Reconciling Micro-Data and Macro Estimates of Price Setting

Adam Cagliarini, Tim Robinson and Allen Tran

July 8, 2009
Puzzle

Estimates of Average Duration Between Price Resetting

Micro Macro
US 4.3 months \approx 6 quarters

IMPORTANCE

- The Calvo framework is extensively used in many DSGE models. Resolving this puzzle gives us greater understanding of these models.
- The extent of nominal rigidities considerably influences the real impact of monetary policy.
SUMMARY

AIM: Reconcile the micro data on price setting with estimates from a macro model.

METHOD:

• Introduce into a standard model:
 • heterogeneity across firms, and,
 • a richer production structure, incorporating intermediate goods.

• Calibrate the model using the micro data, and simulate macro aggregates.

• Estimate the aggregate Phillips curve using the simulated macro data.

• Compare these macro estimates to the calibrated true values.
Results

- The aggregate Phillips curve *appears* to overstate price stickiness
- Ignoring heterogeneity has consequences
- The slope of the NKPC in calibrated models is too flat
Heterogeneity

- Most models capture heterogeneity via Calvo pricing
 - The Calvo parameter, θ, is the probability that a firm cannot change its price
- Heterogeneity affects aggregate dynamics (Carvalho, 2006)
- Our model assumes heterogeneity in pricing and technology
Heterogeneity in Micro Data

- Micro Data studies report the average duration prices remain fixed for each sector

\[D(\theta_j) = \frac{1}{1 - \theta_j}, \]

- The Calvo probability is typically calculated from the average duration across sectors

- Since \(D(\theta_j) \) is convex and increasing in \(\theta_j \), we can apply Jensen’s inequality

\[D(\hat{\theta}^{MICRO}) = \mathbb{E}(D(\theta_j)) > D(\mathbb{E}(\theta_j)) \]

\[\Rightarrow \hat{\theta}^{MICRO} > \mathbb{E}(\theta_j). \]
Heterogeneity in Macro Data

• Estimates of the Calvo parameter are extracted from the NKPC

\[\pi_t = \frac{(1 - \beta \theta)(1 - \theta)}{\theta} mc_t + \beta E_t \pi_{t+1} \]

• Suppose we can write the NKPC as the sum of sectoral NKPCs

\[\pi_t = \sum_{j=1}^{N} w_j \left(\frac{(1 - \theta_j)(1 - \beta \theta_j)}{\theta_j} mc_{j,t} + \beta E_t \pi_{j,t+1} \right) \]

and the slope coefficient can be decomposed as follows

\[\lambda(\theta_j, \beta) = \frac{(1 - \beta \theta_j)(1 - \theta_j)}{\theta_j} = \bar{\lambda} + e_{\lambda,j} \]

We can write

\[\pi_t = \bar{\lambda} mc_t + \beta E_t \pi_{t+1} + \sum_{j} w_j e_{\lambda,j} mc_{j,t}, \]
Heterogeneity in Macro Data

- If we get a “good” estimate of $\bar{\lambda}$, we can compute the corresponding Calvo probability, θ^{MACRO}
- Since $\lambda(\theta_j)$ is convex and decreasing in θ, we can apply Jensen’s inequality

\[
\lambda(\hat{\theta}^{MACRO}) = \mathbb{E}(\lambda(\theta_j)) \geq \lambda(\mathbb{E}(\theta_j)) \Rightarrow \hat{\theta}^{MACRO} \leq \mathbb{E}(\theta_j). \tag{2}
\]
Puzzle

\[\theta^{MACRO} \leq E(\theta) \leq \theta^{MICRO} \]

- Avg Duration from NKPCs \(\approx 6 \) quarters
- Avg Duration from Micro Data \(\approx 1-2 \) quarters
Implications for Calibration/Bayesian Estimation

- The Calvo probability used in most calibrated models is likely to be too high
- The slope of the NKPC is too flat
Roadmap

- Look at effects of including heterogeneity and roundabout production
- Assess econometric properties of estimates of the NKPC
The Model

The model contains standard New-Keynesian features with

- Heterogeneity across sectors
- Roundabout production

A sector, say sector j, is a subset with measure γ_j of the firms indexed over the continuum $[0, 1]$.

\[\begin{array}{c|c|c}
\text{Sector 1} & \text{Sector 2} \\
\hline
0 & 0.33 & 1 \\
\end{array} \]
Roundabout Production

- Production in a modern economy is not well represented by a tiered production process.
- Firms produce output that can be consumed or used as a factor in production.
- Roundabout production introduces more interdependence of prices between intermediate goods producers.
Intermediate Good used in production: $m_{k,t}(i)$

Intermediate Good used in consumption: $c_t(i)$

Labour: l_t

Final Good: $c_{j,t}$
Intermediate-Goods Firms

Each period, firm k in sector j faces the cost minimisation problem below

$$\min_{l_{k,t}, m_{k,t}^d(i)} W_t l_{k,t}^d + \int_0^1 P_t(i) m_{k,t}^d(i) di$$

s.t. \[y_t^s(k) = \left(z_{j,t} z_{t,l_{k,t}} \right)^{\alpha_j} m_{k,t}^{1 - \alpha_j} \] \hspace{1cm} (3)

\[m_{k,t} \equiv \left(\int_0^1 m_{k,t}^d(i) \frac{\epsilon - 1}{\epsilon} di \right) \frac{\epsilon}{\epsilon - 1} \] \hspace{1cm} (4)

Market Clearing:

$$y_t^s(k) = \int_0^1 m_{i,t}^d(k) di + c_t^d(k)$$
Intermediate-Goods Firms' Pricing

Following the Calvo set up, sectoral inflation is described by

$$\pi_{j,t} = \frac{(1 - \beta \theta_j)(1 - \theta_j)}{\theta_j} (mc_{j,t}) + \beta E_t \pi_{j,t+1}. \quad (5)$$

Aggregating these sectoral NKPCs leads to an aggregate NKPC

$$\pi_t = \sum_{j=1}^{N} \gamma_j \left(\frac{\hat{P}_j}{P} \right)^{1-\epsilon} \left[\frac{(1 - \beta \theta_j)(1 - \theta_j)}{\theta_j} (mc_{j,t}) + \beta E_t \pi_{j,t+1} \right] \quad (6)$$
Calibration and Estimation

<table>
<thead>
<tr>
<th>Sector</th>
<th>Avg. Duration (Q)</th>
<th>Calvo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture</td>
<td>4</td>
<td>0.75</td>
</tr>
<tr>
<td>Construction</td>
<td>1.33</td>
<td>0.25</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>2</td>
<td>0.50</td>
</tr>
<tr>
<td>Mining</td>
<td>4</td>
<td>0.75</td>
</tr>
<tr>
<td>Utilities</td>
<td>4</td>
<td>0.75</td>
</tr>
<tr>
<td>Wholesale and Retail Trade</td>
<td>1</td>
<td><0.25</td>
</tr>
<tr>
<td>Transport and Storage</td>
<td>4</td>
<td>0.75</td>
</tr>
<tr>
<td>Business Services</td>
<td>4</td>
<td>0.75</td>
</tr>
<tr>
<td>Household Services</td>
<td>4</td>
<td>0.75</td>
</tr>
<tr>
<td>Tourism</td>
<td>4</td>
<td>0.75</td>
</tr>
</tbody>
</table>

Table: Calvo probabilities for each sector

Source: RIA/RBA Pricing Survey (D’Arcy, Rayner and Park, Forthcoming)
Simulated data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Actual</th>
<th>Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Var(g_t)$</td>
<td>0.333</td>
<td>0.378</td>
</tr>
<tr>
<td>$Var(\pi_t)$</td>
<td>0.052</td>
<td>0.062</td>
</tr>
<tr>
<td>$Var(r_t)$</td>
<td>0.047</td>
<td>0.029</td>
</tr>
<tr>
<td>$Corr(g_t, \pi_t)$</td>
<td>-0.005</td>
<td>-0.077</td>
</tr>
<tr>
<td>$Corr(g_t, r_t)$</td>
<td>-0.121</td>
<td>-0.009</td>
</tr>
<tr>
<td>$Corr(r_t, \pi_t)$</td>
<td>0.273</td>
<td>0.241</td>
</tr>
<tr>
<td>$Corr(g_t, g_{t-1})$</td>
<td>-0.044</td>
<td>-0.023</td>
</tr>
<tr>
<td>$Corr(r_t, r_{t-1})$</td>
<td>0.926</td>
<td>0.859</td>
</tr>
<tr>
<td>$Corr(\pi_t, \pi_{t-1})$</td>
<td>0.422</td>
<td>0.372</td>
</tr>
</tbody>
</table>

Table: Moments of observed and simulated series (1993Q1 to 2007Q4)
Results

Compare 4 models

- Baseline, single sector and no roundabout production
- Roundabout, roundabout production and no heterogeneity
- Heterogeneous, multiple sectors but no roundabout production
- Full model
Impulse Response Functions

Policy Shock on Value Added

Policy Shock on Inflation

Baseline Roundabout Heterogeneous Full
Monte Carlo Exercise

- For each of the four models
 - Simulate model over T periods
 - Estimate hybrid aggregate NKPC using simulated data

\[
\pi_t = \frac{(1 - \omega)(1 - \beta\theta)(1 - \theta)}{\phi} m c_t + \frac{\beta\theta}{\phi} E_t \pi_{t+1} + \frac{\omega}{\phi} \pi_{t-1}
\]

\[
\phi = \theta + \omega [1 - \theta (1 - \beta)]
\]

- Save parameter estimates
- Repeat N times
Estimates of the Aggregate NKPC

Table: GMM estimates of the aggregate NKPC from various models

<table>
<thead>
<tr>
<th>Parameter</th>
<th>True</th>
<th>Full</th>
<th>Heterogeneous</th>
<th>Baseline</th>
<th>Roundabout</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>0.99</td>
<td>0.87 (0.12)</td>
<td>0.57 (0.20)</td>
<td>0.72 (0.13)</td>
<td>0.82 (0.11)</td>
</tr>
<tr>
<td>θ_{macro}</td>
<td>0.30</td>
<td>0.82 (0.12)</td>
<td>0.85 (0.07)</td>
<td>0.31 (0.15)</td>
<td>0.33 (0.18)</td>
</tr>
<tr>
<td>ω</td>
<td>0.00</td>
<td>0.17 (0.07)</td>
<td>0.04 (0.04)</td>
<td>0.00 (0.02)</td>
<td>0.03 (0.08)</td>
</tr>
</tbody>
</table>

Median and standard deviation in brackets.

MONTE CARLO RESULTS

Figure: Estimates of θ
Monte Carlo Results

Figure: Estimates of ω
Why does Heterogeneity affect estimates of the NKPC?

There are 3 possible explanations

- Misweighting of marginal costs
- Weak instruments
- Lack of instrument exogeneity
Misspecification

- Aggregate marginal costs is not the aggregate labour share
- Instead, aggregate marginal costs are gross revenue weighted labour shares for each sector

Table: GMM estimates of the full model using aggregate marginal costs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Actual</th>
<th>Full</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>0.99</td>
<td>0.83 (0.10)</td>
</tr>
<tr>
<td>θ^{macro}</td>
<td>0.3</td>
<td>0.73 (0.05)</td>
</tr>
<tr>
<td>ω</td>
<td>0.00</td>
<td>0.06 (0.05)</td>
</tr>
</tbody>
</table>
Weak Instruments

- The NKPC is plagued by weak instrument problems (Mavroeidis, 2005 JMCB)
- Sectoral NKPCs do not have heterogeneity problems but weak instrument problems remain
- Weak instruments only pose modest problems with heterogeneity

Table: GMM estimates of sectoral NKPCs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Construction</th>
<th>Manufacturing</th>
<th>Business Services</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Actual</td>
<td>Estimated (std)</td>
<td>Actual</td>
</tr>
<tr>
<td>β</td>
<td>0.99</td>
<td>0.67 (0.15)</td>
<td>0.99</td>
</tr>
<tr>
<td>θ</td>
<td>0.25</td>
<td>0.27 (0.06)</td>
<td>0.5</td>
</tr>
<tr>
<td>ω</td>
<td>0.00</td>
<td>0.00 (0.01)</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Instrument Exogeneity

- In our model we can write

\[\pi_t = \bar{\lambda}mc_t + \beta \pi_{t+1} + \nu_{t+1} + \sum_j w_j e_{\lambda,j}mc_{j,t} \]

- Using GMM to estimate the NKPC requires the moment condition

\[E(\nu_{t+1} + \sum_j w_j e_{\lambda,j}mc_{j,t} | z_{it}) = 0 \quad \forall i \]

which is hard to satisfy for any relevant instruments when instrumenting for marginal cost
Conclusion

- Heterogeneity and roundabout production have a non-trivial effect on model dynamics
- Estimates of the aggregate Calvo from Gali and Gertler (1999) suggest that
 - the economy is populated by homogeneous firms resetting every 6.5 quarters on average; OR
 - the average duration of price changes across heterogeneous sectors is 2 quarters on average
- The latter is more plausible and helps resolve some of the discrepancy between the micro and macro-data