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Abstract

In this paper we prove the existence of recursive equilibria in stochastic production economies

with infinitely lived agents and incomplete financial markets. We consider a general dynamic

model with several commodities, which encompasses heterogeneous agent versions of both the

Lucas asset pricing model and the stochastic neo-classical growth model as special cases. Our

main assumption is that there are atomless shocks to fundamentals that have a purely transitory

component and a component that does not depend on last period’s shocks directly.
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1 Introduction

The use of so-called recursive equilibria to analyze dynamic stochastic general equilibrium models

has become increasingly important in financial economics, macroeconomics, and in public finance.

These equilibria are characterized by a pair of functions: a transition function mapping this period’s

“state” into probability distributions over next period’s state, and a “policy function” mapping the

current state into current prices and choices (see, e.g., Ljungquist and Sargent (2004) for an intro-

duction.) In applications that consider dynamic stochastic economies with heterogeneous agents

and production, it is typically the current exogenous shock together with the capital stock and

the beginning-of-period distribution of assets across individuals that defines this recursive state.

Following the terminology of stochastic games, we will often refer to recursive equilibria with this

minimal “natural” state space as stationary Markov equilibria. Unfortunately, for models with in-

finitely lived agents and incomplete financial markets no sufficient conditions for the existence of

these stationary Markov equilibria can be found in the existing literature. In this paper we consider

a dynamic economy with stochastic production, give two examples that illustrate why recursive

equilibria might fail to exist, and prove the existence of recursive equilibria for economies with

atomless shocks to fundamentals. We assume that these shocks have a purely transitory component

affecting endowments and a component that does not depend on last period’s shocks directly, which

might affect endowments, the production function, and preferences.

There are a variety of reasons for focusing on stationary Markov equilibria. Most importantly,

recursive methods can be used to approximate stationary Markov equilibria numerically. Heaton and

Lucas (1996), Krusell and Smith (1998), and Kubler and Schmedders (2003) are early examples of

papers that approximate stationary Markov equilibria in models with infinitely lived heterogeneous

agents. Although an existence theorem for stationary Markov equilibria has not been available,

applied research, even if explicitly aware of the problem, needs to focus on such equilibria, as there

are no efficient algorithms for the computation of equilibria that are not recursive.1 For the case of

dynamic games, Maskin and Tirole (2001) list several conceptual arguments in favor of stationary

Markov equilibria. Duffie et al. (1994) give similar arguments that also apply to dynamic general

equilibrium: As prices vary across date events in a dynamic stochastic market economy, it is im-

portant that the price process is simple — for instance Markovian on some minimal state space —

to justify the assumption that agents have rational expectations.

Unfortunately, due to the non-uniqueness of continuation equilibria, recursive equilibria do not

always exist. This intuition was first explained and illustrated in Hellwig (1983) and since then has
1While Feng et al. (2013) provide an algorithm for this case, their method can only be used for very small-scale

models.
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been demonstrated in different contexts. Kubler and Schmedders (2002) give an example showing

the non-existence of stationary Markov equilibria in models with incomplete asset markets and

infinitely lived individuals. Santos (2002) gives examples of non-existence for economies with exter-

nalities. Kubler and Polemarchakis (2004) give examples in models with overlapping generations,

which we modify to fit our framework with infinitely lived agents and production. We use these

examples to illustrate why one of our main assumptions is needed to obtain existence.

The existence of competitive equilibria for general Markovian exchange economies was shown

in Duffie et al. (1994). The authors also prove that the equilibrium process is a stationary Markov

process. However, we follow the well established terminology in dynamic games and do not refer to

these equilibria as stationary Markov equilibria, because the state also contains consumptions and

prices from the previous period.

Citanna and Siconolfi (2010 and 2012) give sufficient conditions for the generic existence of

stationary Markov equilibria in models with overlapping generations. Their arguments cannot be

extended to models with infinitely lived agents or to models with occasionally binding constraints

on agents’ choices, and for their argument to work they need to assume a very large number of

heterogeneous agents within each generation.

Duggan (2012) and He and Sun (2013) give sufficient conditions for the existence of a Markov

equilibrium in stochastic games with uncountable state spaces. Building on work by Nowak and

Raghavan (1992), He and Sun (2013) use a result from Dynkin and Evstigneev (1977) to provide

sufficient conditions for the convexity of the conditional expectation operator. They show that the

assumption of a public coordination device (“sunspot”) in Nowak and Raghavan can be replaced by

natural assumptions on the exogenous shock to fundamentals.

To show the existence of a recursive equilibrium, we characterize it by a function that maps

the recursive state into marginal utilities of all agents. We show that such a function describes a

recursive equilibrium if it is a fixed point of an operator that captures the period-to-period equi-

librium conditions. Using this characterization, we proceed in two steps to prove the existence of

recursive equilibrium. First, we make direct assumptions on the transition probability for the re-

cursive state. Assuming that the probability distribution of next period’s state varies continuously

with current actions (a “norm-continuous” transition), the operator defined by the equilibrium con-

ditions is a non-empty correspondence on the space of marginal utility functions. Unfortunately,

the Fan–Glicksberg fixed point theorem only guarantees the existence of a fixed point in the convex

hull of this correspondence. However, following He and Sun (2013) we give conditions that ensure

that this is also a fixed point of the original correspondence. For this, we assume that the density

of the transition probability is measurable with respect to a sigma algebra that is sufficiently coarse
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relative to the sigma algebra representing the total information available to agents. This estab-

lishes Theorem 1, which provides a first set of sufficient conditions for the existence of recursive

equilibria. In a second step, we provide assumptions on economic fundamentals that guarantee that

the endogenous transition probability indeed satisfies these conditions. In particular, we assume

that there are atomless shocks to fundamentals that have a purely transitory component affecting

endowments and a component that does not depend on last period’s shocks directly. The latter

might affect endowments, the production function, and preferences. Theorem 2 states that under

these assumptions recursive equilibrium exists.

We present our main result for a model without short-lived financial assets (as in Duffie et al. (1994))

— this makes the argument simpler and highlights the economic assumptions necessary for our exis-

tence result. We then introduce financial securities together with collateral constraints. In order to

define a compact endogenous state space we need to make relatively strong assumptions on endow-

ments and preferences, and to impose constraints on trades. It is subject to further investigations

whether these assumptions can be relaxed. While it is well understood that without occasionally

binding constraints on trade the existence of recursive equilibrium cannot be established (see, e.g.,

Krebs (2004)) the assumptions made in this paper are certainly stronger than needed.

In a stationary Markov equilibrium the relevant state-space consists of endogenous as well as

exogenous variables that are payoff-relevant, pre-determined, and sufficient for the optimization of

individuals at every date event (Maskin and Tirole (2001) give a formal definition of payoff-relevant

states for Markov perfect equilibria.) There are several computational approaches that use individ-

uals’ “Negishi weights” as an endogenous state instead of the distribution of assets (see, e.g., Dumas

and Lyasoff (2012) or Brumm and Kubler (2014)). In models with incomplete financial markets this

alternative state does not simplify proving the existence of a recursive equilibrium. Brumm and

Kubler (2014) prove existence in a model with overlapping generations, complete financial markets,

and borrowing constraints, but the approach does not extend to models with incomplete markets.

In this paper we focus on equilibria that are recursive on the “natural” state space — that is to say,

the space consisting of the shock, the distribution of assets, and the capital stock.

The rest of the paper is organized as follows: In Section 2 we present the basic model and explain

some important special cases. Section 3 contains simple examples that illustrate the difficulties in

establishing the existence of recursive equilibria. Section 4 contains an existence proof for recursive

equilibria. Section 5 shows how the model can be extended to include one-period financial securities

and how in concrete models some of the assumptions made in Section 4 can be relaxed.
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2 A general dynamic Markovian economy

We describe the economic model and define recursive equilibrium.

2.1 The model

Time is indexed by t ∈ N0. Exogenous shocks zt ∈ Z realize in a complete, separable metric space

Z, and follow a first-order Markov process with transition probability P(.|z) defined on the Borel

σ-algebra Z on Z, that is, P : Z×Z → [0, 1]. By a standard argument one can construct a filtration

(Ft) so that (zt) is an Ft-adapted stochastic process. A history of shocks up to some date t is

denoted by zt = (z0, z1, . . . , zt) and is also called a date event. Whenever convenient, we simply use

t instead of zt. An Ft-adapted stochastic process will be denoted by (xt).

We consider a production economy with infinitely lived agents. There are H types of agents,

h ∈ H = {1, . . . ,H}. At each date event there are L perishable commodities, l ∈ L = {1, ..., L},

available for consumption and production. The individual endowments are denoted by ωh(zt) ∈ RL+
and we assume that they are time-invariant and measurable functions of the current shock alone.

We take the consumption space to be the space of adapted and essentially bounded processes. Each

agent has a time-separable expected utility function

Uh(x) = E0

[ ∞∑
t=0

δtuh (zt, xt)

]
,

where δ ∈ R is the discount factor, xt ∈ RL+ denotes the agent’s (stochastic) consumption at date t,

and x denotes his entire consumption process.

It is useful to distinguish between intertemporal and intraperiod production. Intraperiod pro-

duction is characterized by a measurable correspondence Y : Z ⇒ RL, where a production plan

y ∈ RL is feasible at shock z if y ∈ Y(z). For simplicity (and without loss of generality) we assume

throughout that each Y(z) exhibits constant returns to scale so that ownership does not need to

be specified.

Intertemporally each type h = 1, ...,H has access to J linear storage technologies, j ∈ J =

{1, ..., J}. At a node z each technology (h, j) is described by a column vector of inputs a0
hj(z) ∈ RL+

and a vector-valued random variable of outputs in the subsequent period, a1
hj(z

′) ∈ RL+. We write

A0
h(z) = (a0

h1(z), . . . , a0
hJ(z)) for the L× J matrix of inputs and A1

h(z′) = (a1
h1(z′), . . . , a1

hJ(z′)) for

the L × J matrix of outputs. We denote by αh(zt) = (αh1(zt), ..., αhJ(zt))> ∈ RJ+ the levels at

which the linear technologies are operated at node zt by agent h.

Each period there are complete spot markets for the L commodities; we denote prices by p(zt) =

(p1(zt), ..., pL(zt)), a row vector. For what follows it will be useful to define the set of stored

commodities (or “capital goods”) to be

LK = {l ∈ L :
∑
h∈H

∑
j∈J

a1
hjl(z) > 0 for some z ∈ Z},
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and to define KU = {x ∈ RHL+ : xhl = 0 whenever l /∈ LK , h ∈ H}. We decompose individual

endowments into capital goods, fh, and consumption goods, eh, and define

fhl(z) =

 ωhl(z) if l ∈ LK

0 otherwise,

and eh(z) = ωh(z)− fh(z).

At t = 0 agents have some initial endowment in the capital goods that might be larger than

fh(z0) and to simplify notation we write the difference as A1
h(z0)αh(z−1) for each agent h. We refer

to these endowments across agents as the “initial condition”.

Given initial conditions (A1
h(z0)αh(z−1))h∈H ∈ KU , we define a sequential competitive equilib-

rium to be a process of Ft-adapted prices and choices,

(
pt, (xh,t, αh,t)h∈H , yt

)∞
t=0

such that markets clear and agents optimize, i.e., (A), (B), and (C) hold.

(A) Market clearing equations:∑
h∈H

(xh(zt) +A0
h(zt)αh(zt)− ωh(zt)−A1

h(zt)αh(zt−1)) = y(zt), for all zt

(B) Profit maximization:

y(zt) ∈ arg max
y∈Y(zt)

p(zt) · y

(C) Each agent h = 1, . . . ,H maximizes utility:

(xh, αh) ∈ arg max
(x,α)≥0

Uh(x)

s.t. p(zt)
(
x(zt) +A0

h(zt)α(zt)− ωh(zt)−A1
h(zt)α(zt−1)

)
≤ 0, for all zt.

2.2 Special cases

There are two special cases of the model that are worthwhile discussing in some detail.

In the heterogenous agent version of the Lucas (1978) asset pricing model that is examined in

Duffie et al. (1994) there are D Lucas trees available for trade. These are long-lived assets in unit

net supply that pay exogenous positive dividends in terms of the single consumption good, which

depend on the shock alone. Agents can trade in these trees but are not allowed to hold short positions

and there are no other financial securities available for trade. In our model this would amount to

assuming that there are D + 1 commodities (the first D representing the trees), no intraperiod

production, and intertemporal production where each agent can store each commodity l = 1, ..., D,

which then yields one unit of commodity l and a state-contingent amount of commodity D+ 1 (the

tree’s dividends) per unit stored. Agents only derive utility from consumption of commodity D+ 1
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and have positive individual endowments only in this commodity. At t = 0, for all l = 1, ..., D,

agents have initial endowments in commodity l that add up to 1. It is easy to see that a sequential

competitive equilibrium for this version of our model will yield the same consumption allocation as

a sequential equilibrium in the heterogenous agent Lucas model.

In the Brock–Mirman neo-classical stochastic growth model with heterogenous agents, consid-

ered in Krusell and Smith (1998), there is a single capital good that can be used in intraperiod

production, together with labor, to produce the single consumption good. This good can be con-

sumed or stored in a linear technology yielding one minus depreciation units of the capital good at

all nodes in the subsequent period. Agents derive utility from the consumption good (and possibly

from leisure). This is obviously a simple special case of our model. However, unlike Krusell and

Smith (1998) we assume that there are finitely many agents.

Of course, in our general framework it is easy to combine the models, include land as a factor

of production, or to consider models with irreversible investments.

2.3 Recursive equilibrium

We take as an endogenous state variable the beginning-of-period holdings in capital goods, either

obtained from storage or from endowments. We fix an endogenous state space K ⊂ KU and take

S = Z×K. A recursive equilibrium consists of “policy” and “pricing” functions

Fα : S→ RHJ+ , Fx : S→ RHL+ , Fp : S→ ∆L−1

such that for all initial shocks z0 ∈ Z, and all initial conditions
(
A1
h(z0)αh(z−1) + fh(z0)

)
h∈H
∈ K,

there exists a competitive equilibrium,

(
pt, (xh,t, αh,t)h∈H , yt

)∞
t=0

such that for all zt

s(zt) =
(
zt,
(
A1
h(zt)αh(zt−1) + fh(zt)

)
h∈H

)
∈ Z×K

and p(zt) = Fp(s(z
t)), x(zt) = Fx(s(zt)), α(zt) = Fα(s(zt)).

For computational convenience one typically wants K to be convex — this will be guaranteed

in our existence proof below but for now we do not include the requirement in the definition of

recursive equilibrium.

Note that we chose the endogenous state space K to be a subset of KU , where KU represents

the holding of broadly defined capital goods LK . At the cost of notational inconvenience one could

define capital goods and the space of capital holdings agent-wise by

LKh = {l ∈ L :
∑
j∈J

a1
hjl(z) > 0}, KU

h = {x ∈ RHL+ : xl = 0 whenever l /∈ LKh }.
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The endogenous state space would then satisfy K ⊂
⊗

h∈H KU
h , which could be considerably smaller

than in the above definition, depending on the application. Similarly, one could make the space of

capital holdings depend on the shock z ∈ Z.

3 Possible non-existence

The following simple examples illustrate why recursive equilibria might fail to exist and help us to

motivate our assumptions on exogenous shocks made in Section 4 below. A reader who is primarily

interested in the existence proof may wish to skip this section.

The examples are a variation of the examples in Kubler and Polemarchakis (2004) adapted to a

model with production and infinitely lived agents. The first example has the advantage that it can

be analyzed analytically and all computations are extremely simple. It has the disadvantage that

it is non-generic in the sense that non-existence in this example stems from the fact that there is a

continuum of continuation equilibria. Preferences and endowments in the second example are more

“standard” but we need some tools from computational algebraic geometry to analyze it.

The basic structure of uncertainty and production is the same in both examples. We assume that

there are only three possible shock realizations, z′ ∈ {1, 2, 3}, which are independent of the current

shock and equiprobable, thus π(z′|z) = 1/3 for all z, z′ ∈ {1, 2, 3}. There are two commodities and

two types of agent. As in Section 2, we assume that each agent maximizes time-separable expected

utility and to make computations as simple as possible we assume δ = 1/2. Each agent has access

to a storage technology. To simplify notation we assume that each agent has his own technology

but given our assumptions on endowments below it would be equivalent to assume that each agent

has access to both technologies. Agent 1’s technology transforms one unit of commodity 1 at given

shocks z = 1 and z = 2 to one unit of commodity 1 in the subsequent period whenever shock 3

occurs. Agent 2’s technology transforms one unit of commodity 2 at given shocks z = 1 and z = 2

to one unit of commodity 2 in the subsequent period whenever shock 3 occurs. At shocks z = 3 no

storage technology is available,2 i.e., we have

a0
1(1) = a0

1(2) = (1, 0), a0
1(3) =∞, a0

2(1) = a0
2(2) = (0, 1), a0

2(3) =∞

a1
1(1) = a1

1(2) = 0, a1
1(3) = (1, 0), a1

2(1) = a1
2(2) = 0, a1

2(3) = (0, 1).

3.1 Example 1

In our first example, we assume that the Bernoulli utility functions of agents 1 and 2 are as follows

u1(z = 1, (x1, x2)) = u1(z = 2, x) = − 1

6x1
, u1(z = 3, x) = − 1

x1
+ x2,

2The assumption is made for convenience — all one needs is low enough productivity that guarantees that the

activity is not used. In a slight abuse of notation we write a0
h(3) = ∞.
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u2(z = 1, (x1, x2)) = u2(z = 2, x) = − 1

6x2
, u2(z = 3, x) = x1 −

1

x2
.

Endowments of an agent of type 1 are

e1(z = 1) = (e11(1), e12(1)) = (2, 0), e1(z = 2) = (0.1, 0), e1(z = 3) = (0, 2),

and endowments of agents of type 2 are

e2(z = 1) = (0, 0.1), e2(z = 2) = (0, 2), e2(z = 3) = (2, 0).

For simplicity we set up the example completely symmetrically. In shocks 1 and 2 agent 1 only

derives utility from consumption of good 1 and is only endowed with good 1, agent 2 only derives

utility from good 2 and is only endowed with this good.

It is easy to see that at shocks 1 and 2 there will never be any trade. By assumption, if shock

3 occurs there cannot be any storage. Therefore, the economy decomposes into one-period and

two-period “sub-economies”. The only non-trivial case is when shock 3 is preceded by either shock 1

or 2. In these two-period economies, agents make a savings decision in the first period and interact

in spot markets in the second period.

To analyze the equilibria in these two-period economies, it is useful to compute the individual

demands in the second period in shock 3 as functions of the price ratio p̃ = p2(z′=3)
p1(z′=3) given amounts

of commodity 1 obtained by agent 1’s storage, κ1, and amounts of commodity 2 obtained by agent

2’s storage, κ2. We obtain for agent 1,

x1(p̃|κ) =

 (p̃e12(3) + κ1, 0) for p̃e12(3)−
√
p̃+ κ1 ≤ 0

(
√
p̃, e12(3)− 1√

p̃
+ κ1

p̃ ) otherwise.

and, symmetrically for agent 2,

x2(p̃|κ) =

 (0, e21(3)
p̃ + κ2) for e21(3)−

√
p̃+ p̃κ2 ≤ 0

(e21(3)−
√
p̃+ p̃κ2,

1√
p̃
) otherwise.

We note first that, in equilibrium, agent 2 never stores in shock 1 and agent 1 never stores in

shock 2. To see this, observe that agent 2 stores in shock 1 only if his consumption in good 2 in the

subsequent shock 3 is below 0.1. However, x2(p̃|κ) ≤ 0.1 and κ ≥ 0 implies e21(3)/p̃ ≤ 0.1, thus the

(relative) price of good 2, p̃, must be at least 20. But then agent 1’s consumption of good 1 must

be at least
√

20, which violates feasibility. Therefore there cannot be an equilibrium where agent 2

stores in shock 1. The situation for shock 2 is completely symmetric — agent 1 will never store in

this shock.

We now consider a two-period economy with the initial shock equal to 1 where agent 2 does not

store, i.e., κ2 = 0. If also κ1 = 0, then the equilibrium conditions for the second period spot market

have a continuum of solutions: any p̃ satisfying e12(3)−2 = 1/4 ≤ p̃ ≤ e21(3)2 = 4 is a possible spot
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market equilibrium. However, we now show that in the two-period economy only p̃ = 4 is consistent

with agent 1’s intertemporal optimization. For p̃ = 4, agent 1’s consumption at shock 3 is given by

x1(z′ = 3) = (2, 1.5). If agent 1’s consumption in good 1 drops below 2 he will always store positive

amounts, and by feasibility it cannot be above 2 without storage.

To see that this equilibrium is unique, first observe that there cannot be another equilibrium

with identical consumption for agent 1 in good 1. To see that there cannot be an equilibrium with

κ1 > 0, observe that for κ1 > 0 the only possible spot equilibrium would have x11 = 2+κ1; however,

the Euler equation implies that κ1 > 0 is then inconsistent with intertemporal optimality.

When the economy starts in shock 2, the situation is completely symmetric, with only one

possible equilibrium with κ1 = κ2 = 0, p̃ = 1
4 and agent 1’s consumption given by x1(z′ = 3) =

(0.5, 0).

Thus, in every competitive equilibrium we have κ1 = κ2 = 0 and consumption and prices in

shock 3 differ depending on whether the realization of the previous shock was 1 or 2. Therefore,

there is no recursive equilibrium.

3.2 Example 2

In the second example we assume that agents of type 1 have Bernoulli utility

u1(z = 1, (x1, x2)) = u1(z = 2, x) = − 1

12
x−2

1 , u1(z = 3, x) = −1

2
x−2

1 − 32x−2
2 ,

and agents of type 2 have Bernoulli functions

u2(z = 1, (x1, x2)) = u2(z = 2, x) = − 1

12
x−2

2 , u2(z = 3, x) = −32x−2
1 −

1

2
x−2

2 .

Endowments of an agent of type 1 are

e1(z = 1) = (
1

15
(5 + 2

√
5), 0), e1(z = 2) = (0.01, 0), e1(z = 3) = (0, 1),

and endowments of agents of type 2 are

e2(z = 1) = (0, 0.01), e2(z = 2) = (0,
1

15
(5 + 2

√
5)), e2(z = 3) = (1, 0).

Contrary to Example 1, in this example the assumption that endowments lie on the boundary is

made to simplify the algebra and is not crucial for the non-existence result.

The first part of the argument is exactly as in the first example: at shocks 1 and 2 there will

never be any trade, and when shock 3 occurs there cannot be any storage. Therefore, we only

have to consider two-period economies where agents make a savings decision in the first period and

interact on spot markets in the second period. There are two such economies depending on whether

the shock in the first period is 1 or 2.

To analyze the equilibria in the two-period economies, we note again that, in equilibrium, agent

2 will never store in shock 1 and agent 1 will never store in shock 2. Agent 2 stores in shock 1
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only if his consumption in good 2 in the subsequent period is below 0.01. From x22 < 0.01, κ ≥ 0,

and the budget constraint of agent 2, we get: x21 > 1− p2/p1 · 0.01. Also, the following first order

condition must hold in shock 3:
4x22

x21
=

(
p1

p2

) 1
3

.

Combined, these conditions imply that the (relative) price of good 2 must certainly be larger than

64 — assuming p2/p1 < 64 results in a contradiction:

1

9
=

0.04

0.36
>

4 · 0.01

1− p2/p1 · 0.01
>

4x22

x21
=

(
p1

p2

) 1
3

>

(
1

64

) 1
3

=
1

4

However, if p2/p1 ≥ 64, then agent 1’s consumption of good 1 must certainly be above 1+ 1
15(5+2

√
5),

which violates feasibility.

To determine the full equilibrium it is useful to first focus on possible equilibrium allocations

and prices in shock z′ = 3, given an amount stored from the previous period. We focus on the case

in which agent 1 operated the storage technology (in shock 1); the case where agent 2 operated the

technology (in shock 2) is analogous by symmetry.

We normalize the price of good 2, p2 = 1, and define p̃ := 3
√
p1(z′ = 3). Then, given goods from

storage, κ1, and substituting the market clearing conditions, equilibrium can be described by the

following polynomial system of equations — the first order conditions of agent 1 and 2, and the

budget constraint of agent 1:

−4x11p̃+ x12 = 0

−1

4
(1 + κ1 − x11)p̃+ (1− x12) = 0

p̃(x11 − κ1) + (x12 − 1) = 0

The lexicographic Gröbner basis (see Kubler and Schmedders (2010a) for an introduction to

this method and Kubler and Schmedders (2010b) for its application to general equilibrium models)

reveals that agent 1’s consumption in good 1 is determined by the following equations:

225x3
11 + 195(−κ1 − 1)x2

11 + (−29κ2
1 − 58κ1 + 35)x11 + (−κ3

1 − 3κ2
1 − 67κ1 − 1) = 0 (1)

At κ1 = 0 the three solutions are given by x1
11 = 1

5 , x
2
11 = 1

15(5− 2
√

5), x3
11 = 1

15(5 + 2
√

5). Figure

1 depicts the relation between the equilibrium consumption, x11, and κ1. The figure clearly shows

that for κ1 = 0 there are three different values of x11 that are consistent with equilibrium.

Moving to the two-period model, one obviously obtains that if the initial shock is 1, with e11(z =

1) = 1
15(5+2

√
5) one equilibrium is κ1 = κ2 = 0, x11(z = 1) = e11(z = 1), x11(z′ = 3) = e11(z = 1).

Despite the fact that at κ1 = 0 we found 3 solutions to Equation (1) above, it turns out that this
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Figure 1: Equilibrium consumption and storage

is the only equilibrium for the two-period economy. To prove this formally, one can use Gröbner

bases to compute the solutions to the system

e11(z = 1)− κ1 − x11 = 0 together with Equation (1)

and observe that there is only one real solution (again see Kubler and Schmedders (2010a) for

details.) The economic reason for the uniqueness is simple — if agent 1 expected an equilibrium

with low consumption he would start saving; in fact he would save so much that there would be

a unique spot equilibrium. At this point, however, consumption would be too high, so the only

possible equilibrium is that agent 1 does not save precisely because he expects that the equilibrium

that must occur will have high consumption for him. It is useful to write out the entire second

period allocation for this equilibrium. We have

x11 =
1

15
(5 + 2

√
5), x12 =

2

15
(5 +

√
5), x21 =

2

15
(5−

√
5), x22 =

1

15
(5− 2

√
5) (2)

A symmetric argument holds true for agent 2: if the initial shock is 2, the only equilibrium is

that he stores zero resulting in the equilibrium consumption allocation

x11 =
1

15
(5− 2

√
5), x12 =

2

15
(5−

√
5), x21 =

2

15
(5 +

√
5), x22 =

1

15
(5 + 2

√
5). (3)

To summarize, we have shown that each of the two sub-economies has a unique equilibrium. If

the initial shock is 1, agent 1’s consumption in the second period is high, if the initial shock is 2,

his consumption is low.

There is no recursive equilibrium since prices and consumption at shock z′ = 3 depend on the

shock in the previous period. The “capital stock” among the agents alive at the beginning of the
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period plays no role and is in fact zero in equilibrium, prices rather being determined by the previous

shock. If the economy is in shock 1, agent 1 is rich and he decides not to save for next period’s

shock 3 only if he expects equilibrium prices of good 2 to be high, i.e., he expects his consumption

to be high. If he were to expect the equilibrium that is bad for him (i.e., with low consumption) he

would start saving so much that the “bad” equilibrium disappears. Thus the only possible outcome

in shock 3 is the good equilibrium. If, on the other hand, the economy is in shock 2, agent 2 is rich

and the same argument applies. In shock 3 each agent’s consumption depends on his endowments

in the previous period, not because of savings but because of expectations.

4 Existence

In this section we prove the existence of a recursive equilibrium. Section 4.1 shows how to char-

acterize recursive equilibrium via marginal utility functions. Section 4.2 proves existence making

direct assumptions on the transition probability for the recursive state. Assumptions on economic

fundamentals that guarantee these conditions are provided in Section 4.3.

4.1 Characterizing recursive equilibria

We now characterize recursive equilibrium via a function that maps the recursive state into marginal

utilities of all agents. We show that such a function describes a recursive equilibrium if it is a fixed

point of an operator that captures the period-to-period equilibrium conditions.

We make the following assumption on preferences and endowments:

Assumption 1

1. Endowments are bounded above and below: There are ω, ω ∈ R+ with ω > 0 such that for all

shocks z, all goods l, and all agents h

ω < ωhl(z) < ω.

2. The agents’ discount factors satisfy δ ∈ (0, 1).

3. The Bernoulli functions uh : Z × RL++ → R are assumed to be measurable in z and strictly

increasing, strictly concave, and C2 in x. They satisfy a strong Inada condition: for each z ∈ Z

and all x ∈ RL+ \ RL++ along any sequence xn → x, uh(z, xn) → −∞. Moreover, utility is

bounded above in the sense that there exists a ū such that for all h ∈ H, uh(z, x) ≤ ū for all

z ∈ Z, x ∈ RL++.

The assumption that all commodities enter an agent’s utility function is made for convenience and

can be relaxed. Similarly, the assumption that individual endowments are strictly positive in all
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commodities is very strong, but can be replaced by an alternative assumption. We discuss these

assumptions in Section 5.2.

As in Duffie et al. (1994), Assumption 1 implies that there is a c > 0 such that, independently

of prices, an agent will never choose consumption that is below c in any component, i.e. xl(st) ≥ c

for all commodities l whenever (x(st)) is an optimal consumption process for any agent. The reason

is that an agent can always consume his endowments (he cannot sell them on financial markets in

advance), and we therefore must have, for any shock z and for any x that is sufficiently small in

one component,

uh(z, x) +
δu

1− δ
< uh(ωh(z)) + Ez

[ ∞∑
t=1

δtuh(ωh(zt))

]
,

where ū is the upper bound on Bernoulli utility.

We therefore define

C = {x ∈ RL+ : xl ≥ c for all l = 1, ..., L}.

The lower bound on consumption implies an upper bound on marginal utility, which we define by

m̄ = max
h∈H

sup
x∈C,z∈Z

‖Dxuh(z, x)‖∞.

We make the following assumptions on production possibilities:

Assumption 2 For each shock z the production set Y(z) ⊂ RL is assumed to be closed, convex-

valued, to contain RL−, exhibit constant returns to scale, i.e., y ∈ Y(z)⇒ λy ∈ Y(z) for all λ ≥ 0, and

to satisfy Y(z) ∩ −Y(z) = {0}. In addition, production is bounded above: There is a κ̄ ∈ R+ so that

for all κ ∈ KU , h ∈ H, z ∈ Z, l ∈ LK , and for all αh ∈ RJ+∑
h∈H

(
A0
h(z)αh − κh − eh(z)

)
∈ Y(z)⇒ sup

z′

∑
h∈H

(fhl(z
′) +

∑
j∈J

a1
hjl(z

′)αhj) ≤ max[κ̄,
∑
h∈H

κhl].

While the first part of Assumption 2 is standard, the second part is a strong assumption on the

interplay of intra- and inter-period production. For each capital good, the economy can never grow

above κ̄ when starting below that limit. The assumption is made for convenience and ensures

boundedness of consumption. Stronger specific assumptions on the correspondence Y might lead

to a relaxation of the second part of the assumption.

We define

K = {κ ∈ KU :
∑
h∈H

κhl ≤ κ̄, κhl ≥ ω for all l ∈ LK and all h ∈ H} (4)

and take the state space to be S = Z×K with Borel σ-algebra S.

Define Ξ to be the set of storage decisions across agents, α, that ensure that next period’s

endogenous state lies in K, i.e.,

Ξ = {α ∈ RHJ+ :
(
fh(z′) +A1

h(z′)αh
)
h∈H
∈ K for all z′ ∈ Z}.
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Assumptions 1 and 2 allow us to give the following simple sufficient condition for the existence

of a recursive equilibrium.

Lemma 1 A recursive equilibrium exists if there are bounded functions M : S → RHL+ such that for

each s = (z, κ) ∈ S there exist prices p̄ ∈ ∆L−1, production plans ȳ ∈ Y(z), and optimal actions

(x̄h, ᾱh) for each agent h ∈ H with Dxuh(z, x̄h) = Mh(s) and ᾱ ∈ Ξ such that

(x̄h, ᾱh) ∈ arg max
x∈RL+,α∈RJ+

uh(z, x) + δEs
[
Mh(s′)A1

h(z′)α
]
s.t.

−p̄ · (x− κh − eh(z) +A0
h(z)α) ≥ 0

where

s′ =
(
z′,
(
A1
h(z′)ᾱh + fh(z′)

)
h∈H

)
,

production plans are optimal, i.e.,

ȳ ∈ arg max
y∈Y(z)

p̄ · y,

and markets clear, i.e., ∑
h∈H

(x̄h +A0
h(z)ᾱh − eh(z)− κh) = ȳ.

This alternative characterization of a recursive equilibrium in terms ofM -functions is useful because

in order to show the existence it suffices to provide a fixed point argument in the space of these

marginal utility functions. This is at the heart of our existence proof below. To prove the lemma

note that if the conditions in the lemma are satisfied then there exist ((x̄ht, ᾱht)h∈H, p̄t) such that

markets clear, budget equations hold, and such that the following first order conditions hold for

each agent h ∈ H:

Dxuh(zt, x̄(zt))− λh(zt)p̄(zt) = 0 (5)

ᾱ(zt) ⊥
(
−λh(zt)p̄(zt)A0

h(zt) + Ezt
[
Dxuh(x̄h(zt+1))A1

h(zt+1)
])
≥ 0. (6)

To prove Lemma 1, it suffices to show that these conditions are sufficient for (xht, αht) to be a

solution to the agents’ infinite horizon problem. Although it is a standard argument we give it for

completeness. Following Duffie et al. (1994), assume that for any agent h, given prices, a budget

feasible policy (x̄ht, ᾱht) satisfies (5) and (6). Suppose there is another budget feasible policy

(xht, αht). Since the value of consumption in 0 only differs by the value of production plans, strict

concavity of uh(z, .) together with the gradient inequality implies that

uh(z0, x̄h(z0)) ≥ uh(z0, xh(z0)) +Dxuh(z0, x̄h(z0))A0
h(z0)(αh(z0)− ᾱh(z0)). (7)

We show by induction, that for any T, we have

E0

[ ∞∑
t=0

δtuh(zt, x̄h(zt))

]
≥ E0

[∑T
t=0 δ

tuh(zt, xh(zt))
]

+ E0

[∑∞
t=T+1 δ

tuh(zt, x̄h(zt))
]

+ (8)

δTE0

[
Dxuh(zT , x̄h(zT ))A0

h(zT )(αh(zT )− ᾱh(zT ))
]
.
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We have already shown, in (7), that (8) holds for T = 0. To obtain the induction step for ᾱj > 0, we

use the first order conditions to substitute δEzt−1

[
Dxuh(zt, x̄h(zt))a1

hj(zt)(αhj(z
t−1)− ᾱhj(zt−1))

]
for Dxuh(x̄(zt−1))a0

hj(zt−1)(αhj(z
t−1) − ᾱhj(zt−1)), and then apply the budget constraint and the

law of iterated expectations. When ᾱj = 0, it is clear that αj ≥ ᾱj and since

δEzt−1

[
Dxuh(zt, x̄h(zt))ahj(zt−1, zt)

]
≥ Dxu(x̄(zt−1))ahj(zt−1, 0),

the induction step follows.

The second term on the right hand side of (8) will converge to zero as T →∞ since u is bounded

above and consumption is bounded below (as functionsM are bounded above). The third term will

converge to zero because consumption is bounded below and production is bounded by Assumption

2.

4.2 A first existence result

Using the characterization of recursive equilibrium given in Lemma 1, we now prove the existence of

a recursive equilibrium by making direct assumptions on the transition probability for the recursive

state. Assuming that the probability distribution of the next period’s state varies continuously with

current actions, the operator defined by the equilibrium conditions is a non-empty correspondence

on the space of marginal utility functions. By the Fan–Glicksberg fixed-point theorem there exists

a fixed point of the convex hull of this correspondence. Making an additional assumption that is

inspired by He and Sun (2013), we can show that this implies the existence of a recursive equilibrium.

First note that the exogenous transition probability P implies, given α ∈ Ξ, a transition prob-

ability Q(.|s, α) on S: Given α across all agents, and next period’s shock z′, the next period’s

endogenous state is given by (
fh(z′) +A1

h(z′)αh
)
h∈H

.

To prove the existence of a recursive equilibrium we first make additional assumptions directly on

Q. To state them we need the following definition from He and Sun (2013):

Given a measure space (S,S) with an atomless probability measure λ and a sub-σ-algebra G, for

any non-negligible set B ∈ S, let GB and SB be defined as {B∩B′ : B′ ∈ G} and {B∩B′ : B′ ∈ S}.

A set B ∈ S is said to be a G-atom if λ(B) > 0 and given any B0 ∈ SB, there exists a B1 ∈ GB

such that λ(B04B1) = 0.

The following assumptions are from He and Sun (2013)3 — in Section 4.3 below we give as-

sumptions on fundamentals that imply Assumption 3 and therefore ensure existence.
3Assumptions 3.1. and 3.2. correspond to the assumptions made by He and Sun (2013) on the transition probability

representing the law of motion of the states. Assumption 3.3. corresponds to their crucial sufficient condition for

existence, called the “coarser transition kernel”.
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Assumption 3

1. For any sequence αn ∈ Ξ with αn → α0 ∈ Ξ

sup
B∈S
|Q(B|s, αn)−Q(B|s, α0)| → 0.

2. For all (s, α), Q(.|s, α) is absolutely continuous with respect to some fixed probability measure on

(S,S), λ, with Radon–Nikodym derivative q(.|s, α).

3. There is a sub σ-algebra G of S such that S has no G atom and q(.|s, α) and A1(.) are G-measurable

for all s = (z, κ) and all α ∈ Ξ.

The first existence result of this paper is as follows:

Theorem 1 Under Assumptions 1–3 a recursive equilibrium exists.

To prove the result let M be the set of all measurable functions M : S → RHL+ that are λ-

essentially bounded above by m̄ and below by 0. They lie in the space Lm∞(S,S, λ) of essentially

bounded and measurable (equivalence classes of) functions from S to Rm with m = HL. Fol-

lowing Nowak and Raghavan (1992) and Duggan (2012), we endow Lm∞ with the weak* topology

σ(Lm∞, L
m
1 ). The set M is then a non-empty, convex, and compact subset of a locally convex, Haus-

dorff topological vector space. Moreover, since S is a separable metric space, Lm1 is separable, and

consequently M is metrizable in the weak* topology. We can therefore work with sequences rather

than nets of functions in M.

Given any M̄ = (M̄1, . . . , M̄H) ∈M, we define

EM̄h (s, x, α, α∗) = uh(z, x) + δEs
[
M̄h(s′) ·A1

h(z′)α
]

(9)

with

s′ =
(
z′,
(
fh(z′) +A1

h(z′)α∗h
)
h∈H

)
.

In the definition of EM̄h , the α ∈ R+ stands for the choice of agent h, while the vector α∗ ∈ RH+
is taken by individuals as given, in particular its influence on the state-transition. Lemma 2 states

properties of the function EM̄h that we need in Lemma 3. It is the direct analogue of Lemma 1 in

Duggan (2012).

Lemma 2 Given any M̄ ∈ M, the functions EM̄h (., x, α, α∗) are measurable in s. For given s the

functions are jointly continuous in x, α, α∗ and M̄ .

The next lemma is the key result in this subsection and it guarantees the existence of a policy that

satisfies the equilibrium conditions.4

4In our setup this result plays the same role as the result that there always exists a mixed strategy Nash equilibrium

for the stage game in the stochastic game setup.
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Lemma 3 For each M̄ ∈ M and s = (z, κ) ∈ S there exists a x̄ ∈ RHL+ , ᾱ ∈ Ξ, ȳ ∈ Y(z) and

p̄ ∈ ∆L−1 such that ∑
h∈H

(x̄h − eh(z)− κh +A0
h(z)ᾱh) = ȳ, (10)

for each agent h

(x̄h, ᾱh) ∈ arg max
x∈C,α∈RJ+

EM̄h (s, x, α, ᾱ) s.t. (11)

−p̄ · (x− eh(z)− κh +A0
h(z)α) ≥ 0,

and

ȳ ∈ arg max
y∈Y(z)

p̄ · y. (12)

Proof.

Given s ∈ S, define compact sets

A = {α ∈ RJ+ : fhl(z
′) +

∑
j∈J

a1
hlj(z

′)αj ≤ κ̄ for all h ∈ H, l ∈ L and all z′ ∈ Z}, (13)

C̃(s) = {x ∈ C :
1

2
x−

∑
h∈H

(eh(z) + κh) ∈ Y(z)},

and

Ỹ(s) = {y ∈ Y(z) : y +
∑
h∈H

(eh(z) + κh) ≥ 0}.

To ensure compactness of A it is without loss of generality to assume that for each agent h there is

a commodity l and a shock z′ such that
∑

j∈J a
1
hlj(z

′) > 0.

Define for each agent h

Φh : ∆L−1 ×Ξ ⇒ C̃(s)×A

by

Φh(p, α∗) = arg max
x∈C̃(s),α∈A

EM̄h (s, x, α, α∗) s.t.

−p · (x− eh(z)− κh +A0
h(z)α) ≥ 0

By a standard argument, the correspondence Φ is convex-valued, non-empty valued, and upper-

hemicontinuous. Define the producer’s best response ΦH+1 : ∆L−1 ⇒ Ỹ(s) by

ΦH+1(p) = arg max
y∈Ỹ(s)

p · y

and define a price player’s best response,

Φ0 : (C̃(s)×A)H × Ỹ(s) ⇒ ∆L−1

by

Φ0((xh, αh)h∈H, y) = arg max
p∈∆L−1

p ·

(
y −

∑
h∈H

(xh − eh(z)− κh +A0
h(z)αh)

)
.
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It is easy to see that this correspondence is also upper-hemicontinuous, non-empty, and convex

valued. Finally, define

ΦH+2 : AH ⇒ Ξ

by

ΦH+2(α∗) = arg min
α∈Ξ
‖α− α∗‖2.

By Kakutani’s fixed point theorem there exists a fixed point to the correspondence XH+2
h=0 Φh, which

we denote by (x̄, ᾱ, ȳ, ᾱ∗, p̄). By a standard argument, we must have∑
h∈H

(x̄h − eh(z)− κh +A0
h(z)ᾱh) = ȳ.

Therefore consumption solves the agent’s problem for all x ∈ C — the upper bound imposed by

requiring x ∈ C̃(s) will never bind. Production maximizes profits among all y ∈ Y(z) since the

upper bound can also never bind. In addition, Assumption 2 implies that the upper bound on

each αh cannot be binding — if it were some agents would consume below c in some commodities.

Therefore each agent maximizes utility subject to x ∈ C, α ∈ RJ+. �

We can define correspondences s⇒ NM̄ (s) to contain all (xh)h∈H such that there exist (αh)h∈H ∈

Ξ, p ∈ ∆L−1 and y ∈ Y(z) that satisfy Equations (10), (11), and (12) and s ⇒ PM̄ (s) by

PM̄ (s) = {(Dxuh(z, xh))h∈H : x ∈ NM̄ (s)}. We define co(PM̄ ) by requiring co(PM̄ )(s) to be the

convex hull of PM̄ (s). Let R(M̄) be the set of (equivalence classes of) measurable selections of PM̄ ,

and co(R(M̄)) the set of measurable selections of co(PM̄ ). In the next lemma we consider the cor-

respondence co(R) : M ⇒ M defined by co(R)(M) = co(R(M)) and establish that it has a closed

graph and non-empty, convex values. The lemma is almost directly from Nowak and Raghavan

(1992) — we include a detailed proof for completeness.

Lemma 4 For each M̄ ∈M the correspondence PM̄ (s) is measurable and compact valued and the cor-

respondence co(R) : M ⇒ M is non-empty, convex, weak* compact valued, and upper-hemicontinuous.

Proof.

For given s ∈ S the set of allocations x ∈ RHL+ , α ∈ Ξ, y ∈ Y (z), and prices p ∈ ∆L−1 satisfying

(10), (11), and (12) can be described as solutions to a system of equations and inequalities. It is

easy to notice that the correspondence mapping s to equilibrium allocations and prices, s⇒ ÑM̄ (s),

is non-empty and compact-valued. Simplifying, the correspondence can be written in the following

way:

ÑM̄ (s) ={x ∈ X : f(s, x) = 0, g(s, x) ≥ 0} ∩ X̃(s)

={x ∈ X : g(s, x) = 0} ∩ {x ∈ X : g(s, x) ≥ 0} ∩ X̃(s)
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where the functions f and g are Caratheodory, and X̃(s) is lower measurable and compact valued.

Moreover, since production is bounded above and endowments are bounded (see Assumptions 1

and 2), we can choose X to be compact. By Corollary 18.8 in Aliprantis and Border (2006) the

correspondence s ⇒ {x ∈ X : f(s, x) = 0} is measurable. The map s ⇒ {x ∈ X : g(s, x) ≥ 0}

is closed-valued and also measurable by Lemma 18.7, Corollary 18.8, and Lemma 18.4 (1) therein:

{x ∈ X : g(s, x) ≥ 0} = {x ∈ X : g(s, x) = 0} ∪ {x ∈ X : g(s, x) < 0}. By Lemma 18.4 (3) we get

the measurability of the correspondence s ⇒ ÑM̄ (s), and hence also of s ⇒ PM̄ (s) by continuity

of the functions Dxuh.

By the selection theorem of Kuratowski and Ryll-Nardzewski, PM̄ has a measurable selector (see

Theorem 18.13 in Aliprantis and Border(2006)). Consequently, the map M ⇒ co(R)(M) is non-

empty valued, and obviously it is also convex-valued. Take Mn →M as n→∞, Mn,M ∈M and

vn → v such that vn ∈ co(R)(Mn) for each n. We assume that both sequences converge in the

weak* topology σ(Lm∞, L
m
1 ) on the space M. We need to show v ∈ co(R)(M). Notice that for given

s, M ⇒ PM (s) has a closed graph and that Theorem 17.35 (2) in Aliprantis and Border (2006)

implies the correspondence M ⇒ co(PM (s)) has a closed graph as well. Moreover, there exists a

sequence v̂n of finite convex combinations of {vp : p = 1, 2, ...} such that v̂n converges to v almost

surely, i.e., v̂n(s)→ v(s) for every s ∈ S \ S1 where the set S1 is of measure zero. Given the closed

graph of M ⇒ co(PM (s)) it is now easy to show that v(s) ∈ co(Pε
M (s)) for any ε-neighborhood of

co(PM (s)), ε > 0, and any s ∈ S − S1. This proves that M ⇒ co(R)(M) is upper-hemicontinuous.

Similarly it can be shown that M ⇒ co(R)(M) is closed-valued and thus by compactness of M,

co(R) is weak* compact valued. �

To complete the proof of the existence of a recursive equilibrium, i.e., the proof of Theorem 1,

we apply the argument from He and Sun (2013).

Given a measure space (S,S) with an atomless probability measure λ and a sub-σ-algebra G,

and an integrably bounded and closed valued correspondence,

F : S ⇒ Rm

define co(F ) pointwise by requiring co(F )(s) to be the convex hull of F (s) and

IS,GF = {E [f |G] : f is an S-measurable selection of F}.

Dynkin and Evstigenev (1976) prove the following result:

Lemma 5 If S has no G-atom, then IS,GF = IS,Gco(F ).

Lemma 4 and the Fan–Glicksberg fixed point theorem imply that there exists a M̂ ∈ M such

that M̂ ∈ co(R)(M̂). Assumption 3 and Lemma 5 imply that there is a sub-σ-algebra G of S such

that there is a M∗ ∈ R(M̂) such that E [M∗|G] = E
[
M̂ |G

]
. Therefore we must have for each agent

20



h and all (s, α) that∫
S
M∗h(s′)A1

h(z′)dQ(s′|s, α) =

∫
S
M∗h(s′)A1

h(z′)q(s′|s, α)dλ(s′) =

∫
S
E
[
M∗hA

1
h(z′)qs,α|G

]
dλ

=

∫
S
E [M∗h |G]A1

h(z′)qs,αdλ =

∫
S
E
[
M̂h|G

]
A1
h(z′)qs,αdλ

=

∫
S
M̂h(s′)A1

h(z′)dQ(s′|s, α).

It is then clear that for all s, PM̂ (s) = PM∗(s) and M∗ must be a S-measurable selection

of PM∗(s). We can now construct a “constrained” recursive equilibrium from M∗, which is a

competitive equilibrium where agents are constrained to choose consumption in C. As we argued

above, it will never be optimal to choose consumption below c — by convexity we obtain the same

equilibrium if agents are choosing consumption in RL+ and hence have proven the existence of a

recursive equilibrium.

4.3 A second existence theorem

So far, we have shown the existence of a recursive equilibrium under Assumptions 1–3. However,

Assumption 3 is not on fundamentals, but on the transition probability Q for exogenous and en-

dogenous states. We now provide assumptions on fundamentals that guarantee Assumption 3 and

thus the existence of a recursive equilibrium.

In particular, we now assume that the space of exogenous shocks can be decomposed into three

complete, separable metric spaces, Z = Z0 ×Z1 ×Z2 with Borel σ-algebra Z = Z0 ⊗Z1 ⊗Z2, and

the shock is given by z = (z0, z1, z2). Moreover, for each i = 1, 2, 3 there is a measure µzi on Zi and

there are conditional densities rz0(z1|z, z′1), rz1(z′1|z), and rz2(z′2|z, z′0, z′1) such that for any B ∈ Z

we have

P(B|z) =

∫
Z1

∫
Z0

∫
Z2

1B(z′)rz2(z′2|z, z′0, z′1)rz0(z′0|z, z′1)rz1(z′1|z)dµz2(z′2)dµz0(z′0)dµz1(z′1).

To ensure continuity of the state-transition in Assumption 3.1, we assume that the shock z0 is

purely transitory, has a continuous density, and only affects agents’ f -endowments. Moreover, given

z2 and z3, there is a diffeomorphism from Z0 to a subset of K. More precisely, we make the following

assumptions:

Assumption 4

1. z0 is purely transitory, i.e., for all z0, ẑ0 ∈ Z0 and all (z1, z2) ∈ Z1 × Z2,

P(.|z0, z1, z2) = P(.|ẑ0, z1, z2).

2. Z0 is a Euclidean space, µz0 is Lebesgue, and the density rz0(.|z, z′1) is continuous for (almost) all

(z, z′1) and vanishing at the boundary of its support in Z0.
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3. For each agent h, and all (z1, z2) ∈ Z1×Z2, fh(., z1, z2) is a diffeomorphism from Z0 to a subset

of K with a non-empty interior. All other fundamentals are independent of z0, i.e., for all h, we

can write eh(z) = eh(z1, z2), A1
h(z) = A1

h(z1, z2), uh(z, .) = uh((z1, z2), .), Y(z) = Y(z1, z2).

Assumption 4.3. can be slightly relaxed in that we can allow A1
h(z) to depend on z0 if we assume

that for all α ≥ 0, fh(., z′1, z
′
2) +A1

h(., z′1, z
′
2)α is a diffeomorphism from Z0 to a subset of RHL. For

simplicity we take A1
h(.) to be independent of z0.

To ensure that the z2 shock ensures convexity in the conditional expectation operator we make

the following assumption:

Assumption 5 Conditionally on next period’s z′1 the shock z′2 is independent of both z′0 and the current

shock z, i.e., we can write rz2(z′2|z, z′0, z′1) = rz2(z′2|z′1). The measure µz2 is an atomless probability

measure on Z2 and, for each agent h, A1
h(z) and fh(z) do not depend on z2.

This construction was first used in Duggan (2012). It is clear that this is a strict generalization of

a “simple sunspot”. The shock z2 can affect fundamentals (eh)h∈H and Y in arbitrary ways.

The following is the main result of the paper.

Theorem 2 Under Assumptions 1, 2, 4, and 5 there exists a recursive equilibrium.

To prove the theorem we show that Assumptions 4 and 5 imply Assumption 3 if state-transitions

and the state space are reformulated appropriately. It is easy to notice that since the shock z0 is

purely transitory and does not affect any fundamentals except (fh), the realization of this shock

is reflected in the value of the endogenous state κ and except for the value of κ it is irrelevant for

current endogenous variables and the future evolution of the system. Therefore, departing slightly

from our previous notation, we take S = Z1 × Z2 ×K with Borel σ-algebra S. Furthermore we

write S = Z1 ×K for the space that includes only the z1- shock component and the holdings in

capital goods; we denote the Borel σ-algebra of S by S. For each B ∈ S take

Q(B|s, α) = P
(
{z′ ∈ Z :

(
(z′1, z

′
2), (fh(z′) +A1

h(z′)αh)h∈H

)
∈ B}|z

)
.

We have the following lemma:

Lemma 6 Under Assumpion 4 , Q(.|s, α) satisfies Assumption 3.1.

Proof. By Assumption 5, it suffices to show norm-continuity for the marginal transition function

on S, i.e., that for any sequence αn ∈ Ξ with αn → α0 ∈ Ξ

sup
B∈S
|Qs(B|s, αn)−Qs(B|s, α0)| → 0.

To show this, we first define for given (z, z′1) ∈ Z × Z1 and α ∈ Ξ a diffeomorphism g(z,z′1,α) that

maps Z0 into its range K̄(z,z′1,α) = g(z,z′1,α)(Z0) ⊆ K with g(z,z′1,α)(z0) = (fh(z′0, z
′
1) +A1

h(z′1)αh)h∈H
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and

rκ(κ′|z, z′1, α) :=

rz0(g−1
(z,z′1,α)

(κ′)|z, z′1) ·
∣∣∣J(g−1

(z,z′1,α)
(κ′))

∣∣∣ if ∃ z0 : g(z,z′1,α)(z0) = κ′

0 otherwise,

where |J(·)| denotes the determinant of the Jacobian.

Denoting by µκ the Lebesgue measure on K, for B ∈ S and αn ∈ Ξ with αn → α0 ∈ Ξ, we have

Qs(B|s, αn) =

∫
Z1

∫
Z0

1B

[
z′1, (fh(z′) +A1

h(z′)αnh)h∈H

]
rz0(z′0|z, z′1)rz1(z′1|z)dµz0(z′0)dµz1(z′1)

=

∫
Z1

∫
Z0

1B

[
z′1, g(z,z′1,α

n)(z
′
0)
]
rz0(z′0|z, z′1)rz1(z′1|z)dµz0(z′0)dµz1(z′1)

=

∫
Z1

∫
K̄(z,z′1,α

n)

1B

[
z′1, κ

′] rκ(κ′|z, z′1, αn)rz1(z′1|z)dµκ(κ′)dµz1(z′1)

=

∫
Z1

∫
K
1B

[
z′1, κ

′,
]
rκ(κ′|z, z′1, αn)rz1(z′1|z)dµκ(κ′)dµz1(z′1)

=

∫
B
rκ(κ′|z, z′1, αn)rz1(z′1|z)dµκ(κ′)dµz1(z′1),

where we used Fubini’s theorem for the first equality and the change of variables theorem for the

third equality. By Scheffe’s lemma and the convergence rκ(κ′|z, z′1, αn) → rκ(κ′|z, z′1, α0), we get

norm-continuity of α→ Qs(·|s, α). �

In the above proof, we have shown that for all (s, α) the marginal distribution of Q(.|s, α) on S is

absolutely continuous with respect to the product measure η = µκ×µz1 and has a Radon–Nikodym

derivative qs(z′1, κ′|s, α) = rκ(κ′|z, z′1, α)rz1(z′1|z).

The following result is directly from He and Sun (2013), Proposition 4.

Lemma 7 Defining the measure λ(.) by

λ(B) =

∫
S

∫
Z2

1B[s, z2]rz2(z2|z1)dµz2(z2)dη(s)

and taking G = S ⊗ {∅,Z2}, Assumption 5 implies that Q(.|s, α) satisfies Assumptions 3.2 and 3.3.

The proof of Theorem 2 now follows directly from the argument above, i.e., the result follows

directly from Theorem 1.

4.4 The examples revisited

Assumption 5 and especially Assumption 4 are strong assumptions regarding the underlying econ-

omy. Assumption 4 guarantees that agents’ current choices lead to a non-degenerate distribution

over the endogenous state next period, conditional on the exogenous shock. This is in contrast

with standard models where current choices often pin down next period’s endogenous state deter-

ministically. In stochastic games it is well known that the assumption of a so-called deterministic

transition creates serious problems for the existence of Markov equilibria (see Duggan (2012) for
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an explanation and in particular Levy (2013) for an example of non-existence in a model with a

deterministic transition). We want to argue that our examples from Section 3 above show that the

same is true in general equilibrium models and that it is not possible to expect a general existence

result without some form of continuity in the state-transition.

The situation is slightly complicated by the fact that our stylized examples of non-existence

violate Assumption 1, Assumption 4, and Assumption 5 above. However, it is easy to see that

Assumption 1 alone cannot restore existence in the examples. In particular, Example 2 goes through

if endowments are in the interior of the consumption set; the specific endowments were simply chosen

to make the examples as simple as possible. It is much more difficult to determine whether both

Assumptions 4 and 5 are necessary for obtaining general existence.

In particular Assumption 5 alone guarantees existence in Example 2 and in any simple pertur-

bation of Example 2. To see this, we modify the example slightly and assume that the shock has a

continuous component, Z = {1, 2, 3} × [0, 1]. Endowments, technology, and Bernoulli utility in the

discrete shocks 1 and 2 do not depend on ζ ∈ [0, 1], the continuous component of the shock. The

same is true for Bernoulli utilities in the discrete shock 3, however endowments are now as follows

e1(z = (3, ζ)) = (0, 1 + ζζ̄), e2(z = (3, ζ)) = (1 + ζζ̄, 0) for some ζ̄ ≥ 0.

To simplify the analysis we also assume that ζ affects inter-period production — this is not consistent

with Assumption 5, but this plays no role in our example. We assume that a1
1(3, ζ) = (1 + ζζ̄, 0)

and a2
1(3, ζ) = (0, 1 + ζζ̄).

Note that for ζ̄ = 0 the additional exogenous shock is a pure sunspot not affecting economic

fundamentals but possibly playing the role of a coordination device since in equilibrium agents can

base their decisions on the realization of this shock. We show that both for ζ̄ = 0 and for ζ̄ > 0 the

additional shock restores existence.

Clearly there is still a sequential competitive equilibrium where spot-prices depend on the re-

alization of the shock in the previous period and agents never save. By homotheticity of utilities

each shock (z = 3, ζ) just scales the economy: given storage, equilibrium prices are all identical and

consumption just shifts up. However, if we allow spot prices to change with the realization of the

shock, as is the case in the definition of recursive equilibrium, it is easy to obtain the existence of a

recursive equilibrium. The construction is as follows:

Without loss of generality we focus on the case where shock 1 occured in the previous period and

agent 2 does not save, so κ1 ≥ 0, κ2 = 0. Denote by x11 = 1
15(5− 2

√
5) the smallest real solution of

Equation (1) at κ1 = 0 and by x11 ∼ 0.6609 the largest real solution of that equation at κ1 = 0.01.

For each κ1 ∈ [0, 0.01] define η(κ1) as a unique solution in [0, 1] of the following equation

η(κ1)
1

x3
L

+ (1− η(κ1))
1

x3
H

=
1

x11
3

+
κ1

0.01

(
1

x11
3 −

1

x11
3

)
,
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where xL is the smallest and xH is the largest solution to Equation (1) at κ1. The policy functions

in a recursive equilibrium are then as follows: given κ1 if 0 ≤ ζ ≤ η(κ1) agent 1 consumes (1+ζζ̄)xL

and if η(κ1) < ζ ≤ 1 agent 1 consumes (1 + ζζ̄)xH .

It can easily be verified that expected marginal utility is a continuous and decreasing function

in κ1 and that there always exists a solution for the optimal savings in shock 1. Since shock 2 is

completely symmetric there exists a recursive equilibrium.

Since in many applied models Assumption 5 is likely to be much weaker than Assumption 4, the

fact that this assumption alone guarantees existence in our Example 2 is an important observation.

However, note that the assumption does not suffice for existence in Example 1 — even a pure

sunspot cannot help agents to coordinate if κ1 = κ2 = 0 and recursive equilibrium does not exit.

The reason is simple — in Example 2 the equilibrium correspondence in shock 3 (equilibrium prices

and allocations as a map from (κ1, κ2)) is not convex valued, thus introducing a continuous shock

allows us to convexify the correspondence and find a continuous selection. In Example 1 this

correspondence is convex valued to begin with. But there is no continuous selection and hence a

continuous shock cannot restore existence.

Assumption 5 cannot restore existence in cases where the convex hull of the equilibrium corre-

spondence does not admit a continuous selection. In the class of examples considered in Section

3 this is only possible for non-generic economies (since it requires indeterminacy of equilibria in a

static economy) but there is no reason to believe that in a full-fledged dynamic economy this is also

the case.

Assumption 4, on the other hand, does guarantee existence in both Examples 1 and 2. It

guarantees that Lemma 2 holds and this is sufficient to establish existence in simple examples where

the infinite horizon economy decomposes into two-period economies. Existence in the two examples

fails precisely because EM̄ (s, x, α, α∗) is never continuous in α∗ if M̄ is not continuous itself. But it

is easy to see that in both Example 1 and Example 2 the map from (κ1, κ2) to equilibrium marginal

utilities in shock 3 does not have a continuous selection. Given any measurable selection, a version of

Assumption 4 guarantees continuity of EM̄ and the existence of a recursive equilibrium. Concretely,

it suffices to assume in both examples that conditional on shock 3, the joint distribution of agent 1’s

endowments in commodity 1 and agent 2’s endowments in commodity 2 is uniform on [0, ε]2. While

this does not exactly satisfy Assumption 4 (e.g., the density of the shock to agents’ f -endowments

does not vanish at the boundary), one can verify that it guarantees continuity of EM̄h (s, x, α, α∗) in

α∗ for any (measurable) selection M̄ of the equilibrium correspondence in shock 3 (i.e., the map for

κ to consumptions and marginal utilities).

To summarize, the failure of existence in the examples in Section 3 stems from the fact that

these examples violate Assumption 4. While in simple examples existence might be restored without

assuming continuity of the transition, the examples demonstrate that in general one cannot expect
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existence without a form of Assumption 4. The examples do not show why Assumption 5 is necessary

for existence but it is clear that our proof critically relies on convexity, which cannot be obtained

without Assumption 5. Whether or not existence of Markov equilibria can be shown with a different

approach and without Assumption 5 is subject to further research.

5 Extensions

So far, we have considered the case without trade in one-period financial assets. In this section, we

describe a simple way of incorporating financial markets into our framework. We also discuss an

alternative formulation of Assumption 1 that might be more suitable for some applications.

5.1 Financial markets

We now assume that agents can trade in financial markets, in addition to undertaking intertemporal

storage. There are D one-period securities, d = 1, ..., D, in zero net supply, each being characterized

by its payoff bd : Z→ RL+ — a bounded and measurable function of the shock. At each zt securities

are traded at prices ρ(zt); we denote an agent’s portfolio by θh(zt) ∈ RD.

In order to establish the existence of a recursive equilibrium we need to restrict agents’ portfolio

choices. Let K be defined as in (4) above and A as in (13). Each agent h faces a constraint on trades

in asset markets and storage decisions (α, θ), given by a convex and closed set Θh ⊂ RJ+ × RD,

which satisfies that whenever α ∈ A and (α, θ) ∈ Θh then

A1
h(z′)α+

D∑
d=1

θdbd(z
′) ≥ 0 for all z′ ∈ Z.

Without loss of generality we assume that trade is possible in all financial securities, i.e., for each d

there is an agent h and an α ∈ A so that for some θd < 0, (α, θ) ∈ Θh.

Note that collateral constraints of the form

A1
h(z′)α+

D∑
d=1

min(θd, 0)bd(z
′) ≥ 0 for all z′ ∈ Z,

are one example of constraints that satisfy our assumption, but there could be many others. How-

ever, this is a somewhat nonstandard formulation of a collateral constraint since agents cannot

borrow against the value of their future production — they need to borrow against future produc-

tion directly.

As before the endogenous state-space is given by K. A recursive equilibrium is given by maps

from the state s ∈ S = Z×K to prices of commodities and financial securities as well as consumption,

investment, and portfolio choices across all agents. The analogous result to Lemma 1 above is now

as follows:
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A recursive equilibrium exists if there are functions M : S → RHL+ such that for each s ∈ S

there exist prices (p̄, ρ̄) ∈ ∆D+L−1, a production plan ȳ ∈ Y(z) for each agent h, optimal actions

(x̄h, ᾱh, θ̄h) with Dxuh(x̄h) = Mh(s), and

(x̄h, ᾱh, θ̄h) ∈ arg max
x∈RL+,(α,θ)∈Θh

uh(z, x) + δEs

Mh(s′) ·

∑
j

a1
hj(z

′)αj +
∑
d

bd(z
′)θd

 s.t.

−q̄ · θ − p̄ · (x− κh − eh(z) +A0
h(z)α) ≥ 0,

where

s′ =

z′,(A1
h(z′)ᾱh +

∑
d

θ̄hdbd(z
′) + fh(z′)

)
h∈H

 ,

production plans are optimal, i.e.,

ȳ ∈ arg max
y∈Y(z)

p̄ · y,

and markets clear, i.e., ∑
h∈H

(x̄h +A0
h(z)ᾱh − eh(z)− κh) = ȳ

and ∑
h∈H

θ̄h = 0.

The proof is similar to the proof of Lemma 1.

Assumptions 4.3 and Assumption 5 now need to be extended in that we assume in addition that

for each asset d, bd(z) does not depend on z0 and does not depend on z2, i.e., it is only a function

of z1. The definition of the transition probability Q now reads as

Q(B|s, α, θ) = P

(
{z′ ∈ Z : [z′1, z

′
2, (fh(z′) +A1

h(z′)αh +
∑
d

θhdbd(z
′))h∈H] ∈ B}|z

)
.

With the additional assumptions, it is easy to see that Lemma 6 holds as stated. The proofs of

Lemma 2 and 4 are almost identical as those in the case without financial securities. To prove the

analogue of Lemma 3, one can bound the set of admissible portfolios, and proceed as in the proof

in Section 4.

5.2 Assumptions on endowments and preferences

Standard formulations of both the Lucas asset pricing model and the neoclassical stochastic growth

model violate our Assumption 1. Agents are not endowed with capital or Lucas trees and they do

not derive utility from consuming them.

The first part of the assumption, ωh(z) ∈ RL++, cannot be relaxed easily since we need to require

positive f -endowments in order to guarantee Assumption 3.1. However, while they have to be
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positive, f -endowments can be arbitrarily small. Therefore, this assumption can be interpreted as

a small perturbation to the original model that ensures existence. An alternative is to require that

agents operate all technologies at a positive level, i.e., to require that for some ε > 0 agents face

the additional constraint that αj ≥ ε for all j. With this alternative assumption one then needs to

make similar assumptions on A1
h(z′) as we did on fh(z). In concrete examples (e.g., the neoclassical

growth model with one consumption good) this additional constraint might never be binding (e.g.,

if agents can have zero labor endowments with positive probability, then the Inada condition on

utility will always force them to have positive savings). It is beyond the scope of this paper to work

out precise conditions for existence in these cases where we allow agents’ endowments to lie on the

boundary of RL+.

The second part of the assumption, that uh(z, .) is strictly increasing in all L commodities,

seems much more problematic. However, this assumption can be substantially relaxed once one

makes concrete assumptions on the technology. Assume that utility only depends on a subset

of commodities (for example, the “consumption-goods” that cannot be obtained through storage)

LC = {1, ..., LC}, LC ≤ L, and that it is strictly increasing, strictly concave, C2, satisfies the

strong Inada condition, and is bounded as a function of these commodities. For this case, Lemma 3

needs to be slightly reformulated to ensure that the M -functions are defined even for commodities

that do not enter the utility directly: a recursive equilibrium exists if there are bounded functions

M : S→ RHL+ such that for each s ∈ S there exist prices p̄ ∈ ∆L−1 and optimal actions (x̄h, ᾱh) for

each agent h ∈ H with ᾱ ∈ Ξ such that

Dxuh(z, x̄h) = (Mh1(s), . . . ,MhLC (s)) and (Mh,LC+1(s), ...,Mh,L(s)) = ξh(pLC+1, . . . , pL),

with ξh = ∂uh(z,x̄h)/∂x1
p1

and such that

(x̄h, ᾱh) ∈ arg max
x∈RL+,α∈RJ+

uh(z, x) + δEs
[
Mh(s′)A1

h(z′)α
]
s.t.

−p̄ · (x− κh − eh(z) +A0
h(z)α) ≥ 0

where

s′ =
(
z′,
(
A1
h(z′)ᾱh + fh(z′)

)
h∈H

)
,

production plans are optimal and markets clear.

The existence proof of the previous section can then be applied if assumptions on production

ensure that, in the “two-period problem”, the prices of the goods that do not enter the utility

functions are bounded below by zero and uniformly above by some constant. More precisely, in

Lemma 3 we need to require that there exist p ∈ ∆L−1 such that for each agent h and each l, it

holds that 0 ≤ ξhpl ≤ m̄, with ξh defined as above. For standard models, e.g., the neoclassical

growth model or the Lucas model, this can be seen to hold fairly easily.
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