On IRS’s Servicing and Auditing Taxpayers

Tsung-Sheng Tsai
Tsing Hua University

C.C. Yang
Academia Sinca

Far Eastern Meeting of the Econometric Society
August 3, 2009
IRS’s missions

- Tax compliance has been recognized as an important issue. In the U.S., approximately 10 to 15% of the total taxable income is unreported.
IRS’s missions

▶ Tax compliance has been recognized as an important issue. In the U.S., approximately 10 to 15% of the total taxable income is unreported.

▶ The conventional approach on tax compliance focuses on enforcement through audit.
IRS’s missions

- Tax compliance has been recognized as an important issue. In the U.S., approximately 10 to 15% of the total taxable income is unreported.
- The conventional approach on tax compliance focuses on enforcement through audit.
- In 1984, the declared purpose of the IRS is “to collect tax revenue at the least cost.”
IRS’s missions

- In fiscal year 2008, the IRS budget request includes 3.6 billion for taxpayer service and 7.2 billion for enforcement.
Introduction

IRS’s missions

▶ In fiscal year 2008, the IRS budget request includes 3.6 billion for taxpayer service and 7.2 billion for enforcement.
▶ “Government Accountability Office” highlights: “enforcement efforts should be combined with taxpayer service because both affect compliance.” (2008)
Introduction

IRS’s missions

- In fiscal year 2008, the IRS budget request includes 3.6 billion for taxpayer service and 7.2 billion for enforcement.
- “Government Accountability Office” highlights: “enforcement efforts should be combined with taxpayer service because both affect compliance.” (2008)
- To our knowledge, there is no formal model to address the interaction of service and enforcement in the framework of tax compliance.
Model

Taxpayers

- There is a 1 + q mass of continuum taxpayers; 1 unit of them have income \(y \), and \(q \) unit of them do not have \(y \) income. Income information is private to taxpayers.
Model

Taxpayers

- There is a $1 + q$ mass of continuum taxpayers; 1 unit of them have income y, and q unit of them do not have y income. Income information is private to taxpayers.
- With a portion ϕ, those who have income y may be eligible for deduction or exemption.
Model

Taxpayers

- There is a $1 + q$ mass of continuum taxpayers; 1 unit of them have income y, and q unit of them do not have y income. Income information is private to taxpayers.
- With a portion ϕ, those who have income y may be eligible for deduction or exemption.
- However, the true status is uncertain to taxpayers, and the IRS’s service can mitigate the uncertainty.
Model

Taxpayers

- There is a $1 + q$ mass of continuum taxpayers; 1 unit of them have income y, and q unit of them do not have y income. Income information is private to taxpayers.
- With a portion ϕ, those who have income y may be eligible for deduction or exemption.
- However, the true status is uncertain to taxpayers, and the IRS’s service can mitigate the uncertainty.
- Three types of taxpayers: (i) those who do not have y income, (ii) those who have income y but it is deductible, and (iii) those who have income y but it is not deductible. Only in third case they need to pay tax T.
IRS’s taxpayer service

- True state of taxpayer with income y: $\theta \in \{y, 0\}$.
IRS’s taxpayer service

- True state of taxpayer with income y: $\theta \in \{y, 0\}$.
- Taxpayers inquire about their true state. The IRS provides an advice $s \in \{y, 0\}$.

\[\Pr(s = 0 | \theta = 0) = \Pr(s = y | \theta = y) = r \in [\frac{1}{2}, 1], \]
\[\Pr(s = 0 | \theta = y) = \Pr(s = y | \theta = 0) = 1 - r. \]
IRS’s taxpayer service

- True state of taxpayer with income \(y \): \(\theta \in \{ y, 0 \} \).
- Taxpayers inquire about their true state. The IRS provides an advice \(s \in \{ y, 0 \} \).
- IRS’s technology:

\[
Pr(s = 0|\theta = 0) = Pr(s = y|\theta = y) = r \in \left[\frac{1}{2}, 1 \right], \\
Pr(s = 0|\theta = y) = Pr(s = y|\theta = 0) = 1 - r.
\]
Timing

- The IRS or the society decides the size of the taxpayer service, \(r \).
Timing

- The IRS or the society decides the size of the taxpayer service, r.
- Given the realization of r, taxpayers who have y can go to the IRS’s taxpayer service and ask for its advice.
Model

Timing

- The IRS or the society decides the size of the taxpayer service, r.
- Given the realization of r, taxpayers who have y can go to the IRS’s taxpayer service and ask for its advice.
- Taxpayers who do not have y always report 0.
Timing

- The IRS or the society decides the size of the taxpayer service, \(r \).
- Given the realization of \(r \), taxpayers who have \(y \) can go to the IRS’s taxpayer service and ask for its advice.
- Taxpayers who do not have \(y \) always report 0. Taxpayers who have \(y \), after consulting the IRS, simultaneously and independently choose whether to report \(y \) or 0.
Model

Timing

- The IRS or the society decides the size of the taxpayer service, \(r \).
- Given the realization of \(r \), taxpayers who have \(y \) can go to the IRS’s taxpayer service and ask for its advice.
- Taxpayers who do not have \(y \) always report 0. Taxpayers who have \(y \), after consulting the IRS, simultaneously and independently choose whether to report \(y \) or 0.
- The IRS randomly chooses to audit a fraction of taxpayers who report 0.
Equilibrium

Taxpayer’s best response when \(s = 0 \):

- if he files \(y \), he obtains \(u(y - T) \).

\[
\begin{align*}
\text{The best response given IRS's audit probability } & \hat{\alpha}_0(\beta; r) = \\
& \begin{cases}
1 & \text{if } \beta < \bar{\beta}_0(r) \\
(0, 1) & \text{if } \beta = \bar{\beta}_0(r) = [1 + (1 - \phi) r \phi (1 - r)]^{\frac{1}{\mu}}; \\
0 & \text{if } \beta > \bar{\beta}_0(r).
\end{cases}
\end{align*}
\]
Taxpayer’s best response when \(s = 0 \):

- if he files \(y \), he obtains \(u(y - T) \).
- if he instead files 0, he obtains:

\[
\beta \frac{\phi (1 - r)}{(1 - \phi) r + \phi (1 - r)} u(y - T - F) + \left[\beta \frac{(1 - \phi) r}{(1 - \phi) r + \phi (1 - r)} + 1 - \beta \right] u(y).
\]
Equilibrium

Taxpayer’s best response when $s = 0$:

- if he files y, he obtains $u(y - T)$.
- if he instead files 0, he obtains:

$$\beta \frac{\phi(1 - r)}{(1 - \phi)r + \phi(1 - r)} u(y - T - F) + \left[\beta \frac{(1 - \phi)r}{(1 - \phi)r + \phi(1 - r)} + 1 - \beta \right] u(y).$$

- The best response given IRS’s audit probability β:

$$\hat{\alpha}_0(\beta; r) = \begin{cases}
1 & \text{if } \beta < \bar{\beta}_0(r); \\
(0, 1) & \text{if } \beta = \bar{\beta}_0(r) = [1 + \frac{(1 - \phi)r}{\phi(1-r)}] \mu; \\
0 & \text{if } \beta > \bar{\beta}_0(r).
\end{cases} \quad (1)$$
Equilibrium

Taxpayer’s best response when $s = y$:

- if he follows the advice, he obtains $u(y - T)$.

Lemma. For a given β, $\hat{\alpha}_0(\beta) \geq \hat{\alpha}_y(\beta)$.

Tsung-Sheng Tsai C.C. Yang
On IRS’s Servicing and Auditing Taxpayers
Taxpayer’s best response when $s = y$:

- if he follows the advice, he obtains $u(y - T)$.
- if he instead files 0, he obtains:

$$\beta \frac{\phi r}{\phi r + (1 - \phi)(1 - r)} u(y - T - F) + \left[\beta \frac{(1 - \phi)(1 - r)}{\phi r + (1 - \phi)(1 - r)} + 1 - \beta\right] u(y).$$
Equilibrium

Taxpayer’s best response when \(s = y \):
- if he follows the advice, he obtains \(u(y - T) \).
- if he instead files 0, he obtains:

 \[
 \beta \frac{\phi r}{\phi r + (1 - \phi)(1 - r)} u(y - T - F) + \left[\beta \frac{(1 - \phi)(1 - r)}{\phi r + (1 - \phi)(1 - r)} + 1 - \beta \right] u(y).
 \]

- The best response given IRS’s audit probability \(\beta \):

 \[
 \hat{\alpha}_y(\beta; r) = \begin{cases}
 1 & \text{if } \beta < \bar{\beta}_y(r); \\
 (0, 1) & \text{if } \beta = \bar{\beta}_y(r) = \left[1 + \frac{(1 - \phi)(1 - r)}{\phi r} \right] \mu; \\
 0 & \text{if } \beta > \bar{\beta}_y(r).
 \end{cases}
 \]
Equilibrium

Taxpayer’s best response when \(s = y \):

- if he follows the advice, he obtains \(u(y - T) \).
- if he instead files 0, he obtains:
 \[
 \beta \frac{\phi r}{\phi r + (1 - \phi)(1 - r)} u(y - T - F) + \left[\beta \frac{(1 - \phi)(1 - r)}{\phi r + (1 - \phi)(1 - r)} + 1 - \beta \right] u(y).
 \]

- The best response given IRS’s audit probability \(\beta \):
 \[
 \hat{\alpha}_y(\beta; r) = \begin{cases}
 1 & \text{if } \beta < \bar{\beta}_y(r); \\
 (0, 1) & \text{if } \beta = \bar{\beta}_y(r) = [1 + \frac{(1 - \phi)(1 - r)}{\phi r}] \mu; \\
 0 & \text{if } \beta > \bar{\beta}_y(r).
 \end{cases}
 \]

- **Lemma.** For a given \(\beta \), \(\hat{\alpha}_0(\beta) \geq \hat{\alpha}_y(\beta) \).
IRS’s best response:

- Given \(r, \alpha_y \) and \(\alpha_0 \), the IRS’s profit is

\[
\pi(\beta; r) = \beta[p(T + F) - c]
\]

where

\[
p \equiv \frac{\phi[r\alpha_y + (1-r)\alpha_0]}{\{\phi[r\alpha_y + (1-r)\alpha_0] + (1-\phi)[(1-r)\alpha_y + r\alpha_0]\} + q},
\]

which is the probability of detecting an evader.
Equilibrium

IRS’s best response:

- Given \(r, \alpha_y \) and \(\alpha_0 \), the IRS’s profit is

\[
\pi(\beta; r) = \beta [p(T + F) - c]
\]

where \(p \equiv \frac{\phi[r\alpha_y + (1-r)\alpha_0]}{\{\phi[r\alpha_y + (1-r)\alpha_0] + (1-\phi)[(1-r)\alpha_y + r\alpha_0]\} + q} \), which is the probability of detecting an evader.

- The best response of the IRS is

\[
\hat{\beta}(\alpha_y, \alpha_0; r) = \begin{cases}
1 & \text{if } p > \kappa; \\
(0, 1) & \text{if } p = \kappa = \frac{c}{T + F}; \\
0 & \text{if } p < \kappa.
\end{cases}
\]
Equilibrium outcome

\[\hat{\alpha}_0(\beta; r) \]

\[\hat{\beta}(\alpha_0, \alpha; r) \]
Proposition 1. Let $\bar{r} \equiv \frac{\phi(1-\kappa)-q\kappa}{\phi(1-\kappa)+(1-\phi)\kappa}$. Given κ, then in equilibrium:

1. If $\kappa < \frac{\phi}{1+q}$ and $r < \bar{r}$, then
 \[
 \alpha_0^* = \frac{q\kappa}{\phi(1-\kappa)-[\phi(1-\kappa)+(1-\phi)\kappa]r}, \quad \alpha_y^* = 0, \text{ and } \beta^* = \bar{\beta}_0.
 \]

2. If $\kappa < \frac{\phi}{1+q}$ and $r \geq \bar{r}$, then
 \[
 \alpha_0^* = 1, \quad \alpha_y^* = \frac{[\phi(1-\kappa)+(1-\phi)\kappa]r-\phi(1-\kappa)+q\kappa}{[\phi(1-\kappa)+(1-\phi)\kappa]r-(1-\phi)\kappa}, \text{ and } \beta^* = \bar{\beta}_y.
 \]

3. If $\kappa \geq \frac{\phi}{1+q}$, then
 \[
 \alpha_0^* = \alpha_y^* = 1, \text{ and } \beta^* = 0.
 \]
Equilibrium outcome

\[\kappa \]

\[\frac{\phi}{1 + q} \]

\[\frac{\phi}{1 + 2q} \]

\[\alpha_0^* = \alpha_y^* = 1, \beta^* = 0 \]

\[\alpha_0^* = 1, \alpha_y^* \in (0,1), \quad \beta^* = \bar{\beta}_y \]

\[\alpha_0^* \in (0,1), \alpha_y^* = 0, \quad \beta^* = \bar{\beta}_0 \]
Important Properties:

When $\kappa < \frac{\phi}{1+q}$:

1. Both α_0^* and α_y^* are non-decreasing in r.

2. If $r < \bar{r}$, $\beta^* = \bar{\beta}_0$ is increasing in r;
 if $r \geq \bar{r}$, $\beta^* = \bar{\beta}_y$ is decreasing in r.
IRS’s preferred size of taxpayer service

- Net tax revenue:

\[
\Pi = \left\{ \phi [r(1-\alpha_y^*) + (1-r)(1-\alpha_0^*)] + (1-\phi) [(1-r)(1-\alpha_y^*) + r(1-\alpha_0^*)] \right\} T
\]
IRS’s preferred size of taxpayer service

- Net tax revenue:

\[\Pi = \{ \phi [r(1-\alpha_y^*) + (1-r)(1-\alpha_0^*)] + (1-\phi)[(1-r)(1-\alpha_y^*) + r(1-\alpha_0^*)] \} T \]

- IRS’s profit from enforcement per se is equal to zero in equilibrium.
IRS’s preferred size of taxpayer service

Net tax revenue:

\[\Pi = \left\{ \phi [r(1-\alpha_y^*)+(1-r)(1-\alpha_0^*)]+(1-\phi)[(1-r)(1-\alpha_y^*)+r(1-\alpha_0^*)] \right\} T \]

IRS’s profit from enforcement per se is equal to zero in equilibrium. All the net tax revenues are from those taxpayers who voluntarily report \(y \) to the IRS.
IRS’s preferred size of taxpayer service

Net tax revenue:
\[
\Pi = \{ \phi[r(1-\alpha_y^*) + (1-r)(1-\alpha_0^*)] + (1-\phi)[(1-r)(1-\alpha_y^*) + r(1-\alpha_0^*)] \} T
\]

IRS’s profit from enforcement per se is equal to zero in equilibrium. All the net tax revenues are from those taxpayers who voluntarily report \(y \) to the IRS.

Since \(\alpha_0^* \) and \(\alpha_y^* \) are non-decreasing in \(r \) \(\Rightarrow \frac{\partial \Pi}{\partial r} < 0 \).
Optimal size of taxpayer service

IRS’s preferred size of taxpayer service

- Net tax revenue:

\[\Pi = \{ \phi [r(1-\alpha^*_y) + (1-r)(1-\alpha^*_0)] + (1-\phi)[(1-r)(1-\alpha^*_y) + r(1-\alpha^*_0)] \} T \]

- IRS’s profit from enforcement per se is equal to zero in equilibrium. All the net tax revenues are from those taxpayers who voluntarily report \(y \) to the IRS.

- Since \(\alpha^*_0 \) and \(\alpha^*_y \) are non-decreasing in \(r \) ⇒ \(\frac{\partial \Pi}{\partial r} < 0 \).
Proposition 2. The IRS’s preferred size of taxpayer service is minimal, that is, \(r^* = \frac{1}{2} \).
Society’s preferred size of taxpayer service

- Excess burden of tax evasion, or risk premium, $C(\beta(r))$:
 \[u(y - C) = \phi \beta u(y - T - F) + (1 - \phi \beta) u(y). \]
Optimal size of taxpayer service

Society’s preferred size of taxpayer service

- Excess burden of tax evasion, or risk premium, $C(\beta(r))$:
 \[u(y - C) = \phi \beta u(y - T - F) + (1 - \phi \beta) u(y). \]
- Social welfare function:
 \[W = v(\Pi) - C \]

where $v' > 0, v'' < 0$.
Society’s preferred size of taxpayer service

- Excess burden of tax evasion, or risk premium, $C(\beta(r))$:
 $$u(y-C) = \phi \beta u(y-T-F) + (1-\phi \beta) u(y).$$

- Social welfare function:
 $$W = v(\Pi) - C$$
 where $v' > 0$, $v'' < 0$.

- $C(r)$ is increasing (decreasing) in r if $r < \bar{r}$ ($r \geq \bar{r}$).
Optimal size of taxpayer service

Society’s preferred size of taxpayer service

- Excess burden of tax evasion, or risk premium, $C(\beta(r))$:
 \[u(y - C) = \phi \beta u(y - T - F) + (1 - \phi \beta) u(y). \]

- Social welfare function:
 \[W = \nu(\Pi) - C \]
 where $\nu' > 0$, $\nu'' < 0$.

- $C(r)$ is increasing (decreasing) in r if $r < \bar{r}$ ($r \geq \bar{r}$).
- $C(1/2) > C(1) \Rightarrow r = 1$ minimizes $C(\beta(r))$.
Proposition 3. If there exists an interior solution for the social optimal size of taxpayer service r^{**}, then $r^{**} \geq \bar{r}$.
Proposition 3. If there exists an interior solution for the social optimal size of taxpayer service r^{**}, then $r^{**} \geq \bar{r}$.

- There exists a conflict between the IRS and the society.
Proposition 3. If there exists an interior solution for the social optimal size of taxpayer service r^{**}, then $r^{**} \geq \bar{r}$.

- There exists a conflict between the IRS and the society.
- In 1998, the declared mission of the IRS was changed to “provide taxpayers top-quality service by helping them understand and meet their tax responsibilities.”
Not all taxpayers who have income y are assumed to seek advice from the IRS.
Extensions

- Not all taxpayers who have income y are assumed to seek advice from the IRS.
- Uninformed taxpayers: who do not utilize the service provided by the IRS.
Extensions

- Not all taxpayers who have income y are assumed to seek advice from the IRS.
- Uninformed taxpayers: who do not utilize the service provided by the IRS.
- Informed taxpayers: who seek the private agency, which provides more informative service than the IRS does.
The gap between the IRS’s and the society’s optimum is larger with a higher fraction of uninformed taxpayers, but is smaller with a higher fraction of informed taxpayers.
The gap between the IRS’s and the society’s optimum is larger with a higher fraction of uninformed taxpayers, but is smaller with a higher fraction of informed taxpayers.

The IRS prefer more uninformed but less informed taxpayers. The society prefers less uninformed taxpayers; but may also prefer less informed taxpayers sometimes.