
Exponential Smoothing, Long Memory
and Volatility Prediction

Tommaso Proietti1

Department of Economics and Finance, University of Rome Tor Vergata, Italy,
and CREATES, Aahrus University, Denmark

1Address for correspondence: Dipartimento di Economia e Finanza, Università di Roma
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Abstract

Extracting and forecasting the volatility of financial markets is an important

empirical problem. The paper provides a time series characterization of the volatil-

ity components arising when the volatility process is fractionally integrated, and

proposes a new predictor that can be seen as extension of the very popular and suc-

cessful forecasting and signal extraction scheme, known as exponential smoothing

(ES). First, we derive a generalization of the Beveridge-Nelson result, decomposing

the series into the sum of fractional noise processes with decreasing orders of inte-

gration. Secondly, we consider three models that are natural extensions of ES: the

fractionally integrated first order moving average (FIMA) model, a new integrated

moving average model formulated in terms of the fractional lag operator (FLagIMA),

and a fractional equal root integrated moving average (FerIMA) model, proposed

originally by Hosking. We investigate the properties of the volatility components

and the forecasts arising from these specification, which depend uniquely on the

memory and the moving average parameters. For statistical inference we show that,

under mild regularity conditions, the Whittle pseudo-maximum likelihood estima-

tor is consistent and asymptotically normal. The estimation results show that the

log-realized variance series are mean reverting but nonstationary. An out-of-sample

rolling forecast exercise illustrates that the three generalized ES predictors improve

significantly upon commonly used methods for forecasting realized volatility, and

that the estimated model confidence sets include the newly proposed fractional lag

predictor in all occurrences.

Keywords: Realized Volatility. Volatility Components. Fractional lag models.

Fractional equal-root IMA model. Model Confidence Set.

JEL codes: C22, C53, G17.
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1 Introduction

Volatility is an important characteristic of financial markets. Its measurement and

prediction has attracted a lot of interest, being quintessential to the assessment of

market risk and the pricing of financial products. A possible approach is to adopt

a conditionally heteroscedastic or a stochastic volatility model for asset returns;

see Engle (1995) and Shephard (2005) for a collection of key references in these

areas. Alternatively, we can provide a statistical model for a time series proxy of

volatility, such as squared returns or daily realized volatility (RV) measures (possibly

after a logarithmic transformation of the series). RV is a nonparametric estimate

of the volatility constructed from intraday price movements1, introduced in the

seminal contributions by Merton (1980), and characterized by Comte and Renault

(1998), Andersen et al. (2001a, 2001b), and Barndorff-Nielsen and Shephard (2002a,

2002b), as an estimator of the quadratic variation process of the logarithmic price

of a financial asset.

This paper is based on the latter approach and takes as a well established fact

the presence of long range dependence as a characteristic feature of volatility, see

Ding, Granger and Engle (1993), Comte and Renault (1998), Bollerslev and Wright

(2000), Andersen et al. (2003), Hurvich and Ray (2003).

The mechanism originating the long memory phenomenon is not without contro-

versy. One view is that it is spuriously generated by stochastic regime switching

and occasional breaks (see, among others, Diebold and Inoue, 2001, Granger and

Hyung, 2004, and Mikosh and Starica, 2004).

An alternative view considers long memory as an intrinsic feature of volatility,

arising from its multicomponent structure, that is, from the aggregation of vari-

ous components, characterised by different degrees of persistence and predictability.

This view is taken in the mixture-of-distributions hypothesis by Andersen and Boller-

slev (1997), and in Gallant, Hsu and Tauchen (1999). It embeds Granger’s (1980)

seminal result, showing that a long memory process results from the contemporane-

ous aggregation of infinite first order AR processes2.

1We refer, in particular, to the realized variance, obtained as the sum of squared intraday
returns computed over small time intervals.

2In the GARCH framework, Engle and Lee (1999) introduced a component GARCH model
such that the conditional variance is the sum of two AR processes for the short and long run
components. Adrian and Rosenberg (2008) formulate a log-additive model of volatility where
the long run component, a persistent AR(1) process with non-zero mean, is related to business
cycle conditions, and the short run component, a zero mean AR(1), is related to the tightness of
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Müller et al. (1993) propose the heterogeneous market hypothesis, according to

which the components reflect the different time horizons expressed by the market

participants. This hypothesis is also at the foundations of the heterogeneous autore-

gressive (HAR) model by Corsi (2009), which identifies three volatility components

over different horizons (daily, weekly and monthly). The HAR model has become a

discipline standard, as it reproduces quite effectively the long memory feature and

has proved extremely practical and successful in predicting realized volatility. Corsi

and Renò (2012) have recently extended the heterogenous structure to model the

leverage effect, while Corsi et al. (2012) and Majeski et al. (2015) formulate the

HAR Gamma model in an option pricing context. Calvet and Fisher (2001) propose

a multifractal approach which models the volatility process as the multiplicative

product of an infinite number of Markov-switching components with heterogeneous

frequencies. In Bandi et al. (2015) a multicomponent model is presented, where the

components are defined at different scales, j = 1, . . . , J , corresponding to horizons

of hj = 2j time units; each scale is characterized by different levels of predictability

and is impacted by specific shocks that vary in size and persistence with j.

With respect to the available literature, the present paper does a reverse oper-

ation: starting from the long memory representation of the volatility process, we

derive components that are uniquely identified by their time series properties and

are characterised by a different degree of memory. More specifically, we provide a

decomposition of a process integrated of order d into the sum of fractional noise

processes of decreasing orders, plus a stationary remainder term. Our result gen-

eralizes the popular Beveridge and Nelson (1981, BN henceforth) decomposition to

any positive fractional integration order.

Secondly, we focus on a set of long memory models that can be used to extract

the volatility components and produce forecasts that generalize the exponential

smoothing (ES) predictor; ES is a very popular and successful forecasting scheme

among practitioners, as well as a filter for extracting the long run component, or

underlying level, of a time series. The models that we consider share the common

feature of depending on two parameters, in addition to the one-step-ahead prediction

error variance: the memory parameter and a moving average (MA) parameter, which

regulates the mean reversion property and the size of the short-run component. We

financial conditions. Engle, Ghysels and Sohn (2013) have recently introduced multiplicative and
log-additive GARCH-MIDAS model, where the long run component is a weighted average of past
realized volatilities, where the weights follow a beta distribution.
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focus in particular on three models: the first is the well known fractionally integrated

moving average (FIMA) process. The second is a new proposal, an integrated moving

average model formulated in terms of the fractional lag operator (FLagIMA). Finally,

we consider the fractional equal-root integrated moving average (FerIMA) model,

which according to Hosking (1981, p. 175) “as a forecasting model it corresponds

to fractional order multiple exponential smoothing”.

For the three specifications we present the time series properties of the compo-

nents, the filters for their extraction and the forecast function, which encompasses

ES in all cases when the integration order is 1. The characteristic property of the

FLagIMA decomposition is that the short-run components is purely unpredictable

from its past, i.e. it is white noise (WN).

The models can be estimated in the frequency domain by Whittle pseudo-maximum

likelihood, and we show that, under regularity conditions, the maximum likelihood

estimators are consistent and asymptotically normal. We finally address the empiri-

cal relevance of the volatility predictors arising from the three models by performing

a rolling forecasting experiment, using the realized variance time series of 21 stock

indices, and estimating the model confidence sets, when the prediction methods

under comparison includes variants of ES and the HAR predictor. The overall con-

clusion is that the generalized long memory predictors are a useful addition to the

model set, and that in particular the newly proposed fractional lag predictor belongs

to the estimated model confidence sets in all occurrences.

The paper is structured in the following way. Section 2 reviews the ES predictor

and the signal extraction filter associated with the integrated MA model. In section

3 we present the decomposition of a fractionally integrated process into components

with decreasing level of persistence. Section 4 discusses the three extensions of ES

for fractionally integrated processes. In section 5 we deal with maximum likelihood

estimation of the parameters. In section 6 we present the empirical study and discuss

the estimation and forecasting results. Section 7 concludes the paper.
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2 Exponential smoothing

Let yt denote a time series. Given the availability of a sample stretching back to the

indefinite past, ES yields the l-steps-ahead predictor of yt

ỹt+l|t = λ
∞∑
j=0

(1− λ)jyt−j, l = 1, 2, . . . . (1)

The predictor depends on the smoothing constant, λ, which takes values in the range

(0,1]. The above expression is an exponentially weighted moving average (EWMA)

of the available observations, with weights declining according to a geometric pro-

gression with ratio 1−λ. The eventual forecast function is a horizontal straight line

drawn at ỹt+1|t. The predictor is efficiently computed using either one of the two

following equivalent recursions:

ỹt+1|t = λyt + (1− λ)ỹt|t−1, ỹt+1|t = ỹt|t−1 + λ(yt − ỹt|t−1). (2)

If a finite realisation is available, {yt, t = 1, 2, . . . n}, and we denote by ỹ1|0 the initial

value of (2), then we may initialise (2) by ỹ1|0 = y1, or by the average of the first t

observations, ỹ1|0 =
∑t−1

j=0 yt−j/t. Comprehensive reviews of exponential smoothing

and its extensions are provided by Gardner (2006) and Hyndman et al. (2008).

It is well known that the ES predictor is the best linear predictor for the integrated

moving average (IMA) process

(1−B)yt = (1− θB)ξt, ξt ∼WN(0, σ2), (3)

where B is the backshift operator, Bkyt = yt−k, 0 ≤ θ < 1 is the moving average

parameter. In particular,

ỹt+l|t = yt − θξt =
1− θ

1− θB
yt (4)

is the minimum mean square predictor of yt+l based on the time series {yj, j ≤ t}.
This is equivalent to the above EWMA with λ = 1− θ.

The BN decomposition of the IMA(1,1) process yt = mt + et is such that the

permanent component is the random walk (RW) process, mt = mt−1 + (1 − θ)ξt,

and the transitory component is WN, et = θξt. The permanent component is equal

to the long run prediction of the series at time t and it is thus measurable at time t
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as mt = (1− θ)(1− θB)−1yt.

A remarkable feature of the IMA(1,1) process and the associated ES forecasting

scheme is that the one-step-ahead forecast is coincident with the long-run (eventual)

forecast. This feature is only possessed by this model (which encompasses the RW).

Exponential smoothing has been used for forecasting and extracting the level of

volatility according to the RiskMetrics methodology developed by J.P. Morgan. The

Riskmetrics 1994 methodology (RM1994, see RiskMetrics Group, 1996) is based on

an EWMA with parameter λ = 0.06, or, equivalently, θ = 0.94. For long memory

time series Riskmetrics (see Zumbach, 2007) has proposed a new methodology, re-

ferred to as RM2006, which aims at mimicking a filter with weights decaying at a

hyperbolic, rather than geometric, rate. This is achieved by combining several ES

filters with different smoothing constants. See Appendix A for more details.

3 Fractionally integrated time series models and

their decomposition

Let {yt} denote the fractionally integrated random process

(1−B)dyt = ψ(B)ξt, ξt ∼WN(0, σ2),

where ψ(B) = 1 +ψ1B+ · · · is such that
∑

j |ψj| <∞. For non-integer d > −1, the

fractional differencing operator is defined according to the binomial expansion as

(1−B)d = 1−
∞∑
j=1

βjB
j, βj =

d(1− d) · · · (j − 1− d)

j!
= (−1)j+1 (d)j

j!
, (5)

where (d)j = d(d − 1) · · · (d − j + 1) is the Pochhammer symbol. Notice that βj is

given recursively as βj = βj−1
j−d−1
j

, j ≥ 1. When ψ(B) = 1, yt is a fractional noise

process and will be denoted yt ∼ FN(d). For d ∈ (0, 0.5) the process is stationary

and its properties can be characterised by the autocorrelation function, which decays

hyperbolically to zero, and its spectral density, which is unbounded at the origin.

In this section we provide a decomposition of a fractionally integrated process of

order d > 0, which can be viewed as a generalization of the Beveridge and Nelson

(1981) decomposition, which arises for d = 1. We denote by bxc, the largest integer

not greater than x.
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Proposition 1. Let yt be generated as (1−B)dyt = ψ(B)ξt, ψ(B) = 1+ψ1B+ψ2B
2+

· · · , with d > 0 and ξt ∼ WN(0, σ2). Assume that ψ(z) converges absolutely for

|z| < 1+ε, ε > 0, and let r = bd+1/2c. Then yt admits the following decomposition:

yt = mt + et,

mt = u0t + u1t + · · ·ur−1,t, ujt =
ψj(1)

(1−B)d−j ξt, j = 0, . . . , r − 1,

et = ψr(B)
(1−B)d−r ξt,

(6)

where ψ0(B) = ψ(B), and

ψj−1(B) = ψj−1(1) + (1−B)ψj(B), j = 1, 2, . . . .

Proof. See Appendix B.

The process ujt is integrated of order d− j > 0.5, j = 1, . . . , r − 1, and thus it is

nonstationary. The component mt is the nonstationary component, determining the

behaviour of the forecast function for long multistep horizons. The component et is

stationary, featuring long memory (d > r) or antipersistence (d < r), its integration

order being d− r ∈ [−0.5, 0.5).

If d > 0.5, mt has an ARFIMA(0, d, r−1) representation, (1−B)dmt =
[∑r−1

j=0 ψj(1)(1−B)j
]
ξt.

In terms of the observations, ψ(B)mt =
[∑r−1

j=0 ψj(1)(1−B)j
]
yt.

It is perhaps useful to highlight some particular cases:

• The case d = 1 gives the well-known BN decomposition of yt into a RW and a

short memory transitory component.

• When d ∈ (0, 0.5) the component mt is identically equal to zero and all the

series is transitory. We could obviously extract a fractional noise component

from yt, e.g. writing yt = (1−B)−dψ(1)ξt + (1−B)−d+1ψ1(B)ξt, but it would

still be a stationary component.

• When d ∈ [0.5, 1.5), yt admits the following nonstationary-stationary decom-

position:

yt = mt + et, mt = u0t, et =
ψ1(B)

(1−B)d−1
ξt

Notice that for d ∈ [0.5, 1) the long run forecast of the series is zero and the

shocks (1 − θ)ξt have long lasting, but transitory, effects. Hence mt is not
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equivalent its long run prediction, i.e. the value the series would take if it were

on its long run path. It should also be noticed that the above decomposition

differs from the one proposed by Ariño and Marmol (2004). The latter is based

on a different interpolation argument and decomposes yt = m∗t + e∗t , where, in

terms of our notation, e∗t = ψ1(B)
Γ(d)

ξt, where Γ(·) is the gamma function. As a

result, their permanent component is

m∗t = yt − e∗t = z0t +
1

Γ(d)

[
Γ(d)(1−B)1−d − 1

]
ψ1(B)ξt.

Thus, it contains a purely short memory component.

• When d ∈ [1.5, 2.5), yt admits the following nonstationary-stationary decom-

position:

yt = mt + et, mt = u0t + u1t, et =
ψ2(B)

(1−B)d−2
ξt

If d = 2 and ψ(B) = (1 − θ1B − θ2B
2), θ2 < 0, then mt can be computed

according to the Holt-Winters recursive formulae (see Hyndman et al., 2008)

and et is white noise. If further θ1 = −4θ2/(1 − θ2), mt is the real time

Hodrick-Prescott trend.

• If ψ(B) = 1 + ψ1B + · · ·+ ψqB
q, an MA(q) polynomial, then, if r = q, ψr(B)

is a zero degree polynomial. If r < q, then ψr(B) is MA(q − r).

• If ψ(B) is an ARMA(p, q) polynomial, then ψr(B) is an ARMA(p, min{(p −
r), (q− r)}) polynomial. Consider for simplicity the case when q ≥ p, so that,

defining θ(B) = 1 − θ1B − · · · − θqBq and φ(B) = 1 − φ1B − · · · − φpBp, we

can write

ψ(B) =
θ(B)

φ(B)
=
θ0(1) + θ1(1)(1−B) + · · ·+ θq(1)(1−B)q

φ(B)
;

we have that for r ≤ q,

ψr(B) = θr(1) + θr+1(1−B) + · · ·+ θq(1)(1−B)q−r,

i.e. an MA(q − r) lag polynomial.

• For integer d = r > 0, et is a stationary short memory process, with ARMA(p,

min{(p−r), (q−r)}) representation, if ψ(B) is ARMA(p, q), and can be referred
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to as the BN transitory component, as its prediction converges geometrically

fast to zero as the forecast horizion increases; mt is the long run or permanent

component, as it represents the value that the series would take if it were on

the long run path, i.e. the value of the long run forecast function actualised

at time t.

Finally, it is important to notice that the predictions of yt coincide with those of

mt if either ψr(B) = (1−B)d−r, or d = r and ψr(B) = c, for a constant c, i.e. when

et is a WN process.

4 Fractional Generalizations of the Exponential

Smoothing Filter and Predictor

We consider three extensions of the IMA(1,1) model, that are valid in the fractionally

integrated case and which yield predictors that generalize ES and that allow to

define volatility components encompassing its BN decomposition. The first is a

specific model of the ARFIMA class, and it is well known. The second is a novel

proposal that is formulated in terms of the fractional lag operator, while the third

was suggested by Hosking (1980), but to our knowledge has never been applied in

practice. The three models are all particular cases of the fractional model (1 −
B)dyt = ψ(B)ξt considered in the previous section and differ for the specification of

ψ(B), which will depend on d and an MA parameter.

4.1 Fractional Integrated Moving Average (FIMA) Process

The fractional integrated moving average process is

(1−B)dyt = (1− θB)ξt, ξt ∼WN(0, σ2),

where we assume that 0 ≤ θ < 1.

By Proposition 1, if d ∈ [0.5, 1.5), yt = mt + et, where (1 − B)dmt = (1 − θ)ξt
and et = θξt/(1 − B)d−1 is a stationary fractional noise process. In terms of the

observations, mt = [(1− θ)/(1− θB)]yt, which is an EWMA of the current and past

observations. Hence, the peculiar trait of this model is that signal extraction takes

place by ES, regardless of the d parameter.
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The forecasts are dependent on the long memory parameter: the one-step-ahead

predictor can be written as

ỹt+1|t = (d− θ)yt + θỹt|t−1 +
∞∑
j=0

(−1)j+1 (d)j+2

(j + 2)!
yt−j−1.

This formula encompasses ES for d = 1, but except for this case, the predictions

of mt are not coincident with those of yt, unless θ = 0. In particular, m̃t+1|t =

θmt+(1−θ)ỹt+1|t, a weighted average of the current level and the one-step prediction

of the series. In other words, the prediction of yt+1 is shrunk towards mt to form

the prediction of mt+1. Finally, et is predictable from its past, namely, ẽt+1|t =

θ(ỹt+1|t −mt).

4.2 Fractional Lag Integrated Moving Average (FLagIMA)

Process

Let Bd denote the fractional lag operator, defined as

Bd = 1− (1−B)d. (7)

This is a generalization of the lag operator to the long memory case originally

proposed by Granger (1986) and recently adopted by Johansen (2008) to define a

new class of vector autoregressive models. Obviously, d = 1 gives Bd = B, the usual

lag operator.

Consider the following fractional lag IMA (FLagIMA) model, obtained by replac-

ing the lag operator by Bd in the IMA(1,1) model:

(1−Bd)yt = (1− θBd)ξt, 0 ≤ θ < 1.

We can rewrite the model in terms of the usual lag operator as

(1−B)dyt = ψ(B)ξt, ψ(B) = (1− θ) + θ(1−B)d,

and, using (5), it is immediate to show that ψ(B) =
∑

j=0 ψjB
j has coefficients

ψ0 = 1, ψj = (−1)jθ
(d)j
j!

, j ≥ 1. (8)
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We will restrict 0 ≤ θ < 1, although, following a similar argument as Johansen (2008,

section 3.1), it can be shown that the invertibility region of the MA polynomial

(1− θBd) is (1− 2d)−1 < θ < 1.

The above specification provides an interesting extension of ES to the fractional

case. When d ∈ [0.5, 1.5), the process admits the decomposition into a fractional

noise component and a WN component:

yt = mt + et, mt =
1− θ

(1−B)d
ξt, et = θξt.

In terms of the observations,

mt =
1− θ

1− θBd

yt =
∞∑
j=0

w∗jyt−j,

with weights given by

w∗j = (1− θ)uj, uj = θ

j∑
k=1

(−1)k+1 (d)k
k!

uj−k, j > 0, u0 = 1,

by application of Gould’s formula (Gould, 1974), which yields ES in the case d = 1.

Interestingly, mt = yt − θξt is a weighted linear combination of yt and its one-

step-ahead prediction:

mt = (1− θ)yt + θỹt|t−1.

The one-step-ahead prediction is in turn a weighted average of the current and past

values of the component mt:

ỹt+1|t = m̃t+1|t

=
∑∞

j=1 βjmt+1−j

=
∑∞

j=1(−1)j+1 (d)j
j!

[(1− θ)yt+1−j + θỹt+1−j|t−j].

(9)

This expression encompasses the ES formula, which arises for d = 1, in which case

ỹt+1|t = mt. Moreover, for any d the forecasts of the series are coincident with those

of the component mt.
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4.3 Fractional Equal Root Integrated Moving Average (Fer-

IMA) Process

In his seminal Biometrika paper, Hosking (1981) introduced the fractional equal–

root integrated moving average process

(1−B)dyt = (1− θB)dξt, ξt ∼WN(0, σ2). (10)

To our knowledge, this process has never had time series applications and has never

been investigated in detail. Notice that the model is not identifiable if either d = 0

or θ = 1. If θ = 1, and d 6= 0, yt is white noise. We will restrict θ to lie in the region

0 ≤ θ < 1.

The coefficients of the infinite lag polynomial ψ(B) = (1 − θB)d =
∑

j=0 ψjB
j

are obtained from applying Gould’s formula (Gould 1974), giving

ψ0 = 1, ψj = (−1)jθj
(d)j
j!

. (11)

It is interesting to compare this formula with (8). It is argued that coeteris paribus

the coefficients of (11) converge more rapidly to zero, due to the geometric decay of

θj.

Applying Proposition 1 with ψ(B) = (1 − θB)d, we have ψj(B) = (−1)jθj(1 −
θB)d−j

(d)j
j!

, so that, for j = 0, . . . , r − 1, the components of the decomposition are:

ujt = (−1)jθj(1− θ)d−j (d)j
j!

ξt
(1−B)d−j

= (−1)j
(d)j
j!

(
θ

(1−θ

)j
(1−θ)d

(1−θB)d
(1−B)jyt.

(12)

If d ∈ [0.5, 1.5), the above decomposition reduces to yt = mt + et, where mt = u0t is

the following weighted moving average of the observations available at time t:

mt =

(
1− θ

1− θB

)d
yt =

∞∑
j=0

w∗jyt−j, (13)

with weights given recursively by

w∗j = θ
j + d− 1

j
w∗j−1, j ≥ 1, w∗0 = (1− θ)d,
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again by application of Gould’s formula (Gould, 1974), or

w∗j = (1− θ)d θ
j

j!
d(j), (14)

where d(j) denotes the rising factorial d(j) = d(d+ 1) · · · (d+ j − 1).

In terms of λ = 1− θ,

w∗j = wjcj, wj = λ(1− λ)j, cj =
λd−1d(j)

j!
, (15)

which shows that the weights result from correcting the geometrically declining

weights, wj = (1 − λ)wj−1, w0 = 1, by a factor depending on d, decreasing hyper-

bolically with j:

cj =

(
1− 1− d

j

)
cj−1, c0 = λd−1.

The importance of the correction term is larger, the smaller is λ, due to the factor

λd−1. Moreover, if d = 1, λd−1d(j)

j!
= 1.

The one-step-ahead forecast can be derived by taking the conditional mean of

yt+1 =
∑∞

j=1 βjyt+1−j + ξt+1 − θ
∑∞

j=1 θ
jβjξt+1−j. Hence,

ỹt+1|t =
∑∞

j=1(−1)j+1 (d)j
j!

[
(1− θj)yt+1−j + θj ỹt+1−j|t−j

]
, (16)

which yields ES for d = 1. It is also interesting to compare the form of this predictor

with (9).

5 Whittle Pseudo-Maximum Likelihood Estima-

tion

Let δ0 = (d0, θ0) and σ2
0, denote the true parameters of the FIMA, FLagIMA and

FerIMA models; their estimation is carried out in the frequency domain by Whittle

pseudo-maximum likelihood estimation. The spectral density of the three models is

written

f(ω; δ0, σ
2
0) =

σ2

2π
k(ω; δ), ω ∈ [−π, π],

where
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• for the FIMA model,

k(ω; δ) =
1 + θ2 − 2θ cosω

[2(1− cosω)]d
; (17)

• for the FLagIMA model,

k(ω; δ) =
(1− θ)2 + [2(1− cosω)]dθ2 + 2[2(1− cosω)]d/2θ(1− θ) cos(dϕ(ω))

[2(1− cosω)]d
,

(18)

with ϕ(ω) = arctan
(

sin(ω)
1−cos(ω)

)
;

• for the FerIMA model,

k(ω; δ) =

(
1 + θ2 − 2θ cosω

2(1− cosω)

)d
. (19)

Notice that
∫ π
−π ln k(ω; δ)dω = 0, which implies that σ2 is functionally indepen-

dent of δ and that σ2 is the prediction error variance of yt, by the Kolmogorov-Szegö

formula.

Given a time series realisation {yt, t = 1, 2, . . . , n}, and letting ωj = 2πj
n
, j =

1, . . . , n − 1, denote the Fourier frequencies (we exclude the zero frequency), the

tapered periodogram is defined as

Ip(ωj) =
1

2π
n∑
t=1

h2
t

∣∣∣∣∣
n∑
t=1

ht(yt − ȳ)e−ıωjt

∣∣∣∣∣
2

,

where ȳ = n−1
∑n

t=1 yt and {ht}nt=1 is a taper sequence. As in Velasco and Robinson

(2000), {ht}nt=1 is obtained from the coefficients of the polynomial(
1− z[n/p]

1− z

)p
.

This is know as a Zhurbenko data taper of order p.

The vector δ0 is estimated by minimising the profile pseudo-likelihood

Q(δ) =
p

n

bn/pc∑
j=1

2πIp(ωpj)

k(ωpj; δ)
,

15



δ̃ = argminδ∈∆Q(δ); the estimate of the prediction error variance is then σ̃2 = Q(δ̃).

Tapering aims at reducing the estimation bias that characterises the periodogram

ordinates in the nonstationary case. However, to reduce the undesirable dependence

it induces between adjacent periodogram ordinates, only the Fourier frequencies ωj

such that j is a multiple of p are used.

The following theorem proves the consistency and the asymptotic normality of

the Whittle Estimator.

Theorem 1. Let δ0 = (d0, θ0); assume d0 ∈ (0, 1.5), θ0 ∈ (0, 1), σ2
0 ∈ (0,∞) and

ξt be a martingale difference sequence with E(ξ2
t |Ft−1) = σ2

0 < ∞. Let f(ω) =

(2π)−1σ2
0k(ω;ψ0), where k(ω; δ) is given either by (17), (18), or (19). Then,

δ̃ →p δ0, σ̃2 →p σ
2
0. (20)

If we further assume E(ξst |Ft−1) <∞, s = 3, 4, and in the FLagIMA case we restrict

d0 in the range (0, 3/4)
⋃

(1, 3/2),

√
n(δ̃ − δ0)→d N(0, pKpV ),

with Kp being the variance inflation factor due to tapering and

V −1 =
1

4π

∫ π

−π

∂

∂δ
ln k(ω; δ0)

∂

∂δ′
ln k(ω; δ0)dω.

Proof. Appendix C provides a detailed proof, based on Velasco and Robinson (2000,

VR henceforth).

For the Zhurbenko data tapers, K2 = 1.05;K3 = 1.00354. The specialty of the

result for the FLagIMA model arises from the fact that the slowly varying factor

of its spectral density, |ψ(e−ıω)|2, is bounded and continuous in ω, but it is not

differentiable at ω, and it satisfies a local Lipschitz condition of order d0 around the

zero frequency, making it unsufficiently smooth for δ̃ to converge in distribution.

Notice that we restrict the range of d0 to a plausible range. For our volatility series

we will see that we need to consider the nonstationary but mean reverting case.

For the analytical evaluation of the variance covariance matrix of the Whittle

estimators and for comparing the spectral fit, the following expressions holding for

16



the FIMA model,

ln k(ω; δ) = −2
∞∑
k=1

d+ θk

k
cos(ωk),

and the FerIMA model,

ln k(ω; δ) = −2d
∞∑
k=1

1 + θk

k
cos(ωk),

can be used.

6 Empirical Analysis: the Components of Real-

ized Volatility and its Prediction

We consider the empirical problem of forecasting one-step-ahead the daily asset

returns volatility, using realized measures constructed from high frequency data.

The volatility proxy is the Realized Variance (5-minute) of 21 stock indices extracted

from the database ”OMI’s realized measure library” version 0.2, produced by Heber,

Lunde, Shephard, and Sheppard (2009). The series are available from 03/01/2000

to 1/10/2015, for a total of 4,115 daily observations.

6.1 Parameter estimates and components

Denoting by RVt a generic realized volatility series, we focus on its logarithmic

transformation, that is we take yt = lnRVt. The Whittle likelihood estimates of

the parameters of the three fractionally integrated models (FIMA, FLagIMA and

FerIMA) are presented in table 1. The estimates are based on the untapered peri-

odogram (p = 1 in section 5; using p = 2 did not change the estimates). In most

occurrences, the estimates of the memory parameter d̃ lie in the nonstationary region

and are systematically higher for the FLagIMA specification, whereas they are very

similar for the FIMA and FerIMA models. The MA parameter θ is estimated to be

positive and significantly different from zero at the 5% level for all specifications and

all occurrences, with two notable exceptions, the Nikkei 225 and the Nasdaq 100

series, for which the estimates d̃ are also indistinguishable. The last three columns

report the estimated innovations variance, which is very similar across the three

specifications, so that the fit can be expected to be similar.
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Table 1: Log-Realized volatility series. Whittle maximum likelihood estimates of
the parameters of the FIMA, FLagIMA and FerIMA models using the full sample
(4,115 daily observations from 03/01/2000 to 1/10/2015). The standard error are
presented in parenthesis.

d̃ θ̃ σ̃2

Series FIMA FLagIMA FerIMA FIMA FLagIMA FerIMA FIMA FLagIMA FerIMA
S&P 500 0.565 0.627 0.572 0.138 0.313 0.254 0.343 0.343 0.343

(0.022) (0.031) (0.024) (0.028) (0.046) (0.044)
FTSE 100 0.572 0.643 0.587 0.130 0.321 0.256 0.241 0.240 0.241

(0.021) (0.030) (0.025) (0.029) (0.046) (0.047)
Nikkei 225 0.520 0.547 0.521 0.031 0.113 0.063 0.241 0.241 0.241

(0.020) (0.030) (0.020) (0.026) (0.063) (0.050)
DAX 0.574 0.641 0.585 0.126 0.308 0.241 0.257 0.257 0.257

(0.021) (0.029) (0.024) (0.028) (0.046) (0.046)
Russel 2000 0.526 0.590 0.533 0.123 0.310 0.243 0.359 0.359 0.359

(0.022 (0.032) (0.024) (0.028) (0.051) (0.047)
All Ord. 0.538 0.720 0.608 0.303 0.649 0.608 0.363 0.362 0.362

(0.027 (0.037) (0.037) (0.036) (0.031) (0.037)
DJIA 0.552 0.636 0.566 0.166 0.386 0.319 0.374 0.374 0.373

(0.023 (0.032) (0.026) (0.029) (0.044) (0.045)
Nasdaq 100 0.547 0.569 0.548 0.025 0.091 0.047 0.250 0.250 0.250

(0.019 (0.027) (0.019) (0.025) (0.057) (0.045)
CAC 40 0.569 0.624 0.577 0.103 0.256 0.197 0.235 0.235 0.235

(0.021 (0.030) (0.023) (0.028) (0.050) (0.047)
Hang Seng 0.537 0.619 0.547 0.165 0.397 0.318 0.233 0.233 0.233

(0.021) (0.029) (0.024) (0.027) (0.043) (0.043)
KOSPI C. I. 0.582 0.634 0.587 0.120 0.274 0.215 0.208 0.208 0.208

(0.021) (0.030) (0.024) (0.028) (0.049) (0.047)
AEX Index 0.582 0.638 0.591 0.104 0.256 0.198 0.243 0.243 0.243

(0.023) (0.030) (0.026) (0.031) (0.042) (0.043)
Swiss M. I. 0.621 0.690 0.637 0.162 0.334 0.284 0.181 0.181 0.181

(0.020) (0.030) (0.023) (0.028) (0.054) (0.050)
IBEX 35 0.545 0.594 0.552 0.077 0.221 0.158 0.225 0.225 0.225

(0.021) (0.031) (0.023) (0.028) (0.054) (0.049)
S&P CNX Nifty 0.546 0.597 0.553 0.086 0.234 0.173 0.295 0.294 0.295

(0.021) (0.034) (0.027) (0.029) (0.046) (0.051)
IPC Mexico 0.485 0.605 0.512 0.162 0.470 0.381 0.405 0.404 0.404

(0.021) (0.034) (0.023) (0.027) (0.065) (0.054)
Bovespa Index 0.492 0.539 0.496 0.064 0.210 0.140 0.259 0.259 0.259

(0.021) (0.034) (0.023) (0.027) (0.065) (0.054)
S&P/TSX C. I. 0.533 0.610 0.546 0.126 0.340 0.261 0.274 0.273 0.274

(0.020) (0.030) (0.024) (0.027) (0.048) (0.048)
Euro STOXX 50 0.514 0.579 0.524 0.075 0.256 0.172 0.348 0.347 0.348

(0.020) (0.032) (0.023) (0.028) (0.057) (0.056)
FT Straits T. I. 0.545 0.639 0.567 0.135 0.376 0.294 0.158 0.158 0.158

(0.021) (0.031) (0.026) (0.029) (0.047) (0.050)
FTSE MIB 0.568 0.629 0.577 0.121 0.290 0.229 0.246 0.246 0.246

(0.021) (0.030) (0.024) (0.028) (0.048) (0.046)
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For illustration purposes we have computed the volatility components arising from

the decomposition yt = mt + et implied by the three models for the logarithm of the

SP500 realized volatility series. These are presented in figure 1. The left plots display

the original time series and the level or long-run component mt, respectively for the

FIMA, FLagIMA and FerIMA specifications, whereas the short-run component is

plotted on the right. While the FIMA and FerIMA models lead to virtually the

same decomposition (the correlation between the short-run components is 0.99),

the FLagIMA model has a stationary component with higher variance; recall that

et = θξt, and thus et ∼ WN(0, θ2σ2). As a consequence, the long-run shocks have

smaller size than for the other models. The comparison of σ̃2 = Q(δ̃) in the last

three columns of table 1 highlights that we are unable to select what representation

is most suitable on the basis of the likelihood or an information criterion.

6.2 Predictive performance and model confidence set

A fundamental aim of the analysis of realized volatility series is the prediction of

future volatility. We thus turn our attention to the comparison of the performance of

the alternative predictors discussed in the previous sections and to the estimation of

the model confidence set (MCS), in the sense specified by Hansen, Lunde and Nason

(2011), which contains the best models with a given confidence according to their

ability to predict the log-realized volatility one-step-ahead. Our model set comprises

the following elements: the ES predictor with parameter λ resulting from estimating

an MA(1) model for the first differences, (1−B)yt, by maximum likelihood; RM1994,

which is the standard exponential smoothing predictor with λ = 0.06; the RM2006

predictor, described in appendix A, and the heterogeneous autoregressive (HAR)

model proposed by Corsi (2009). The latter is specified as follows:

yt = φ0 + φ1yt−1 + φ5ȳt−5 + φ22ȳt−22 + ξt, ξt ∼WN(0, σ2),

where

ȳt−5 =
1

5

5∑
j=1

yt−j, ȳt−22 =
1

22

22∑
j=1

yt−j,

are respectively the average realized variance over the previous trading week and over

the previous month. We also consider the FN model, (1−B)dyt = ξt, ξt ∼WN(0, σ2)

along with the three fractional exponential smoothing models. Hence, the collection
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of models isM0 = {ES, RM1994, RM2006, HAR, FN, FIMA, FLagIMA, FerIMA}.
We perform a rolling forecasts experiment such that, starting from time n0 = 1000

we compute the one-step-ahead volatility prediction according to the seven methods

and we proceed by adding one future observation and removing the initial one, until

the end of the sample is reached, so that each forecast is based on a fixed number

of observations, and re-estimating the parameters for each rolling window, in the

case of the HAR and the fractionally integrated models. The experiment yields

3,174 one step ahead prediction errors for each forecasting methodology used in the

comparative assessment.

Denoting by ỹk,t|t−1 the prediction arising from methodMk, where k = 1, 2, . . . , K,

and by vk,t = yt − ỹk,t|t−1, the corresponding prediction error, t = n0 + 1, . . . , n, we

compare the mean square forecast error,

MSFEk =
1

n− n0

n∑
t=n0+1

v2
k,t.

The results for the 21 realized volatility series are reported in table 2, which displays

the MSFE’s expressed as a percent of that characterising the FN predictor, which is

assumed as a benchmark (its MSFE is reported in the last column of the table). The

evidence is that the FLagIMA predictor outperforms the others in most occurrences,

although the differences with the FIMA and FerIMA predictors are small. We also

notice that the ES predictor is more accurate than both RM1994 and RM2006; the

average estimated value for the smoothing parameter λ is 0.38 (0.62 for θ), with

the estimates ranging from 0.52 and 0.78, which suggest that for optimizing the

performance of the ES predictor we should learn from the series the value of the

smoothing constant.

The prediction errors arising from the rolling forecasting experiment have then

been used to estimate the model confidence set, according to the methodology pro-

posed by Hansen, Lunde and Nason (2011).

Denote by dkl,t = v2
kt − v2

lt the quadratic loss differential at time t between pre-

dictors k and l, for all k, l ∈M0, and define

d̄kl =
1

n− n0

n∑
t=n0+1

dkl,t, d̄k =
1

K

K∑
l=1

d̄kl.

The t-statistics associated to the null H0 : E(d̄k.) = 0 (equal forecast accuracy)
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versus the alternative H0 : E(d̄k.) > 0, is tk = d̄k.
ˆVar(d̄k.)

, where V̂ar(d̄k.) is an estimate

of Var(d̄k.). IfM is the current set of model under assessment, to test the hypothesis

H0,M : E(d̄k.) = 0,∀k ∈ M, i.e. all the models have the same predictive accuracy,

we use the test statistic Tmax = maxk∈M tk. Following the MCS algorithm defined

by Hansen, Lunde and Nason (2011), we initially setM =M0, and test H0,M using

the statistic Tmax, at the significance level α = 0.10. The critical values are obtain

by the block-bootstrap method, using a block length of 20 observations and 10,000

replications; the bootstrap replications are also used to estimate Var(d̄k). If H0,M

is accepted, then the MCS at level 1 − α is M̂∗
1−α = M; otherwise, we proceed to

eliminate from the set the predictor for which the tk. statistic is a maximum, k ∈M,

and iterate the procedure with the surviving predictors.

Table 3 reports the MCS p-values, computed according to section 2.3 of Hansen,

Lunde and Nason (2011), so that model k belongs to the MCS at the level 1− α if

and only if the corresponding p-value is greater or equal to α. The values in bold

correspond to predictors in M̂∗
0.90. The main evidence is that the FLagIMA model

belongs to the 90% MCS in all occurrences (this is robust to different implemen-

tations of the bootstrap). On the contrary, the FIMA and FerIMA predictors are

in M̂∗
0.90 respectively in 14 and 16 cases out of 21, and are in M̂∗

0.95 respectively in

19 and 20 cases. The RM1994, RM2006 and HAR predictors are never in the MCS

and the FN model belongs to M̂∗
0.90 only once.

7 Conclusions

The long memory extensions of the popular exponential smoothing predictor that

have been considered in this paper prove very effective for forecasting realized volatil-

ity. Among the three proposed models, the fractional lag integrated moving average

model (FLagIMA) stands out prominently, as it outperforms its competitors and

has a permanent seat in the model confidence set for the 21 realized variance series

of the Oxford-Man Institute Realized library.

From the point of view of signal extraction, the FLagIMA has the unique fea-

ture of decomposing the series into a fractional noise component and a purely un-

predictable one, whose standard deviation is proportional to the moving average

parameter.

In conclusion, the FLagIMA model is a simple and parsimonious model, that can

play a useful role in forecasting volatility and extracting its underlying level.
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A The Riskmetrics 2006 methodology

The new RM methodology, referred to as RM2006 (see Zumbach, 2007), extends

the 1994 methodology to the long memory case, by computing the one-step-ahead

volatility prediction, denoted ỹt+1|t, as a weighted sum of K exponentially weighted

moving averages with smoothing constants λk, k = 1, . . . , K:

ỹt+1|t =
K∑
k=1

wkỹ
(k)
t+1|t, ỹ

(k)
t+1|t = λkyt + (1− λk)ỹ(k)

t|t−1.

The weights decay according to wk ∝ 1− ln τk
ln τ0

, where τk, k = 1, . . . , K, are time hori-

zons, chosen according to the geometric sequence: τk = τ1ρ
k−1, k = 2, . . . , K, τ0 =

1560, τ1 = 4, ρ =
√

2. The smoothing constants are related to the time horizons

via λk = 1 − exp(−τ−1
k ). In the current empirical implementation the value K is

chosen so that τK = 512, which gives K = 15.

The weights attached to past observations are an arithmetic weighted average of

those arising from EWMAs with different smoothing constants and are no longer a

geometric sequence.

B Proof of Proposition 1

Let

cj =
(−1)j

j!

djψ(z)

dzj

∣∣∣∣
z=1

= (−1)j
∞∑
k=j

(
k

j

)
ψk,

and define the polynomial

ψk(z) =
∞∑
s=0

ck+s(1− z)s,

so that ψk(1) = ck. The absolute convergence of ψ(z) in the region containing the

point z = 1 implies that there exists a neibourhood of z = 1 in which ψ(z) has the

power series expansion ψ(z) =
∑∞

j=0 ψj(1)(1− z)j, and that the polynomials ψj(z)

have the same radius of convergence (see, e.g., Apostol, 1974, theorems 9.22 and

9.23), so that ψj(1) is finite, for all j.
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The above recursive formula for the polynomial ψj−1(z) is proved as follows:

ψj−1(z)− ψj−1(1) =
∑∞

s=1 cj−1+s(1− z)s

= (1− z)
∑∞

s=0 cj+s(1− z)s

= (1− z)ψj(z).

Using these results, we write (1−B)dyt = ψ(1)ξt+ψ1(1)(1−B)ξt+· · ·+ψr−1(1)(1−
B)r−1ξt+ψr(B)(1−B)rξt. The decomposition follows straightforwardly. The compo-

nent et converges in mean square to a causal stationary random process by theorem

4.10.1 in Brockwell and Davies (1991). Note that −0.5 ≤ d− r < 0.5.

C Proof of Theorem 1

Let h(ω; s) = (1 − e−ıω)s, so that |h(ω; s)| = O(|ω|s) and d
dω
h(ω; s) = O(|ω|s−1), as

ω → 0. Notice that k(ω; δ) = |h(ω;−d)|2|ψ(ω)|2, ψ(ω) =
∑

j ψje
−ıωj,

∑
j ψ

2
j < ∞,

for the three specifications considered. Under the stated conditions, assumptions

A1-A4 in VR are verified. In particular, (A1): δ0 is an interior point of ∆; for

ω → 0, k(ω, δ) ∼ Gδ|ω|−2d, with 0 < Gδ <∞, continuous and positive at all ω 6= 0

and δ ∈ ∆; δ1 6= δ2 implies k(ω, δ1) 6= k(ω, δ2) on a set of positive Lebesue measure.

(A2): ∂k(ω, ψ)/∂ω exists and it is continuous for all ω 6= 0, δ, and ∂k(ω; δ)/∂ω =

O(|ω|−2d−1), as ω → 0. (A4): the process u
(r)
t = (1 − B)ryt, r = bd0 + 1/2c,

has the representation u
(r)
t = α(B)ξt, with α(B) =

∑∞
0 αjB

j given by α(B) =

(1 − B)r−dψ(B)σ, with
∑

j α
2
j < ∞, and we have assumed E(ξt|Ft−1) = 0 and

E(ξ2
t |Ft−1) = σ2. Hence, the convergence in probability of the Whittle estimators

(20) follows from Theorem 1 in VR.

For proving the asymptotic normality in the untapered case (p = 1), the tranfer

function α(ω) =
∑

j αje
−ıωj, which has the representation α(ω) = h(ω; r − d)ψ(ω),

satisfies assumption A5 of VR: in particular, it is differentiable in ω at all ω 6= 0

and δ, it is such that |α(ω)| = O(|ω|r−d) as ω → 0, and

∂

∂ω
α(ω) =

∂h(ω; r − d)

∂ω
ψ(ω) + h(ω; r − d)

∂ψ(ω)

∂ω

is O(|ω|r−d−1), as ψ(ω) and its derivative are continuous and bounded and ∂
∂ω
h(ω; r−

d) = O(|ω|r−d−1). When a taper is applied, the stronger smoothness condition in

VR’s assumption A6 is satisfied by the FIMA and FerIMA models. As it is evident
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from (17), (18), or (19), as ω → 0

k(ω; δ) = Gδ|ω|−2d
(
1 + Eδ|ω|β + o(|ω|β)

)
for 0 < Gδ, Eδ <∞, with β = 2 for the FIMA and the FerIMA models. As a result,

∂k(ω; δ)/∂ω is Lipschitz(β−1). The FLagIMA model is such that the slowly varying

component of the spectrum, L(ω) = |ω|2dk(ω; δ), is not differentiable at ω = 0, and

it satisfies a Lipschitz condition of degree d0 around ω = 0, i.e. L(ω) = O(|ω|d0).
Hence, VR’s assumption A6 holds in the FLagIMA case only for d0 > 1.

Assumptions A7 in VR holds, as we have assumed E(ξst |Ft−1) < ∞, for s = 3, 4

and for all t. The function k−1(ω; δ) = |h(ω; d)|2|ψ(ω)|−2 is twice continuously differ-

entiable with respect to δ ∈ ∆, for all ω 6= 0 and δ, with ∂
∂δ∂δ′

k−1(ω; δ) = O(|ω|2d−ε),
for each ε ≥ ||δ− δ0||, and these derivatives are continuously differentiable in ω 6= 0,

so that ∂
∂ω∂δk∂δl

k−1(ω; δ) = O(|ω|2d−1−ε) (assumption A8). Finally,
∫ π
−π k

−1(ω; δ)dω

and
∫ π
−π ln k(ω; δ)dω are twice continuously differentiable in δ ∈ ∆ under the inte-

gral sign (assumption A9). Hence, all the regularity conditions for the asymptotic

normality of δ̃ are satisfied.
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