Option Package Bundling

Takanori Adachi and Takeshi Ebina
(Tokyo Institute of Technology)
Makoto Hanazono (Nagoya University)
Optional Goods and Services

- **Definition**: Valuable only if other goods or services are consumed together.

- **Examples**:
 - Leather seats for a car,
 - Caller ID for a basic phone service,
 - Soccer channels for a basic cable TV service
Bundled Optional Goods

- **Examples:**
 - A text editor software with an OS,
 - A microphone with a PC,
 - Short message service with a cell phone plan.

- **Bundling Strategies:**
 - Pure Bundling: Bundle only. No goods w/o options.
 - Mixed Bundling: Bundle, and goods w/o options.

- **Option Package Bundling Problem:**
 Firm’s optimization w.r.t. bundling strategies, and the associated prices.
Objectives and Scope

- **Multiproduct Monopolist’s Option Package Bundling Problem** with
 - **Two Goods**: a regular, an optional. No cost to produce.
 - Unit demand for each good. **Uniform distribution** of tastes.
 - **Parameter**: the dispersion (i.e., support size) of valuation for an optional good.
 - **Deterministic** mechanism.

- **Question**: *Which bundling scheme is optimal?*
Preview of Results

- **Pure vs. Mixed Bundling:**
 Based on cost and benefit analysis of screening, find a condition under which PB outperforms MB.

- **Comparison with Standard Bundling Model:**
 PB is never optimal.
 “Bunching” property arises in both models.
Related Literature

• Standard Bundling Problem:
 • Discrete type: Stigler (1963), Adams-Yellen (1976)

• Option Package Bundling Problem:
 • Discrete type: Pierce and Winter (1996): two types. Boils down to one-dimensional screening.
 • Continuous type: This work. Multidimensional screening.
Model: Consumers

- **Indivisible Goods:** 1 (regular) and 2 (optional).

- **Consumer’s Valuation:** \((v_1, v_2) \in [0,1] \times [0, \tau], \ 0 < \tau \leq 1\)

Uniform distribution with density \(1/\tau\).

Consume each good up to one unit.

Willingness to pay:

\[
\begin{cases}
 v_1 + v_2 : \text{if both goods are consumed} \\
 v_1 : \text{if a good 1 alone is consumed} \\
 0 : \text{otherwise.}
\end{cases}
\]
Model: Monopolist

Produces both goods w/o cost. Charges $p_1 \in [0,1], p_2 \in [0,\tau]$ for good 1 and 2.

- **Interpretation:** $p_1 + p_2$ is the bundle price, because no one buys good 2 alone.

Equivalent Alternative: charging p_1 for good 1 alone, and b for a bundle.
Demand

\[v_1 + v_2 = p_1 + p_2 \]

- Good 1 & 2
- No good
- Good 1 only

Diagram:
- Axes: \(\tau \) and \(v_1 \)
- Lines: \(p_2 \) and \(p_1 \)
Pure Bundling: $p_1 = 1$ or $p_2 = 0$

$$v_1 + v_2 = p_1 + p_2$$

Good 1 & 2

No good

$p_2 = 0$
Profit Maximization:

\[p_1 < 1 \land p_2 > 0 \] is a solution
\[\Rightarrow \] Mixed bundling is optimal.

\[p_1 = 1 \lor p_2 = 0 \] is a solution
\[\Rightarrow \] Pure bundling is optimal.
Preliminary Pure-Only Case

- Pure bundling price b.

Demand and profit functions:

$$D(b, \tau) = \begin{cases}
(\tau - b^2/2)/\tau & \text{if } 0 \leq b \leq \tau \\
(2 + \tau - 2b)/2 & \text{if } \tau \leq b \leq 1 \\
(1 + \tau - b)^2/(2\tau) & \text{if } 1 \leq b \leq 1 + \tau,
\end{cases}$$

$$\Pi(b, \tau) = bD(b, \tau).$$

\(\Pi\): Non-concave, but quasi-concave in b.

Proposition 1: Optimal Pure Bundling

\[\tau \geq \frac{2}{3} \]

\[b^* = \frac{2\tau}{3} \]

\[\tau \leq \frac{2}{3} \]

\[b^* = \frac{\tau}{4} + \frac{1}{2} \]
Unrestricted Case

\[
\text{Max } \Pi_0(p_1, p_2, \tau)
\]

\[
= p_1 (1 - p_1) + p_2 (1 - p_1)(\tau - p_2) / \tau + (p_1 + p_2) n(p_1, p_2, \tau)
\]
Solving the Problem

Non-concavity in \((p_1, p_2)\):

- **Candidate Solutions**: FOCs, and points of boundaries or the regime change (for \(m(p_1, p_2, \tau)\)).

- **Points of boundaries and regime change**:
 - FOCs hold for optimal PB.
 - Other prices are not optimal (not hard to show but just tedious).

\(\Rightarrow\) **FOCs are necessary.**
Prices Satisfying FOCs

\[\tau \geq \frac{2}{3} \]

\[p_1 = \frac{2}{3}, \quad p_2 = \frac{\tau}{2} - \frac{1}{3} \]

\[p_1 = \sqrt{\frac{2\tau}{3}}, \quad p_2 = 0 \]

\[\tau \leq \frac{2}{3} \]

\[p_2 = 0 \]

\[p_1 = \frac{\tau}{4} + \frac{1}{2} \]
SOC for Pure Bundling

\[p_1 \downarrow \text{by } \epsilon \text{ and } p_2 \uparrow \text{by } \epsilon. \]

Gain > Loss iff \(p_1 > 2/3 \)

\(\Rightarrow \) PB suboptimal for \(\tau > 2/3 \)

since optimal PB price is \(\sqrt{2\tau / 3} > 2/3. \)

New comer gain:

\[(p_1 - \epsilon) \times \frac{\epsilon^2}{(2\tau)} = \frac{(p_1 - \epsilon) \times \epsilon^2}{(2\tau)} \]

Loss from separating buyers:

\[\epsilon \times \frac{\epsilon \times (2 - 2p_1 + \epsilon)}{(2\tau)} = \epsilon \times (2 - 2p_1 + \epsilon) \frac{\epsilon}{(2\tau)} \]
Pure vs. Mixed Bundling

- **Role of Mixed Bundling:** Screening.

- **Screening benefit** from PB ↑ as PB price ↑.

- **Optimal PB price is higher for higher** τ, since
 - average willingness to pay for optional goods is higher,
 - bundle price elasticity of demand is smaller.
Proposition 2: Optimal Bundling

\[p_2 = \frac{\tau}{2} - \frac{1}{3} \]

\[p_1 = \frac{2}{3} \]

\[p_1 = \frac{\tau}{4} + \frac{1}{2} \]

\[\tau \geq \frac{2}{3} \]

\[\tau \leq \frac{2}{3} \]
Implication

- **Smaller** \(\tau \): optional good is less important, and the diversity of tastes is smaller
 \[\Rightarrow \text{More pure bundling!} \]

- Looks consistent with the examples of option package bundling.
Two Regular Good Case

Motivation:
Wish to know how much the above result depends on one good being optional.

Model:
Adopt the same assumptions, except that both of two goods are regular.

A special case of McAfee, McMillan and Whinston (1989).
Demand

\[v_1 + v_2 = b \]

<table>
<thead>
<tr>
<th>Region</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good 1 & 2</td>
<td></td>
</tr>
<tr>
<td>Good 2 only</td>
<td></td>
</tr>
<tr>
<td>No good</td>
<td></td>
</tr>
<tr>
<td>Good 1 only</td>
<td></td>
</tr>
</tbody>
</table>

Diagram:
- Axes: \(p_1 \) and \(v_1 \)
- Axes: \(p_2 \) and \(v_2 \)
- \(v_1 + v_2 = b \) line
Pricing Strategies

- **No Bundling** (no discounting): \(p_1 + p_2 \leq b \).

- **Pure Bundling** (all buy bundles): \(\min \{ p_1, p_2 \} \geq b \).

- **Mixed Bundling** (some buy bundle, and others buy component): \(p_1 + p_2 > b \), and \(\min \{ p_1, p_2 \} < b \).

Proposition 3: MB dominates NB and PB. MB dominates NB (MMW), MB dominates PB by screening, using either good.
Proposition 4: Optimal Bundling Prices

\[p_1 = \frac{2}{3} \]

\[p_2 = \frac{2\tau}{3} \]

\[b = \frac{2(1+\tau)}{3} - \frac{\sqrt{2\tau}}{3} \]

\[\tau \geq 1/2 \]

\[\tau \leq 1/2 \]
Comparison with Option Package Bundling

- **Difference:** MB is always optimal (or “semi-mixed” for lower τ).

- **Similarity:** Bunching. For $\tau \leq \frac{1}{2}$, buyers for good 1 alone disappear. Same logic regarding costs and benefits of screening applies.

Bunching arises for a smaller domain of τ’s. Screening buyers for good 2 induces higher bundling price, creating more profitable opportunity of screening those for good 1.
Robustness

- Other distributions? Correlations?
 Hard to obtain analytical solutions.
 The main logic seems to apply to more general cases. But careful investigation requires.

- More than two goods?
 Hard too. No attempt even in regular good cases, except for many good model relying on the Law of Large Numbers (e.g. Armstrong 1999).
Conclusion

- Monopolist's two-good option package bundling problem with the uniform distribution of buyers' valuation is studied.

- Mixed bundling is a screening device. For small τ, screening is not profitable. PB outperforms MB iff $\tau \leq 2/3$.
Conclusion

- PB can never be optimal in the comparable two regular good model.

- Both models share bunching property. For small τ, screening buyers for a good alone is unprofitable.

- Shed light on why firms combine a potentially optional feature with the associated regular good.