflection on the potential usefulness of search data. Typically, for countries

whose data quality is good and publication delay is moderately, the US being a leading example, search

data might not help too much. It is hard to expect that these new data sources will be better than national

statistical agencies. But for countries, whose data quality is poor or where there are very few forward-

looking variables (surveys) and data publication is subject to severe delay, search data might provide

extra information and its timely publication can be beneficial in forecasting or even cross-validating

the real economic data. This is particularly true in emerging market economics. For instance, Greek

unemployment is published about three months after the end of the reference month. Therefore applying

the same methodology detailed in this paper to some emerging market economies might give encouraging
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results. Another potential use is that, in the similar spirit as Henderson et al (2012), search data may

reckoned as a measure of some economic activity, with measurement error, and together with other

measures also subject to measurement error, they may help improve data quality, given the two errors

are orthogonal.

This paper also raises a few questions for future research. First, variable selection could be more

automatic. Promising directions are the following: first, Google Correlate selects the words whose search

intensity is most correlated to the interested series, but it will still require some judgment to remove the

meaningless words and then further compress the data as done in Varian and Scott (2014). Second, some

linguistic literature could be borrowed to pre-select the choices of words.

Second, to model seasonality in a factor model, or more generally, in any model used for forecast

purpose, becomes necessary. New data can be seasonal, while traditional seasonality adjustment process

might not be applicable to be applied to these data. Some countries statistical agencies produce only

seasonally unadjusted variables. This often requires us pre-adjust the seasonal series or model them with

other series. Despite an old topic, seasonality has regained some attention recently (Wright, 2013; Manski,

2014) as the recent financial crisis causes distortion to the estimation of seasonal factors using X-ARIMA

type of procedure. Hence explicitly modelling the seasonality component seems a better approach.
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Bańbura, M., & Rünstler, G. (2011). A look into the factor model black box: publication lags and

the role of hard and soft data in forecasting GDP.International Journal of Forecasting, 27(2), 333-346.

Billari, F., D’Amuri, F., & Marcucci, J. (2013). Forecasting births using google. In Annual Meeting

of the Population Association of America.
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Fondeur, Y., & Karamé, F. (2013). Can Google data help predict French youth unemployment?.

Economic Modelling, 30, 117-125.

Forni, M., Hallin, M., Lippi, M., & Reichlin, L. (2000). The Generalized Factor Model: Identification

and EstimationV. The Review of Economics and Statistics.

Forni, M., Hallin, M., Lippi, M., & Reichlin, L. (2004). The generalized dynamic factor model

consistency and rates. Journal of Econometrics, 119(2), 231-255.

Giannone, D., Reichlin, L., & Small, D. (2008). Nowcasting: The real-time informational content of

macroeconomic data. Journal of Monetary Economics,55(4), 665-676.

Ginsberg, J., Mohebbi, M. H., Patel, R. S., Brammer, L., Smolinski, M. S., & Brilliant, L. (2009).

Detecting influenza epidemics using search engine query data. Nature, 457(7232), 1012-1014.

Goel, S., Hofman, J., Lahaie, S. Pennock, D., and Watts, D., Predicting consumer behavior with web

search, PNAS Early Edition (2010).

Guzman, G. (2011). Internet search behavior as an economic forecasting tool: The case of inflation

expectations. The Journal of Economic and Social Measurement, 36(3).

Harvey, A. C. (1990). Forecasting, structural time series models and the Kalman filter. Cambridge

university press.

Kholodilin, K. A., Podstawski, M., & Siliverstovs, B. (2010). Do Google searches help in nowcasting

private consumption? A real-time evidence for the US. KOF Swiss Economic Institute Working Paper,

(256).

Koop, G., & Onorante, L. (2013). Macroeconomic nowcasting using Google probabilities. mimeo.

Koopman, S. J., & Harvey, A. (2003). Computing observation weights for signal extraction and

filtering. Journal of Economic Dynamics and Control, 27(7), 1317-1333.

Kristoufek, L. (2013). Can Google Trends search queries contribute to risk diversification?. Scientific

reports, 3.

Kulkarni, R., Haynes, K., Stough, R., and Paelinck, J., Forecasting housing prices with Google econo-

metrics, George Mason University School of Public Policy Research Paper 10 (2009).

Manski, C. (2014), ”Communicating Uncertainty in Official Economic Statistics,” National Bureau of

Economic Research Working Paper 20098.

Mariano, R. S., & Murasawa, Y. (2003). A new coincident index of business cycles based on monthly

and quarterly series. Journal of Applied Econometrics, 18(4), 427-443.

Müller, U., & Watson, M. W. (2013). Measuring Uncertainty about Long-Run Prediction (No.

w18870). National Bureau of Economic Research.

Müller, U. K., & Watson, M. W. (2015). Low-Frequency Econometrics (No. w21564). National

21



Bureau of Economic Research.

Pissarides, C. A. (2000). Equilibrium Unemployment Theory. MIT Press Books, 1.

Schmidt, T., & Vosen, S. (2012). Using Internet data to account for special events in economic

forecasting. Ruhr economic paper, (382).

Scott, S. L., & Varian, H. (2014). Bayesian variable selection for nowcasting economic time series. In

Economic Analysis of the Digital Economy. University of Chicago Press.

Song, H., Pan, B., & Ng, D. (2009). Forecasting demand for hotel rooms with search engine query

volume data. College of Charleston Working Paper.

Stevenson, B. (2008). The Internet and job search (No. w13886). National Bureau of Economic

Research.

Suhoy, Tanya (2009), Query Indices and a 2008 Downturn. Bank of Israel Discussion Paper (06).

Vanderkam, D., Schonberger, R., Rowley, H., & Kumar, S. Nearest Neighbor Search in Google Cor-

relate.

Vosen, S., & Schmidt, T. (2011). Forecasting private consumption: survey-based indicators vs. Google

trends. Journal of Forecasting, 30(6), 565-578.

Wu, L., & Brynjolfsson, E. (2014). The future of prediction: How Google searches foreshadow housing

prices and sales. In Economic Analysis of the Digital Economy. University of Chicago Press.

22



Evaluation period RW RW AR(1) AR(1) AR(1) AR(1)
with drift Aug.(a) Aug.(b) Aug.(c)

from to MAE 1-ratio 1-ratio 1-ratio 1-ratio 1-ratio
03 Nov 2007 02 Jul 2011 0.0313 1.0038 1.1117 1.1778 1.1750 1.1562
01 Dec 2007 30 Jun 2009 0.0312 0.9982 1.2754 1.1024 1.0630 1.0116
01 Mar 2009 01 May 2009 0.0301 1.0013 1.0182 0.7956 0.8541 0.9806
01 Dec 2009 01 Feb 2010 0.0354 0.9980 1.0072 0.8827 0.9390 1.1939
15 Jul 2010 01 Oct 2010 0.0255 1.0037 0.9911 0.9591 0.9676 0.9805
01 Jan 2011 01 May 2011 0.0516 1.0007 0.9959 0.9894 0.9691 0.9816

from to RMFSE 1-ratio 1-ratio 1-ratio 1-ratio 1-ratio
03 Nov 2007 02 Jul 2011 0.0402 1.0017 1.0996 1.1214 1.1187 1.1119
01 Dec 2007 30 Jun 2009 0.0413 0.9986 1.2139 1.0421 1.0241 0.9865
01 Mar 2009 01 May 2009 0.0376 1.0085 1.0132 0.7637 0.8063 0.9880
01 Dec 2009 01 Feb 2010 0.0423 0.9987 1.0085 0.9750 0.9742 1.1203
15 Jul 2010 01 Oct 2010 0.0296 1.0002 1.0032 1.0351 1.0120 1.0497
01 Jan 2011 01 May 2011 0.0586 0.9998 0.9976 0.9664 0.9519 0.9784

Table 1: Baseline forecast evaluation: 1-step-ahead, sample= 10 JAN 2004 - 02 JUL 2011, rolling window
= NO. (a) data used in Choi and Varian (2012), with s.window=periodic. (b) data used in Choi and
Varian (2012), with s.window=7. (c) data available on Dec 25, 2015, first cut to 10 JAN 2004 - 02 JUL
2011 then deseasonalized, with s.window=‘periodic’.

No. Variable Frequency Publication delay Transformation Stock or Flow

1 Industrial Production Index M 14 1 F
2 Capacity Utilization: Total Industry M 15 2 F
3 ISM Manufacturing: PMI Composite Index M 3 2 F
4 Real Disposable Personal Income M 29 1 F
5 Civilian Unemployment Rate M 7 2 F
6 All Employees: Total Nonfarm Payrolls M 7 1 F
7 Real Personal Consumption Expenditures M 29 1 F
8 Housing Starts: Total: New Privately Owned Housing M 19 1 F
9 New One Family Houses Sold: United States M 26 1 F

10 Manufacturers’ New Orders: Durable Goods M 27 1 F
11 Producer Price Index by Commodity for Finished Goods M 13 1 S
12 Consumer Price Index for All Urban Consumers: All Items M 14 1 S
13 Exports of Goods and Services, Balance of Payments Basis M 43 1 F
14 Imports of Goods and Services: Balance of Payments Basis M 43 1 F
15 PA Fed Manufacturing Business Outlook Survey: general activity M -10 2 F
16 Conference Board consumer confidence index M -5 2 F
17 Real Retail and Food Services Sales M 14 1 F
18 Value of Manufacturers’ Total Inventories for Durable Goods Industries M 27 1 F
19 Value of Manufacturers’ Unfilled Orders for Durable Goods Industries M 27 1 F

20 Bloomberg consumer comfort index W 4 2 F
21 Chicago Fed National Financial Conditions Index W 3 2 F
22 Initial Claims W 4 1 F
23 Continued Claims (Insured Unemployment) W 9 1 S
24 Covered Employment W 14 2 F
25 Google search category: jobs W 1 2 F
26 Google search category: welfare & unemployment W 1 2 F

27 Crude Oil: West Texas Intermediate (WTI) - Cushing, Oklahoma D 1 1 S
28 10-Year Treasury Constant Maturity Rate D 1 2 S
29 3-Month Treasury Bill: Secondary Market Rate D 1 2 S
30 Trade Weighted Exchange Index: Major Currencies D 1 2 S
31 S&P 500 D 1 1 S

Table 2: List of variables. M=monthly, W=weekly, D=daily. Publication delay is given in the number
of days compared to the reference period. For example, Industrial Production Index is published after
14 days after the referred month, i.e. May’s datum is published on 14th June. Transformation: 1=log
difference, 2=difference. F=flow variable, S=stock variable.

W(-2)MON W(-2)THU W(-1)MON W(-1)THU W(0)MON W(0)THU W(+1)MON W(+1)THU

with Google 3.904524 3.929212 3.921109 3.914779 3.922659 3.894901 3.895136 3.844584
without Google 3.929678 3.916533 3.895516 3.844744

RW 5.363574 4.902846 4.019929
AR(1) 7.397058 6.030544 4.420277

Table 3: RMSE: initial claims (ICSA). The root mean forecast squared error from a dynamic factor model
with and without Google Trends data, together with a random walk without drift and an AR(1) model.
Sample=01FEB2004-02JUL2011, evaluation=03NOV2007-02JUL2011. Figure 8 result.

M(-1)D7 M(-1)D14 M(-1)D21 M(-1)D28 M0D7 M0D14 M0D21 M0D28 M(+1)D7 M(+1)D14 M(+1)D21 M(+1)D28

with Google 0.1654 0.1505 0.1537 0.1637 0.1675 0.1430 0.1454 0.1444 0.1162 0.0967 0.0982 0.1002
without Google 0.1657 0.1507 0.1539 0.1643 0.1675 0.1431 0.1456 0.1448 0.1162 0.0964 0.0979 0.1001

Table 4: RMSE: employment. The root mean forecast squared error from a dynamic factor model with
and without Google Trends data, together with a random walk without drift and an AR(1) model.
Sample=01FEB2004-27FEB2015, evaluation=28NOV2008-27FEB2015. Figure 9 result.
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Figure 1: Google Correlate: Unemployment rate, seasonally unadjusted
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Figure 2: Google Trends: Jobs. Upper panel: data used in Choi and Varian (2012) and the average of
50 samples available on 25DEC2015. Lower panel: standard deviation of the 50 samples.
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Figure 3: Google Trends: Welfare & Unemployment. Upper panel: data used in Choi and Varian (2012)
and the average of 50 samples available on 25DEC2015.
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Figure 4: Jobs: seasonally adjusted with stl, s.window=‘periodic’
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Figure 5: Jobs: seasonally adjusted with stl, s.window=7

28



Jan2004 Jan2006 Jan2008 Jan2010 Jan2012 Jan2014 Jan2016
-100

0

100

200

300
Welfare & Unemployment: raw

Jan2004 Jan2006 Jan2008 Jan2010 Jan2012 Jan2014 Jan2016
-20

-10

0

10

20

30
Welfare & Unemployment: seasonal

Jan2004 Jan2006 Jan2008 Jan2010 Jan2012 Jan2014 Jan2016
-50

0

50

100
Welfare & Unemployment: trend

Jan2004 Jan2006 Jan2008 Jan2010 Jan2012 Jan2014 Jan2016
-50

0

50

100

150
Welfare & Unemployment: remainder

Figure 6: Welfare & Unemployment: seasonally adjusted with stl, s.window=‘periodic’
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Figure 7: Welfare & Unemployment: seasonally adjusted with stl, s.window=7
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Figure 8: RMSE: ICSA. Sample=01FEB2004-02JUL2011, evaluation=03NOV2007-02JUL2011. The
RMSE of a random walk model is 4.019929 and an AR(1) 4.420277, over the same period for one-
step-ahead forecast.

Figure 9: RMSE: employment. Sample=01FEB2004-27FEB2015, evaluation=28NOV2008-27FEB2015.
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Figure 10: News of selected variables. Standardized. Sample=01FEB2004-02JUL2011,
evaluation=03NOV2007-02JUL2011. 32



Figure 11: Weights of selected variables. Standardized. Sample=01FEB2004-02JUL2011,
evaluation=03NOV2007-02JUL2011. 33



APPENDICE

A Details on the Factor Model with Mixed Frequencies and

Missing Data

A.1 Temporal Aggregation of Stock and Flow variables

Denote raw series as zkt , and the latent series as zt, where k is the number of intervals between the

observed zkt .

Stock variables For a stock variable, the observed variable equals the latent variable

zkt = zt

and if ykt is the difference of zkt
7, then

ykt = zkt − zkt−k

= zt − zt−k

= (zt − zt−1) + (zt−1 − zt−2) + · · ·+ (zt−k+1 − zt−k)

= ∆zt + ∆zt−1 + · · ·+ ∆zt−k+1

=: yt + yt−1 + · · ·+ yt−k+1

=

k−1∑
i=0

1︸︷︷︸
=ws

i

·yt−i

Flow variables For a flow variable, the observed variable equals the sum of latent variable over the past

interval

zkt = zt + zt−1 + · · ·+ zt−k+1

7The reason we work with ykt instead of zkt is because zkt is oftentimes nonstationary, and it must be transformed to a
stationary series. However, whether zkt is a stock or flow variable will influence the relation between ykt and yt. We thank
Alberto Caruso for bringing up this point.
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and if ykt is the difference of zkt , then

ykt = zkt − zkt−k

= (zt + zt−1 + · · ·+ zt−k+1)− (zt−k + zt−k−1 + · · ·+ zt−k−k+1)

= (zt − zt−k) + (zt−1 − zt−k−1) + · · ·+ (zt−k+1 − zt−k−k+1)

= [(zt − zt−1) + (zt−1 − zt−2) + · · ·+ (zt−k+1 − zt−k)]

+ [(zt−1 − zt−2) + (zt−2 − zt−3) + · · ·+ (zt−k − zt−k−1)]

+ . . .

+ [(zt−k+1 − zt−k) + (zt−k − zt−k−1) + · · ·+ (zt−k−k+2 − zt−k−k+1)]

= (∆zt + ∆zt−1 + · · ·+ ∆zt−k+1)

+ (∆zt−1 + ∆zt−2 + · · ·+ ∆zt−k)

+ . . .

+ (∆zt−k+1 + ∆zt−k + · · ·+ ∆zt−k−k+2)

= (yt + yt−1 + · · ·+ yt−k+1)

+ (yt−1 + yt−2 + · · ·+ yt−k)

+ . . .

+ (yt−k+1 + yt−k + · · ·+ yt−k−k+2)

=

k−1∑
i=−k+1

(k − |i|)︸ ︷︷ ︸
=wf

i

yt−k+1+i

Notice in the second line, there are k items in each parentheses; in the third line, there are k parentheses

and it uses a standard trick to pair zt with its k-order lag; the last line resembles the weights in spectral

density 8: yt−k+1 appears k times, while yt and yt−k−k+2 appear only once.

Notice the similarity and difference of these two aggregations. They are both sums of the past latent

variables. We denote the weights in front as w·i. However, for stock variables, the sum only goes from

yt back to yt−k+1 while for flow varibles, the sum goes from yt back to yt−k−k+2. Remember the period

over which we observe the variables is k, so this will make a difference in the state-space representation

for flow variables, as we will show next in Appendix A.2.

8The spectral density function of a zero-mean stationary time series with autocovariance function γ(.) satisfying∑+∞
h=−∞ |γ(h)| < ∞, is f(λ) = 1

2π

∑+∞
h=−∞ e−ihλγ(h), for λ ∈ R. One can show fN (λ) := 1

2πN
E

(∣∣∣∑N
r=1Xre

−irλ
∣∣∣2) =

1
2πN

∑+∞
h=−∞(N − |h|)e−ihλγ(h)

35



A.2 State-space Representation

After sorting out the different between stock and flow variables, next we show how to write these less

frequently observed variables into a state-space representation. And we aim at a lower dimensional state

variable.

The prime idea turning the presumably large state space, as in Mariano and Murasawa (2003), into

the current small state space, is to aggregate the daily factor and its lags into “quarterly”, “monthly”

or “weekly” factors and in turn the observables load on these aggregated factors. On the one hand, this

reduces the dimension of the state variables and hence the parameterization. On the other hand, this

avoids linear restrictions on the factor loadings, also as in Mariano and Murasawa (2003), which can be

cumbersome.

Take a generic lower-frequency factor, F k,·
t as an example. As is shown before, as observable variable

Y k,·
t is an aggregate of the latent variable Yt and its lags, the corresponding factor F k,·

t should also be an

aggregate of the latent higher-frequency factor F kd
t , with the same weights. Namely,

F k,s
t =

k−1∑
i=0

1︸︷︷︸
=ws

i

F kd
t−i

F k,f
t =

k−1∑
i=−k+1

(k − |i|)︸ ︷︷ ︸
=wf

i

F kd

t−k+1−i

Let us emphasize again that for the stock variable, the sum goes from t to t − k + 1, while for the flow

variable, the sum goes from t to t − 2k + 2. And these will cause a different manipulation of the state

space. What is also important is, these factors are defined as such only when the corresponding variables

are observed. How these factors are defined only the corresponding variables are not observed is at our

discretion. Now we want to write the factor at time t, F k,·
t , into an AR(1) representation. For the stock

variable

F k,s
t =

k−1∑
i=0

ws
iF

kd
t−i =

k−1∑
i=1

ws
iF

kd
t−i + ws

0F
kd
t =: F k,s

t−1 + ws
0F

kd
t , if Y k,s

t observable

for the flow variable,

F k,f
t =

k−1∑
i=−k+1

wf
i F

kd

t−k+1−i =

k−1∑
i=−k+2

wf
i F

kd

t−k+1−i +wf
−k+1F

kd
t =: F k,f

t−1 +wf
−k+1F

kd
t , if Y k,f

t observable

Notice the way we define Ft−1 will ensure the finiteness of the processes. Otherwise, they would be

nothing but a random walk and thus diverge. So the sequences should be “reset” to some initial values

periodically. Since the period is just k, the intervals at which yk,·t is observed, the factor processes should

be naturally reset at this frequency. Suppose at t = k, 2k, 3k, . . . , Y k,·
t is observed. For stock varibles, it

36



is natuaral to define

F k,s
t =


ws

0F
kd
t if t = 1, k + 1, 2k + 1, . . .

F k,s
t−1 + ws

0F
kd
t otherwise.

(8)

then

I2rF
k,s
t − wk,f

k−1F
kd
t =


0F k,s

t−1, if t = 1, k + 1, 2k + 1, . . .

IrF
k,s
t−1, otherwise

for stock variables and the weight matrix is defined as

W k,s
t = −wk,s

k−1Ir

and indicator matrix

Ik,st =


0, if t = 1, k + 1, 2k + 1, . . .

Ir, otherwise

For flow variables, things are slightly more complex: we want to set the factors back to initial values

every 2k periods but also want the observables to load on these factors every k periods. This requires an

auxiliary state variable F̄ k,f
t ,

F̄ k,f
t =


0 if t = 1, k + 1, 2k + 1, . . .

F̄ k,s
t−1 + ws

R(k−t,k)+kF
kd
t otherwise.

(9)

F̄ k,f
t is actually a partial sum series, reset to 0 at t = nk + 1, n ∈ Z. It is illuminating to write out its

values over one period:, k,
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F̄ k,f
1 = 0

F̄ k,f
2 = F̄ k,f

1 + 1F kd
2

F̄ k,f
3 = F̄ k,f

2 + 2F kd
3

. . .

F̄ k,f
k−1 = F̄ k,f

k−2 + (k − 2)F kd

k−1

F̄ k,f
k = F̄ k,f

k−1 + (k − 1)F kd

k

F̄ k,f
k = 0

. . .

and the actual factor that the observables will load on will be

F k,f
t =


initial value, F1 if t = 1

F̄ k,f
t−1 + ws

k−1F
kd
t if t = k + 1, 2k + 1, . . .

F k,f
t−1 + ws

R(k−t,k)F
kd
t otherwise.

(10)

Similary, we write out its values over on period, k,

F k,f
k+1 = F̄ k,f

k + kF kd

k+1

F k,f
k+2 = F k,f

k+1 + (k − 1)F kd

k+2

F k,f
k+3 = F k,f

k+2 + (k − 2)F kd

k+3

. . .

F k,f
2k = F k,f

2k−1 + 1F kd

2k

F k,f
2k+1 = F̄ k,f

2k + kF kd

2k+1

. . .

From this, we can see F k,f
t loads exactly what we want for t = k, 2k, 3k, . . . . Denote

F̃ k,f
t =

F k,f
t

F̄ k,f
t
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then

I2r

F k,f
t

F̄ k,f
t

 +

−wk,f
k−1

0

F kd
t =

0 Ir

0 0


F k,f

t−1

F̄ k,f
t−1

 + 0, if t = 1, k + 1, 2k + 1, . . .

I2r

F k,f
t

F̄ k,f
t

 +

 −wk,f
R(k−t,k)

−wk,f
R(k−t,k)+k

F kd
t = I2r

F k,f
t−1

F̄ k,f
t−1

 + 0, otherwise

and the weight matrix is defined as

W k,f
t =



−wk,f
k−1

0

 if t = 1, k + 1, 2k + 1, . . .

 −wk,f
R(k−t,k)

−wk,f
R(k−t,k)+k

 otherwise.

and indicator matrix

Ik,ft =



0 Ir

0 0

 ift = 1, k + 1, 2k + 1, . . .

I2r otherwise.

Then the transition equation is



I2r 0 0 0 0 0 W
kq,f
t

0 Ir 0 0 0 0 W
kq,s
t

0 0 I2r 0 0 0 W km,f
t

0 0 0 Ir 0 0 W km,s
t

0 0 0 0 I2r 0 W kw,f
t

0 0 0 0 0 Ir W kw,s
t

0 0 0 0 0 0 Ir





F̃
kq,f
t

F
kq,s
t

F̃ km,f
t

F km,s
t

F̃ kw,f
t

F kw,s
t

F kd
t



=



Ikq,f
t 0 0 0 0 0 0

0 Ikq,s
t 0 0 0 0 0

0 0 Ikm,f
t 0 0 0 0

0 0 0 Ikm,s
t 0 0 0

0 0 0 0 Ikw,f
t 0 0

0 0 0 0 0 Ikw,s
t 0

0 0 0 0 0 0 A





F̃
kq,f
t−1

F
kq,s
t−1

F̃ km,f
t−1

F km,s
t−1

F̃ kw,f
t−1

F kw,s
t−1

F kd
t−1



+



0

0

0

0

0

0

Ut


(11)

What is worth noticing is that only the dynamics of F kd
t involves error term while the relation between

the lower-frequency factor F k
t , for k = kq, km, kw and F kd

t are exact, due to the recursive representation.

B Create Daily GI Data from Daily and Weekly

This part is based on the blog of http://erikjohansson.blogspot.fi/.

Oftentimes we want to utilize all the data available from the Google Trends and moreover we want
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to compare the forecast performance using series of different frequencies. By default, if a requested time

span is greater than three months, the Google Trends website will generate a weekly index, while if a

requested time span is less or equal to three months, the Google Trends website will generate instead a

daily index. This gives us the possibility of compiling a daily version of the index so that we can explore

the index of both weekly and daily frequency. We illustrate this transformation with the word ‘jobs’.

First we download a set of daily index with no time overlapping. As mentioned before, Google only gives

daily index for time span requested shorter or equal to three months, and therefore the datasets shall be

produced every three months, e.g. from 01Jan2004 to 31Mar2004, from 01Apr2004 to 30Jun2004, from

01Jul2004 to 30Sep2004, from 01Oct2004 to 31Dec2004, etc.. The daily data look as follows:

Day Daily index
18/01/2004 64
19/01/2004 86
20/01/2004 87
21/01/2004 88
22/01/2004 85
23/01/2004 76
24/01/2004 66
25/01/2004 70
26/01/2004 81
27/01/2004 82
28/01/2004 81
29/01/2004 78
30/01/2004 72
31/01/2004 61

Then we download the weekly index from 04Jan2004 to present. The weekly data look like this:

Week Weekly index
2004-01-04 - 2004-01-10 36
2004-01-11 - 2004-01-17 36
2004-01-18 - 2004-01-24 35
2004-01-25 - 2004-01-31 32
2004-02-01 - 2004-02-07 33
2004-02-08 - 2004-02-14 31
2004-02-15 - 2004-02-21 32
2004-02-22 - 2004-02-28 32

We merge the weekly index with the daily, with the first day of the week (Sunday) as the merging

variable. Take the weeks 18Jan2004-24Jan2004 and 25Jan2004-31Jan2004 as an example:
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Day Daily index Weekly index
18/01/2004 64 35
19/01/2004 86
20/01/2004 87
21/01/2004 88
22/01/2004 85
23/01/2004 76
24/01/2004 66
25/01/2004 70 32
26/01/2004 81
27/01/2004 82
28/01/2004 81
29/01/2004 78
30/01/2004 72
31/01/2004 61

Then we create a column of ‘adjustment factor’, which equals the weekly index divided by the daily

index if both are available for the day, and equals the last value if the weekly index is missing. Then

‘adjusted daily index’ is the product of the raw daily index and adjustment factor. This is what the daily

index we need for the analysis.

Day Daily index Weekly index Adj. factor Adj. daily
18/01/2004 64 35 0.546875 35
19/01/2004 86 0.546875 47.03125
20/01/2004 87 0.546875 47.57813
21/01/2004 88 0.546875 48.125
22/01/2004 85 0.546875 46.48438
23/01/2004 76 0.546875 41.5625
24/01/2004 66 0.546875 36.09375
25/01/2004 70 32 0.457143 32
26/01/2004 81 0.457143 37.02857
27/01/2004 82 0.457143 37.48571
28/01/2004 81 0.457143 37.02857
29/01/2004 78 0.457143 35.65714
30/01/2004 72 0.457143 32.91429
31/01/2004 61 0.457143 27.88571
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