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We propose a new class of unit root tests that exploits invariance properties in the
Locally Asymptotically Brownian Functional limiting experiment of the unit root
model. These invariance structures naturally suggest tests based on the ranks of the
increments of the observations, their mean, and an assumed reference density for the
innovations. The tests are semiparametric in the sense that the reference density need
not equal the true innovation density. For correctly specified reference density, the
asymptotic power curve of our test is point-optimal and nearly efficient (in the sense
of Elliott, Rothenberg, and Stock (1996)). When using a Gaussian reference density,
our test performs as well as commonly used tests under true Gaussian innovations
and better under other distributions, e.g., fat-tailed or skewed. Monte Carlo evidence
shows that our test also behaves well in small samples.

Keywords: unit root test, semiparametric power envelope, limit experiment, LABF,
maximal invariant, rank statistic.

1. INTRODUCTION

The recent monographs Patterson (2011, 2012) provide a summary of the literature on unit roots which traces back
to White (1958) and which got an enormous boost after the seminal papers Dickey and Fuller (1979, 1981), Phillips
(1987), Phillips and Perron (1988), and Elliott, Rothenberg, and Stock (1996). This paper fits into the stream
of literature that focuses on “optimal” testing for unit roots. Important early contributions are those by Dufour
and King (1991), Saikkonen and Luukkonen (1993), and Elliott, Rothenberg, and Stock (1996), which derived the
asymptotic power envelope for unit root testing in settings where the underlying innovations of the time series
model are Gaussian, and Rothenberg and Stock (1997) which considered the non-Gaussian case.

This paper considers semiparametric optimal testing for unit roots. Following earlier literature, we focus on a
simple AR(1) model driven by i.i.d. innovations. Apart from some smoothness and existence of relevant moments,
no assumptions are imposed on the distribution of the innovations. From earlier work it is already known that the
unit root model leads to Locally Asymptotically Brownian Functional (LABF) limit experiments (in the Le Cam
sense). As a consequence, no uniformly most powerful test exists (even if the innovation distribution is known)
– see also Elliott, Rothenberg, and Stock (1996). In the semiparametric case the limit experiment becomes even
more difficult, because then one also has to deal with the infinite-dimensional nuisance parameter. Jansson (2008)
managed to derive the semiparametric power envelope by mimicking ideas that hold for Locally Asymptotically
Normal (LAN) models. However, no (feasible) test attaining the power envelope was provided. This paper aims to
fill this gap. The main contribution of this manuscript is two-fold.

First, we provide a new derivation of the semiparametric asymptotic power envelope for unit root tests. We
focus on unit root tests that are (locally) invariant with respect to the distribution of the innovations. Using the
Asymptotic Representation Theorem we can obtain the asymptotic power envelope for invariant tests by studying
an associated inference problem in the LABF limit experiment. Girsanov’s theorem provides a “structural” descrip-
tion of the LABF limiting structure, which corresponds to observing a countable collection of Ornstein-Uhlenbeck
processes (on the time interval [0, 1]). We exploit the structural description to derive the maximal invariant, i.e.
the minimal reduction of the data which is invariant with respect to the nuisance parameters. It turns out that
this maximal invariant takes a rather simple form (all but one processes have to be replaced by the associated
“bridge processes”). Now the power envelope for the LABF limit experiment easily follows by an application of the
Neyman-Pearson lemma. An application of the Asymptotic Representation Theorem now, almost directly, yields the
local asymptotic power envelope. We note that our invariance analysis of the LABF experiment is of independent
interest and could, for example, also be exploited for the analysis of optimal inference for cointegration models or
predictive regression models with nearly unstable predictors.

Second, we provide a new class of easy-to-implement unit root tests that are semiparametrically optimal in the
sense that they are tangent to the semiparametric power envelope. The form of the maximal invariant naturally
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suggests tests based on the ranks of the increments of the observations, their mean, and an assumed reference
density for the innovations. The tests are semiparametric in the sense that the reference density need not equal the
true innovation density. For correctly specified reference density and a chosen alternative, the asymptotic power
curve of our test is tangent to the semiparametric power envelope. Following Elliott, Rothenberg, and Stock (1996)
we also discuss the selection of an alternative that yields a “nearly” optimal tests, i.e. whose asymptotic local power
function is very close to the semiparametric asymptotic power envelope. Monte Carlo results show that when using
a Gaussian reference density, our test performs as well as commonly used tests under true Gaussian innovations
and better under other distributions, e.g., fat-tailed or skewed.

The remainder of this paper is organized as follows. Section 2 introduces the model assumptions and some
notation. Next, Section 3 contains the new derivation of the semiparametric power envelope for unit root tests. The
new class of hybrid rank tests is introduced in Section 4. Section 5 contains the results of a Monte Carlo study and
Section 6 contains a discussion of possible extensions of our results. All proofs are organized in the appendix.

2. THE MODEL

We consider observations Y1, . . . , YT generated from the component specification

Yt = µ+ Zt, t ∈ N,(2.1)

Zt = ρZt−1 + εt, t ∈ N,(2.2)

where Z0 = 0 and the innovations {εt} form an i.i.d. sequence with density f . We impose the following assumptions
on the innovation density.

Assumption 1
(a) The density f is absolutely continuous, f ∈ Fac, with a.e. derivative f ′, i.e. for all a < b we have

f(b)− f(a) =

∫ b

a

f ′(e)de.

(b) The Fisher-information for location,

(2.3) Jf =

∫
φ2f (e)f(e)dx,

where φf (e) = −(f ′/f)(e)1{f(e) > 0} is the location score, is finite.
(c) We have Efεt =

∫
ef(e)de = 0 and σ2

f = varf (εt) <∞. �

Let F ⊂ Fac denote the set of densities satisfying this assumption.
The imposed smoothness assumptions (a) and (b) on f are mild and standard. The finite variance assumption

is important to our asymptotic results as it is essential to the weak convergence, to a Brownian motion, of the
partial-sum process generated by the innovations.1 The assumption on the initial condition, Z0, is less innocent
then it may appear. Indeed, it is well-known, see Müller and Elliott (2003) and Elliott and Müller (2006), that,
even asymptotically, the initial condition can contain non-negligible statistical information.

The main goal of this paper is to develop a semiparametrically optimal test for the unit root hypothesis

H0 : ρ = 1, (µ ∈ R, f ∈ F) versus Ha : ρ < 1, (µ ∈ R, f ∈ F),

i.e. apart from Assumption 1 no further structure is imposed on f and the intercept µ is also treated as a nuisance
parameter. It is well-known, and goes back to Phillips (1987) and Phillips and Perron (1988), that the contiguity
rate for the unit root testing problem, i.e. the fastest convergence rate at which it is possible to distinguish (with
non-trivial power) the unit root ρ = 1 from a stationary alternative ρ < 1, is given by T−1. Therefore, in order to
compare performances of tests with this proper rate of convergence, we reparametrize the autoregression parameter
ρ into its local-to-unity form, i.e.

(2.4) ρ = ρ
(T )
h = 1 +

h

T
,

and we can rewrite our hypothesis of interest as

H0 : h = 0, (µ ∈ R, f ∈ F) versus Ha : h < 0, (µ ∈ R, f ∈ F).

1Let us already mention that, although not allowed for in our theoretical results, we will also assess the finite-sample performances
of the proposed tests for innovation distributions with infinite variance. For tests specifically developed for such cases we refer to Hasan
(2001), Ahn, Fotopoulos, and He (2003), and Callegari, Cappuccio, and Lubian (2003).
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3. THE ASYMPTOTIC POWER ENVELOPE FOR INVARIANT TESTS

In this section we derive the asymptotic power envelope for invariant tests. We will first discuss some notation and
preliminaries in Section 3.1. Next, we will derive the LABF limit experiment corresponding to the unit root model
and provide a “structural” description of this limit experiment (Section 3.2). In Section 3.3 we discuss, exploiting
the structural representation of the limit experiment, that there is a natural invariance restriction with respect to
the infinite-dimensional nuisance parameter associated to the innovation density. We derive the maximal invariant
for the limit experiment and obtain from this the power envelope for invariant tests in the limit experiment. Using
the Asymptotic Representation Theorem we translate these results back to the unit root model of interest.

3.1. Preliminaries

This section discusses a convenient parametrization of perturbations to the innovation density which we will need
to deal with the semiparametric nature of the testing problem. Moreover, we introduce some partial-sum processes
and their Brownian limits which we will use later on in the analysis of the LABF limit experiment.

Perturbations to the innovation density

To describe the perturbations to the density f , we need the separable Hilbert space

L0,f
2 = L0,f

2 (R,B, f) =

{
b ∈ L2(R,B, f)

∣∣∣∣ ∫ b(e)f(e)de = 0,

∫
b(e)ef(e)de = 0

}
,

where L2(R,B, f) denotes, as usual, the space of Borel-measurable functions b : R→ R satisfying
∫
b2(e)f(e)de <∞.

There exists a countable basis bk, k ∈ N, of L0,f
2 such that bk ∈ C2,b(R), for all k, i.e. each bk is bounded and two times

continuously differentiable with bounded derivatives. Hence each function b ∈ L0,f
2 can be written as b =

∑∞
k=1 ηkbk,

for some (ηk)k∈N ∈ `2 = {(xk)k∈N |
∑∞
k=1 x

2
k <∞}. Besides the sequence space `2 we also need the sequence space

c00 which is defined as the set of sequences with finite support, i.e.

c00 =

{
(xk)k∈N ∈ RN

∣∣∣∣∣
∞∑
k=1

1{xk 6= 0} <∞

}
.

Of course, c00 is a dense subspace of `2. For η ∈ c00 we now introduce the following perturbation to the density f :

f (T )
η (e) = f(e)

(
1 +

1√
T

∞∑
k=1

ηkbk(e)

)
, e ∈ R.(3.1)

The following proposition shows that these perturbations are valid in the sense that they belong to the model for
the innovation density.

Proposition 3.1 Let Assumption 1 hold and η ∈ c00. Then there exists T ′ ∈ N such that for all T ≥ T ′ we have

f
(T )
η ∈ F . �

It is clear, since η has finite support, that we have f
(T )
η ≥ 0 for large enough T . The mean restrictions

∫
bk(e)f(e)de =

0, together with the finite support of η, guarantee that f
(T )
η integrates to 1. Similarly,

∫
bk(e)ef(e)de = 0 implies

E
f
(T )
η

[εt] = 0. Of course, absolute continuity of f
(T )
η follows from f ∈ Fac and, again because η has finite sup-

port,
∑∞
k=1 ηkb ∈ C2,b(R). These properties also easily yield var

f
(T )
η

[εt] < ∞. Only J
f
(T )
η

< ∞ requires a bit of

straightforward calculus. For the sake of completeness, this calculation is organized in Appendix A.

Remark 3.1 Typically (see, for example, Bickel, Klaassen, Ritov, and Wellner (1993)) one parametrizes pertur-

bations to a density by a so-called “non-parametric” score h ∈ L0,f
2 , i.e. a perturbation takes the form f(e)(1 +

T−1/2h(e)). By using the basis bk, k ∈ N, we instead tackle all such perturbations via the infinite-dimensional
nuisance parameter η. Of course, one would need to use `2 as parameter space to “generate” all score functions
h. We can, however, restrict to c00 without cost. Intuively, this is clear since c00 is a dense subspace of `2 (so if a
property is “sufficiently continuous” one only needs to establish it on c00 because it automatically extends to the
closure). �
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Partial sum processes

To describe the limit experiment in Section 3.2 we need to introduce some partial sum processes and their limits.
As usual, ∆ denotes differencing, i.e. ∆Xt = Xt −Xt−1. Define, for u ∈ [0, 1],

W (T )
ε (u) =

1√
T

[uT ]∑
t=2

∆Yt,

W
(T )
φf

(u) =
1√
T

[uT ]∑
t=2

φf (∆Yt), f ∈ F ,

W
(T )
k (u) =

1√
T

[uT ]∑
t=2

bk(∆Yt), k ∈ N.

The rationale of our notation is that we have ∆Yt = εt, for t ≥ 2, under the null hypothesis of a unit root. Together
with Assumption 1 this yields, still under the null hypothesis, weak convergence to Brownian motions. Note that
the sums start at t = 2, so the partial sum processes are invariant with respect to the intercept µ. This property
will facilitate the construction of tests that are invariant with respect to the intercept µ.

To introduce the limiting Brownian motions, we first note that there exists a probability space (Ω,F ,P0,0)
supporting mutually independent Brownian motions Wε and Wk, k ∈ N, with

var[Wε(1)] = σ2
f and var[Wk(1)] = 1.

As φf (ε1) is the score of the location model, it is well known (see, for example, Van der Vaart (2000)) that we
have (under Assumption 1) Efφf (ε1) = 0 and Efφf (ε1)ε1 = 1. Consequently, because ε1 and bk(ε1) are orthogonal
for each k, we can decompose φf (ε1) = σ−2f ε1 +

∑∞
k=1 Jf,kbk(ε1), with coefficients Jf,k = Efbk(ε1)φf (ε1). This

motivates, for f ∈ F , the introduction of

(3.2) Wφf =
1

σ2
f

Wε +

∞∑
k=1

Jf,kWk.

It is easy to verify that this indeed defines a Brownian motion and that we have

(3.3) cov(Wφf (1),Wε(1)) = 1, cov(Wφf (1),Wk(1)) = Jf,k, k ∈ N, and var[Wφf (1)] = Jf =
1

σ2
f

+

∞∑
k=1

J 2
f,k.

Using the functional central limit theorem it follows that, under the null hypothesis, the partial sum processes

weakly converge to the associated Brownian motions. And integrals like
∫ 1

0
W

(T )
ε (u−)dW

(T )
φf

(u) weakly converge to

the associated stochastic integral with the limiting Brownian motions, i.e.
∫ 1

0
Wε(u)dWφf (u). The precise statements

are organized in Lemma ?? in the Appendix.

3.2. Weak convergence of experiments and a structural representation of the limit experiment

Fix f ∈ F and µ ∈ R. Let, for η ∈ c00, P
(T )
µ,h,η denote the law of Y1, . . . , YT under (2.1)-(2.2) with autoregression

parameter ρ given by (2.4) and innovation density (3.1). The following proposition shows that the semiparametric
unit root model is of the Locally Asymptotically Brownian Functional (LABF) type; see Jeganathan (1995).

Proposition 3.2 Let f ∈ F , η ∈ c00, and hT → h ∈ R.

(i) Then we have, under P
(T )
µ,0,0 and as T →∞,

log
dP

(T )
µ,hT ,η

dP
(T )
µ,0,0

= log
f
(T )
η (Y1 − µ)

f(Y1 − µ)
+

T∑
t=2

log
f
(T )
η

(
∆Yt − h

T (Yt−1 − µ)
)

f(∆Yt)
(3.4)

= h∆
(T )
ρ;f +

∞∑
k=1

ηk∆
(T )
bk
− 1

2
I(T )
f (h, η) + oP (1),
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where the central-sequence ∆(T ) = (∆
(T )
ρ;f ,∆

(T )
b ), with ∆

(T )
b = (∆

(T )
bk

)k∈N, is given by

∆
(T )
ρ;f =

∫ 1

0

W (T )
ε (u−)dW

(T )
φf

(u) =
1

T

T∑
t=2

(Yt−1 − Y1)φf (∆Yt),

∆
(T )
bk

= W
(T )
k (1) =

1√
T

T∑
t=2

bk(∆Yt), k ∈ N,

and

I(T )
f (h, η) = h2Jf

∫ 1

0

(W (T )
ε (u−))2du+ ‖η‖22 + 2h

∫ 1

0

W (T )
ε (u−)du

∞∑
k=1

ηkJf,k.

(ii) Moreover, with ∆ρ;f =
∫ 1

0
Wε(u)dWφf (u) and ∆bk = Wk(1), we have, still under P

(T )
µ,0,0,

dP
(T )
µ,hT ,η

dP
(T )
µ,0,0

d→ exp

(
h∆ρ;f +

∞∑
k=1

ηk∆bk −
1

2
If (h, η)

)
,(3.5)

with

If (h, η) = h2Jf

∫ 1

0

(Wε(u))2du+ ‖η‖22 + 2h

∫ 1

0

Wε(u)du

∞∑
k=1

ηkJf,k.

(iii) For all h ∈ R and η ∈ `2 the right-hand-side of (3.5) has expectation 1 under P0,0. �

The proof of (i) follows by an application of Proposition 1 Hallin, Van den Akker, and Werker (2015) which provides
sufficient conditions for the quadratic expansion of log likelihood ratios. Of course, Part (ii) is not surprising and
follows using the weak convergence of the partial-sum processes to Brownian motions (and integrals involving the
partial-sum processes to stochastic integrals). And Part (iii) follows by verifying the Novikov condition. All these
proofs are organized in the appendix.

Part (iii) of the proposition implies that we can introduce, for h ∈ R and η ∈ `2, new probability measures Ph,η on
the measurable space (Ω,F) (on which the Brownian motions Wε,Wk, etc. were defined) by their Radon-Nikodym
derivatives with respect to P0,0:

dPh,η
dP0,0

= exp

(
h∆ρ;f +

∞∑
k=1

ηk∆bk −
1

2
If (h, η)

)
.

Proposition 3.2 implies that the sequence of unit root experiments (each T ∈ N yields an experiment) weakly
converges (in the Le Cam sense) to the experiment described by the probability measures Ph,η. To formulate this

formally, we define the sequence of experiments by E(T )(µ, f) =
(
RT ,B(RT ), (P

(T )
µ,h,η |h ∈ R, η ∈ c00)

)
, T ∈ N, and

the limit experiment by, with BC the Borel σ-field on C[0, 1], E = (C[0, 1] × CN[0, 1],BC ⊗ (⊗∞k=1BC), (Ph,η |h ∈
R, η ∈ c00)).

Corollary 3.1 Let µ ∈ R and f ∈ F . Then the sequence of experiments E(T )(µ, f), T ∈ N, converges (as T →∞)
to the experiment E . �

The Asymptotic Representation Theorem (see, for example, Chapter 9 in Van der Vaart (2000)) now shows us that

for any statistic AT which converges in distribution to the law Lh,η under P
(T )
µ,h,η there exists a (randomized) statistic

A, defined on E , such that the law of A under Ph,η is given by Lh,η. This allows us to study optimal inference in
the limit experiment: the “best” procedure in the limit experiment yields a bound for the sequence of experiments.
If one is able to construct a statistic (for the sequence) that attains the bound, it follows that the bound is sharp
and the statistic is (asymptotically) optimal.

To obtain more insight in the limit experiment E the following proposition, which follows by an application of
Girsanov’s theorem, provides a “structural” description of the limit experiment.
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Proposition 3.3 Let f ∈ F , η ∈ `2, and h ∈ R. Then the processes Zε and Zk, k ∈ N, defined by the starting
values Zε(0) = Zk(0) = 0 and the stochastic differential equations, for u ∈ [0, 1],

dZε(u) = dWε(u)− hWε(u)du,

dZk(u) = dWk − hJf,kWε(u)du− ηkdu, k ∈ N,

are Brownian motions under Ph,η: their law is the same as the law of (Wε, (Wk)k∈N) under P0,0.

3.3. Invariance and power envelopes

Using Proposition 3.3 we first discuss a natural invariance structure, with respect to the infinite-dimensional nuisance
parameter η, for the limit experiment. We derive the maximal invariant and apply the Neyman-Pearson lemma to
obtain the power envelope for invariant tests in the limit experiment. Next we exploit the Asymptotic Representation
Theorem to translate the results to the sequence of unit root models.

The limit experiment

We first discuss the testing problem for the limit experiment E . We thus observe the processes Wε and Wk, k ∈ N,
on the time interval [0, 1] from the model (Ph,η |h ∈ R, η ∈ c00). We are interested in the power envelope for testing
the hypothesis

(3.6) H0 : h = 0, (η ∈ c00) versus Ha : h < 0, (η ∈ c00).

We will focus on test statistics whose distribution, under Ph,η, does not depend on η (for all h). Their law is thus
invariant with respect to the nuisance parameter.

To see how such statistics should look like, we introduce, for η ∈ `2, the transformations gη = (gk)k∈N : CN[0, 1]→
CN[0, 1] defined by

gk : C[0, 1] 3 (Wk(u))u∈[0,1] 7→ (W (u)− uηk)u∈[0,1] ∈ C[0, 1],

i.e. gk adds a drift u 7→ −ηku to Wk. Proposition 3.3 implies that the law of (Wε, (gk(Wk))k∈N) under Ph,0 is the
same as the law of (Wε, (Wk)k∈N) under Ph,η. Hence our testing problem (3.5) remains invariant with respect to
the transformation gη. Therefore, following the invariance principle, it is natural to focus on test statistics which
are invariant with respect to these transformations, i.e.

(3.7) t(Wε, (g
η
k(Wk))k∈N) = t(Wε,Wk) for all gη, η ∈ c00.

Given a process W let us define the associated bridge process by BW (u) = W (u)− uW (1). Now note that we have,
for all u ∈ [0, 1],

Bgk(Wk)(u) = [gk(Wk)](u)− u[gk(Wk)](1) = Wk(u)− uηk − u(Wk(1)− 1× ηk) = Wk(u)− uWk(1)

= BWk(u),

i.e. taking the bridge of the observed processes ensures invariance with respect to adding drifts. This shows that
statistics that are measurable with respect to the σ-field, with Bk = BWk ,

M = σ (Wε(u), Bk(u), u ∈ [0, 1])

are invariant (with respect to gη, η ∈ c00). It is, however, not clear that we did not throw away too much data.
Formally, we need M to be maximally invariant which means that each invariant statistic is M-measurable. The
following theorem, which once more exploits the structural description of the limit experiment, shows that this
indeed is the case.

Theorem 3.1 Let f ∈ F . The σ-field M is maximally invariant. �

The theorem implies that invariant inference should be based on M. An application of the Neyman-Pearson
lemma, usingM as observation, yields the power envelope for the class of invariant tests. We thus need to consider
the likelihood ratios of M, which are given by

dPMh
dPM0

= E0

[
dPh,η
dP0,η

| M
]
,
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where the conditional expectation indeed does not depend on η because of the invariance. To calculate the conditional
expectation we first introduce Bφf = BWφf , i.e. the bridge process associated to Wφf (see (3.2)). Now we can
decompose ∆ρ;f = I + II with

I =

∫ 1

0

Wε(u)dBφf (u) +
1

σ2
f

Wε(1)

∫ 1

0

Wε(u)du and II =

( ∞∑
k=1

Jf,kWk(1)

)∫ 1

0

Wε(u)du.

Note that part I is M-measurable. Under P0,0 the random variables Wk(1), k ∈ N, are independent to Wε and
Bk, k ∈ N. Indeed, the independence to Wε holds by construction and the independence to Bk follows from the
Gaussianity and cov0,0(Bk(u),Wk(1)) = cov0,0(Wk(u),Wk(1))− u cov0,0(Wk(1),Wk(1)) = 0. We thus obtain

E0

[
dPh,η
dP0,η

| M
]

= exp

(
h× I − 1

2
If (h, η)

)
E0,0

[
exp

( ∞∑
k=1

(hJf,k
∫ 1

0

Wε(u)du+ ηk)Wk(1)

)
| M

]

= exp

(
h× I − 1

2
If (h, η)

)
exp

(
1

2

∞∑
k=1

(hJf,k
∫ 1

0

Wε(u)du+ ηk)2

)
.

This yields

dPMh
dPM0

= exp

(
h∆?

f −
1

2
h2I∗f

)
with

∆?
f =

∫ 1

0

Wε(u)dBφf (u) +
1

σ2
f

Wε(1)

∫ 1

0

Wε(u)du,

I∗f = Jf

∫ 1

0

W 2
ε (u)du−

(∫ 1

0

Wε(u)du

)2 ∞∑
k=1

J 2
f,k = Jf

∫ 1

0

W 2
ε (u)du−

(∫ 1

0

Wε(u)du

)2
(
Jf −

1

σ2
f

)
.

Let us denote the (1 − α)-quantile of dPMh /dPM0 under P0,η, which does not depend on η, by c(h, f ;α). Let
φ?f,α(h̄) = 1{dPMh /dPM0 ≥ c(h̄, f ;α)}, which of course is a test of size α. The power function of this test is given by

h 7→ π∗f,α(h; h̄) = E0

[
φ?f,α(h̄)

dPMh
dPM0

.

]
An application of the Neyman-Pearson lemma yields the following corollary.

Corollary 3.2 Let f ∈ F and α ∈ (0, 1). Let φ be a (possibly randomized) test that is M-measurable and is of
size α, i.e. E0φ ≤ α. Let π denote the power function of this test, i.e. π(h) = Ehφ. Then we have

π(h) ≤ π∗f,α(h;h).

�

The test φ?f,α(h̄) thus is point-optimal, i.e. it is tangent to the power envelope h 7→ π∗f,α(h;h) at h = h̄.

The asymptotic power envelope for asymptotically invariant unit root tests

Now we translate the results for the limiting LABF experiment to the unit root model of interest. To mimick the
invariance in the limit experiment we introduce the following definition.

Definition 1 A sequence of test statistics ψT is said to be (asymptotically) invariant if the distribution of ψT
weakly converges under P

(T )
[ h, η] for all h ≤ 0 and η ∈ c00 to the distribution of an invariant test in the limit

experiment E . �

The Asymptotic Representation Theorem now yields the following corollary.

Corollary 3.3 Let f ∈ F , µ ∈ R, and α ∈ (0, 1). Let φT , T ∈ N, an invariant test of size α, i.e. lim supT→∞ E0,ηφT ≤
α for all η ∈ c00. Let πT denote the power function of φT , i.e. πT (h, η) = Eh,ηφT . Then we have

lim sup
T→∞

πT (h, η) ≤ π∗f,α(h;h), η ∈ c00.

�
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The power envelope for invariant tests in the limit experiment thus provides an upper bound to the asymptotic
power of invariant tests for the unit root hypothesis. The next section introduces a class of tests that attains this
bound (point-wise) and therefore demonstrates that the bound indeed constitutes the asymptotic power envelope
for invariant unit root tests.

4. A CLASS OF SEMIPARAMETRICALLY OPTIMAL HYBRID RANK TESTS

The appearance of the bridge process Bφf in the “efficient central-sequence” ∆?
f naturally suggests the (partial) use

of ranks in the construction of feasible test statistics: we can construct an empirical anologue of Bφf by considering
a partial-sum process which only depends on the observations Y1, . . . , YT via the ranks, Rt, of ∆Yt, t = 2, . . . , T .

This rank process requires the choice of a reference density. This should be compared to Quasi-ML methods:
if the true innovation density happens to be the same as the selected reference density the inference procedure is
optimal, while the procedure is valid, i.e. has the proper size, in case the true innovation density does not coincide
with the reference density. We need the following mild (and standard) assumption on the reference density.

Assumption 2 The density g ∈ F satisfies

lim
T→∞

1

T

T∑
i=1

{
g′

g

(
G−1

( i

T + 1

))}2

= Ig

�

Now we can formulate the following extension of Lemma A.1 in Hallin, Van den Akker, and Werker (2011).

Lemma 4.1 Let f ∈ F , µ ∈ R, and g satisfy Assumption 2. Consider the partial sum process, defined on [0, 1],

(4.1) B(T )
g (u) =

1√
T

[uT ]∑
t=2

φg

(
G−1

(
Rt

T + 1

))
.

We have, under Pµ,0,f and as T →∞,

(4.2)


W

(T )
ε

W
(T )
φf

B
(T )
g∫ 1

0
W

(T )
ε (u−)dB

(T )
g (u)

⇒


Wε

Wφf

Bφg∫ 1

0
Wε(u)dBφg (u)

 ,
where Bφg is the Brownian bridge associated to a Brownian motion Wφg and the covariance per unit of time of this
process is given by

cov

Wε(1)
Wφf (1)
Wφg (1)

 =

σ2
f 1

∫ 1

0
F−1(u)φg(G

−1(u))du

Jf Ifg
Jg

 ,

where

Ifg =

∫ 1

0

φf (F−1(u))φg(G
−1(u))du.

The weak convergence in (4.2) is on D3[0, 1]× R equipped with the uniform topology. �

Assumption 3 Let σ̂2
T a consistent estimator of σ2

f under the null hypothesis, i.e. for all f ∈ F σ̂2
T

p→ σ2
f under

P
(T )
0,η , for all η ∈ c00 and as T →∞. �

The lemma motivates to consider statistics of the type, for h̄ < 0 fixed,

L̂gT (h̄) := h̄∆̃(T )
g − 1

2
h̄2Ĩg,(4.3)
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with

∆̃(T )
g =

∫ 1

0

W (T )
ε (u−)dB

(T )
φg

(u) +
1

σ̂2
T

W (T )
ε (1)

∫ 1

0

W (T )
ε (u−)du

and

Ĩ(T )
g = Jg

∫ 1

0

W (T )
ε

2
(u−)du−

(∫ 1

0

W (T )
ε (u−)du

)2(
Jg −

1

σ2
g

)
.

Lemma 4.1 implies that we have, under Pµ,0,f ,

∆̃(T )
g

d→ ∆̃g =

∫ 1

0

Wε(u)dBφg (u) +
1

σ2
Wε(1)

∫ 1

0

Wε(u)du and

Ĩ(T )
g

d→ Jg

∫ 1

0

W 2
ε (u)du−

(∫ 1

0

Wε(u)du

)2(
Jg −

1

σ2
g

)
.

Unfortunately, the limiting null distribution (∆̃g, Ĩg) is not distribution-free, because it depends on σ2
f and ρε,g =

cov(Wε(1),Wφg (1)) which does not vanish in general. Denote the (1−α)-quantile of h̄∆̃g−0.5h̄2Ĩg by c(h̄, σ2
f , ρε,g, Jg;α).

The parameter ρε,g can be estimated consistently from the data by

ρ̂(T )
ε,g =

1

T

T∑
t=2

∆Ytφg(G
−1(Rt/(T + 1))).

This leads to the test

φgT (h̄, α) := 1
{
L̂gT (c̄) ≥ c(h̄, σ̂2

f , ρ̂
(T )
ε,g , Jg;α)

}
.(4.4)

Since the test is based on the ranks and the levels of ∆Yt, we call these tests Hybrid Rank Tests (HRT).

Proposition 4.2 Let µ ∈ R, f ∈ F , α ∈ (0, 1), h̄ < 0, and g satisfy Assumption 2. Then we have:
(i) The HRT φgT (h̄, α) is asymptotically of size α.
(ii) The HRT φgT (h̄, α) is asymptotically invariant.

(iii) If f = g, the HRT φgT (h̄, α) is point-optimal at h = h̄.
The HRTs thus are valid irrespective of the choice of the reference density and are (point) optimal for a correctly
specified reference density.

5. MONTE CARLO STUDY

This section reports the results of a Monte Carlo study to assess the quality of the asymptotic approximations and to
analyze the finite-sample performances of the proposed Hybrid Rank Tests (HRTs). We compare the performances
of the HRTs, for a selection of reference densities g (denoted HRTg), to those of Dickey-Fuller t-test (denoted DF-t),
Dickey Fuller estimator test (denoted DF-ρ) from Dickey and Fuller (1979) and the family of point-optimal tests
(denoted ERS), modified DF test (denoted DF-GLS) from Elliott, Rothenberg, and Stock (1996).

Since the model 2.1 contains an unknown constant in the deterministic term, we follow ERS(1996) and choose -7
to be the fixed alternative for ERS test. Similar as the family of ERS point optimal tests, HRTg for given g is also
a family of point-optimal tests associated with a fixed alternative h̄. In this versions we fix h̄ = −7 for HRTg in the
simulation study.

In section 5.1 we provide an analysis of sizes and a table of critical values for the HRTg test with three reference
density functions: Gaussian, Laplace and Student’s t3. In section 5.2, we study the large sample performance of
the tests we listed above with various innovation densities. And finally we provide the finite sample performance in
section 5.3. Throughout we report nominal rejection frequencies.

5.1. Sizes

The asymptotic critical values of the HRTs are simulation based. In this version we throughout use, for computational
reasons, ρε,g = 1 (and thus do not estimate this quantity). Table I presents the simulated values for various values
α of the tests sizes and various reference densities g (Gaussian, Laplace and Student’s t3).
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TABLE I

Critical values for h̄ = −7

g α = 1% α = 2.5% α = 5% α = 10%
T=25 1.97 1.64 1.28 0.68
T=50 2.21 1.89 1.52 0.90

Gaussian T=100 2.35 2.03 1.66 1.04
T=250 2.44 2.13 1.76 1.14
T=2500 2.50 2.21 1.83 1.21
T=25 2.48 1.81 1.14 0.15
T=50 2.76 2.01 1.27 0.19

Laplace T=100 2.87 2.10 1.32 0.20
T=250 2.94 2.14 1.34 0.21
T=2500 2.97 2.16 1.35 0.21
T=25 2.59 2.09 1.59 0.85
T=50 2.77 2.20 1.64 0.79

t3 T=100 2.86 2.25 1.62 0.68
T=250 2.93 2.25 1.56 0.54
T=2500 2.95 2.25 1.45 0.31

Simulated critical values (based on 100,000 replications) for various reference densities g ( Gaussian, Laplace and Student’s t3) and
significant levels α.

5.2. Large sample performance

In this section we evaluate the (local) powers of the HRTs for large samples together with those of the competing
tests. The results are based on 20,000 replications, 2500 sample size and 5% significance level.

Figure 1 graphs the power functions for large samples of selected tests along with the semiparametric power
envelope when the true innovation density f is Laplace, Student t3 and Gaussian, respectively. The results suggest
two conclusions. First, when the chosen reference density g happens to be the true density f , the large sample power
of HRTg=f test is very close to the semiparametric power envelope and tangent with it at a certain point (the chosen
alternative point -7). This is indeed why we call HRTg=f point-optimal. Especially when f is not Gaussian, the
power of HRTg=f is much higher than those of the other tests.

Second, if we keep choosing g to be Gaussian, say HRTg=φ, when f is Gaussian, it works as well as the other
tests for large sample size; while when f is not Gaussian, HRTg=φ is still of more power than the other tests (This
property corresponse to the Charnoff-Savage results).

In figure 2, we tried some other innovation densities: Student’s t1, t2 and skewed normal distribution (with
skewness 0.8145). It shows that our hybrid rank test with Gaussian reference density (HRTg=φ) always dominates
the other tests when the true innovation density is not normally distributed.

5.3. Finite sample performance

The convergence behaviour of HRTg=f is shown in figure 3: with the increase of sample size, the power of HRTg=f

converges to the corresponding power envelope.

Figure 4 is the finite-sample version of figure 1: it graphs the finite-sample power functions of selected tests along
with the semiparametric power envelope when the true innovation density f is Gaussian, Laplace and Student t3,
respectively. And it leads to the following conclusions. First, when f is not Gaussian, the power of HRTg=f is larger
than that of HRTg=φ, while the power of the latter is still larger than that of ERS. Only when f is Gaussian, the
power of HRTg 6=f is lower than that of ERS, and the power of HRTg=φ=f is very close to that of ERS.

Comparing with DF-ρ becomes a bit more complicated for the finite-sample case than for the asymptotic case:
for all three different true innovation densities: both HRTg=f and HRTg=φ has apparent larger power than DF-ρ for
small alternatives (−c < 15); while for large alternatives (−c > 20), the powers of HRTg=f and HRTg=φ is slightly
lower than the powers of DF-ρ but never far away.

In figure 5 we tried more types of f but with only HRTg=φ (Gaussian reference density). The set of f contains:
Student’s t1, t2, skewed-normal distribution (with skewness 0.8145), skewed-t4 (with skewness approximates 3.7),
stable distribution (with stability parameter 0.75, skewness parameter 0, scale parameter 1 and location parameter
0) and Pesrson distribution (with location parameter 0, scale parameter 1, skewness parameter 9 and kurtosis
parameter 1296). The graph shows that HRTg=φ dominates ERS test by gaining plenty of power from non-normality
in all these cases.
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Figure 1.— Asymptotic power functions of selected unit root tests and various true innovation densities: Gaus-
sian, Laplace, Student’s t3.

6. CONCLUSION AND DISCUSSION

To be completed
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Figure 2.— Asymptotic power functions of selected unit root tests and various true innovation densities: Stu-
dent’s t1, Student’s t2, skewed-normal.
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Figure 4.— Finite-sample power functions of selected unit root tests and various true innovation densities:
Gaussian, Laplace, Student’s t3.
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Figure 5.— Finite-sample power functions of selected unit root tests and various true innovation densities:
Student’s t1, Student’s t2, skewed-normal, skewed-t4, stable distribution, Pearson distribution.
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APPENDIX A: PROOFS

Proof of Proposition 3.1:
For notational convenience we drop the superscript “(T )” in the following and thus write fη instead of f

(T )
η . Moreover, we consider T ′

such that fη is nonnegative. We have

f ′η(e) = f ′(e)

(
1 +

1
√
T

∞∑
k=1

ηkbk(e)

)
+ f(e)

1
√
T

∞∑
k=1

ηkb
′
k(e), a.e..

There exist C1, C2 <∞ such that we have, for all T ≥ T ′,
∥∥1 + T−1/2

∑∞
k=1 ηkbk

∥∥
∞ ≤ C1 and

∥∥T−1/2
∑∞
k=1 ηkb

′
k

∥∥2
∞ ≤ C2. Moreover,

there exists C3 > 0 such that, again for all T ≥ T ′, ‖(1 + T−1/2
∑∞
k=1 ηkbk)−1‖2∞ ≤ C3. Using these observations we immediately

obtain ∫ (
−
f ′η(e)

fη(e)

)2

fη(e)de ≤ 2C1Jf + 2
C2

C3

∫
fη(e)de <∞,

which concludes the proof. Q.E.D.
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Proof of Proposition 3.2: In this proof, all limits, op, and Op quantities are to be understood as T →∞ and under the measure in
which H0 holds and the true density function of ε is f . The log-likelihood ratio is

Lf,hT (c, η) =

T∑
t=2

log
f(∆yt − c

T
yt−1)

f(∆yt)
+

T∑
t=2

log[1 +
1
√
T

∑
k

ηkbk(∆yt −
c

T
yt−1)].

For the first term, by the proof is given by Jansson(2008) we have

T∑
t=2

log
f(∆yt − c

T
yt−1)

f(∆yt)
= c

[
1

T

T∑
t=2

φf (∆yt)yt−1

]
−

1

2
c2

[
Iff
T 2

T∑
t=2

y2t−1

]
+ op(1).

For the second term,

T∑
t=2

log

[
1 +

1
√
T

∑
k

ηkbk(∆yt −
c

T
yt−1)

]

=

T∑
t=2

log

[
1 +

1
√
T

∑
k

ηk

(
bk(∆yt)−

c

T
yt−1b

′
k(∆yt)−

c

T
yt−1rk(∆yt −

c

T
yt−1)

)]

=

T∑
t=2

log

[
1 +

∑
k

(
ηk√
T
bk(∆yt)−

cηk

T 3/2
yt−1b

′
k(∆yt) +RTtk

)]

=

T∑
t=2

[∑
k

(
ηk√
T
bk(∆yt)−

cηk

T 3/2
yt−1b

′
k(∆yt) +RTtk

)]

−
1

2

T∑
t=2

[∑
k

(
ηk√
T
bk(∆yt)−

cηk

T 3/2
yt−1b

′
k(∆yt) +RTtk

)]2
(1 + βTt)

whereRTtk = c2ηk
T5/2 y

2
t−1b

′′
k(a) for some value a between min{∆yt− c

T
yt−1,∆yt} and max{∆yt− c

T
yt−1,∆yt}; and βTt = β

[∑
k

(
ηk√
T
bk(∆yt)− cηk

T3/2 yt−1b′k(∆yt) +RTtk

)]
,

β(·) is defined by

log(1 + x) = x−
1

2
x2[1 + β(x)], lim

x→0
β(x) = 0.

To complete the proof, it is sufficient to show that∣∣∣∣∣
T∑
t=2

RTtk

∣∣∣∣∣ = op(1), for each k,(A.1)

max
2≤t≤T

∣∣∣βTt∣∣∣ = op(1),(A.2)

T∑
t=2

[∑
k

(
ηk√
T
bk(∆yt)−

cηk

T 3/2
yt−1b

′
k(∆yt) +RTtk

)]2
=
∑
k

η2kIhkhk + op(1),(A.3)

cηk

T 3/2

T∑
t=2

b′k(∆yt)yt−1 =
cηk

T 3/2
Ifhk

T∑
t=2

yt−1 + op(1), for each k.(A.4)

Equation (A.1). Since c and ηk are bounded sequences, (A.1) can be proved by∣∣∣∣∣
T∑
t=2

RTtk

∣∣∣∣∣ =

∣∣∣∣∣ c2ηkT 5/2

T∑
t=2

y2t−1b
′′
k(a)

∣∣∣∣∣ ≤
∣∣∣∣ c2ηk√T M

∣∣∣∣
∣∣∣∣∣ 1

T 2

T∑
t=2

y2t−1

∣∣∣∣∣ = op(1)Op(1) = op(1).

Equation (A.2). Since limx→0 β(x) = 0, it is sufficient to show

max
2≤t≤T

∣∣∣∣ 1

T 3/2
b′k(∆yt)yt−1

∣∣∣∣ = op(1), max
2≤t≤T

∣∣∣∣ 1
√
T
bk(∆yt)

∣∣∣∣ = op(1), max
2≤t≤T

∣∣∣RTtk ∣∣∣ = op(1).

The proof of the first one is given by

max
2≤t≤T

∣∣∣∣ 1

T 3/2
b′k(∆yt)yt−1

∣∣∣∣ = max
2≤t≤T

∣∣∣∣ 1
√
T
yt−1

∣∣∣∣ max
2≤t≤T

∣∣∣∣ 1

T
b′k(∆yt)

∣∣∣∣ = Op(1)op(1) = op(1),

the second one is obvious since by Assumption 2 function bk is bounded, the proof of last one is given by

max
2≤t≤T

∣∣∣∣ c2ηkT 5/2
y2t−1b

′′
k(a)

∣∣∣∣ ≤ max
2≤t≤T

∣∣∣∣ c2ηkT 5/2
y2t−1

∣∣∣∣M = op(1).
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Equation (A.3). To prove (A.3), it is sufficient to show that

T∑
t=2

[∑
k

(
ηk√
T
bk(∆yt)−

cηk

T 3/2
yt−1b

′
k(∆yt) +RTtk

)]2
=
∑
k

η2k
T

T∑
t=2

b2k(∆yt) + op(1),(A.5)

and

η2k
T

T∑
t=2

b2k(∆yt) = η2kIbkbk + op(1), ∀k.(A.6)

Equation (A.6) directly follows from the Law of Large Number (LLN). For equation (A.5), we are going to show all terms of quadratic

part of Lf,hT (c, η) except
∑
k
η2k
T

∑T
t=2 b

2
k(∆yt) are op(1):

I. ∣∣∣∣∣
T∑
t=2

(RTtk )2

∣∣∣∣∣ =

∣∣∣∣∣ c4η2kT 5

T∑
t=2

y4t−1b
′′
k(a)2

∣∣∣∣∣ ≤ c4η2k
∣∣∣∣∣ 1

T 3

T∑
t=2

y4t−1

∣∣∣∣∣ M2

T 2
= Op(1)op(1) = op(1),

II. ∣∣∣∣∣ 1

T 2

T∑
t=2

bk(∆yt)b
′
s(∆yt)yt−1

∣∣∣∣∣
2

≤

∣∣∣∣∣ 1

T 2

T∑
t=2

b2k(∆yt)b
′2
s (∆yt)

∣∣∣∣∣
∣∣∣∣∣ 1

T 2

T∑
t=2

y2t−1

∣∣∣∣∣
≤
M2

T

∣∣∣∣∣ 1

T

T∑
t=2

b′2s (∆yt)

∣∣∣∣∣
∣∣∣∣∣ 1

T 2

T∑
t=2

y2t−1

∣∣∣∣∣ = op(1)Op(1)Op(1) = oP (1),

here,
∣∣∣ 1T ∑T

t=2 b
′2
s (∆yt)

∣∣∣ = Op(1) is because of b′s ∈ L2.

III. ∣∣∣∣∣ 1

T 3

T∑
t=2

b′k(∆yt)b
′
s(∆yt)y

2
t−1

∣∣∣∣∣
2

≤

∣∣∣∣∣ 1

T 3

T∑
t=2

b′2k (∆yt)b
′2
s (∆yt)

∣∣∣∣∣
∣∣∣∣∣ 1

T 3

T∑
t=2

y4t−1

∣∣∣∣∣
≤

1

T

∣∣∣∣∣ 1

T

T∑
t=2

b′2k (∆yt)

∣∣∣∣∣
∣∣∣∣∣ 1

T

T∑
t=2

b′2s (∆yt)

∣∣∣∣∣
∣∣∣∣∣ 1

T 3

T∑
t=2

y4t−1

∣∣∣∣∣ = op(1)Op(1)Op(1)Op(1) = op(1)

IV. ∣∣∣∣∣ 1
√
T

T∑
t=2

bk(∆yt)R
Tt
s

∣∣∣∣∣
2

≤

∣∣∣∣∣ 1

T

T∑
t=2

b2k(∆yt)

∣∣∣∣∣
∣∣∣∣∣
T∑
t=2

(RTts )2

∣∣∣∣∣ ≤M2

∣∣∣∣∣
T∑
t=2

(RTts )2

∣∣∣∣∣ = op(1),

V. ∣∣∣∣∣ 1

T 3/2

T∑
t=2

b′k(∆yt)yt−1R
Tt
s

∣∣∣∣∣
2

≤

∣∣∣∣∣ 1

T

T∑
t=2

b′k(∆yt)
2

∣∣∣∣∣
∣∣∣∣∣ 1

T

T∑
t=2

y2t−1

∣∣∣∣∣
∣∣∣∣∣ 1

T

T∑
t=2

(RTts )2

∣∣∣∣∣ = Op(1)Op(1)op(1) = op(1),

VI. ∣∣∣∣∣
T∑
t=2

RTtk RTts

∣∣∣∣∣ ≤ 1

2

∣∣∣∣∣
T∑
t=2

(RTtk )2

∣∣∣∣∣+
1

2

∣∣∣∣∣
T∑
t=2

(RTtk )2

∣∣∣∣∣ = op(1),

VII. ∣∣∣∣∣ 1

T

T∑
t=2

bk(∆yt)bs(∆yt)

∣∣∣∣∣ = op(1).

Equation (A.4.). Now prove
∑
k
cηk
T3/2

∑T
t=2 b

′
k(∆yt)yt−1 =

∑
k
cηk
T3/2 Ifhk

∑T
t=2 yt−1 + op(1). Firstly, 1

T3/2 b
′
k(∆yt)yt−1 is square-

integrable and adapted to the filtration (FT,t)0≤t≤T , and the following condition holds:

1

T 3

T∑
t=2

E
[
b′k(∆yt)

2y2t−1

∣∣FT,t−1

]
=

1

T 3

T∑
t=2

y2t−1E
[
b′k(∆yt)

2
∣∣FT,t−1

]
=

1

T

(
1

T 2

T∑
t=2

y2t−1

)
E
[
b′k(∆yt)

2
]

= op(1).
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We then apply Hallin, van den Akker and Werker (2015, Lemma 2),

∑
k

cηk

T 3/2

T∑
t=2

b′k(∆yt)yt−1

=
∑
k

cηk

T 3/2

T∑
t=2

E
[
b′k(∆yt)yt−1

∣∣FT,t−1

]
+ op(1)

=
∑
k

cηk

T 3/2

T∑
t=2

yt−1E
[
b′k(∆yt)

]
+ op(1)

=
∑
k

cηk

T 3/2
Icηk

T∑
t=2

yt−1 + op(1),

the last equality comes from E
[
b′k(∆yt)

∣∣FT,t−1

]
= E[b′k(ε)] =

∫∞
−∞ b′k(ε)f(ε)dε = bk(ε)f(ε)

∣∣+∞
−∞−

∫∞
−∞ bk(ε)f ′(ε)dε =

∫∞
−∞ bk(ε)(− f

′

f
(ε))f(ε)dε =

E[bk(ε)(− f
′

f
(ε))] = Ifbk .

Q.E.D.

Proof of Theorem 3.1: Let Ḡ be the group of translations ḡη = η+C, where C := (C1, C2, · · · )′ with −∞ < C1, C2, · · · <∞. Then
it the same to show that statisticM is maximal invariant under Ḡ. Let G be a group of transformations of the sample space, defined by

gW (u) :=


Wε(u)

W1(u) + C1u
W2(u) + C2u

...

 .

It is easy to see the fact that G is a homomorphism of Ḡ (see, e.g., section 6.1 of Lehmann and Romano (2005)). Then it is same to
show that M is a maximal invariant under G. Suppose M = M̃, which explicitly is

Wε(u) = W̃ε(u),

Bk(u) = B̃k(u), k ∈ N.

It implies that, for Ck := (Wk(1)− W̃k(1)), k ∈ N,

Wε(u)− W̃ε(u) = 0,

Wk(u)− W̃k(u) = Cku,

which is gW (t) = W̃ (t). Thus by definition (see, e.g., section 6.2 of Lehmann and Romano (2005)), M is maximal invariant. Q.E.D.

To be completed
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