Evaluating a monetary business cycle model for the euro area

Nicolas Groshenny
Reserve Bank of New Zealand

August 5, 2009
Goal of the paper

Which shocks and frictions shape the euro area business cycle?
1. Business-cycle facts

2. Estimation technique

3. Model

4. Model fit

5. Shocks and frictions

6. Alternative estimation technique
Euro area business-cycle facts
Euro Area Data from 1985:Q1 to 2006:Q1 expressed in log-deviations from sample average.
Spectral densities of euro area data
Output Growth

Consumption Growth

Investment Growth

90% confidence bands of US and EA data spectral densities
Estimation: Spectra matching (Wen 1998)

- focuses on auto-covariances, ignores cross-covariances
- greater weight on frequencies contributing most to variance
A New Keynesian model with unemployment
Standard features (CEE 2005, SW 2003)

- Quadratic price adjustment costs à la Rotemberg
- Hybrid NKPC through ad-hoc inflation indexation
- Habit, Investment adjustment cost & Variable capital utilization
- 7 shocks: Techno, Investment, Preference, Markup, Wage bargaining, Exogenous spending, Monetary
Search-and-matching frictions in labor market

- Income-pooling hypothesis (Merz 1995)
- No out-of-labor-force status
- Hours per worker constant
- Exogenous job destruction
- Wage inertia (Hall 2005) and Convex hiring costs (Yashiv 2006)
- Newly hired workers start producing immediately
Model fit
Yearly Output Growth

Yearly Consumption Growth

Yearly Investment Growth

Yearly Wage Growth

Vacancy / Unemployment

Yearly Inflation

Interest Rate

Data spectrum and model's 90% confidence bands.
Sources of business cycles in the euro area
Sources of business cycles in the euro area.
Sources of business cycles in the euro area.
Median impulse responses to a one-standard-deviation price markup shock and 90% bands.
Impulse responses to price-markup and wage-markup shocks (Solid line: median; Shaded area: 90% bands).
Key frictions for business cycles are nominal

1. Price-setting highly backward-looking ($\gamma_{\pi} = 0.95$)

2. Prices very sticky ($\phi_P = 285$)

$$\hat{\pi}_t = \beta \left[\gamma_{\pi} \hat{\pi}_{t-1} + (1 - \gamma_{\pi}) E_t \hat{\pi}_{t+1} \right] + \left(\frac{\theta - 1}{\phi_P} \right) \hat{rmc}_t - \frac{1}{\phi_P} \hat{\theta}_t$$

1. and 2. \implies inflation follows near-unit root process

3. Monetary policy very persistent ($\rho_R = 0.98$)

$$\hat{r}_t = \rho_R \hat{r}_{t-1} + \rho_{\pi} \hat{\pi}_t + \rho_y \left(\hat{y}_t - \hat{y}_t^N \right) + \varepsilon_{rt}$$

1., 2. and 3. \implies real interest rate generates consumption cycles
Impulse responses to a price-markup shock under alternative calibrations

Baseline ($\phi_P^{SM} = 285, \gamma_\pi^{SM} = 0.95, \rho_R^{SM} = 0.98$)

$\rho_R = 0.7$

$\gamma_\pi = 0.4$

$\phi_P = 50$
Maximum likelihood estimation
Figure 21. Spectral densities of yearly output growth conditional on one shock at a time in the model estimated by (1) spectra matching (top panel), (2) maximum likelihood (bottom panel).
Conclusions

1. US and EA business cycles are different

2. Markup shocks: main source of business cycle in euro area

3. Key factors: (1) Inflation inertia, (2) Persistent monetary policy

4. DSGE misspecified \Rightarrow spectra matching for Business Cycle Analysis
Improving model specification

1. Model fails to generate large variance of investment

2. Model fails to replicate trend in π and r

3. Model unable to get hump-shaped $Coh(\Delta Y, V/U)$
Thank You!
Appendix
The *spectra-matching estimator* is given by

\[
\hat{\theta}_W = \arg \min_{\theta} [G_W(\theta)]
\]

\[
G_W(\theta) = \text{tr} \left[\sum_{\omega_j \in (0, \pi)} W(\omega_j) \odot |F_m(\omega_j; \theta) - \hat{F}_d(\omega_j)| \right]
\]

\[
W(\omega_j) = \hat{F}_d(\omega_j) \odot \left[\sum_j \hat{F}_d(\omega_j) \right]
\]
Household chooses $C_t, B_t, u_t, I_t,$ and \overline{K}_t to max

$$E_t \sum_{s=0}^{\infty} \beta^s a_{t+s} \ln(C_{t+s} - hC_{t+s-1})$$

subject to

$$\overline{K}_t \leq (1 - \delta)\overline{K}_{t-1} + \mu_t \left[1 - S\left(\frac{I_t}{I_{t-1}}\right)\right]I_t$$

$$P_t C_t + P_t I_t + B_t/r_t - B_{t-1} \leq W_t N_t + (1 - N_t)b_t + r^K u_t \overline{K}_{t-1} - P_t a(u_t) \overline{K}_{t-1} - T_t + D_t$$

where

$$K_t = u_t \overline{K}_{t-1}$$

$$\ln(a_t) = \rho_a \ln(a_{t-1}) + \varepsilon_{at}$$

$$\ln(\mu_t) = \rho_\mu \ln(\mu_{t-1}) + \varepsilon_{\mu t}$$
Given $P_{i,t}$ and P_t, firm chooses $Y_{i,t}$ for all $i \in [0, 1]$ to max

$$P_tY_t - \int_0^1 P_{i,t}Y_{i,t} \, di$$

subject to

$$Y_t = \left[\int_0^1 Y_{i,t}^{(\theta_t-1)/\theta_i} \, di \right]^{\theta_t/(\theta_t-1)}$$

where

$$\ln(\theta_t) = (1 - \rho_\theta) \ln(\theta) + \rho_\theta \ln(\theta_{t-1}) + \varepsilon_{\theta t}$$
Intermediate goods-producing firm

Firm \(i \) chooses \(K_{i,t}, N_{i,t}, V_{i,t}, Y_{i,t} \) and \(P_{i,t} \) to max

\[
E_t \sum_{s=0}^{\infty} \beta^s \Lambda_{t+s} \left(\frac{D_{i,t+s}}{P_{t+s}} \right)
\]

where

\[
D_{i,t} = P_{i,t} Y_{i,t} - W_{i,t} N_{i,t} - r^K_t K_{i,t} - \left[\frac{\phi_N}{2} \left(\frac{q_t V_{i,t}}{N_{i,t}} \right)^2 + \frac{\phi_P}{2} \left(\frac{P_{i,t}}{\pi P_{i,t-1}} - 1 \right)^2 \right] P_t Y_t
\]

subject to

\[
Y_{i,t} = \left(\frac{P_{i,t}}{P_t} \right)^{-\theta_t} Y_t
\]

\[
Y_{i,t} \leq K_{i,t}^\alpha (A_t N_{i,t})^{1-\alpha}, \quad \ln(A_t) = \ln(A_{t-1}) + \ln(z) + \varepsilon_{zt}
\]

\[
N_{i,t} = \chi N_{i,t-1} + q_t V_{i,t}
\]

\[
q_t = \frac{m_t}{V_t}, \quad m_t = \zeta S_t^\sigma V_t^{1-\sigma}, \quad S_t = 1 - \chi N_{t-1}
\]
Empirical inflation equation

- Log-linearized *microfunded* inflation equation (NKPC)

$$\hat{\pi}_t = \beta E_t \hat{\pi}_{t+1} + \kappa m c_t + \theta_t$$

- Log-linearized *empirical* inflation equation (Hybrid NKPC)

$$\hat{\pi}_t = \beta [\gamma_\pi \hat{\pi}_{t-1} + (1 - \gamma_\pi) E_t \hat{\pi}_{t+1}] + \kappa m c_t + \theta_t$$
Wage setting

\(W_t^{NB} \) Nash bargaining wage

\[
W_t^{NB} = \arg \max_{W_t} (S_t^W) \eta_t (S_t^F)^{1-\eta_t}
\]

where

\[
\ln \eta_t = (1 - \rho_\eta) \ln \eta + \rho_\eta \ln \eta_{t-1} + \varepsilon_{\eta_t}
\]

\[
S_t^W = W_t - b_t + \beta \chi E_t \left[\frac{\Lambda_{t+1}}{\Lambda_t} \frac{P_t}{P_{t+1}} (1 - s_{t+1}) S_{t+1}^W \right], \quad b_t = \tau W \exp(zt)
\]

\[
S_t^F = P_t \left(\frac{\Xi_t}{\Lambda_t} \right) \left[(1 - \alpha) \frac{Y_t}{N_t} \right] - W_t + P_t \left(\frac{\phi_N Y_t x_t^2}{N_t} \right) + \beta \chi E_t \left(\frac{\Lambda_{t+1} P_t}{\Lambda_t P_{t+1}} S_{t+1}^F \right)
\]
Empirical wage equation

- **Microfunded** real wage equation

\[
W_{t}^{NB} = \eta_t \left\{ \left(\frac{\Xi_t}{\Lambda_t} \right)(1 - \alpha) \frac{Y_t}{N_t} + \frac{\phi_{NY_t}}{N_t} x_t^2 + \beta \chi E_t \left(\frac{\Lambda_{t+1}}{\Lambda_t} \frac{\phi_{NY_{t+1}}}{N_{t+1}} \right) s_{t+1} x_{t+1} \right\} + (1 - \eta_t) \bar{b}_t
\]

- **Empirical** log-linearized real wage equation

\[
\hat{W}_t = \gamma_w \hat{W}_{t-1} + (1 - \gamma_w) \hat{W}_t^{NB}
\]
Fiscal Policy

The government’s budget constraint is

\[P_t G_t + (1 - N_t) b_t = (B_t/r_t - B_{t-1}) + T_t \]

Government spending \(G_t \) is a time-varying fraction of GDP

\[G_t = \left(1 - \frac{1}{g_t}\right) Y_t \]

with

\[\ln g_t = (1 - \rho_g) \ln g + \rho_g \ln g_{t-1} + \varepsilon_{gt} \]
Monetary Policy

Central bank adjusts r_t following a Taylor rule

$$\ln\left(\frac{r_t}{r}\right) = \rho_r \ln\left(\frac{r_{t-1}}{r}\right) + \rho_\pi \ln\left(\frac{\pi_t}{\pi}\right) + \rho_y \ln\left(\frac{Y_t}{Y_t^N}\right) + \varepsilon_{rt}$$

Y_t^N : “flex price - flex wage level of output” $(\phi_P = 0, \gamma_w = 0)$

in absence of price markup and wage bargaining shocks $(\hat{\theta}_t = 0, \hat{\eta}_t = 0)$