Mobile Termination and Mobile Penetration

Sjaak Hurkens

Institute for Economic Analysis

August 2009
<table>
<thead>
<tr>
<th>Outline</th>
<th>Introduction</th>
<th>Model</th>
<th>Analysis Fixed MTC</th>
<th>Analysis Benchmarking Approach</th>
<th>Conclusion</th>
</tr>
</thead>
</table>

1. **Introduction**

2. **Model**

3. **Analysis Fixed MTC**

4. **Analysis Benchmarking Approach**

5. **Conclusion**
Mobile Termination Charges

- Competing mobile network operators need to interconnect to provide service.
- MTC is the price to be paid by *originating* operator to the *terminating* operator.
- MTC affects retail price competition:
 - enters as a *cost* for originating off-net calls
 - generates *revenue* from terminating incoming calls
- Terminating operator has SMP
 \[\rightarrow\] Ex-ante regulation of MTC may be justified
Forms of Regulation

- Obligatory bilateral negotiation of reciprocal MTC
- Fix MTC (Bill & Keep, cost-based, cost + return)
- Regulate MTC by fixing a benchmarking rule (Jeon and Hurkens, RAND 08)
This Paper

Extends retail benchmarking approach (Jeon and Hurkens, RAND 08) by

- Assuming elastic subscription demand (Logit)
- Allowing for termination-based price discrimination

And reviews fixed MTC, extending

- Gans and King (Economics Letters, 01) to elastic subscription
- Dessein (RAND 03) to termination-based price discrimination
The Model: Timing

1. MTC is set
2. Two firms set tariff: \((F_i, p_i, \hat{p}_i)\) (Fixed fee, on-net price, off-net price)
3. Consumers form (rational) expectations \((\varphi_1, \varphi_2, \varphi_0)\) about size of networks and subscribe to at most one
The Model: Costs

- marginal cost of call c
- marginal cost of termination c_0
- $\text{MTC} = a$, mc off-net call: $\hat{c} = c + a - c_0$
- cost of serving costumer f
The Model: Call Demand

- utility of calls $u(q)$
- call demand $q(p)$ defined by $u'(q(p)) = p$
- indirect utility $v(p) = u(q(p)) - pq(p)$
- $R(p) = (p - c)q(p)$
The Model: Subscription Demand

Deterministic utility

- utility of network 1 \(V_1 = \phi_1 v(p_1) + \phi_2 v(\hat{p}_1) - F_1 \)
- utility of network 2 \(V_2 = \phi_2 v(p_2) + \phi_1 v(\hat{p}_2) - F_2 \)
- utility of not subscribing \(V_0 \)
The Model: Subscription Demand

Deterministic utility

- utility of network 1 \(V_1 = \varphi_1 v(p_1) + \varphi_2 v(\hat{p}_1) - F_1 \)
- utility of network 2 \(V_2 = \varphi_2 v(p_2) + \varphi_1 v(\hat{p}_2) - F_2 \)
- utility of not subscribing \(V_0 \)

Random utility

\[U_i = V_i + \mu \varepsilon_i \quad \mu > 0, \varepsilon_k \text{ iid double exponential} \]
The Model: Subscription Demand

Deterministic utility
- utility of network 1 $V_1 = \varphi_1 v(p_1) + \varphi_2 v(\hat{p}_1) - F_1$
- utility of network 2 $V_2 = \varphi_2 v(p_2) + \varphi_1 v(\hat{p}_2) - F_2$
- utility of not subscribing V_0

Random utility
- $U_i = V_i + \mu \varepsilon_i$, $\mu > 0$, ε_k iid double exponential

Subscription rates
$$\varphi_i = \frac{\exp[V_i/\mu]}{\sum_{k=0}^{2} \exp[V_k/\mu]}.$$
Fixed MTC

Profit:

\[\Pi_i = \phi_i (\phi_i R(p_i) + \phi_j R(\hat{p}_i) + F_i - f) + \phi_i \phi_j (a - c_0) (q(\hat{p}_j) - q(\hat{p}_i)). \]
Fixed MTC

Profit:

\[\Pi_i = \phi_i \left(\phi_i R(p_i) + \phi_j R(\hat{p}_i) + F_i - f \right) + \phi_i \phi_j (a - c_0) (q(\hat{p}_j) - q(\hat{p}_i)) \]

Perceived Marginal Cost Pricing

It is optimal for firm \(i \) to set \(p_i = c \) and \(\hat{p}_i = c + a - c_0 \).
Equilibrium

Profit:

$$\Pi_i = \varphi_i(F_i - f + \varphi_j R(\hat{c}))$$
Equilibrium

Profit:

\[\Pi_i = \varphi_i(F_i - f + \varphi_j R(\hat{c})) \]

First Order Condition

\[\frac{\partial \Pi_i}{\partial F_i} = 0 \]

Rational Expectations

\[F = \varphi(v(c) + v(\hat{c})) - V_0 - \mu \ln \left[\frac{\varphi}{1 - 2\varphi} \right] \]
Symmetric Equilibrium $a = c_0$

Existence, uniqueness, comparative statics ...
Business Stealing vs. Network Externality

Business Stealing
An increase in F_1 makes some customers switch to network 2.

Network Externality
An increase in F_1 makes also network 2 less attractive, so that some subscribers of network 2 may become unsubscribed.
Business Stealing vs. Network Externality

Business Stealing
An increase in F_1 makes some customers switch to network 2.

Network Externality
An increase in F_1 makes also network 2 less attractive, so that some subscribers of network 2 may become unsubscribed.

The net effect is ambiguous.

\[\frac{\partial \phi_2}{\partial F_1} > 0 \quad \text{or} \quad \frac{\partial \phi_2}{\partial F_1} < 0 \]
Net Business Stealing: Comparative Statics

fixed fee

market penetration

RE

FOC
In the case of a net business stealing effect

An increase in MTC above cost
- increases market penetration
- lowers fixed fee
- lowers firms’ profits
In the case of a net business stealing effect

An increase in MTC above cost
- increases market penetration
- lowers fixed fee
- lowers firms’ profits

Intuition
Below cost MTC softens competition since consumers prefer to belong to smaller network.
Net Network Externality: Comparative Statics

![Graph showing fixed fee vs. market penetration]

- **FIXED FEE**
- **RE**
- **FOC**

Fixed Fee

Network Externality Comparative Statics
In the case of a net network externality effect:

An increase in MTC above cost:
- decreases market penetration
- lowers fixed fee
- lowers firms’ profits
In the case of a net network externality effect

An increase in MTC above cost

- decreases market penetration
- lowers fixed fee
- lowers firms’ profits

Intuition

Below cost MTC makes subscribers care more about the size of the other network, and thus helps firms to internalize the network externality.
Retail Benchmarking Approach

Definition: Network i pays for termination

\[\lambda(a, \kappa) := a + \kappa \frac{\pi_i(a)}{q(\hat{p}_i)}. \]

where

\[\pi_i(a) = \varphi_i(p_i - c)q(p_i) + \varphi_j(\hat{p}_i - (c + a - c_0))q(\hat{p}_i) + F_i \]

is retail profit per customer gross of fixed cost.
Profit can be rewritten as

$$\Pi_i = \varphi_i [\pi_i(a) + \varphi_j (a - c_0) q(\hat{p}_j) - f] - \kappa \varphi_i \varphi_j [\pi_i(a) - \pi_j(a)].$$
Retail Benchmarking Approach

Profit can be rewritten as

$$\Pi_i = \phi_i [\pi_i(a) + \phi_j(a - c_0)q(\hat{p}_j) - f] - \kappa \phi_i \phi_j [\pi_i(a) - \pi_j(a)].$$

For fixed market shares ϕ_1 and ϕ_2, max. Π_i is equivalent to max. π_i when $\kappa \leq 1$.
Retail Benchmarking Approach

Profit can be rewritten as

$$\Pi_i = \varphi_i \left[\pi_i(a) + \varphi_j(a - c_0)q(\hat{p}_j) - f \right] - \kappa \varphi_i \varphi_j \left[\pi_i(a) - \pi_j(a) \right].$$

For fixed market shares φ_1 and φ_2, max. Π_i is equivalent to max. π_i when $\kappa \leq 1$.

Perceived marginal cost pricing

Under retail benchmarking rule with $\kappa \leq 1$, firms set $p_i = c$, $\hat{p}_i = \hat{c}$.
Retail Benchmarking Approach

Profit can be rewritten as

$$\Pi_i = \varphi_i [\pi_i(a) + \varphi_j(a - c_0)q(\hat{p}_j) - f] - \kappa \varphi_i \varphi_j [\pi_i(a) - \pi_j(a)].$$

For fixed market shares φ_1 and φ_2, max. Π_i is equivalent to max. π_i when $\kappa \leq 1$.

Perceived marginal cost pricing

Under retail benchmarking rule with $\kappa \leq 1$, firms set $p_i = c$, $\hat{p}_i = \hat{c}$.

$$\Pi_i = \varphi_i [F_i + \varphi_j R(\hat{c}) - f] - \kappa \varphi_i \varphi_j [F_i - F_j]$$

Extra competition in fixed fee for $\kappa > 0!$
Comparative Statics

$\kappa = 0$

$\kappa = 0.5$

$\kappa = 1$

fixed fee

market penetration

FOC

RE

S. Hurkens and D.-S. Jeon

Mobile Termination and Mobile Penetration
Conclusion

- Analyze effect of fixed MTC when subscription demand is elastic
Conclusion

- Analyze effect of fixed MTC when subscription demand is elastic
- Identify business stealing and network externality effects
Conclusion

- Analyze effect of fixed MTC when subscription demand is elastic
- Identify business stealing and network externality effects
- Firms and regulators want to deviate from cost-based charges...
Conclusion

- Analyze effect of fixed MTC when subscription demand is elastic
- Identify business stealing and network externality effects
- Firms and regulators want to deviate from cost-based charges...
- ... but disagree about the direction when there is a net business stealing effect
Conclusion

- Analyze effect of fixed MTC when subscription demand is elastic
- Identify business stealing and network externality effects
- Firms and regulators want to deviate from cost-based charges...
- ... but disagree about the direction when there is a net business stealing effect
- Using a benchmarking approach, regulator can intensify competition without distorting efficient call volumes
Conclusion

- Analyze effect of fixed MTC when subscription demand is elastic
- Identify business stealing and network externality effects
- Firms and regulators want to deviate from cost-based charges...
- ... but disagree about the direction when there is a net business stealing effect
- Using a benchmarking approach, regulator can intensify competition without distorting efficient call volumes
- In comparison with any fixed MTC different from cost-based, some benchmarking approach is better for consumers and firms