Dual representations of cardinal preferences

Sudhir A. Shah

Delhi School of Economics

July 31, 2009
Outline

1. Objectives
2. Formalism
3. Results
 - General dualities
 - Duality between utilities and Arrow-Pratt functions
 - Extension
4. Summary
Outline

1. Objectives
2. Formalism
3. Results
 - General dualities
 - Duality between utilities and Arrow-Pratt functions
 - Extension
4. Summary
Outline

1. Objectives

2. Formalism

3. Results
 - General dualities
 - Duality between utilities and Arrow-Pratt functions
 - Extension

4. Summary
Outline

1 Objectives
2 Formalism
3 Results
 - General dualities
 - Duality between utilities and Arrow-Pratt functions
 - Extension
4 Summary
Objective 1

- Generate **dual representations of cardinal preferences**

 Given the set of lotteries \(\Delta(O) \) over a set of outcomes \(O \), a **cardinal preference** is a binary relation \(\succeq \) over \(\Delta(O) \) that has a von Neumann-Morgenstern representation \(u : O \rightarrow \mathbb{R} \), i.e., for lotteries \(\mu, \lambda \in \Delta(O) \)

 \[
 \mu \succeq \lambda \iff \int_O \mu(dx) u(x) \geq \int_O \lambda(dx) u(x)
 \]

- Do the same for risk averse preferences

- This will enable precise and flexible specification of preferences in applications, just as duality theory has done in the case of ordinal preferences
Objective 1

- Generate dual representations of cardinal preferences

- Given the set of lotteries $\Delta(O)$ over a set of outcomes O, a cardinal preference is a binary relation \succeq over $\Delta(O)$ that has a von Neumann-Morgenstern representation $u : O \rightarrow \mathbb{R}$, i.e., for lotteries $\mu, \lambda \in \Delta(O)$

$$\mu \succeq \lambda \iff \int_O \mu(dx) u(x) \geq \int_O \lambda(dx) u(x)$$

- Do the same for risk averse preferences
- This will enable precise and flexible specification of preferences in applications, just as duality theory has done in the case of ordinal preferences
Objective 1

Generate **dual representations of cardinal preferences**

- Given the set of lotteries $\Delta(O)$ over a set of outcomes O, a **cardinal preference** is a binary relation \succeq over $\Delta(O)$ that has a von Neumann-Morgenstern representation $u: O \rightarrow \mathbb{R}$, i.e., for lotteries $\mu, \lambda \in \Delta(O)$

$$\mu \succeq \lambda \iff \int_O \mu(dx) \, u(x) \geq \int_O \lambda(dx) \, u(x)$$

- Do the same for risk averse preferences

This will enable precise and flexible specification of preferences in applications, just as duality theory has done in the case of ordinal preferences
Objective 1

- Generate **dual representations of cardinal preferences**
 - Given the set of lotteries \(\Delta(O) \) over a set of outcomes \(O \), a **cardinal preference** is a binary relation \(\succeq \) over \(\Delta(O) \) that has a von Neumann-Morgenstern representation \(u : O \rightarrow \mathbb{R} \), i.e., for lotteries \(\mu, \lambda \in \Delta(O) \)
 \[
 \mu \succeq \lambda \iff \int O \mu(dx) \ u(x) \geq \int O \lambda(dx) \ u(x)
 \]
 - Do the same for risk averse preferences
 - This will enable precise and flexible specification of preferences in applications, just as duality theory has done in the case of ordinal preferences
Objective 2

- Generate these dualities for vector outcomes, not merely scalar outcomes
 - Enables applications with vector outcomes
 - For example, a random process such as the Wiener process (to model security prices or dividends) can be represented by a lottery defined on the set of its sample paths, which can be modeled as vectors
Objective 2

- Generate these dualities for vector outcomes, not merely scalar outcomes
 - Enables applications with vector outcomes
 - For example, a random process such as the Wiener process (to model security prices or dividends) can be represented by a lottery defined on the set of its sample paths, which can be modeled as vectors
Objective 2

- Generate these dualities for **vector outcomes**, not merely scalar outcomes
 - Enables applications with vector outcomes
 - For example, a random process such as the Wiener process (to model security prices or dividends) can be represented by a lottery defined on the set of its sample paths, which can be modeled as vectors
What is duality theory in the context of cardinal preferences?

- What are the ‘natural’ dual objects?
 - von Neumann-Morgenstern utility functions
 - Certainty equivalent mappings
 - Risk premia mappings
 - Acceptance set mappings
 - Generalized Arrow-Pratt functions

- What is duality?
 - Bijections between specified sets of the above-mentioned objects
What is duality theory in the context of cardinal preferences?

- What are the ‘natural’ dual objects?
 - von Neumann-Morgenstern utility functions
 - Certainty equivalent mappings
 - Risk premia mappings
 - Acceptance set mappings
 - Generalized Arrow-Pratt functions

- What is duality?
 - Bijections between specified sets of the above-mentioned objects
What is duality theory in the context of cardinal preferences?

- What are the ‘natural’ dual objects?
 - von Neumann-Morgenstern utility functions
 - Certainty equivalent mappings
 - Risk premia mappings
 - Acceptance set mappings
 - Generalized Arrow-Pratt functions

- What is duality?
 - Bijections between specified sets of the above-mentioned objects
What is duality theory in the context of cardinal preferences?

- What are the ‘natural’ dual objects?
 - von Neumann-Morgenstern utility functions
 - Certainty equivalent mappings
 - Risk premia mappings
 - Acceptance set mappings
 - Generalized Arrow-Pratt functions

- What is duality?
 - Bijections between specified sets of the above-mentioned objects
What is duality theory in the context of cardinal preferences?

What are the ‘natural’ dual objects?
- von Neumann-Morgenstern utility functions
- Certainty equivalent mappings
- Risk premia mappings
- Acceptance set mappings
- Generalized Arrow-Pratt functions

What is duality?
- Bijections between specified sets of the above-mentioned objects
What is duality theory in the context of cardinal preferences?

- What are the ‘natural’ dual objects?
 - von Neumann-Morgenstern utility functions
 - Certainty equivalent mappings
 - Risk premia mappings
 - Acceptance set mappings
 - Generalized Arrow-Pratt functions

- What is duality?
 - Bijections between specified sets of the above-mentioned objects
What is duality theory in the context of cardinal preferences?

- What are the ‘natural’ dual objects?
 - von Neumann-Morgenstern utility functions
 - Certainty equivalent mappings
 - Risk premia mappings
 - Acceptance set mappings
 - Generalized Arrow-Pratt functions

- What is duality?
 - Bijections between specified sets of the above-mentioned objects
What is duality theory in the context of cardinal preferences?

- What are the ‘natural’ dual objects?
 - von Neumann-Morgenstern utility functions
 - Certainty equivalent mappings
 - Risk premia mappings
 - Acceptance set mappings
 - Generalized Arrow-Pratt functions

- What is duality?
 - Bijections between specified sets of the above-mentioned objects
The setting

- (X, \succeq) is a partially ordered topological vector space,
 - with very general and standard linear-topological-ordering structure
- $O \subset X_+$ is the convex and compact outcome set
The setting

(X, \succeq) is a partially ordered topological vector space,

- with very general and standard linear-topological-ordering structure

$O \subset X_+$ is the convex and compact outcome set
The setting

- \((X, \succeq)\) is a partially ordered topological vector space,
 - with very general and standard linear-topological-ordering structure
- \(O \subset X_+\) is the convex and compact outcome set
von Neumann-Morgenstern utility functions

- \(\mathcal{U} \) consists of (von Neumann-Morgenstern utility) functions \(u : O \rightarrow \mathbb{R} \) such that
 - \(u(0) = 0 \)
 - \(u \) increasing with respect to \(\geq \)
 - \(u \) continuous

- \(\mathcal{U}_a \) is the set of risk averse \(u \in \mathcal{U} \), i.e., for every \(\mu \in \Delta(O) \)

\[
u \left(\int_O \mu(dz) \, z \right) \geq \int_O \mu(dz) \, u(z)
\]

- \(u \in \mathcal{U} \) is identified with the equivalence class \([u]\) of functions \(v : O \rightarrow \mathbb{R} \) that are increasing affine transformations of \(u \)
von Neumann-Morgenstern utility functions

- \mathcal{U} consists of (von Neumann-Morgenstern utility) functions $u : O \rightarrow \mathbb{R}$ such that
 - $u(0) = 0$
 - u increasing with respect to \geq
 - u continuous

- \mathcal{U}_a is the set of risk averse $u \in \mathcal{U}$, i.e., for every $\mu \in \Delta(O)$
 \[u \left(\int_O \mu(dz) z \right) \geq \int_O \mu(dz) u(z) \]

- $u \in \mathcal{U}$ is identified with the equivalence class $[u]$ of functions $v : O \rightarrow \mathbb{R}$ that are increasing affine transformations of u
von Neumann-Morgenstern utility functions

- \mathcal{U} consists of (von Neumann-Morgenstern utility) functions $u : O \to \mathbb{R}$ such that
 - $u(0) = 0$
 - u increasing with respect to \geq
 - u continuous

- \mathcal{U}_a is the set of risk averse $u \in \mathcal{U}$, i.e., for every $\mu \in \Delta(O)$
 \[u \left(\int_O \mu(dz) z \right) \geq \int_O \mu(dz) u(z) \]

- $u \in \mathcal{U}$ is identified with the equivalence class $[u]$ of functions $v : O \to \mathbb{R}$ that are increasing affine transformations of u.
von Neumann-Morgenstern utility functions

\[U \] consists of (von Neumann-Morgenstern utility) functions \(u : O \rightarrow \mathbb{R} \) such that

- \(u(0) = 0 \)
- \(u \) increasing with respect to \(\geq \)
- \(u \) continuous

\[U_a \] is the set of risk averse \(u \in U \), i.e., for every \(\mu \in \Delta(O) \)

\[u \left(\int_O \mu(dz) z \right) \geq \int_O \mu(dz) u(z) \]

\(u \in U \) is identified with the equivalence class \([u]\) of functions \(v : O \rightarrow \mathbb{R} \) that are increasing affine transformations of \(u \).
von Neumann-Morgenstern utility functions

\(\mathcal{U} \) consists of (von Neumann-Morgenstern utility) functions \(u : O \rightarrow \mathbb{R} \) such that

- \(u(0) = 0 \)
- \(u \) increasing with respect to \(\geq \)
- \(u \) continuous

\(\mathcal{U}_a \) is the set of risk averse \(u \in \mathcal{U} \), i.e., for every \(\mu \in \Delta(O) \)

\[
u \left(\int_{O} \mu(dz) z \right) \geq \int_{O} \mu(dz) u(z)
\]

\(u \in \mathcal{U} \) is identified with the equivalence class \([u] \) of functions \(\nu : O \rightarrow \mathbb{R} \) that are increasing affine transformations of \(u \).
von Neumann-Morgenstern utility functions

- \mathcal{U} consists of (von Neumann-Morgenstern utility) functions $u : O \rightarrow \mathbb{R}$ such that
 - $u(0) = 0$
 - u increasing with respect to \geq
 - u continuous

- \mathcal{U}_a is the set of risk averse $u \in \mathcal{U}$, i.e., for every $\mu \in \Delta(O)$
 \[
 u \left(\int_O \mu(dz) \ z \right) \geq \int_O \mu(dz) \ u(z)
 \]

- $u \in \mathcal{U}$ is identified with the equivalence class $[u]$ of functions $v : O \rightarrow \mathbb{R}$ that are increasing affine transformations of u
Certainty equivalent mappings

\(\mathcal{F} \) is a set of mappings \(F : \Delta(O) \mapsto O \)

- Interpretation: \(F(\mu) \) is the set of certainty equivalents corresponding to lottery \(\mu \)
- For \(u \in U \), define \(\phi(u) : \Delta(O) \mapsto O \) by

\[
\phi(u)(\mu) = \{ x \in O \mid u(x) = U(\mu) \}
\]

where \(U(\mu) = \int_O \mu(dz) u(z) \) is the expected utility from lottery \(\mu \)

- \(\mathcal{F}_a \subset \mathcal{F} \) is the collection of “risk averse” certainty equivalent mappings
Certainty equivalent mappings

\(\mathcal{F} \) is a set of mappings \(F : \Delta(O) \Rightarrow O \)

- Interpretation: \(F(\mu) \) is the set of certainty equivalents corresponding to lottery \(\mu \)
- For \(u \in \mathcal{U} \), define \(\phi(u) : \Delta(O) \Rightarrow O \) by

\[
\phi(u)(\mu) = \{ x \in O \mid u(x) = U(\mu) \}
\]

where \(U(\mu) = \int_{O} \mu(dz) u(z) \) is the expected utility from lottery \(\mu \)

- \(\mathcal{F}_a \subset \mathcal{F} \) is the collection of “risk averse” certainty equivalent mappings
Certainty equivalent mappings

\(\mathcal{F} \) is a set of mappings \(F : \Delta(O) \rightarrow O \)

- Interpretation: \(F(\mu) \) is the set of certainty equivalents corresponding to lottery \(\mu \)
- For \(u \in \mathcal{U} \), define \(\phi(u) : \Delta(O) \rightarrow O \) by

\[
\phi(u)(\mu) = \{ x \in O \mid u(x) = U(\mu) \}
\]

where \(U(\mu) = \int_{O} \mu(dz) u(z) \) is the expected utility from lottery \(\mu \)

- \(\mathcal{F}_a \subset \mathcal{F} \) is the collection of “risk averse” certainty equivalent mappings
Risk premia mappings

\(\mathcal{P} \) is a set of mappings \(P : \Delta(O) \rightarrow X \)

- Interpretation: \(P(\mu) \) is the set of risk premia corresponding to lottery \(\mu \)
- For \(F \in \mathcal{F} \), define \(\psi(F) : \Delta(O) \rightarrow X \) by

\[
\psi(F)(\mu) = \{ x \in X \mid m_\mu - x \in F(\mu) \}
\]

where \(m_\mu = \int_O \mu(dz) z \) is the mean of lottery \(\mu \)

- \(\mathcal{P}_a \subset \mathcal{P} \) is the collection of "risk averse" risk premia mappings
Risk premia mappings

\(\mathcal{P} \) is a set of mappings \(P : \Delta(O) \rightarrow X \)

- **Interpretation:** \(P(\mu) \) is the set of risk premia corresponding to lottery \(\mu \)
- For \(F \in \mathcal{F} \), define \(\psi(F) : \Delta(O) \rightarrow X \) by
 \[
 \psi(F)(\mu) = \{ x \in X \mid m_\mu - x \in F(\mu) \}
 \]
 where \(m_\mu = \int_\Omega \mu(dz) \) \(z \) is the mean of lottery \(\mu \)

\(\mathcal{P}_a \subset \mathcal{P} \) is the collection of “risk averse” risk premia mappings
Risk premia mappings

\(\mathcal{P} \) is a set of mappings \(P : \Delta(O) \rightarrow X \)

- Interpretation: \(P(\mu) \) is the set of risk premia corresponding to lottery \(\mu \)
- For \(F \in \mathcal{F} \), define \(\psi(F) : \Delta(O) \rightarrow X \) by
 \[
 \psi(F)(\mu) = \{ x \in X \mid m_\mu - x \in F(\mu) \}
 \]
 where \(m_\mu = \int_O \mu(dz) z \) is the mean of lottery \(\mu \)
- \(\mathcal{P}_a \subset \mathcal{P} \) is the collection of “risk averse” risk premia mappings
Acceptance set mappings

A is a set of mappings $A : O \mapsto \Delta(O)$

- Interpretation: $A(x)$ is the acceptance set corresponding to outcome x
- For $u \in \mathcal{U}$, define $\xi(u) : O \mapsto \Delta(O)$ by

$$\xi(u)(x) = \{\mu \in \Delta(O) \mid u(x) \leq U(\mu)\}$$

- $A_a \subset A$ is the collection of “risk averse” acceptance set mappings
Acceptance set mappings

\(\mathcal{A} \) is a set of mappings \(\mathcal{A} : O \Rightarrow \Delta(O) \)

- Interpretation: \(\mathcal{A}(x) \) is the acceptance set corresponding to outcome \(x \)
- For \(u \in \mathcal{U} \), define \(\xi(u) : O \Rightarrow \Delta(O) \) by

\[
\xi(u)(x) = \{ \mu \in \Delta(O) \mid u(x) \leq U(\mu) \}
\]

- \(\mathcal{A}_a \subset \mathcal{A} \) is the collection of “risk averse” acceptance set mappings
Acceptance set mappings

\(\mathcal{A} \) is a set of mappings \(\mathcal{A} : O \mapsto \Delta(O) \)

- **Interpretation:** \(\mathcal{A}(x) \) is the acceptance set corresponding to outcome \(x \)
- For \(u \in \mathcal{U} \), define \(\xi(u) : O \mapsto \Delta(O) \) by
 \[
 \xi(u)(x) = \{ \mu \in \Delta(O) \mid u(x) \leq U(\mu) \}
 \]
- \(\mathcal{A}_a \subset \mathcal{A} \) is the collection of “risk averse” acceptance set mappings
Outline

1. Objectives
2. Formalism
3. Results
 - General dualities
 - Duality between utilities and Arrow-Pratt functions
 - Extension
4. Summary

Sudhir A. Shah
Dual representations of cardinal preferences
General dualities

Theorem

Given appropriate definitions of \mathcal{F}, \mathcal{P} and \mathcal{A}

$$
\phi : \mathcal{U} \rightarrow \mathcal{F} \quad \psi : \mathcal{F} \rightarrow \mathcal{P} \quad \xi : \mathcal{U} \rightarrow \mathcal{A}
$$

are bijections.

Corollary

$$
\psi \circ \phi : \mathcal{U} \rightarrow \mathcal{P} \quad \xi \circ \phi^{-1} : \mathcal{F} \rightarrow \mathcal{A} \quad \xi \circ \phi^{-1} \circ \psi^{-1} : \mathcal{P} \rightarrow \mathcal{A}
$$

are bijections.

Sudhir A. Shah

Dual representations of cardinal preferences
Theorem

Given appropriate definitions of \mathcal{F}, \mathcal{P} and \mathcal{A}

$$
\phi : \mathcal{U} \to \mathcal{F} \quad \psi : \mathcal{F} \to \mathcal{P} \quad \xi : \mathcal{U} \to \mathcal{A}
$$

are bijections.

Corollary

$$
\psi \circ \phi : \mathcal{U} \to \mathcal{P} \quad \xi \circ \phi^{-1} : \mathcal{F} \to \mathcal{A} \quad \xi \circ \phi^{-1} \circ \psi^{-1} : \mathcal{P} \to \mathcal{A}
$$

are bijections.
General dualities for risk averse preferences

Theorem

Given appropriate definitions of \mathcal{F}_a, \mathcal{P}_a and \mathcal{A}_a

$$\phi : \mathcal{U}_a \rightarrow \mathcal{F}_a \quad \psi : \mathcal{F}_a \rightarrow \mathcal{P}_a \quad \xi : \mathcal{U}_a \rightarrow \mathcal{A}_a$$

are bijections.

Corollary

$$\psi \circ \phi : \mathcal{U}_a \rightarrow \mathcal{P}_a \quad \xi \circ \phi^{-1} : \mathcal{F}_a \rightarrow \mathcal{A}_a \quad \xi \circ \phi^{-1} \circ \psi^{-1} : \mathcal{P}_a \rightarrow \mathcal{A}_a$$

are bijections.
General dualities for risk averse preferences

Theorem

Given appropriate definitions of \mathcal{F}_a, \mathcal{P}_a and \mathcal{A}_a

$$
\phi : \mathcal{U}_a \rightarrow \mathcal{F}_a \quad \psi : \mathcal{F}_a \rightarrow \mathcal{P}_a \quad \xi : \mathcal{U}_a \rightarrow \mathcal{A}_a
$$

are bijections.

Corollary

$$
\psi \circ \phi : \mathcal{U}_a \rightarrow \mathcal{P}_a \quad \xi \circ \phi^{-1} : \mathcal{F}_a \rightarrow \mathcal{A}_a \quad \xi \circ \phi^{-1} \circ \psi^{-1} : \mathcal{P}_a \rightarrow \mathcal{A}_a
$$

are bijections.
Outline

1. Objectives

2. Formalism

3. Results
 - General dualities
 - Duality between utilities and Arrow-Pratt functions
 - Extension

4. Summary
Let \(O \subset \mathbb{R}^n \) be a “nice” outcome space with boundary \(\partial O \).

For \(u : O \to \mathbb{R} \), the (generalized) Arrow-Pratt function \(\Gamma_1(u) : O \to \mathbb{R}^n \) is

\[
\Gamma_1(u)(x) = \frac{-D^2 u(x)Du(x)}{\|Du(x)\|^2}
\]

if \(u \) is twice differentiable at \(x \) and \(\|Du(x)\| > 0 \); otherwise, \(\Gamma_1(u)(x) = 0 \).

- Reduces to scalar Arrow-Pratt coefficient for \(n = 1 \).
- Has economic interpretation that it yields same ordering of risk averse preferences as other criteria.
Let $O \subset \mathbb{R}^n$ be a “nice” outcome space with boundary ∂O.

For $u : O \to \mathbb{R}$, the (generalized) Arrow-Pratt function $\Gamma_1(u) : O \to \mathbb{R}^n$ is

$$\Gamma_1(u)(x) = \frac{-D^2 u(x)Du(x)}{\|Du(x)\|^2}$$

if u is twice differentiable at x and $\|Du(x)\| > 0$; otherwise, $\Gamma_1(u)(x) = 0$

- Reduces to scalar Arrow-Pratt coefficient for $n = 1$
- Has economic interpretation that it yields same ordering of risk averse preferences as other criteria
Let $O \subset \mathbb{R}^n$ be a “nice” outcome space with boundary ∂O.

For $u : O \to \mathbb{R}$, the (generalized) Arrow-Pratt function $\Gamma_1(u) : O \to \mathbb{R}^n$ is

$$\Gamma_1(u)(x) = \frac{-D^2 u(x)Du(x)}{\|Du(x)\|^2}$$

if u is twice differentiable at x and $\|Du(x)\| > 0$; otherwise, $\Gamma_1(u)(x) = 0$.

- Reduces to scalar Arrow-Pratt coefficient for $n = 1$
- Has economic interpretation that it yields same ordering of risk averse preferences as other criteria
Let $O \subset \mathbb{R}^n$ be a “nice” outcome space with boundary ∂O.

For $u : O \to \mathbb{R}$, the (generalized) Arrow-Pratt function $\Gamma_1(u) : O \to \mathbb{R}^n$ is

$$
\Gamma_1(u)(x) = \frac{-D^2 u(x) Du(x)}{\|Du(x)\|^2}
$$

if u is twice differentiable at x and $\|Du(x)\| > 0$; otherwise, $\Gamma_1(u)(x) = 0$.

- Reduces to scalar Arrow-Pratt coefficient for $n = 1$.
- Has economic interpretation that it yields same ordering of risk averse preferences as other criteria.
First (simple-minded) conjecture

Conjecture. \(\Gamma_1 : \mathcal{U}^{nd} \rightarrow \mathcal{R}^n \) is a bijection given appropriate sets

- \(\mathcal{U}^{nd} \) of utility functions \(u : O \rightarrow \mathcal{R} \)
- \(\mathcal{R}^n \) of Arrow-Pratt functions \(a : O \rightarrow \mathcal{R}^n \)

The conjecture is false as “initial value” auxiliary conditions, of the kind used in the scalar case, are inadequate for making \(\Gamma_1 \) injective...this can be shown very generally

So, we need an extra dual object to supplement the Arrow-Pratt function and identify distinct preferences in terms of the pair of dual objects
First (simple-minded) conjecture

Conjecture. $\Gamma_1 : \mathcal{U}^{nd} \rightarrow \mathcal{R}^n$ is a bijection given appropriate sets

- \mathcal{U}^{nd} of utility functions $u : O \rightarrow \mathcal{R}$
- \mathcal{R}^n of Arrow-Pratt functions $a : O \rightarrow \mathcal{R}^n$

The conjecture is false as “initial value” auxiliary conditions, of the kind used in the scalar case, are inadequate for making Γ_1 injective...this can be shown very generally

So, we need an extra dual object to supplement the Arrow-Pratt function and identify distinct preferences in terms of the pair of dual objects
First (simple-minded) conjecture

- **Conjecture.** $\Gamma_1 : \mathcal{U}^{nd} \rightarrow \mathcal{R}^n$ is a bijection given appropriate sets
 - \mathcal{U}^{nd} of utility functions $u : O \rightarrow \mathbb{R}$
 - \mathcal{R}^n of Arrow-Pratt functions $a : O \rightarrow \mathbb{R}^n$

The conjecture is false as “initial value” auxiliary conditions, of the kind used in the scalar case, are inadequate for making Γ_1 injective...this can be shown very generally.

So, we need an extra dual object to supplement the Arrow-Pratt function and identify distinct preferences in terms of the pair of dual objects.
First (simple-minded) conjecture

- **Conjecture.** $\Gamma_1 : U^{nd} \rightarrow \mathcal{R}^n$ is a bijection given appropriate sets
 - U^{nd} of utility functions $u : O \rightarrow \mathbb{R}$
 - \mathcal{R}^n of Arrow-Pratt functions $a : O \rightarrow \mathbb{R}^n$

The conjecture is false as “initial value” auxiliary conditions, of the kind used in the scalar case, are inadequate for making Γ_1 injective...this can be shown very generally

So, we need an extra dual object to supplement the Arrow-Pratt function and identify distinct preferences in terms of the pair of dual objects
Conjecture. \(\Gamma_1 : \mathcal{U}^{nd} \rightarrow \mathcal{R}^n \) is a bijection given appropriate sets

- \(\mathcal{U}^{nd} \) of utility functions \(u : O \rightarrow \mathbb{R} \)
- \(\mathcal{R}^n \) of Arrow-Pratt functions \(a : O \rightarrow \mathbb{R}^n \)

The conjecture is false as “initial value” auxiliary conditions, of the kind used in the scalar case, are inadequate for making \(\Gamma_1 \) injective...this can be shown very generally

So, we need an extra dual object to supplement the Arrow-Pratt function and identify distinct preferences in terms of the pair of dual objects
Second (less simple-minded) conjecture

- The appropriate supplementary object is boundary data
- Let $\Gamma_2(u) = u_{\partial O}$ denote the restriction of u to ∂O
- \mathcal{G} is a set of boundary data $g : \partial O \rightarrow \mathbb{R}$
- Conjecture. $\Gamma : \mathcal{U}^{nd} \rightarrow \mathbb{R}^n \times \mathcal{G}$ is a bijection
- The key is to solve the master problem: for every $(a, g) \in \mathbb{R}^n \times \mathcal{G}$, there exists a unique $u \in \mathcal{U}^{nd}$ such that

\[\Gamma_1(u)(.) = \frac{-D^2 u(.) Du(.)}{\|Du(.)\|^2} = a(.) \]

and

\[\Gamma_2(u) = u_{\partial O} = g \]

- Master problem involves a system of non-linear PDEs.
Second (less simple-minded) conjecture

The appropriate supplementary object is boundary data

Let $\Gamma_2(u) = u_{\partial \mathcal{O}}$ denote the restriction of u to $\partial \mathcal{O}$

\mathcal{G} is a set of boundary data $g : \partial \mathcal{O} \to \mathbb{R}$

Conjecture. $\Gamma : \mathcal{U}^{nd} \to \mathbb{R}^n \times \mathcal{G}$ is a bijection

The key is to solve the master problem: for every $(a, g) \in \mathbb{R}^n \times \mathcal{G}$, there exists a unique $u \in \mathcal{U}^{nd}$ such that

$$\Gamma_1(u)(.) = \frac{-D^2 u(.) Du(.)}{\|Du(.)\|^2} = a(.)$$

and

$$\Gamma_2(u) = u_{\partial \mathcal{O}} = g$$

Master problem involves a system of non-linear PDEs.
Second (less simple-minded) conjecture

- The appropriate supplementary object is boundary data
- Let $\Gamma_2(u) = u_{\partial O}$ denote the restriction of u to ∂O
- \mathcal{G} is a set of boundary data $g : \partial O \rightarrow \mathbb{R}$
- Conjecture. $\Gamma : \mathcal{U}^{nd} \rightarrow \mathbb{R}^n \times \mathcal{G}$ is a bijection
- The key is to solve the master problem: for every $(a, g) \in \mathbb{R}^n \times \mathcal{G}$, there exists a unique $u \in \mathcal{U}^{nd}$ such that

$$
\Gamma_1(u)(.) = \frac{-D^2 u(.) Du(.)}{\|Du(.)\|^2} = a(.)
$$

and

$$
\Gamma_2(u) = u_{\partial O} = g
$$

- Master problem involves a system of non-linear PDEs.
Second (less simple-minded) conjecture

- The appropriate supplementary object is boundary data
- Let $\Gamma_2(u) = u_{\partial O}$ denote the restriction of u to ∂O
- \mathcal{G} is a set of boundary data $g : \partial O \to \mathbb{R}$
- **Conjecture.** $\Gamma : \mathcal{U}^{nd} \to \mathbb{R}^n \times \mathcal{G}$ is a bijection
- The key is to solve the master problem: for every $(a, g) \in \mathbb{R}^n \times \mathcal{G}$, there exists a unique $u \in \mathcal{U}^{nd}$ such that

$$\Gamma_1(u)(.) = \frac{-D^2 u(.) Du(.)}{\|Du(.)\|^2} = a(.)$$

and

$$\Gamma_2(u) = u_{\partial O} = g$$

- Master problem involves a system of non-linear PDEs.
Second (less simple-minded) conjecture

- The appropriate supplementary object is boundary data
- Let $\Gamma_2(u) = u_{\partial O}$ denote the restriction of u to ∂O
- \mathcal{G} is a set of boundary data $g : \partial O \to \mathbb{R}$
- **Conjecture.** $\Gamma : \mathcal{U}^{nd} \to \mathbb{R}^n \times \mathcal{G}$ is a bijection
- The key is to solve the master problem: for every $(a, g) \in \mathbb{R}^n \times \mathcal{G}$, there exists a unique $u \in \mathcal{U}^{nd}$ such that

$$\Gamma_1(u)(.) = \frac{-D^2 u(.) Du(.)}{\| Du(.) \|^2} = a(.)$$

and

$$\Gamma_2(u) = u_{\partial O} = g$$

- Master problem involves a system of non-linear PDEs.
Second (less simple-minded) conjecture

- The appropriate supplementary object is boundary data
- Let $\Gamma_2(u) = u_{\partial O}$ denote the restriction of u to ∂O
- \mathcal{G} is a set of boundary data $g : \partial O \rightarrow \mathbb{R}$
- Conjecture. $\Gamma : \mathcal{U}^{nd} \rightarrow \mathcal{R}^n \times \mathcal{G}$ is a bijection
- The key is to solve the master problem: for every $(a, g) \in \mathcal{R}^n \times \mathcal{G}$, there exists a unique $u \in \mathcal{U}^{nd}$ such that

$$\Gamma_1(u)(.) = \frac{-D^2u(.)Du(.)}{\|Du(.)\|^2} = a(.)$$

and

$$\Gamma_2(u) = u_{\partial O} = g$$

- Master problem involves a system of non-linear PDEs.
Reduction of the system of PDEs in the master problem

- $\Gamma_1(u) = a$ is equivalent to $a(.) = -D \ln \|Du(.)\|$
- The scalar version of this duality problem suggests a simplification.
- If $a = Df$ for some $f : O \to \mathbb{R}$, then a solution of the reduced problem
 \[\|Du(.)\| = e^{-f(.)} \quad \text{and} \quad u_{\partial O} = g \]
solves the master problem
- The reduced problem is a Dirichlet problem for an eikonal PDE
Reduction of the system of PDEs in the master problem

- $\Gamma_1(u) = a$ is equivalent to $a(.) = -D \ln \|Du(.)\|

- The scalar version of this duality problem suggests a simplification.

- If $a = Df$ for some $f : O \rightarrow \mathbb{R}$, then a solution of the reduced problem

 $$\|Du(.)\| = e^{-f(.)} \quad \text{and} \quad u_{\partial O} = g$$

 solves the master problem

- The reduced problem is a Dirichlet problem for an eikonal PDE
Reduction of the system of PDEs in the master problem

- $\Gamma_1(u) = a$ is equivalent to $a(.) = -D \ln \|Du(.)\|

- The scalar version of this duality problem suggests a simplification.

- If $a = Df$ for some $f : O \rightarrow \mathbb{R}$, then a solution of the reduced problem

$$\|Du(.)\| = e^{-f(.)} \quad \text{and} \quad u_{\partial O} = g$$

solves the master problem

- The reduced problem is a Dirichlet problem for an eikonal PDE
Reduction of the system of PDEs in the master problem

- $\Gamma_1(u) = a$ is equivalent to $a(\cdot) = - D \ln \|Du(\cdot)\|$
- The scalar version of this duality problem suggests a simplification.
- If $a = Df$ for some $f : O \rightarrow \mathbb{R}$, then a solution of the reduced problem

$$\|Du(\cdot)\| = e^{-f(\cdot)} \quad \text{and} \quad u_{\partial O} = g$$

solves the master problem
- The reduced problem is a Dirichlet problem for an eikonal PDE
Main technical issue in solving this problem

- This problem does not generally have “classical” differentiable solutions. Hence, the need to relax the smoothness properties of a solution and the notion of a solution.
- There are numerous solution concepts: e.g., generalized solution (Kružkov) and viscosity solution (Crandall and Lions). Happily, the two notions coincide for our problem.
Main technical issue in solving this problem

- This problem does not generally have “classical” differentiable solutions. Hence, the need to relax the smoothness properties of a solution and the notion of a solution.

- There are numerous solution concepts: e.g., generalized solution (Kružkov) and viscosity solution (Crandall and Lions). Happily, the two notions coincide for our problem.
The set of utilities \(U^{nd} \) when \(X = \mathbb{R}^n \)

- \(U^{nd} \) consists of functions \(u : O \rightarrow \mathbb{R} \) such that
 - \(u \) is Lipschitz continuous
 - \(u \) is semiconcave
 - \(\|Du(.)\| \geq 1 \) a.e.
 - \(-\ln \|Du(.)\| \) has an extension \(f \in C^{2,\alpha} \) with \(f(0) = 0 \)
The set of utilities U^{nd} when $X = \mathbb{R}^n$

- U^{nd} consists of functions $u : O \rightarrow \mathbb{R}$ such that
 - u is Lipschitz continuous
 - u is semiconcave
 - $\|Du(.)\| \geq 1$ a.e.
 - $-\ln \|Du(.)\|$ has an extension $f \in C^{2,\alpha}$ with $f(0) = 0$
The set of utilities \mathcal{U}^{nd} when $X = \mathbb{R}^n$

- \mathcal{U}^{nd} consists of functions $u : O \to \mathbb{R}$ such that
 - u is Lipschitz continuous
 - u is semiconcave
 - $\|Du(.)\| \geq 1$ a.e.
 - $-\ln \|Du(.)\|$ has an extension $f \in C^{2,\alpha}$ with $f(0) = 0$
The set of utilities U^{nd} when $X = \mathbb{R}^n$

- U^{nd} consists of functions $u : O \rightarrow \mathbb{R}$ such that
 - u is Lipschitz continuous
 - u is semiconcave
 - $\|Du(.)\| \geq 1$ a.e.
 - $-\ln \|Du(.)\|$ has an extension $f \in C^{2,\alpha}$ with $f(0) = 0$
The set of utilities \mathcal{U}^{nd} when $X = \mathbb{R}^n$ consists of functions $u : O \rightarrow \mathbb{R}$ such that:

- u is Lipschitz continuous
- u is semiconcave
- $\|Du(.)\| \geq 1$ a.e.
- $-\ln \|Du(.)\|$ has an extension $f \in C^{2,\alpha}$ with $f(0) = 0$
The set of Arrow-Pratt functions \mathcal{R}^n when $X = \mathbb{R}^n$

- \mathcal{R}^n consists of functions $a : O \rightarrow \mathbb{R}^n$ with the representation $a = Df$ a.e. for some $f : O \rightarrow \mathbb{R}$ such that
 - $f \leq 0$
 - $f(0) = 0$
 - the derivatives of f up to second order are α-Hölder continuous...roughly, a generalization of Lipschitz continuity
The set of Arrow-Pratt functions \mathcal{R}^n when $X = \mathbb{R}^n$

- \mathcal{R}^n consists of functions $a : O \to \mathbb{R}^n$ with the representation $a = Df$ a.e. for some $f : O \to \mathbb{R}$ such that
 - $f \leq 0$
 - $f(0) = 0$
 - the derivatives of f up to second order are α-Hölder continuous...roughly, a generalization of Lipschitz continuity
The set of Arrow-Pratt functions \mathcal{R}^n when $X = \mathbb{R}^n$

- \mathcal{R}^n consists of functions $a : O \rightarrow \mathcal{R}^n$ with the representation $a = Df$ a.e. for some $f : O \rightarrow \mathbb{R}$ such that
 - $f \leq 0$
 - $f(0) = 0$
 - the derivatives of f up to second order are α-Hölder continuous...roughly, a generalization of Lipschitz continuity
The set of Arrow-Pratt functions \mathcal{R}^n when $X = \mathbb{R}^n$

- \mathcal{R}^n consists of functions $a : O \rightarrow \mathbb{R}^n$ with the representation $a = Df$ a.e. for some $f : O \rightarrow \mathbb{R}$ such that
 - $f \leq 0$
 - $f(0) = 0$
 - the derivatives of f up to second order are α-Hölder continuous...roughly, a generalization of Lipschitz continuity
The set of boundary data \mathcal{G} when $X = \mathbb{R}^n$

- \mathcal{G} consists of functions $g : \partial O \to \mathbb{R}$ where $g = G_{\partial O}$ for some Lipschitz continuous $G : O \to \mathbb{R}$

- $g \in \mathcal{G}$ prescribes the boundary values of a utility function
The set of boundary data \mathcal{G} when $X = \mathbb{R}^n$

- \mathcal{G} consists of functions $g : \partial O \to \mathbb{R}$ where $g = G_{\partial O}$ for some Lipschitz continuous $G : O \to \mathbb{R}$

- $g \in \mathcal{G}$ prescribes the boundary values of a utility function
The duality result for generalized Arrow-Pratt functions

- It is easily checked that

Lemma

If \(u \in \mathcal{U}^{nd} \), then \(\Gamma(u) \in \mathcal{R}^n \times \mathcal{G} \).

- Uniqueness of a solution of the Dirichlet problem implies

Theorem

\(\Gamma : \mathcal{U}^{nd} \rightarrow \mathcal{R}^n \times \mathcal{G} \) is injective.

- Existence of a solution of the Dirichlet problem implies

Theorem

For every \((a, g) \in \mathcal{R}^n \times \mathcal{G}\), there exists \(u : O \rightarrow \mathcal{R} \) such that \([u] \cap \mathcal{U}^{nd} \neq \emptyset \) and \(\Gamma(u) = (a, g) \).
The duality result for generalized Arrow-Pratt functions

- It is easily checked that

Lemma

\[\text{If } u \in \mathcal{U}^{nd}, \text{ then } \Gamma(u) \in \mathbb{R}^n \times \mathcal{G}. \]

- Uniqueness of a solution of the Dirichlet problem implies

Theorem

\[\Gamma : \mathcal{U}^{nd} \to \mathbb{R}^n \times \mathcal{G} \text{ is injective.} \]

- Existence of a solution of the Dirichlet problem implies

Theorem

For every \((a, g) \in \mathbb{R}^n \times \mathcal{G}\), there exists \(u : O \to \mathbb{R}\) such that \([u] \cap \mathcal{U}^{nd} \neq \emptyset\) and \(\Gamma(u) = (a, g)\).
The duality result for generalized Arrow-Pratt functions

- It is easily checked that

Lemma

If \(u \in \mathcal{U}^{nd} \), then \(\Gamma(u) \in \mathcal{R}^n \times \mathcal{G} \).

- Uniqueness of a solution of the Dirichlet problem implies

Theorem

\(\Gamma : \mathcal{U}^{nd} \rightarrow \mathcal{R}^n \times \mathcal{G} \) is injective.

- Existence of a solution of the Dirichlet problem implies

Theorem

For every \((a, g) \in \mathcal{R}^n \times \mathcal{G}\), there exists \(u : O \rightarrow \mathcal{R} \) such that \([u] \cap \mathcal{U}^{nd} \neq \emptyset\) and \(\Gamma(u) = (a, g) \).
Outline

1. Objectives
2. Formalism
3. Results
 - General dualities
 - Duality between utilities and Arrow-Pratt functions
 - Extension
4. Summary

Sudhir A. Shah

Dual representations of cardinal preferences
Consider the risk averse preferences represented by $A_1, A_2 \in \mathcal{A}_a$

Is it legitimate to say “the preference represented by A_1 is more risk averse than that represented by A_2” if $A_1(.) \subset A_2(.)$?

Yes, because the duality result implies

1. $\xi^{-1}(A_1) \in \mathcal{U}_a$ and $\xi^{-1}(A_2) \in \mathcal{U}_a$, and
2. $\xi \circ \xi^{-1}(A_1)(.) = A_1(.) \subset A_2(.) = \xi \circ \xi^{-1}(A_2)(.)$

which is the Yaari criterion for comparative risk aversion extended to the vector outcome context.
Comparative risk aversion in terms of dual representations

Consider the risk averse preferences represented by $A_1, A_2 \in A_a$

Is it legitimate to say “the preference represented by A_1 is more risk averse than that represented by A_2” if $A_1(.) \subset A_2(.)$?

Yes, because the duality result implies

- $\xi^{-1}(A_1) \in U_a$ and $\xi^{-1}(A_2) \in U_a$, and
- $\xi \circ \xi^{-1}(A_1)(.) = A_1(.) \subset A_2(.) = \xi \circ \xi^{-1}(A_2)(.)$

which is the Yaari criterion for comparative risk aversion extended to the vector outcome context.
Comparative risk aversion in terms of dual representations

- Consider the risk averse preferences represented by $A_1, A_2 \in \mathcal{A}_a$
- Is it legitimate to say “the preference represented by A_1 is more risk averse than that represented by A_2” if $A_1(.) \subset A_2(.)$?
- Yes, because the duality result implies
 - $\xi^{-1}(A_1) \in \mathcal{U}_a$ and $\xi^{-1}(A_2) \in \mathcal{U}_a$, and
 - $\xi \circ \xi^{-1}(A_1)(.) = A_1(.) \subset A_2(.) = \xi \circ \xi^{-1}(A_2)(.)$
 - which is the Yaari criterion for comparative risk aversion extended to the vector outcome context
Consider the risk averse preferences represented by $A_1, A_2 \in \mathcal{A}_a$

Is it legitimate to say “the preference represented by A_1 is more risk averse than that represented by A_2” if $A_1(.) \subset A_2(.)$?

Yes, because the duality result implies

- $\xi^{-1}(A_1) \in \mathcal{U}_a$ and $\xi^{-1}(A_2) \in \mathcal{U}_a$, and
- $\xi \circ \xi^{-1}(A_1)(.) = A_1(.) \subset A_2(.) = \xi \circ \xi^{-1}(A_2)(.)$
- which is the Yaari criterion for comparative risk aversion extended to the vector outcome context.
Comparative risk aversion in terms of dual representations

- Consider the risk averse preferences represented by $A_1, A_2 \in A_a$
- Is it legitimate to say “the preference represented by A_1 is more risk averse than that represented by A_2” if $A_1(.) \subset A_2(.)$?
- Yes, because the duality result implies

 - $\xi^{-1}(A_1) \in U_a$ and $\xi^{-1}(A_2) \in U_a$, and
 - $\xi \circ \xi^{-1}(A_1)(.) = A_1(.) \subset A_2(.) = \xi \circ \xi^{-1}(A_2)(.)$

 which is the Yaari criterion for comparative risk aversion extended to the vector outcome context.
Consider the risk averse preferences represented by $A_1, A_2 \in A_a$

Is it legitimate to say “the preference represented by A_1 is more risk averse than that represented by A_2” if $A_1(.) \subset A_2(.)$?

Yes, because the duality result implies

- $\xi^{-1}(A_1) \in \mathcal{U}_a$ and $\xi^{-1}(A_2) \in \mathcal{U}_a$, and
- $\xi \circ \xi^{-1}(A_1)(.) = A_1(.) \subset A_2(.) = \xi \circ \xi^{-1}(A_2)(.)$
- which is the Yaari criterion for comparative risk aversion extended to the vector outcome context
Results in a companion paper imply

- $\xi^{-1}(A_1)$ and $\xi^{-1}(A_2)$ are comonotonic
- $\xi^{-1}(A_1) = f \circ \xi^{-1}(A_2)$ for an increasing and concave function $f : \xi^{-1}(A_2)(O) \to \mathbb{R}$, i.e., the utility dual to A_1 is an increasing concave transformation of the utility dual to A_2
- $\psi \circ \phi \circ \xi^{-1}(A_1)(.) \geq^* \psi \circ \phi \circ \xi^{-1}(A_2)(.)$, i.e., the set of risk premia dual to A_1 is always larger in terms of \geq^* than the set of risk premia dual to A_2
- If (X, \succeq) is an ordered real Hilbert space, and $\xi^{-1}(A_1)$ and $\xi^{-1}(A_2)$ are twice differentiable on $\text{Int } O$, then $\Gamma_1 \circ \xi^{-1}(A_1)(x) \geq \Gamma_1 \circ \xi^{-1}(A_2)(x)$ for every $x \in \text{Int } O$, i.e., the Arrow-Pratt function generated by $\xi^{-1}(A_1)$ is always larger than the Arrow-Pratt function generated by $\xi^{-1}(A_2)$
Other implications of $A_1(.) \subset A_2(.)$

Results in a companion paper imply

- $\xi^{-1}(A_1)$ and $\xi^{-1}(A_2)$ are comonotonic
- $\xi^{-1}(A_1) = f \circ \xi^{-1}(A_2)$ for an increasing and concave function $f : \xi^{-1}(A_2)(O) \to \mathbb{R}$, i.e., the utility dual to A_1 is an increasing concave transformation of the utility dual to A_2
- $\psi \circ \phi \circ \xi^{-1}(A_1)(.) \geq^* \psi \circ \phi \circ \xi^{-1}(A_2)(.)$, i.e., the set of risk premia dual to A_1 is always larger in terms of \geq^* than the set of risk premia dual to A_2
- If (X, \succeq) is an ordered real Hilbert space, and $\xi^{-1}(A_1)$ and $\xi^{-1}(A_2)$ are twice differentiable on $\text{Int } O$, then $\Gamma_1 \circ \xi^{-1}(A_1)(x) \geq \Gamma_1 \circ \xi^{-1}(A_2)(x)$ for every $x \in \text{Int } O$, i.e., the Arrow-Pratt function generated by $\xi^{-1}(A_1)$ is always larger than the Arrow-Pratt function generated by $\xi^{-1}(A_2)$
Other implications of $A_1(.) \subset A_2(.)$

Results in a companion paper imply

- $\xi^{-1}(A_1)$ and $\xi^{-1}(A_2)$ are comonotonic
- $\xi^{-1}(A_1) = f \circ \xi^{-1}(A_2)$ for an increasing and concave function $f : \xi^{-1}(A_2)(O) \to \mathbb{R}$, i.e., the utility dual to A_1 is an increasing concave transformation of the utility dual to A_2
- $\psi \circ \phi \circ \xi^{-1}(A_1)(.) \succeq^* \psi \circ \phi \circ \xi^{-1}(A_2)(.)$, i.e., the set of risk premia dual to A_1 is always larger in terms of \succeq^* than the set of risk premia dual to A_2
- if (X, \succeq) is an ordered real Hilbert space, and $\xi^{-1}(A_1)$ and $\xi^{-1}(A_2)$ are twice differentiable on $\text{Int } O$, then $\Gamma_1 \circ \xi^{-1}(A_1)(x) \succeq \Gamma_1 \circ \xi^{-1}(A_2)(x)$ for every $x \in \text{Int } O$, i.e., the Arrow-Pratt function generated by $\xi^{-1}(A_1)$ is always larger than the Arrow-Pratt function generated by $\xi^{-1}(A_2)$
Other implications of $A_1(\cdot) \subset A_2(\cdot)$

Results in a companion paper imply

- $\xi^{-1}(A_1)$ and $\xi^{-1}(A_2)$ are comonotonic
- $\xi^{-1}(A_1) = f \circ \xi^{-1}(A_2)$ for an increasing and concave function $f : \xi^{-1}(A_2)(O) \to \mathbb{R}$, i.e., the utility dual to A_1 is an increasing concave transformation of the utility dual to A_2
- $\psi \circ \phi \circ \xi^{-1}(A_1)(\cdot) \geq^* \psi \circ \phi \circ \xi^{-1}(A_2)(\cdot)$, i.e., the set of risk premia dual to A_1 is always larger in terms of \geq^* than the set of risk premia dual to A_2
- if (X, \geq) is an ordered real Hilbert space, and $\xi^{-1}(A_1)$ and $\xi^{-1}(A_2)$ are twice differentiable on $\text{Int } O$, then $\Gamma_1 \circ \xi^{-1}(A_1)(x) \geq \Gamma_1 \circ \xi^{-1}(A_2)(x)$ for every $x \in \text{Int } O$, i.e., the Arrow-Pratt function generated by $\xi^{-1}(A_1)$ is always larger than the Arrow-Pratt function generated by $\xi^{-1}(A_2)$
As in the case of ordinal preferences, **cardinal preferences admit various dual representations**

As shown by our secondary results and application (not here, but in the paper), **the duality results promise to ease applications, especially in vector outcome environments**

The extension shows that **risk aversion of preferences can be compared directly in terms of the dual representations**

The **eikonal equation generated from the generalized Arrow-Pratt function is a new and surprising link between economics and physics**
As in the case of ordinal preferences, cardinal preferences admit various dual representations.

As shown by our secondary results and application (not here, but in the paper), the duality results promise to ease applications, especially in vector outcome environments.

The extension shows that risk aversion of preferences can be compared directly in terms of the dual representations.

The eikonal equation generated from the generalized Arrow-Pratt function is a new and surprising link between economics and physics.
As in the case of ordinal preferences, cardinal preferences admit various dual representations.

As shown by our secondary results and application (not here, but in the paper), the duality results promise to ease applications, especially in vector outcome environments.

The extension shows that risk aversion of preferences can be compared directly in terms of the dual representations.

The eikonal equation generated from the generalized Arrow-Pratt function is a new and surprising link between economics and physics.
As in the case of ordinal preferences, cardinal preferences admit various dual representations.

As shown by our secondary results and application (not here, but in the paper), the duality results promise to ease applications, especially in vector outcome environments.

The extension shows that risk aversion of preferences can be compared directly in terms of the dual representations.

The eikonal equation generated from the generalized Arrow-Pratt function is a new and surprising link between economics and physics.