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Abstract 

 

Over the last decade, applied researchers have estimated forward looking 

Taylor rules with interest rate smoothing via Nonlinear Least Squares.  A 

common empirical finding for post Volcker samples, based on asymptotic 

theory, is that the Federal Reserve adheres to the Taylor Principle.  We explore 

the possibility of weak identification and spurious inference in estimated 

Taylor rule regressions with interest rate smoothing.  We argue that the 

presence of smoothing subjects the parameters of interest to the Zero 

Information Limit Condition analyzed by Nelson and Startz (2007, Journal of 

Econometrics).  We demonstrate that confidence intervals based on standard 

methods such as the delta-method can have severe coverage problems when 

interest rate smoothing is persistent.  We then demonstrate that alternative 

methodologies have better finite sample coverage.  We reconsider the results 

of three recent empirical studies and show that the evidence supporting the 

Taylor Principle can be reversed over half of the time. 
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1.  Introduction 

 In a recent paper, Nelson and Startz (2007) document that a class of models, 

used widely in empirical work, suffer from weak identification.  This occurs when a 

particular parameter, not necessarily the parameter of interest, approaches a critical 

point.  They refer to this as the Zero Information Limit Condition (ZILC).  These models 

include Nonlinear regression, IV with weak instruments, ARMA models, etc.  They 

document that for models in which the ZILC holds, asymptotic theory is a poor 

approximation to the finite sample distribution of the parameter of interest.  Standard 

errors of this parameter are underestimated, and the size of the t-test depends on the 

properties of the underlying DGP.   

 Over the last decade, applied researchers have estimated forward looking Taylor 

rules with interest rate smoothing via Nonlinear Least Squares (NLS) using real time 

data  This was a break from tradition when ex-post data were used, necessitating 

instrumental variables and estimation by GMM; e.g. Clarida, Galí and Gertler (2000).  

Using the delta method, which is an asymptotic approximation, a common finding from 

NLS estimation is that the confidence interval for the response of the Federal Reserve to 

changes in expected inflation lies entirely above unity, supporting the empirical 

conclusion that the central bank follows the Taylor Principle.  We show in this paper 

that this nonlinear monetary policy regression model falls into the same framework as 

that discussed in Nelson and Startz (2007), suggesting that the parameter estimates in 

Taylor rules may suffer from weak identification. In this case, confidence intervals based 

on the delta-method will not have correct finite sample coverage. 

 In this paper, we demonstrate that the parameters of interest in estimated Taylor 

rules are in fact subject to the ZILC.  That is, the NLS estimators of the response to 

changes in expected inflation and the business cycle contain no information about the 

true parameter values as the degree of persistence of interest rate smoothing increases.  

Asymptotic theory is a poor approximation to the actual finite sample distribution of the 

parameter estimates, and the coverage probability of confidence intervals is too small 

for the empirically relevant range of interest rate smoothing.  

We reconsider three recent empirical studies using methods which generate more 

accurate confidence intervals, and demonstrate that over one half of the results 
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supporting the finding that the Taylor Principle holds in various post-Volcker 

subsamples is reversed. 

 

2. A Nonlinear Taylor Rule Regression Model which is subject to the Zero 

Information Limit Condition 

2.1 Nelson and Startz (2007 JoE)  

 Nelson and Startz (2007) consider the following nonlinear regression model: 

 
tttt zxy   )( ,                                             (2.1)   

where   is the parameter of interest.  This model is identified if 0  and Nelson and 

Startz focus on the behavior of NLŜ  as   approaches the Zero Information Limit 

Condition (ZILC), in this case zero.  They show that when the regression errors are 

Normal,   controls the amount of information about   that is contained in the data for 

a given sample size.  In particular, the asymptotic variance of NLŜ  is proportional to 

2 . They demonstrate that as   approaches zero, information contained in NLŜ  goes 

to zero, and its variance diverges.  In the special case where tx  and 
tz  are standardized 

to have unit variance, and correlation xz , the asymptotic variance of NLŜ  is given by 

the following expression: 
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In the limiting case that 0  the variance of ̂  becomes infinite. Nelson and Startz 

also show through a series of Monte Carlo simulations that the standard error of NLŜ  

is understated relative to the asymptotic formula.  However, t-tests for   may be 

undersized or oversized, depending on the DGP, which for the model above boils down 

to the value of xz . 
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2.2 A Simple Taylor Rule Model with Interest Rate Smoothing 

 In order to determine whether estimated Taylor rules suffer from weak 

identification, we extend the nonlinear model of Nelson and Startz to resemble a Taylor 

rule regression with interest rate smoothing. For simplicity, we consider the case in 

which the Fed focuses only on expected inflation while ignoring business cycle 

considerations. We can think of such a model as follows: 

    tttt zrr   11 .  (2.3) 

In this case, the dependent variable is the Federal Funds Rate (FFR), 
tz  is expected 

inflation,   is the response to changes in expected inflation, and )1(   is the degree of 

interest rate smoothing, which corresponds to   in our empirical parameterizations of 

Taylor rules.  It is easily seen that as the degree of smoothing increases,   approaches 

zero, and the Taylor rule coefficient of interest becomes unidentified.   

 Some differences between the models are worth noting.   appears twice on the 

right hand side of the regression and we have lagged tr  as a regressor, both due to 

smoothing. Unlike the model of Nelson and Startz, we do not need tx  to identify  , so 

it has been dropped to keep the model tractable. Dropping tx  leaves only one right hand 

side correlation to consider; that between tz  and 1tr . 

 With Normal errors, it can be shown that the Information matrix for ̂  and ̂  is 

equal to: 
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with determinant  22
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zzm  is the 2nd sample moment of tz , etc. This 

implies the following asymptotic variance for NLŜ : 
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This clearly demonstrates that as   approaches zero, NLŜ  contains no information 

about the true value of  , suggesting that estimated Taylor rules may be subject to 

spurious inference. 

2.3 A More General Taylor Rule Model with Interest Rate Smoothing 

 Most estimated Taylor rules consider some sort of business cycle activity in 

addition to expected inflation, typically the output gap.  We extend equation (2.3) to 

allow for this as follows: 

      ttttt yzrr   
~1 1

,  (2.6) 

where ty~  is the deviation of output from its trend or potential, and   is the change in 

the FFR when output deviates from its target.  In this framework, it is possibly more 

transparent that as interest rate smoothing increases, the terms we care about in the 

squared bracket are being multiplied by a smaller number, suggesting that the ZILC 

may cause problems for inference on   and   that is based on asymptotic theory.   

 The algebra demonstrating this is as follows... 

[To be added] 
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3. A Review of the Literature on the Delta Method for the ratio of Coefficients 

The problem of computing confidence intervals for ratios of parameters has a long 

tradition in economics, being particularly important within the literature estimating 

elasticities and/or long-run multipliers.  In these setups, the well-known delta Wald-

type method constitutes a general procedure to approximate the standard error of a 

nonlinear combination of estimates based on a first-order Taylor series expansion.  

However, this methodology is only valid asymptotically, provided that the 

transformation function is differentiable, with nonzero and bounded derivatives.  

To fix ideas, consider the following first-order dynamic regression model: 

ttttt zxyy     2101     (3.1) 

where the long-run elasticity, or long-run multiplier depending on the context at hand, 

is defined as the ratio of the coefficient on a regressor to one minus the coefficient on 

the lagged dependent variable.  

Within this framework, a  %1100   confidence interval for the ratio is given by 

the following expression: 
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where 2az  is the normal two-tailed  -level cutoff point and ̂  is the estimated variance-

covariance matrix associated with   ˆ,ˆ
j . 

Notice that this transformation of the parameter vector becomes problematic (i.e., 

unbounded) as   approaches unity.  In other words, this ratio is weakly identified over 

a subset of the parameter space, and as shown by Dufour (1997), standard procedures 

that are bounded by construction can have zero coverage probability.  Therefore, this 
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provides a clear connection between the ZILC of Nelson and Startz (2007) and 

inappropriateness of the delta-method that motivates our investigation. 

A number of recent studies have compared the relative performance of alternative 

methods, such as the bootstrap procedure of Krinsky and Robb (1986) and the 

modification to Fieller’s (1940,1954) original approach, and have concluded that the 

latter performs remarkably well in a variety of settings – see for example Hirschberg et 

al. (2008), Bolduc et al (2010), and Bernard et al. (2007).  Like the delta-method, Fieller’s 

method also relies on asymptotic theory but confidence intervals are computed by 

inverting a test that does not require identifying the ratio, and are neither symmetric 

nor bounded. 

In the next section we describe four alternative methodologies in detail, and in 

section 5 we conduct a series of Monte Carlo experiments to assess their relative 

performance within the context of a dynamic regression model that resembles a Taylor 

rule with interest rate smoothing. 

 

4.  Methods of Computing Confidence Intervals for the Ratio of Parameter 

Estimates 

In this section, we discuss four methods of computing confidence intervals for 

the ratio of coefficients.  

4.1 The Delta-Method 

 The basic Taylor rule equation to be estimated is:  

tthtttt yErr    ]ˆ )[1(1     (4.1) 

where the Taylor Principle is satisfied if 1 .   There are two equivalent ways of testing 

a hypothesis about the value of  .  One is to estimate Equation (4.1) by NLS, and 

compute:  

)ˆ(96.1ˆ
NLSNLS asyse   . 
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This can be done quite easily using canned software packages.  Asymptotically, this 

confidence interval has 95% coverage, and a t-test based on the same output has 

asymptotic size of 5%.  Equivalently, one can linearize Equation (4.1) as follows: 

tthtttt yErr   
ˆ 2101      (4.2) 

where OLŜ  can be computed as 
OLS

OLS





ˆ1

ˆ
,1


.  Since this is the ratio of OLS estimates, the 

delta-method can be used to construct the asymptotic variance of OLŜ .  Both this 

method and NLS of Equation (4.1) give numerically equivalent results.  Since ,
1

1







  

the delta-method is only valid when 1 , which ensures that the derivatives of the 

transformation are bounded and continuously differentiable.  We also note here that 

when 1 , the ZILC holds.  

4.2 Fieller 

 It is well known that Wald-type tests are not invariant to the formulation of the 

null hypothesis. An alternative formulation could be written as follows: 

  0101    

where 0  is the value of the ratio of parameters under the null hypothesis. In order to 

compute a confidence interval, one could invert the corresponding t-statistic as follows: 
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which requires solving a quadratic inequality such that: 
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Following Bernard et al. (2007), it can be shown that if A> 0 the bounded solution is 

given by: 








 

A

B
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if and only if 02  ACB . 

Otherwise, the solution could either be an unbounded interval or the entire real 

line. 

4.3 Krinsky and Robb 

 They propose a bootstrap procedure to compute a confidence interval for a ratio 

of parameters by sampling from their asymptotic distribution, then computing the ratio 

for each draw, and finally trimming the lower/upper 2.5% tails. The result is an 

approximation to an asymptotic 95% confidence interval, and this methodology has 

been widely used by empirical researchers in situations where the delta-method is 

expected to fail. 

 

5.  Finite Sample Size of the Delta-Method, Fieller, and Krinsky and Robb 

In this section, we compare the finite sample size of the t-statistic for the Taylor 

rule coefficient for the delta-method, Fieller’s method, and Krinsky and Robb, when 

estimation is performed by NLS in the presence of interest rate smoothing.  We consider 

various parameterizations of the Taylor rule, parameter values, departures from 

Normality in the errors and HAC corrections. 

 We consider T = 25, 50, 75, 100, 150, 250, and 1000. The first five sample sizes 

are empirically relevant, and we know of no empirical work with 250 observations, but 

use it and the much more unrealistic 1000 observations to see how quickly asymptotic 
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theory takes hold.  We consider the entire range for  , but will limit our discussion to 

values of   greater than 0.7 for two reasons.  First, values of   less than 0.7 are far 

from the ZILC of unity, and as expected, all 4 methods work quite well in small samples.  

Second, values of   greater than 0.7 are empirically relevant aside from being close to 

the ZILC: the three empirical studies that we analyze have estimated values of  no less 

than 0.74. 

 We begin by considering a Taylor rule parameterization where data are generated 

according to:  

tthtttt yErr    ]ˆ )[1(1  

with uncorrelated standard Normal regressors and errors.  We use the estimated values 

of   and   from one of Orphanides’ (2004) specifications, and consider six values of 

: 0.75, 1.0, 1.5, 2.0, 2.5 and 5. We use all three methods to test the null hypothesis that 

  is equal to its true value, and plot the empirical rejection frequencies.  The delta-

method rejection line is in blue, Fieller in red, and Krinksky and Robb in green.  We plot 

the rejection frequencies only up to 0.25, so that their differences are more visually 

apparent, although we do note that for very small sample sizes, the delta-method often 

goes above 25%, while this is never true for Fieller and Krinsky and Robb. 

 Figure 1 presents the results for 75.0 , which corresponds to the case where 

the Fed raises the nominal interest rate less than one for one with an increase in 

expected inflation, so that the real interest rate falls. 

 Figure 2 presents the results for 1 , which corresponds to the case where the 

Fed raises the nominal interest rate one for one with an increase in expected inflation 

so that the real interest rate remains unchanged.  For T = 25 and 50, very small sample 

sizes, the delta-method is dominated by both other methods.  Around a smoothing 

parameter of 0.8, the delta-method becomes sized at 10%, and this size distortion 

worsens approaching the ZILC point of 1 , reaching as high at 35% for T = 25.  The 

situation is much better for Fieller and Krinsky and Robb.  Even for these small samples, 

these tests do not become doubly-sized until around 95. , which is higher than most 

empirical estimates, although we know that there is a downward mean and median-bias 
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in the NLS estimate of this coefficient.  It isn’t until ρ approached unity that the size 

distortions worsen, with Krinsky and Robb never going over 15%. For T = 75 and 100, 

moderate but empirically relevant sample sizes, a similar pattern emerges.  The size 

distortion of the delta-method is mitigated, as predicted by asymptotic theory, but it still 

reaches twice its nominal size around 80.  and peaking around 20% at the ZILC 

point.  Fieller and Krinsky and Robb are much better behaved, only becoming oversized 

when ρ exceeds 0.95.  We finally consider T = 150 and 250.  These are interesting sample 

sizes, since one of our studies has 150 observations, and no empirical studies have 250.  

For the former, although the delta-method continues to improve with the larger sample 

size, Krinsky and Robb is the clear winner, with a maximum size of around 7% when 

interest rate smoothing is high.  Fieller is in the middle. When we increase the sample 

size to 250, Krinsky and Robb is again the clear winner, being almost correctly sized for 

the entire range of ρ.  It may be worth noting that as ρ approaches unity for this sample 

size, the delta-method has better size the Fieller. 

  Figure 3 presents the results for 5.1 , which corresponds to Taylor’s 

(1993) original specification, where the Fed raises the nominal interest 1.5 to 1 when 

expected inflation increases, so that the real interest rate increases to slow down real 

economic activity.  For T = 25 and 50, the delta-method is gets worse in terms of being 

oversized, approaching 10% actual size around 70. , and getting more oversized as 

interest rate smoothing increases, peaking around 27-40%. For these sample sizes, 

Fieller doesn’t get oversized until 95. , and the Krinsky and Robb procedure only 

eclipsles 10% actual size very close to the ZILC point.  For T = 75 and 100, the delta-

method slightly improves, is dominated by Fieller, and Krinsky and Robb are slightly 

oversized in the limit.  For T = 150 and 250, the delta-method is still the poorest 

performer, save for slightly better size that Fieller close to the ZILC, while Krinsky and 

Robb is almost properly sized for the entire range of interest rate smoothing. 

 Figure 4 – 6 report actual size for  = 2.0, 2.5 and 5, the latter two corresponding 

to very high increases in the Fed Funds Rate, when expected inflation increases.  The 

main qualitative differences remain, while the main quantitative difference is that both 

Fieller and Krinsky and Robb become more oversized as ρ approaches unity for the 
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higher Taylor Rule coefficients, which are probably unrealistic values of the response of 

the Fed to increases in expected inflation.   

 Finally, while we do not plot the results for T = 1000, it is the case the Fieller and 

Krinsky and Robb are properly sized, while the delta method is slightly oversized, around 

8-9% close the Zero Information Limit Condition.  Given these simulation results, we 

now turn to three recent empirical studies on the Taylor Rule estimated by NLS, taking 

Krinsky and Robb as the most reliable procedure to produce a confidence interval with 

correct size.   

 

6.  Confidence Intervals of Taylor Rule Coefficients with Better Finite Sample 

Coverage Properties 

In this section, we re-examine three empirical studies which estimate Taylor rules 

with interest rate smoothing and forward looking data, using nonlinear least squares, 

which again is equivalent to using the delta-method on the linearized version of the 

model.  We compare the confidence intervals computed from the delta-method, Fieller, 

and Krinsky and Robb, where the latter two methods were demonstrated in the previous 

section to have better coverage in finite samples, especially when we approach the ZILC. 

6.1 Orphanides (2004 JMCB) 

We start by re-examining Orphanides (2004 ), the first paper to estimate Taylor 

rules with forward looking data by NLS.  He estimates equations of the form1: 

tthtttt yErr    ]ˆ )[1(1     (6.1) 

where tr  is the nominal Federal Funds rate, httE   is the forecast of inflation h horizons 

into the future,  tŷ  is the estimated output gap, and   is the degree of interest rate 

smoothing.    

                                                           
1 In the published version of his paper, Orphanides uses AR(2) smoothing.  We cannot replicate 
his results using his working paper data, but we will consider AR(2) smoothing in this paper 

with the same data. 
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 Orphanides considers two samples, 1966:1-1979:2 and 1979:3-1995:4, 

corresponding the pre and post Volcker regimes.  He also considers inflation forecasts 

from 1 to 4 quarters ahead.  For these 8 regressions, the Taylor Principle is estimated 

to hold twice at the nominal 5% level, during the post Volcker regime for the 3 and 4 

quarter ahead inflation forecasts.  Of course, these findings of significance are based on 

the delta-method, which is only valid asymptotically, and the sample size in this case is 

quite small; T = 66.  We consider whether this finding is robust to using methods which 

generate confidence intervals with more accurate coverage properties.   

 Table 1 reports the three sets of confidence intervals for each inflation forecast 

horizon.  The first column is the delta-method, which can be directly inferred from 

Orphanides’ Table 1, by computing:  

)ˆ(96.1ˆ  asyse . 

The second column is Fieller, and column 3 is Krinsky and Robb (KR). 

 The published version of his paper uses AR(2) smoothing.  Using the data from 

his working paper, we also consider AR(2) smoothing.  The results are reported in Table 

1.  For the 3 quarter ahead inflation forecast, all 3 confidence intervals have lower 

bounds less than unity.  This reverses 1 of his 2 findings that the Taylor Principle held 

post-Volker.  For the 4 quarter ahead inflation forecast, all first 3 confidence intervals 

have lower bounds greater than unity, thereby not reversing his finding, but the lower 

bounds of the confidence intervals are very close to unity. 

6.2 Nikolsko-Rzhevskyy (2011 JMCB) 

 Nikolsko-Rzhevskyy (2011) estimates Taylor Rules with AR(1) interest rate 

smoothing from 1982:1-2007:1, 101 quarterly observations, for the “nowcast” of 

inflation, as well as for forecast horizons 1-6.  Based on the delta-method, for the seven 

regressions, he finds that the Taylor Principle holds for 62 h .  In Table 2, we report 

his asymptotic confidence intervals for these horizons, as well as those based on Fieller 

and KR.  For 42 h , both Fieller and KR reverse the conclusion that 1 .  In 

contrast, for 65h  his conclusion is not changed.  
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 Although he does not report it, we redo Nikolsko-Rzhevskyy’s regressions with 

AR(2) smoothing, reported in Table 3.  Using the delta-method, we find that the Taylor 

Principle holds for 62 h . However, just as with AR(1) smoothing, the results for 

42 h  are overturned when considering Fieller and KR. Overall, this reverses 3 of the 

5 findings that the Taylor princple held from 1982:1 – 2007:1 

6.3 Coibion and Gorodnichenko  (2011 AER) 

 Coibion and Gorodnichenko (2011) estimate 6 Taylor rule regressions, using data 

up through 1979, and data after 1982. Two of these specifications have significant 

estimates of   being larger than unity.  The first is a forward looking Taylor rule with a 

2 quarter ahead inflation forecast, forecasted output gap, and forecasted output growth 

as regressors.  The second has a 2 quarter ahead inflation forecast, contemporaneous 

gap and growth as regressors, called a mixed Taylor rule.  Both specifications use AR(2) 

smoothing.   

 Table 4 reports the 3 sets of confidence intervals.  For the forward looking 

specification, all 3 confidence intervals are consistent with the Taylor Principle holding.  

For the mixed Taylor rule as well, all 3 confidence intervals support  Coibion and 

Gorodnichenko’s finding that the Taylor Principle was followed post 1982.  We also redo 

their regressions by omitting output growth, to better compare their results with 

Orphanides and Nikolsko-Rzhevskyy.  The results are starkly different.  While Fieller 

breaks down, the delta-method and KR consistent with virtually every realistic value of 

 , as well as a large range of unrealistic positive and negative values.  
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7. Conclusions 

 In this paper we demonstrate that forward looking Taylor rules with interest rate 

smoothing estimated by NLS are subject to a variety of problems related to the difference 

in the predictions based on asymptotic theory and the actual finite sample distributions 

of the parameters of interest.  We use methods to construct confidence intervals for the 

Fed’s change in its nominal interest rate target to changes in expected inflation that 

have better properties than the delta-method.  

 We reconsider 3 empirical studies which estimate Taylor Rule regressions via 

NLS, and find that over half of the failures to reject are overturned.  Specifically, many 

examples of apparently informative confidence intervals based on the delta-method 

widen when better procedures are used to become much less informative, in that they 

do not rule out that the Taylor Principle did not hold for a variety of samples and sample 

sizes. 
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Figure 1 - Actual Size of a Nominal 5% Test, Beta=1 
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Figure 2 - Actual Size of a Nominal 5% Test, Beta=1.5 
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Figure 3 - Actual Size of a Nominal 5% Test, Beta=2 

  

.00

.05

.10

.15

.20

.25

.30

.35

10 20 30 40 50 60 70 80 90 100

Panel (a) - T=25

.00

.05

.10

.15

.20

.25

.30

.35

10 20 30 40 50 60 70 80 90 100

Panel (b) - T=50

.00

.05

.10

.15

.20

.25

.30

.35

10 20 30 40 50 60 70 80 90 100

Panel (c) - T=75

.00

.05

.10

.15

.20

.25

.30

.35

10 20 30 40 50 60 70 80 90 100

Panel (d) - T=100

.00

.05

.10

.15

.20

.25

.30

.35

10 20 30 40 50 60 70 80 90 100

Panel (e) - T=150

.00

.05

.10

.15

.20

.25

.30

.35

10 20 30 40 50 60 70 80 90 100

Panel (f) - T=250



20 
 

 

Figure 4 - Actual Size of a Nominal 5% Test, Beta=2.5 
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Figure 5 - Actual Size of a Nominal 5% Test, Beta=5 
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Table 1 - Orphanides (2004) / 95% Confidence Intervals 

Sample: 1979:3-1995:4 (𝑇 = 66) - AR(1) smoothing 

Horizon �̂� Delta Method Fieller Krinsky–Robb  

ℎ = 3 0.76 [1.093, 2.686] [1.062, 2.845] [1.053, 2.829]  

ℎ = 4 0.74 [1.178, 2.729] [1.164, 2.864] [1.186, 2.853]  

Note: Newey-West HAC standard errors.  

 

 

Table 2 - Orphanides (2004) / 95% Confidence Intervals 

Sample: 1979:3-1995:4 (𝑇 = 66) - AR(2) smoothing 

Horizon �̂� Delta Method Fieller Krinsky–Robb  

ℎ = 3 0.76 [𝟎. 𝟗𝟑𝟓, 𝟐. 𝟕𝟓𝟖] [𝟎. 𝟗𝟏𝟖, 𝟐. 𝟗𝟐𝟏] [𝟎. 𝟗𝟑𝟓, 𝟐. 𝟗𝟒𝟗]  

ℎ = 4 0.74 [1.034, 2.795] [1.032, 2.940] [1.019, 2.926]  

Note: Newey-West HAC standard errors.  
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Table 3 - Nikolsko-Rzhevskyy (2011) / 95% Confidence Intervals 

Sample: 1982:1 – 2007:1  (𝑇 = 101) - AR(1) smoothing 

Horizon �̂� Delta Method Fieller Krinsky–Robb  

ℎ = 2 0.85 [1.195, 3.690] [𝟎. 𝟕𝟏𝟕, 𝟒. 𝟒𝟎𝟐] [𝟎. 𝟔𝟗𝟕, 𝟒. 𝟑𝟔𝟑]  

ℎ = 3 0.85 [1.193, 3.969] [𝟎. 𝟗𝟖𝟒, 𝟒. 𝟒𝟐𝟓] [𝟎. 𝟗𝟓𝟗, 𝟒. 𝟒𝟕𝟗]  

ℎ = 4 0.84 [1.339, 3.963] [𝟎. 𝟗𝟔𝟏, 𝟒. 𝟑𝟓𝟎] [𝟎. 𝟗𝟓𝟕, 𝟒. 𝟑𝟖𝟖]  

ℎ = 5 0.82 [1.686, 3.995] [1.395, 4.339] [1.412, 4.357]  

ℎ = 6 0.83 [1.503, 3.938] [1.431, 4.243] [1.423, 4.176]  

Note: Newey-West HAC standard errors.  

 

 

Table 4 - Nikolsko-Rzhevskyy (2011) / 95% Confidence Intervals 

Sample: 1982:1 – 2007:1  (𝑇 = 101) - AR(2) smoothing 

Horizon �̂� Delta Method Fieller Krinsky–Robb  

ℎ = 2 0.85 [1.183, 3.659] [𝟎. 𝟔𝟓𝟐, 𝟒. 𝟐𝟐𝟖] [𝟎. 𝟔𝟗𝟏, 𝟒. 𝟏𝟖𝟎]  

ℎ = 3 0.85 [1.178, 3.927] [𝟎. 𝟗𝟑𝟐, 𝟒. 𝟑𝟓𝟐] [𝟎. 𝟗𝟓𝟔, 𝟒. 𝟑𝟔𝟖]  

ℎ = 4 0.84 [1.259, 3.976] [𝟎. 𝟕𝟔𝟖, 𝟒. 𝟑𝟏𝟔] [𝟎. 𝟖𝟎𝟒, 𝟒. 𝟑𝟓𝟕]  

ℎ = 5 0.82 [1.571, 4.049] [1.127, 4.337] [1.096, 4.372]  

ℎ = 6 0.83 [1.463, 3.912] [1.416, 4.273] [1.436, 4.309]  

Note: Newey-West HAC standard errors.  
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Table 5 – Coibion and Gorodnichenko (2011) / 95% Confidence Intervals 

Sample: post 1982 (𝑇 = 158) 

Specification �̂� Delta Method Fieller Krinsky–Robb  

𝐹𝑜𝑟𝑤𝑎𝑟𝑑 0.94 [1.351, 3.715] [1.290, 4.987] [1.260, 4.758]  

𝑀𝑖𝑥𝑒𝑑 0.92 [1.409, 2.994] [1.472, 3.376] [1.464, 3.372]  

Note: Newey-West HAC standard errors.  

 

 

Table 6 - Coibion and Gorodnichenko (2011) / 95% Confidence Intervals 

Sample: post 1982 (𝑇 = 158)– No output growth 

Specification �̂� Delta Method Fieller Krinsky–Robb  

𝐹𝑜𝑟𝑤𝑎𝑟𝑑 0.96 [𝟎. 𝟑𝟓𝟔, 𝟒. 𝟔𝟐𝟔] − [−𝟐. 𝟏𝟗𝟖, 𝟖. 𝟖𝟓𝟔]  

𝑀𝑖𝑥𝑒𝑑 0.96 [𝟎. 𝟏𝟖𝟕, 𝟒. 𝟑𝟏𝟒] − [−𝟐. 𝟕𝟕𝟖, 𝟕. 𝟖𝟐𝟑]  

Note: Newey-West HAC standard errors.  
 


