Amplification and Spillover with Financial Arbitrage, Production and Collateral Constraints

Ally Quan Zhang

Swiss Finance Institute
and
Institut für Banking & Finance
Universität Zürich

quan.zhang@bf.uzh.ch

September 21, 2016
Highlight

- general equilibrium of collateral constrained arbitrage in a production economy

- agenda:
 - price difference between identical assets
 - collateral constraints
 - financial markets and production sector

- contribution:
 - merge two strands of literature
 - spillover effects and amplification
Highlight

- general equilibrium of collateral constrained arbitrage in a production economy

agenda:

- price difference between identical assets
- collateral constraints
- financial markets and production sector

contribution:

- merge two strands of literature
- spillover effects and amplification
Motivation I – Lessons from Financial Crisis

- **1998 financial crisis**
 - Arbitrage
 - hedge funds bet on convergence of prices of similar-payoff assets
 - during crisis, prices diverged.
 - hedge funds experienced heavy losses + distress
 - force to liquidate profitable positions

- **2008 financial crisis**
 - shocks from the housing sector spill over into financial sectors and reinforce with each other

- Asset prices and liquidity:
 - prices pushed away from fundamentals
 - liquidity dried up
 - cross-sector contagion
Motivation I – Lessons from Financial Crisis

- 1998 financial crisis
 - Arbitrage
 - hedge funds bet on convergence of prices of similar-payoff assets
 - during crisis, prices diverged.
 - hedge funds experienced heavy losses + distress
 - force to liquidate profitable positions

- 2008 financial crisis
 - shocks from the housing sector spill over into financial sectors and reinforce with each other

- Asset prices and liquidity:
 - prices pushed away from fundamentals
 - liquidity dried up
 - cross-sector contagion
Motivation I – Lessons from Financial Crisis

- 1998 financial crisis
 - Arbitrage
 - hedge funds bet on convergence of prices of similar-payoff assets
 - during crisis, prices diverged.
 - hedge funds experienced heavy losses + distress
 - force to liquidate profitable positions

- 2008 financial crisis
 - shocks from the housing sector spill over into financial sectors and reinforce with each other

- Asset prices and liquidity:
 - prices pushed away from fundamentals
 - liquidity dried up
 - cross-sector contagion
Motivation II

- empirical evidence about persistent price differences
 - “Siamese-twin” stocks:
 - Rosenthal and Young (1990) and Dabora and Froot (1999)
 - newly issued “on-the-run” bonds Vs older “off-the-run” bonds

- market segmentation
 - Before 2014, A shares traded in mainland China and H shares in Hongkong

- links between financial friction and macroeconomy
Main Conclusions

- with perfect foresight of market demand
 - self-recovery

- with inaccurate estimation of future market demand
 - looser collateral constraints trigger recession
 - spillover and amplification
 - tighter collateral constraints stabilize the economy
Related Literature

 - No production sector
 - The financial constraints must cover the maximum loss of the arbitrageurs.

- Brunnermeier and Sannikov (2014)
 - no financial arbitrage
Baseline Model

Figure: The structure of the economic system.
Baseline Model

Figure: The structure of the economic system.
Figure: The structure of the economic system.
Agents

- a continuum of competitive IM and HH
- only one perishable consumption goods
 - IM can convert consumption and capital
- IM are both arbitrageurs and entrepreneurs
 - IM invest capital and HH offer labor.

\[y_t = F(K_{t-1}) = aK_{t-1}^\alpha L_t^\gamma \]

- separate collateral posting with capital investment
Exogeneous Shocks

- HH’s fixed-size production / natural endowment

\[y_{i,t} = bK_H + u_{i,t-1}\theta_t, \quad i \in \{A, B\}, \quad t \in \{1, 2, \ldots \}. \]

- \(\theta_t \) follows a symmetric distribution around zero on \([-\bar{\theta}, \bar{\theta}]\).
- the shock intensities/market demand \(u_{A,t} = -u_{B,t} =: u_t \).

- opposite shocks, opposite hedging demand
Financial Assets

- identical financial assets in each market
 - dividend θ_t mimicks the shock
 - long-lived, in zero net supply
 - IM and HH’s position $x_{i,t}^{IM}$ and $y_{i,t}^{HH}$.

- prices differ across markets
 - opposite hedging demand A : $-u_{A,t} = -u_t$; B : $-u_{B,t} = u_t$.

- IM exploit arbitrage profit
IM take identical but opposite positions $x_{A,t} = -x_{B,t} = x_t$.

- collateral constraints
 - separately post capital input as collateral
 - cover HH’s maximum loss if IM default or walk away from their positions
 - total collateral limit: IM’s capital rent $\alpha F(K_t)$.
IM’s Optimization Problems

max_{c_s^{IM}, x_i, s, K_s} \mathbb{E}\left[\sum_{s=t}^{\infty} \rho^s \log \left(c_s^{IM}\right)\right], \quad i \in \{A, B\}.

subject to

\begin{align*}
c_t^{IM} &= \sum_{i \in \{A, B\}} x_{i, t-1}^{IM} p_{i, t} - \sum_{i \in \{A, B\}} x_{i, t}^{IM} p_{i, t} + \underbrace{a(1 - \gamma)K_{t-1}^{\alpha} L^\gamma - K_t}_{\text{entrepreneur income: net production output minus wage and investment}} + \underbrace{\min \left\{ \min_{p_{i, t+1}, \theta_{t+1}} \left\{ x_{i, t}^{IM} (p_{i, t+1} + \theta_{t+1}) \right\}, 0 \right\}}_{\text{value of previous period's investment in financial asset } i} + \alpha F(K_t) \geq 0.
\end{align*}
HH’s Optimization Problems

\[
\max_{c_{i,s}^{HH}, y_{i,s}^{HH}} E \left[\sum_{s=t}^{\infty} \beta^s \log (c_{i,s}^{HH}) \right]
\]

subject to

\[
c_{i,t}^{HH} = \left(y_{i,t-1}^{HH}(p_{i,t} + \theta_t) - y_{i,t}^{HH} p_{i,t} \right) + \frac{1}{2} a \gamma K_{t-1}^\alpha L^\gamma + (bK_H + u_{i,t-1} \theta_t)
\]

income from trading financial asset

labor Income

endowment

- Ideally, \(y_{i,t-1}^{HH} = -u_{i,t-1} \) so that households are fully protected from the endowment shock \(\theta_t \).
Competitive Equilibrium

For any initial capital endowment, an equilibrium is described by the price process $p_{i,t}$, IM’s capital investment K_t, financial asset positions $y_{i,t}^{HH}$ and $x_{i,t}^{IM}$, and consumption choices c_{t}^{IM} and $c_{i,t}^{HH}$ for $i \in \{A, B\}$ such that

- all agents solve their optimization problems given prices;
- markets clear for financial assets, that is $y_{i,t}^{HH} + x_{i,t}^{IM} = 0$.
Riskless Arbitrage

When shock intensity is known to agents, there exist steady states

- if $\beta \geq \frac{(2 \max\{|u_t|\} \bar{\theta})^{1-\alpha}}{\alpha^{\alpha \bar{\alpha}}}$, then $\rho F'(K^*) = 1$, $x_t = u_t$, price difference $|\psi^*|$ is 0.

- otherwise if u_t is constant, then K_t converges over time to a unique K^*, with price discrepancy $|\psi^*| > 0$ and market liquidity $x^* = \frac{\alpha F(K^*)}{2\bar{\theta} + |\zeta^*|}$.

- no arbitrage opportunity case, $\alpha \beta F'(K_n^*) = 1$
- here $\alpha' \beta F'(K_n^*) = 1$, where the production return parameter $\alpha' = \alpha + \alpha \frac{1-\beta}{\beta} \frac{|\psi^*|}{2\bar{\theta} + |\zeta^*|}$
- $K^* > K_n^*$
- nominal zero-interest debt, leveraged production
- increased marginal return of production
Riskless Arbitrage

When shock intensity is known to agents, there exist steady states

- if $\beta \geq \left(2 \max\{|u_t|\}\theta \frac{1-\alpha}{a^\alpha}\right)^{\frac{1}{\alpha}}$, then $\rho F'(K^*) = 1$, $x_t = u_t$, price difference $|\psi^*|$ is 0.

- otherwise if u_t is constant, then K_t converges over time to a unique K^*, with price discrepancy $|\psi^*| > 0$ and market liquidity $x^* = \frac{\alpha F(K^*)}{2\theta + |\zeta^*|}$.

 ▶ no arbitrage opportunity case, $\alpha\beta F'(K^*_n) = 1$

 ▶ here $\alpha' \beta F'(K^*_n) = 1$, where the production return parameter $\alpha' = \alpha + \alpha \frac{1-\beta}{\beta} \frac{|\psi^*|}{2\theta + |\zeta^*|}$

 ▶ $K^* > K^*_n$

 ▶ nominal zero-interest debt, leveraged production

 ▶ increased marginal return of production
Riskless Arbitrage

When shock intensity is known to agents, there exist steady states

- if \(\beta \geq \frac{(2 \max\{|u_t|\})^{1-\alpha}}{a^{\alpha\alpha}} \), then \(\rho F'(K^*) = 1, x_t = u_t \), price difference \(|\psi^*| \) is 0.

- otherwise if \(u_t \) is constant, then \(K_t \) converges over time to a unique \(K^* \), with price discrepancy \(|\psi^*| > 0 \) and market liquidity \(x^* = \frac{\alpha F(K^*)}{2\theta + |\zeta^*|} \).

- no arbitrage opportunity case, \(\alpha\beta F'(K_n^*) = 1 \)

- here \(\alpha'\beta F'(K_n^*) = 1 \), where the production return parameter \(\alpha' = \alpha + \alpha \frac{1-\beta}{\beta} \frac{|\psi^*|}{2\theta + |\zeta^*|} \)

- \(K^* > K_n^* \)

- nominal zero-interest debt, leveraged production

- increased marginal return of production
Riskless Arbitrage

When shock intensity is known to agents, there exist steady states

- if $\beta \geq \frac{(2 \max\{|u_t|\})^\frac{1}{\alpha}}{\alpha^\alpha \alpha}$, then $\rho F'(K^*) = 1$, $x_t = u_t$, price difference $|\psi^*|$ is 0.

- otherwise if u_t is constant, then K_t converges over time to a unique K^*, with price discrepancy $|\psi^*| > 0$ and market liquidity $x^* = \frac{\alpha F(K^*)}{2\theta + |\zeta^*|}$.

- no arbitrage opportunity case, $\alpha \beta F'(K_n^*) = 1$

- here $\alpha' \beta F'(K_n^*) = 1$, where the production return parameter

 $\alpha' = \alpha + \alpha \frac{1-\beta}{\beta} \frac{|\psi^*|}{2\theta + |\zeta^*|}$

- $K^* > K_n^*$

- nominal zero-interest debt, leveraged production

- increased marginal return of production
Proposition

When the shock intensity u_t *is constant, a unique competitive equilibrium exists in which the price difference* ψ_t, *intermediaries’ capital investment* K_t *and the positions of the financial assets* x_t^i *are deterministic.*
Shock Reactions–Self-recovery

In case of a sudden loss in capital input or financial income,

- immediate reaction

 price difference: $|\psi_{t+1}| > |\psi^*|$, market liquidity: $|x_{t+1}| < x^*$,
 $K_{t+1} < K^*$.

- marginal return of capital

- arbitrage profitability

- long term

 price difference: $|\psi_t| > |\psi_{t+1}| > \cdots > |\psi^*|$,
 market liquidity: $|x_t| < |x_{t+1}| < \cdots < |x^*|$,
 $K_t < K_{t+1} < \cdots < K^*$.
Risky Arbitrage – Looser Collateral Constraints

With uncertainty, agents might underestimate or overestimate the market demand.

- underestimate case
 - looser collateral constraints
 - overinvestment in financial markets
 - spillover and amplification
 - trigger recession & systemic risk
Spillover and Amplification Effects

- lower wage for HH
- looser collateral constraints
- dropping supply of market liquidity
- over investment in financial markets
- unexpected loss; less financial income
- IM’s overall income decreases
- less capital investment
Spillover and Amplification Effects

- lower wage for HH
- looser collateral constraints
- dropping supply of market liquidity
- over investment in financial markets
- unexpected loss; less financial income
- less capital investment
- IM’s overall income decreases
Spillover and Amplification Effects

- Lower wage for HH
- Looser collateral constraints
- Dropping supply of market liquidity
- Over investment in financial markets
- Unexpected loss; less financial income
- IM's overall income decreases

less capital investment

Ally Quan Zhang (Universität Zürich) Collateral Constrained Arbitrage September 21, 2016
Spillover and Amplification Effects

lower wage for HH

dropping supply of market liquidity

over investment in financial markets

unexpected loss; less financial income

looser collateral constraints

less capital investment

IM’s overall income decreases
Spillover and Amplification Effects

- lower wage for HH
- looser collateral constraints
- dropping supply of market liquidity
- over investment in financial markets
- unexpected loss; less financial income
- less capital investment
- IM’s overall income decreases
overestimate case

- tighter collateral constraints
- underinvestment in financial markets
- higher income for both IM and HH
- stabilize the economy by boosting production at the cost of market liquidity
Thank you!