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Abstract 

This paper provides answers to questions that are prerequisite for policies that address 

agriculture and climate change. We analyze the determinants of global crop production for 

maize, wheat, rice, and soybeans over the period 1961–2013. Using seasonal production data 

and price change and price volatility information at country level, as well as future climate data 

from 32 global circulation models, we project that climate change could reduce global crop 

production by 9% in the 2030s and by 21% in the 2050s. We find strong, positive, and 

statistically significant supply response to changing prices for all four crops. However, output 

price volatility, which signals risk to producers, reduces the supply of these key global 

agricultural staple crops—especially for wheat and maize. We find that climate change has 

significant adverse effects on production of the world’s key staple crops. Especially, weather 

extremes— in terms of shocks in both temperature and precipitation— during crop growing 

months have detrimental impacts on the production of the abovementioned food crops. Weather 

extremes also exacerbate the year-to-year fluctuations of food availability, and thus may further 

increase price volatility with its adverse impacts on production and poor consumers. Combating 

climate change using both mitigation and adaptation technologies is therefore crucial for global 

production and hence food security. 
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1. Introduction 

Food insecurity remains to be a critical challenge to the world’s poor today. According to 

estimates by the Food and Agriculture Organization of the United Nations (FAO) one in nine 

people in the world and about a quarter of those in sub-Saharan Africa are unable to meet their 

dietary energy requirements in 2014/15 (FAO, 2015). The focus of this study is not food 

insecurity and hunger per se. It instead addresses a key component of food security, that is, 

food production. Although a range of factors influence global food security (FAO, 1996), cereal 

production plays a major role  (Parry et al., 2009). In this paper, we seek to empirically evaluate 

the impacts of population growth (demand), changes in climate and weather extremes, and 

price changes on global food production. In particular, we analyze global average effects of 

changes in climate and economic variables on production of the world’s principal staple crops, 

namely wheat, rice, maize, and soybeans. These crops are crucial in combating against global 

food insecurity as they are the major source of food in several parts of the world, comprising 

three-quarters of the world’s food calories (Roberts & Schlenker, 2009). Maize, wheat, and rice, 

respectively, are the three largest cereal crops cultivated around the world. They make up more 

than 75% and 85% of global cereal area and production in 2010, respectively (FAO, 2012). 

About one-third, of both the global area and production, of total oil crops is attributed to 

soybeans. Our analysis pools data from 31 major crop producer countries or regions for the 

1961–2013 period. These study regions account for greater than 90% of global production of 

each of these crops in any year since 1991.  

Tackling against food insecurity and hunger is more difficult in the face of rising global 

population, climate change, and high and volatile food prices (Calzadilla et al., 2014; Hertel et 

al., 2010; Ringler et al., 2013). Increasing global population, which is projected to reach more 

than 9 billion in 2050, entails that more food needs to be produced. The global food system is 

challenged by changing demand, due to demographic and income change, and shifting diet 

preferences in a more urban world. Not just more, but more sustainable production of foods with 

improved nutrition properties is needed.  The other big challenge for food insecurity stems from 

changes in climate and weather extremes. Under a business as usual scenario, climate change 

may increase child stunting by about a quarter in Sub-Saharan Africa and by nearly two-thirds in 

South Asia by 2050 (Lloyd et al., 2011). Climate change has manifested itself with increasing 

global mean surface temperature, higher rates of temperature and precipitation extremes, and 

more frequent droughts in some regions (IPCC, 2007). Further climate change is expected to 

bring warmer temperatures; changes in rainfall patterns; and higher frequency and severity of 
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extreme weather events (Wheeler & von Braun, 2013). Warmer temperature and more frequent 

exposure to high temperature events are the major drivers of climate change induced yield loss 

(Thornton & Cramer, 2012). Precipitation—in the form of heavy or too little rainfall or flooding—

may prevent farmers to cultivate their croplands at the right time or may result in yield loss. 

Thus, the effect of climate change on crop production comes not only through its effect on yield 

but also on acreage allocation. Thirdly, problems of food insecurity and hunger are exacerbated 

by increases in the level and volatility of food prices. In fact, rising demand and climate change 

are the major causes of high and volatile food prices (von Braun & Tadesse, 2012). Food price 

volatility may also increase food insecurity problem since periods of excess food consumption 

cannot be compensated by periods of inadequate consumption (Kalkuhl et al., 2015). On the 

other hand, high agricultural commodity prices are expected to bring about positive supply 

response while price volatility has disincentive effects on producers’ resource allocation and 

investment decisions (OECD, 2008).  

Considering these key drivers of food insecurity simultaneously to estimate their impact on 

global food production is our key contribution. Previous studies that have addressed a similar 

research question study impact on crop production of 1) climate change only, 2) price change 

only, and 3) climate and price changes. The first strand of studies considers crop production to 

be a technical relationship between yield per hectare and climate change variables. These 

studies, which include Schlenker and Roberts (2010) and Müller et al. (2011), fail to account for 

farmers’ potentials to adapt to climatic changes through adjustments in area allocation, input 

use, crop choice, and other agronomic practices. Other studies that investigate crop production 

using economic variables (input and output price changes) without considering climate change, 

such as Arnade and Kelch (2007), Vitale et al. (2009), and Haile et al. (2014), implicitly assume 

that the effect of climate variables can be fully captured by economic variables. Although 

farmers respond to climate changes through adjustments to their price expectations, not all 

climate and weather variations are predictable in advance such that farmers respond 

appropriately. In other words, climate change can affect crop production without altering crop 

prices and price expectations of farmers. The third group of studies—including this study—

investigates the impact of not only climate but also economic variables on crop production. 

These studies, including Weersink et al. (2010), Huang and Khanna (2010), (Hertel et al., 2010), 

and Miao et al. (2016), investigate the effect of climate variables on food supply and account for 

potential acreage and yield adjustments by controlling for responsiveness of farmers to 

expected input and output prices.  
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This study differs from the literature, especially from those in the last group mentioned above, in 

terms of the geographic scope, the level of dis-aggregation employed for the dependent 

variable, and the proxy used for expected prices. In particular,  

- We evaluate for the first time the interlinked global supply effects of climate change, 

weather variability, and price changes for the four key staple crops worldwide.  

-  We use production as a proxy for the desired output supply, thereby capturing the 

impact on crop supply of climate and price variables via their effects on both yield and 

acreage.  

- We appropriately disaggregate country and crop-specific planting and harvesting 

seasons, and assign the relevant proxy for price expectation and seasonal climate 

variables in each country and for each crop.  

- Because our interest is to estimate the global crop production response to climate and 

price changes, we aggregate production of each crop at a country level, maintaining the 

panel feature of the data to be able to control for heterogeneity across countries. 

- Moreover, we investigate the effect on production variance of changes in both weather 

and price fluctuations. We also make short- and medium-term projections on the impact 

of climate change on production of these crops using climate change forecasts from the 

Intergovernmental Panel on Climate Change (IPCC)’s fifth Assessment Report (AR5). 

Key findings indicate that increasing mean growing season temperature does not seem to be 

the major problem for crop production. Instead, rising temperature becomes a problem to crop 

production after some critical level, indicating the commonly found bell-shaped relationship. 

Following the agronomic literature suggesting that increments in the maximum and minimum 

growing season temperature may be more critical for development of maize and rice crops 

(Thornton & Cramer, 2012), we test for these variables and results confirm the assertion. All 

crops except soybeans respond positively to the number of wet days during the growing season 

while rainfall anomaly affects production of all crops negatively. The projection analysis further 

indicates that climate change could reduce average global crop production by an average of 

10–20%, depending on the time horizon and global climate models used. 

2. Theoretical framework 

This section discusses the channels though which our key variables of interest affect global food 

production. Models of supply response of a crop can be formulated in terms of output, area, or 
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yield response. According to Just and Pope (1978, 1979), the mean and variance of production 

can be estimated from a stochastic production function of the type: 

(1)       𝑄𝑖𝑡 = 𝑓(𝑋𝑖𝑡 , 𝜑) + ℎ𝑖𝑡(𝑋𝑖𝑡 , 𝜙)𝜀𝑖𝑡 

where 𝑄𝑖𝑡 denotes crop production of country 𝑖 in period 𝑡; 𝑋𝑖𝑡 is vector of climate and price 

change variables;  𝑓(. ) and ℎ𝑖𝑡(. ) are the deterministic and stochastic components of the 

production function respectively; 𝜑 and 𝜙 are vectors of parameters to be estimated; and 𝜀𝑖𝑡 is a 

random error with zero mean and constant or unitary variance.  

The stochastic production function given by equation (1) can be expressed for a certain crop in 

an explicit form with heteroskedastic errors (that allow for the estimation of variance effects) as 

(2)       𝑄𝑖𝑡 = 𝑓(𝑋𝑖𝑡 , 𝜑) + 𝑢𝑖𝑡      𝐸(𝑢𝑖𝑡) = 0, 𝐸(𝑢𝑖𝑡𝑢𝑖𝑠) = 0, for  𝑖 ≠ 𝑠 

(3)      𝐸(𝑢𝑖𝑡
2) = 𝑒𝑥𝑝 [𝑊𝑖𝑡

′ 𝜙]  

The first stage in evaluating the effect of explanatory variables on crop production involves 

estimation of equation (2) with heteroskedastic disturbances. The residuals from this stage can 

be used to estimate the marginal effects of variables determining production variance. The 

vectors of independent variables (𝑋 and 𝑊) in the two stages can be similar or different. In this 

study, we include all climate and weather change; price and price volatility; and population 

density variables in the first stage, whereas the second stage includes variables that capture 

short-term climate and price change variables (particularly, weather extremes and price 

volatility).      

Climate and weather extremes  

The impact of climate change on crop production has been widely studied (IPCC, 2001, 2007). 

Changes in climate and weather affect crop production in several ways. High temperature can 

reduce critical growth periods of crops; promote crop disease; and increase sensitivity of crops 

to insect pests, thereby affecting crop development and potential yield (CCSP, 2008; Jones & 

Yosef, 2015). Growing period temperature that exceeds a certain threshold level can damage 

reproductive tissues of plants and also increase pollen sterility (Roberts & Schlenker, 2009; 

Thornton & Cramer, 2012). Furthermore temperature variability can affect crop production 

through yield losses (McCarl et al., 2008). These authors also indicate that climate change 

affects not only the mean of crop production but also its variability. In this study, we capture the 

effect of climate change using mean, maximum, and minimum temperature variables during the 
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growing periods of each crop. We also control for temperature deviation and heat stress to 

account for temperature variation and excessively warm temperature during growing season, 

respectively.  

Besides, low rainfall in arid and semi-arid regions dictates the formation of shallow soils, which 

are poor in organic matter and nutrients. Inter- and intra-annual rainfall variability is a key 

climatic element determining the success of agriculture in many countries (Sivakumar et al., 

2005). Some empirical evidence shows that the effect on year-to-year variability of crop 

production of precipitation is larger than that of temperature (Lobell & Burke, 2008). Low or 

excessive rainfall can affect crop production both through yield and acreage effects. Farmers 

adjust their crop acreage allocation depending on—onset and magnitude of—planting time 

rainfall (Sacks et al., 2010). It is therefore important to control for both planting and growing 

period mean precipitation and standardized precipitation anomaly index (SPAI). In order to 

capture precipitation extremes, regardless of droughts or flooding, and to give more weight at 

the extremes, we squared the SPAI variables. The literature suggests that the relationship 

between crop yield and climate and weather variables is better represented by a bell-shaped 

curve (Shaw, 1964). To capture soil moisture during the growing period of each crop we further 

control for average number of wet days during the growing period of each crop. 

Price change and volatility  

Higher output prices are typically expected to bring about a positive supply response in which 

producers allocate more land to the agricultural sector and increase investment to improve yield 

(OECD, 2008). Although conceptually higher prices may also lead to expansion of acreage 

under cultivation of a crop to a less fertile land, and hence reducing yield, several empirical 

studies have shown that the positive effect outweighs (Haile et al., 2016; Miao et al., 2016). 

Crop price volatility, on the other hand, acts as a disincentive for production because it 

introduces output price risk. This is especially true for agricultural producers in developing 

countries as they are often unable to deal with (Binswanger & Rosenzweig, 1986) and are 

unprotected from (Miranda & Helmberger, 1988) the consequences of price volatility. 

Farmers have to make their optimal crop production decisions subject to output prices, which 

are not known at the time when planting and input-use decisions are made. Neither is there an a 

priori technique to identify the superior price expectation model nor does the empirical literature 

provide unambiguous evidence on which expectation model to use for empirical agricultural 

supply response estimation (Nerlove & Bessler, 2001; Shideed & White, 1989). A farmer may 
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choose to cultivate a different crop at planting time if new and relevant information is obtained 

(Just & Pope, 2001). Therefore, it is worthwhile to consider price, price risk, and other 

information during the planting season to model farmers’ price expectations. We also consider 

farmers response to changes in other crop prices. Input prices may also affect crop production 

through their effects on both yield and acreage. For a farmer who produces a single crop, an 

increase in input prices, for instance fertilizer prices, discourages application of inputs and 

therefore unambiguously reduces crop production. However, in the case of multiple crop 

production higher input prices might induce a farmer to shift his input application to a crop that 

requires less of that input. Moreover, farmers may also substitute other inputs, such as land for 

fertilizer, if the latter gets more expensive. The effect of input prices on production is therefore 

an empirical question.  

This study also controls for change in population density, which basically results from population 

growth and migration. Change in population density serves as a proxy for growing demand and 

urbanization related shifts in demand patterns. In addition, especially at low income levels, it can 

indicate high labor intensity in agriculture (Debertin, 2012). Given these patterns we would 

expect a non-linear relation with production. Some empirical evidence shows that population 

density reduces crop supply (Miao et al., 2016).  

3. Empirical framework 

Given the above theoretical framework, we model average production of crop 𝑐 in country 𝑖 and 

at time 𝑡 as 

(4)     𝑄𝑐𝑖𝑡 = 𝛼𝑐 + 𝜷𝑐𝑷𝑹𝑐𝑖𝑡 + 𝜸𝑐𝑪𝑳𝑐𝑖𝑡 + 𝜽𝒄𝑷𝑶𝑷𝑐𝑖𝑡 + 𝝀𝑐𝑻𝑐𝑖𝑡 + 𝜂𝑐𝑖 + 𝑢𝑐𝑖𝑡   

where 𝑄𝑐𝑖𝑡 denote production of crop 𝑐 ∈ (wheat, maize, soybeans, rice); 𝑷𝑹, 𝑪𝑳, 𝑷𝑶𝑷, and 𝑻 

denote vectors of variables measuring prices, climate change, population density, and time 

trend, respectively; 𝜂𝑐𝑖 denote country-fixed effects to control for time-invariant heterogeneity 

across countries, and 𝑢𝑖𝑐𝑡 is the disturbance term. While 𝛼𝑐  is the overall constant term, 𝜷𝑐, 𝜸𝑐, 

𝜽𝒄, 𝝀𝑐, are vectors of parameters to be estimated. For the empirical estimation we include the 

logarithmic values of the dependent variable and output and fertilizer prices.  

The second stage involves estimating the variance component of the stochastic production 

function as  

(5)     𝑉𝑄𝑐𝑖𝑡 = 𝛼𝑐
′ + 𝑩`𝑐𝑾𝑐𝑖𝑡 + 𝜆𝑐

′ 𝑻𝑐𝑖𝑡 + 𝜂𝑖𝑐
′ + 𝑒𝑐𝑖𝑡  
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where 𝑉𝑄𝑐𝑖𝑡  is production variance of each crop; 𝑾𝑐𝑖𝑡 is a vector of weather and price volatility 

variables that potentially affect production variance (𝑩𝑐 is a vector of the respective parameters 

to be estimated); and 𝑒𝑐𝑖𝑡 is an idiosyncratic error term. All remaining variables are as defined 

above, with the prime symbol indicating that estimated values can be different. Following Just 

and Pope (1978) and the theoretical model above, the logarithmic squared residuals (𝑙𝑛[𝑢̂𝑐𝑖𝑡
2]) 

from the mean production equation (4) can be used as a measure of production variance for the 

respective crop. Because we specify the mean equation in logarithm, we need to take the 

antilogarithm of the residuals before squaring them.  

The price vector 𝑷𝑹 in equation (4) includes input and output prices in levels and output price 

variability. The proxy for input prices is a fertilizer price index lagged by one-year. We model 

farmers’ price expectations using spot prices prevailing just before planting starts. In particular, 

we use own crop prices observed 1–2 months before sowing starts. To proxy farmers’ 

expectations of competing crops, however, we use one-year lagged weighted index of 

competing crop prices. The cross crop prices used for computing the index are the other three 

crops that are not under consideration in a given specification. We weigh prices of each crop by 

the calorie per metric ton content of each crop to compute the index.1 The 𝑷𝑹 vector also 

includes seasonal own crop price volatility to capture output price risk. In order to use the de-

trended price series, we calculate own crop price variability as the standard deviation of the log-

returns in the 12 months preceding the start of the planting season of each crop in each country. 

The climate vector 𝑪𝑳 includes mean temperature and squared deviation of maximum and 

minimum temperature values during growing periods of each crop. This enables us to capture 

the production effects of seasonal changes in average and variance of temperature. To capture 

extreme (low or high) temperature effects, we further include average number of growing 

season frost days and dummy variables to capture if growing season temperature reaches a 

threshold temperature level above which crop growth is severely affected.2 Because the 

literature suggests that higher minimum (maximum) temperatures can lead to a reduction in rice 

(maize) yields (HLPE, 2012), we test for the effect of growing period minimum and maximum 

temperatures in rice and maize equations, respectively. For precipitation we include both 

planting and growing season mean precipitation along with their squared terms, anticipating an 

                                                        
1
 We apply calories per metric ton of 3340 for wheat, 3560 for maize, 3350 for soybeans and 3600 for rice (FAO, 

2016). Estimations with equal weights also yield similar results.  
2
 These threshold values are in degree Celsius of 30 for wheat and 32 for each of the other three crops (Thornton & 

Cramer, 2012). 
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increase (a decline) in crop production with an increase in average (excessive) rainfall. In 

addition, we control for rainfall shock variables (that we have referred to as SPAI), which are 

squared deviations of current planting and growing season rainfall from the respective long run 

mean values and standardized by the respective historical standard deviations. These variables 

capture the effects of seasonal unexpected precipitation extremes such as droughts and 

flooding on both crop acreage and yield. In the weather vector 𝑾 of equation (5), we include 

some of the climate variables that potentially capture short-term temperature and precipitation 

changes, such as seasonal temperature variation and excessive precipitation measures as well 

as the variables that proxy for rainfall anomaly—that is, as measured by SPAI.  

The vector 𝑷𝑶𝑷 contains population density and its squared term to capture any non-linear 

effect of population growth as a proxy to demand and to urbanization growth. The last vector 𝑻 

in both the mean and variance equations contains country-specific linear and quadratic time 

trends to control for the effect of technological progress with the possibility of decreasing 

marginal return.  

We estimate a log-linear model of crop production allowing for heteroscedastic variance. This is 

appropriate since production of the crops follow log-normal distribution. The log-linear 

specification of production on climate change variables is also especially important in studies 

(such as ours) that attempt to estimate the average impact of climate change on global crop 

production. In a log specification, a given change in a climate change variable results in the 

same percent impact on production (Lobell et al., 2011b). We use fixed effects (FE) model for 

our cross-country panel data, both for the mean and variance equations. First, the FE model 

controls for time-invariant heterogeneity across countries, such as soil quality and agroecology 

that would otherwise result in an omitted variable bias. Employing FE model when both the 

linear and quadratic terms of climate change variables are included has additional merit. It uses 

both within- and between-country differences to estimate marginal impacts. Thus, the FE model 

with quadratic weather terms enables to capture adaptation mechanisms such as changing 

sowing date or crop variety by allowing the marginal effect to vary with climate change (Lobell et 

al., 2011b). Because we include input, own, and competing prices, this model also allows us to 

capture other forms of climate change adaptations such as switching between crops or applying 

less or more inputs including labor and fertilizer.  

We estimate the impact of climate change on crop production while controlling for farmers 

behavioral responses to market conditions. However, crop production in a certain year and 
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persistent shocks from previous years may potentially affect crop prices in that year (Schlenker 

& Roberts, 2009), suggesting that crop price and price volatility may be endogenous. Because 

we use international prices to measure input and output prices as well as crop price volatility, 

these variables may be exogenous to crop production for a small country. Yet, large producers 

and importers may influence international output and input prices (through trade) and we 

therefore need to account for possible endogeneity of fertilizer prices as well as the level and 

volatility of crop prices. To this end, we apply the described FE panel data estimator while 

instrumenting all the price variables in each crop model. The literature suggests some potential 

instrument variables including lagged climate change and crop stock variables (Miao et al., 

2016; Roberts & Schlenker, 2013). We additionally use one-year lagged net-trade of each crop. 

Stock and net-trade for soybeans are not used because of missing data for several countries 

and years. These variables are theoretically valid IVs because they affect domestic crop 

production only through their effects on prices. Based on results of weak- and over-identification 

statistical tests distinct sets of IVs are used in the different supply model specifications. 

Because the mean equation is specified with heteroscedastic variance, this needs to be 

accounted for to obtain more precise or efficient estimates. To this end, we estimate the mean 

production model with two stage least squares (2SLS) that are both robust to arbitrary 

heteroscedasticity and intra-country correlations. There are more number of IVs than 

endogenous variables in our models, in other words the models are overidentified. In this case, 

a two-step general method of moments (GMM) IV estimator – with cluster-robust standard 

errors – yields more efficient estimates than 2SLS estimates (Baum et al., 2007). Thus, the IV-

GMM estimator is our preferred method.   

4. Data and descriptive statistics 

We obtain production data for each of wheat, rice, maize, and soybeans for the period 1961-

2013 from the FAO. We include country-level production data for 30 major producer countries 

and pooled production data for the 27 countries of the European Union (EU, as of 2010) as a 

single entity. Although the period of analysis is the same across all four crops, the total number 

of observations in the panel data differs because some countries do not produce a certain crop. 

Yet, the focus countries and regions constitute about 82% for wheat, 90% for maize, 93% for 

rice, and 98% for soybeans of the global average production of each crop for the entire period of 

53 years. We obtain country-level data on ending stock and trade from the Foreign Agricultural 

Service (FAS) of the US Department of Agriculture (USDA).  
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Data on international market output prices and fertilizer index are obtained from the World 

Bank’s commodity price database. All prices are converted to real 2010 dollar prices by 

deflating each price with the US Consumer Price Index (CPI). We obtain crop calendar 

information for emerging and developing countries from the Global Information and Early 

Warning System (GIEWS) of the FAO, whereas the Office of the Chief Economist (OCE) of the 

USDA provides such information for advanced economies. Six climate variables, mean 

precipitation, minimum, mean and maximum temperature, average number of wet and frost 

days (all in a monthly resolution) are obtained from the Climatic Research Unit (CRU) Time-

Series (TS) Version 3.22 of the University of East Anglia. We construct several climate change 

indicators from these six variables, including crop-specific seasonal mean and squared climate 

variables for each country. In case of the EU, climate variables are constructed as average 

values of the top five major producers of each crop using their respective cropland share as 

weights. Data on population density are obtained from the World Bank database. The summary 

statistics of total crop production of all four crops and of all variables for maize production 

estimation are reported in table 1.3  

Table 1. Summary statistics of all crop production and production variance and all variables for maize 

production analysis (1961–2013) 

Variables Mean SD Min Max 

Dependent variables 

Maize production (1000 mt) 15547.2 42629.0 0.1 353699.4 

Total maize production (2010) 786032.8    

Wheat production (1000 mt) 14303.6 26639.1 0.0 150341.0 

Total wheat production (2010) 610733.7    

Soybean production (1000 mt) 4014.3 12810.1 0.0 91417.3 

Total soybean production (2010) 261236.3    

Rice production (1000 mt) 15373.7 34802.4 0.0 205936.2 

Total rice production (2010) 654006.9    

Variance of maize production (log) 2.48e-04 1.59 -6.61 9.50 

Variance of wheat production (log) 6.77e-04 0.91 -5.44 4.22 

Variance of soybean production (log) -0.031 2.60 -8.54 7.21 

Variance of rice production (log) -2.29e-09 1.08 -8.24 4.61 

Independent variables 

Maize sowing prices ($/mt) 251.2 111.4 95.3 644.9 

Competing crop price index ($/mt)
a
 388.5 134.7 216.0 862.3 

Maize price volatility
 

0.10 0.03 0.0 0.20 

Fertilizer price index 66.7 34.4 33.8 196.9 

                                                        
3
 Summary statistics of all remaining crop production datasets are available as supplementary material (tables S1-

S3). 
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Population density (people/sq km)  112.6 163.3 1.4 1203.0 

Maximum growing temperature (°C) 28.6 4.7 9.3 37.1 

Mean growing temperature (°C) 23.0 4.6 4.7 30.0 

Squared sowing temperature deviation (°C) 357.9 225.7 42.3 1398.8 
Squared growing temperature deviation 
(°C) 269.0 146.7 56.3 718.2 
Growing cold stress (dummy var = 1 if < 
10°C) 0.2 0.4 0.0 1.0 
Growing heat stress (dummy var = 1 if  
>32°C) 0.3 0.5 0.0 1.0 

Mean number of growing frost days 0.9 2.3 0.0 14.6 

Mean number of growing wet days 10.1 6.8 0.1 27.8 

Mean sowing precipitation (mm) 94.4 70.3 0.7 451.9 

Mean growing precipitation (mm) 110.3 80.2 1.3 368.9 

Sowing rainfall shock (mm) 522.3 1963.2 0.0 28457.8 

Growing rainfall shock (mm) 441.3 1166.1 0.0 13750.6 

Sowing rainfall anomaly (index) -0.00015 0.26 -2.24 2.40 

Growing rainfall anomaly (index) -0.00004 0.33 -1.26 1.46 

Notes: Prices are in 2010 US dollars. 
a
Prices of wheat, rice, and soybeans constitute the 

competing crop price index. 

We present the time series of global mean growing-season temperature and precipitation for all 

crops in Fig. 1.4 The graph (qualitatively) shows an increasing trend in growing season 

temperature for all crops, whereas there is no clear trend in the average global precipitation. 

Table 2 provides a more formal statistical test of this qualitative illustration, where we test if 

there is any difference between global mean temperature and precipitation variables for the 

periods 1961-1986 and 1987-2013. The test results confirm that global mean growing season 

temperature of all crops during 1987-2013 is statistically higher than the corresponding mean 

values during the earlier 26 years. The change in mean temperature (which is above 0.5 for 

each crop) is equivalent to an increase of about 0.18°C per decade. This is consistent with the 

per decade rate (0.2°C) of global warming expected over the next three decades (IPCC, 2007). 

On the other hand, global mean growing and sowing season precipitation and rainfall shock of 

nearly all crops (except a slight increase for rice at growing season) do not exhibit any 

statistically significant trend. Lobell et al. (2011a) reach to a similar conclusion that there is no 

consistent shift in the distribution across countries of precipitation trends between the periods 

1960–1980 and 1980–2008 (p. 618). 

                                                        
4
 Figures that depict growing season temperature and precipitation of these four crops for the top five producers of 

each crop are available as a supplementary material (Figs. S1-S4) 
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Fig. 1. Global average trend of growing season mean temperature and precipitation of the four crops 

Table 2. Mean differences between aggregated mean trends of temperature and precipitation variables 

for the periods 1961-1986 and 1987-2013. 

Variable 
Mean 

difference  t-stat 

Mean growing temperature: (M) 0.519*** (9.582) 

Mean growing temperature: (W) 0.560*** (8.705) 

Mean growing temperature: (S) 0.523*** (9.684) 

Mean growing temperature: (R) 0.517*** (9.616) 

Mean growing precipitation: (M) 1.166 (0.920) 

Mean growing precipitation: (W) -0.823 (-1.288) 

Mean growing precipitation: (S) 1.704 (1.195) 

Mean growing precipitation: (R) 2.932* (1.974) 

Mean sowing precipitation: (M) 2.203 (0.027) 

Mean sowing precipitation: (W) -41.677 (-0.981) 

Mean sowing precipitation: (S) 132.671 (0.821) 

Mean sowing precipitation: (R) 80.038 (1.047) 

N=53: N1 = 26, N2 = 27   

Notes: t-statistics in parentheses; * p<0.05, ** p<0.01, *** p<0.001;  
H0: Mean of the variable during 1987-2013 -Mean of the variable during 1961-1986 =0; M 
= maize, W = wheat, S = soybeans, R = rice 
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5. Results and discussions 

The estimation results for mean crop production are presented in tables 3–6 for maize, wheat, 

soybeans, and rice, respectively.5 In the first two models of each of these tables, we estimate 

the empirical model in equation (4) using country fixed-effects while assuming all variables 

(including price variables) as exogenous. Model FE’ includes price index of competing crops 

besides own crop price. Model specifications FEIV and FEIV’, on the other hand, are country-

fixed effects panel data IV estimations that account for endogeneity of all input and output price-

related variables. The last column reports standardized effect sizes of the FEIV’ estimation 

results to shed light on the relative importance of included explanatory variables, which are 

measured in various ways, on global supply response for each crop. The estimation results are 

largely consistent across the four alternative models.  

We test for the underlying assumptions for the validity of our IV estimation methods. These tests 

check if the IVs are properly excluded (overidentification test) and if they are sufficiently 

correlated with the endogenous variables in the model (weak identification test). The test for 

overidentification using the Hansen J statistic shows that we cannot reject the hypothesis that 

the IVs are valid (i.e., the excluded IVs are orthogonal to the error process) at any reasonable 

significance level. We consider several tests, including the goodness-of-fit, t- and joint F-tests, 

and Kleibergen-Paap rk statistics of the first-stage regression, to check if the IVs are strongly 

correlated with the endogenous variables. The joint F-test strongly rejects the null hypothesis 

that our IVs do not jointly statistically significantly explain the included endogenous variables at 

any reasonable level of significance. The test results also indicate that the excluded IVs pass 

the Kleibergen-Paap rk tests for underidentification and weak instrument. The results from the 

country fixed-effects IV model can therefore be reliable. The following discussions rely on the 

results obtained from the panel data IV estimator that also includes cross-price index (that is, 

FEIV’) for each crop production estimation. Similarly, the estimation results for the stochastic 

component of crop production in table 7 use the predicted residuals from this model to construct 

the respective dependent variables.  

 

 

                                                        
5
 To keep tables 3-6 in a reasonable size, we only present estimations of key variables in these tables. For a 

complete presentation of estimations, see tables S4-S7 in the supplementary material. 
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Table 3. Determinants of global maize production (dependent variable: log (mean production)) 

Variables 

FE FE’ FEIV FEIV’ 

Coeff. 
 (rob. SE) 

Coeff. 
(rob. SE) 

Coeff. 
(rob. SE) 

Coeff. 
(rob. SE) 

Standardized 
effect size 

Own crop price 0.170*** 0.118*** 0.431*** 0.802*** 0.250*** 

 
(0.019) (0.016) (0.069) (0.086) 

 Cross-price index 
 

0.156*** 
 

-0.540*** -0.126*** 

 
 (0.032)  (0.163)  

Own price volatility -0.469** -0.673*** -2.184*** -2.190*** -0.046*** 

 
(0.199) (0.213) (0.496) (0.622) 

 Fertilizer price index  0.047** -0.002 -0.208*** -0.126* -0.035* 

 
(0.020) (0.019) (0.062) (0.067) 

 Population density  0.010** 0.001** 0.013*** 0.016*** 0.648*** 

 
(0.005) (0.005) (0.003) (0.004) 

 Population density squared -1.23e-05 -1.23e-05 -1.95e-05*** -2.46e-05*** -0.274*** 

 
(0.000) (0.000) (0.000) (0.000) 

 Mean growing tmp. 0.078 0.075 0.093* 0.117** 0.251** 

 
(0.093) (0.092) (0.055) (0.055) 

 Max. growing tmp. -0.099 -0.097 -0.116*** -0.140*** -0.295*** 

 
(0.080) (0.078) (0.037) (0.040) 

 Squared sowing tmp. deviation -0.0003*** -0.0003*** -0.0003*** -0.0003*** -0.070*** 

 
(0.0001) (0.0001) (0.000) (0.000) 

 Squared growing tmp. deviation -0.001* -0.001* -0.001*** -0.001** -0.051** 
 (0.0005) (0.0005) (0.0001) (0.0003)  
Mean sowing rainfall -0.003*** -0.004*** -0.003*** -0.003*** -0.062*** 

 
(0.001) (0.001) (0.001) (0.001)  

Mean growing rainfall 0.003*** 0.002*** 0.002*** 0.001*** 0.046*** 

 
(0.001) (0.001) (0.001) (0.001) 

 Sowing rainfall anomaly 0.025 0.038 0.083* 0.047 0.003 

 
(0.068) (0.064) (0.048) (0.073) 

 Growing rainfall anomaly -0.110*** -0.126*** -0.200*** -0.179*** -0.010*** 

 
(0.039) (0.040) (0.031) (0.050) 

 Linea trend 0.039*** 0.042*** 0.043*** 0.038*** 0.402*** 

 
(0.003) (0.004) (0.001) (0.002) 

 Observations 1488 1488 1330 1330 1330 
Underidentification test 
(Kleibergen-Paap rk Wald 
statistic)   427.850 280.820  
Weak identification test 
(Kleibergen-Paap rk Wald F 
statistic)           36.801 24.154  
Overidentification test (p-value of 
Hansen J statistic)   0.526 0.383  
Notes: Asterisks ∗, ∗∗, and ∗∗∗ represent the 10%, 5%, and 1% levels of significance. All models are weighted by the 

global maize production share of each country. Excluded instruments: Ending stocks and stock variations of maize, 
wheat and rice; net import of maize, planting and growing season rainfall anomalies, and growing season mean 
temperature. All IVs are lagged once. 

Impacts of price changes 

Controlling for climate change and applying IVs for possible endogeneity of prices, the results 

indicate that agricultural production is indeed responsive to both own and competing crop 

prices. These supply elasticities are mostly larger than previous aggregate estimates (Haile et 
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al., 2016; Roberts & Schlenker, 2009; Subervie, 2008), which can be explained by potential 

omission of climatic variables in these studies. Cross-price production responses are stronger 

than own price responses in the case of wheat and rice. While own crop price volatility, on the 

other hand, has negligible effect on soybean and rice production, it has detrimental impact on 

production of maize and wheat. In fact, the positive response of wheat production to a one 

standard deviation change in own prices could be offset by an equivalent change in wheat price 

fluctuations. Input price—as proxied by fertilizer index—negatively affects production of maize 

and soybeans but not that of wheat and rice.  

Table 4. Determinants of global wheat production (dependent variable: log (mean production)) 

Variables 

FE FE’ FEIV FEIV’ 

Coeff. 
 (rob. SE) 

Coeff. 
(rob. SE) 

Coeff. 
(rob. SE) 

Coeff. 
(rob. SE) 

Standardized 
effect size 

Own crop price 0.042 0.058** 0.206* 0.190** 0.077** 

 
(0.030) (0.029) (0.110) (0.085) 

 Cross-price index 
 

-0.090 
 

-0.809*** -0.276*** 

  
(0.062) 

 
(0.280) 

 Own price volatility -0.377*** -0.338*** 0.288 -2.125*** -0.088*** 

 
(0.094) (0.092) (0.435) (0.586) 

 Fertilizer price index  0.046 0.087** -0.480*** 0.281 0.115 

 
(0.029) (0.037) (0.111) (0.247) 

 Population density  0.008*** 0.008*** 0.008*** 0.010*** 0.947*** 

 
(0.002) (0.002) (0.003) (0.002) 

 Population density squared -4.65e-06*** -4.63e-06*** -6.88e-06 -1.09e-05*** -0.367*** 

 
(0.000) (0.000) (0.000) (0.000) 

 Mean growing tmp. 0.030 0.025 -0.011 -0.034 -0.231 

 
(0.034) (0.034) (0.023) (0.032) 

 Mean growing tmp. squared -0.004** -0.003** -0.001 -0.001 -0.201 

 
(0.002) (0.002) (0.001) (0.001) 

 Squared sowing tmp. deviation -0.0002* -0.0002* 0.0002* -0.00004 -0.006 

 
(0.0001) (0.0001) (0.0001) (0.0001) 

 Squared growing tmp. deviation -0.0001 -0.0001 -0.0002*** -0.0002*** -0.069*** 

 
(0.0002) (0.0002) (0.0001) (0.0001) 

 Mean sowing rainfall 0.0004 0.0004 0.0023** 0.0018* 0.034* 

 
(0.001) (0.001) (0.001) (0.001) 

 Mean growing rainfall 0.001 0.001 0.002 -0.001 -0.011 

 
(0.002) (0.002) (0.001) (0.001) 

 Sowing rainfall anomaly -0.115 -0.128 -0.0415 -0.197*** -0.008*** 

 
(0.075) (0.078) (0.066) (0.073)  

Growing  rainfall anomaly -0.209** -0.212** -0.297*** -0.269*** -0.013*** 

 
(0.094) (0.091) (0.051) (0.040) 

 Linear trend 0.044*** 0.0422** 0.021*** 0.010 0.143 

 
(0.006) (0.007) (0.004) (0.006) 

 Observations 1176 1176 1072 1072 1072 
Underidentification test 
(Kleibergen-Paap rk Wald 
statistic)   79.680 49.820  
Weak identification test 
(Kleibergen-Paap rk Wald F 
statistic)           9.332 15.190  
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Overidentification test (p-value of 
Hansen J statistic)   0.339 0.211  
Notes: Asterisks ∗, ∗∗, and ∗∗∗ represent the 10%, 5%, and 1% levels of significance. All models are weighted by the 

global wheat production share of each country. Excluded instruments: Ending stocks and stock variations of maize, 
wheat and rice; net import of maize and wheat, planting and growing season rainfall anomalies, and growing season 
mean temperature. All IVs are lagged once.  

Impacts of climate and weather changes 

Average growing period temperature does not seem to negatively influence production of crops. 

In fact, production of maize and rice increases with increasing mean temperature during the 

growing season. It is instead rising temperature at the two extremes—minimum temperature in 

the case of rice and maximum temperature in the case of maize—that are detrimental for crop 

production. While rising (growing period) temperature does not have statistically significant 

effect on wheat production, its effect on soybean production turns to negative beyond a 

temperature value of 32.5 degrees. Besides these temperature extremes, variations in both 

sowing and growing period temperature have negative supply effects. McCarl et al. (2008)  have 

found similar results on the yield effect of temperature variation. Precipitation also plays a key 

role in production of each crop, in particular for rice production. Higher mean rainfall (at planting 

and growing seasons) in general improves agricultural production, whereas rainfall extremes—

as measured by SPAI—negatively influence crop production. As expected, in particular for rice, 

the number of wet growing days and sowing season rainfall are positively associated with higher 

crop production. Unexpected seasonal precipitation extremes are however harmful for rice 

production as they are for the other crops.  
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Table 5. Determinants of global soybean production (dependent variable: log (mean production)) 

Variables 

FE FE’ FEIV FEIV’ 

Coeff. 
(rob. SE) 

Coeff. 
(rob. SE) 

Coeff. 
(rob. SE) 

Coeff. 
(rob. SE) 

Standardized 
effect size 

Own crop price 0.185* 0.170** 0.877*** 0.694*** 0.243*** 

 
(0.099) (0.079) (0.176) (0.187) 

 Cross-price index 
 

0.072 
 

0.061 0.017 

  
(0.131) 

 
(0.113) 

 Own price volatility -0.347* -0.377 -1.291** 0.582 0.021 

 
(0.205) (0.247) (0.562) (0.971)  

Fertilizer price index  -0.052 -0.084 -0.492*** -0.605*** -0.201*** 

 
(0.056) (0.065) (0.046) (0.092) 

 Population density  -0.0232*** -0.0232*** -0.0229*** -0.0244*** -1.146*** 

 
(0.007) (0.007) (0.001) (0.001) 

 Population density squared 4.33e-05*** 4.33e-05*** 4.19e-05*** 4.67e-05*** 0.753*** 

 
(0.000) (0.000) (0.000) (0.000)  

Mean growing tmp. -0.821 -0.825 -0.151 0.228 0.574 

 
(0.753) (0.752) (0.245) (0.310) 

 Mean growing tmp. squared 0.018 0.019 0.001 -0.007*** -0.751*** 

 
(0.018) (0.018) (0.006) (0.001)  

Squared sowing tmp. deviation 0.0002 0.0002 -0.0005** -0.0005** -0.040** 

 
(0.0004) (0.0004) (0.0002) (0.0002)  

Squared growing tmp. deviation 0.001*** 0.001*** 0.001** 0.001** 0.057** 

 
(0.0004) (0.0004) (0.0005) (0.0004) 

 Mean sowing rainfall -0.001 -0.001 -0.001 -0.001 -0.044 

 
(0.003) (0.003) (0.001) (0.001) 

 Mean growing rainfall 0.005* 0.005* 0.003 0.003 0.135 

 
(0.003) (0.003) (0.002) (0.002) 

 Sowing rainfall anomaly -0.342 -0.329 -0.345** -0.384** -0.018** 

 
(0.226) (0.207) (0.151) (0.153) 

 Growing  rainfall anomaly 0.150 0.151 0.133 0.050) 0.002 

 
(0.211) (0.210) (0.112) (0.128) 

 Linear trend 0.058*** 0.059*** 0.064*** 0.054*** 0.666*** 

 
(0.008) (0.008) (0.007) (0.008)  

Observations 1363 1363 1259 1259 1259 
Underidentification test 
(Kleibergen-Paap rk Wald statistic)   741.72 2811.30  
Weak identification test 
(Kleibergen-Paap rk Wald F 
statistic)           69.96 265.16  
Overidentification test (p-value of 
Hansen J statistic)   0.188 0.335  
Notes: Asterisks ∗, ∗∗, and ∗∗∗ represent the 10%, 5%, and 1% levels of significance. All models are weighted by the 

global soybean production share of each country. Excluded instruments: Ending stocks and stock variations of maize, 
wheat and rice; net import of maize, planting and growing season rainfall anomalies, and growing season mean 
temperature. All IVs are lagged once.  

Impacts of population 

The non-linear effect of change in population density is statistically significant in all cases .The 

effect of higher population density on production starts gaining more weight after a certain 

threshold. The effect of population density on crop production switches from positive to negative 

just above 650 people/km2 for maize and rice and at slightly higher value for wheat (above 900). 
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To put this into perspective, population density in countries such as Rwanda and India is just 

below the former threshold; whereas Bangladesh’s population density is far above these turning 

points.  

Table 6. Determinants of global rice production (dependent variable: log (mean production)) 

Variables 

FE FE’ FEIV FEIV’ 

Coeff. 
(rob. SE) 

Coeff. 
(rob. SE) 

Coeff. 
(rob. SE) 

Coeff. 
(rob. SE) 

Standardized 
effect size 

Own crop price 0.013 0.034 0.620*** 1.011*** 0.423*** 

 
(0.035) (0.043) (0.200) (0.384) 

 Cross-price index   -0.084  -2.064*** -0.496*** 

  
(0.063) 

 
(0.683) 

 Own price volatility 0.309*** 0.269*** -0.084 -2.915 -0.109 

 
(0.095) (0.081) (1.027) (2.117) 

 Fertilizer price index  -0.059 -0.030 -0.614*** 0.385 0.123 

 
(0.050) (0.038) (0.154) (0.294) 

 Population density  0.002 0.002 0.009*** 0.008*** 0.663*** 

 
(0.001) (0.001) (0.002) (0.002)  

Population density squared -7.93e-07 -7.68e-07 -1.14e-05*** -1.16e-05*** -0.396*** 

 
(0.000) (0.000) (0.000) (0.000)  

Mean growing tmp. 0.007 0.019 0.213*** 0.270*** 0.981*** 

 
(0.074) (0.077) (0.069) (0.100)  

Min. growing. tmp. -0.109 -0.123 -0.271*** -0.397*** -1.580*** 

 
(0.097) (0.105) (0.060) (0.135)  

Squared sowing tmp. deviation 0.0001 0.0001 -0.0004*** 0.0004 0.136 

 
(0.0001) (0.0001) (0.0001) (0.0003)  

Squared growing tmp. deviation -0.0004 -0.0004 -0.0001 0.00003 0.004 

 
(0.0003) (0.0003) (0.0003) (0.0006)  

Mean sowing rainfall 0.001** 0.001** 0.002*** 0.002*** 0.100*** 

 
(0.001) (0.001) (0.001) (0.001)  

Mean growing rainfall 0.0004 0.0004 0.001 0.004*** 0.162*** 

 
(0.0004) (0.0004) (0.001) (0.001)  

Sowing rainfall anomaly -0.056* -0.055* 0.031 -0.338*** -0.018*** 

 
(0.034) (0.033) (0.086) (0.119)  

Growing  rainfall anomaly -0.039* -0.037* -0.202 -0.068 -0.004 

 
(0.024) (0.022) (0.137) (0.352)  

Linear trend 0.021*** 0.021*** 0.029*** 0.015* 0.185* 

 
(0.004) (0.004) (0.007) (0.009)  

Observations 1405 1405 1247 1247 1247 
Underidentification test 
(Kleibergen-Paap rk Wald 
statistic)   192.210 18.890  
Weak identification test 
(Kleibergen-Paap rk Wald F 
statistic)           20.236 9.890  
Overidentification test (p-value of 
Hansen J statistic)   0.312 0.442  
Notes: Asterisks ∗, ∗∗, and ∗∗∗ represent the 10%, 5%, and 1% levels of significance. All models are weighted by the 

global rice production share of each country. Excluded instruments: Ending stocks maize, wheat and rice, stock 
variations of wheat; net import of wheat and rice, planting and growing season rainfall anomalies, and growing 
season mean temperature. All IVs are lagged once.  
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Impacts on production variance 

Table 7 reports results on the stochastic component of crop production—fluctuations in 

production. Not only do higher prices (in levels) provide incentive for farmers to producer 

more—that is, increase yield or acreage—they also increase the predictability of crop 

production. This is possible as higher crop prices induce agricultural investments in such as 

irrigation and disease-resistant seed varieties that in turn reduce production variance. Not 

surprisingly, crop price volatility has the opposite effect on production variance. We also find 

that higher fertilizer price has a positive effect on production variability, which is contrary to 

some of the findings in Just and Pope (1979). The effects on production variance of temperature 

and precipitation extremes are mostly positive but statistically significant for soybean and rice 

production (temperature) and for wheat production (precipitation). Production variability has a 

decreasing linear trend, thanks to more and improved early (weather and other risk) warning 

systems and technological progress that reduces potential fluctuations in agricultural production.  

Table 7. Determinants of variance of global crop production (dependent variable: log (production 
variance)) 

Variables 

Maize Wheat Soybeans Rice 

Coeff. (rob. 
SE) 

Coeff. (rob. 
SE) 

Coeff. (rob. 
SE) 

Coeff. (rob. 
SE) 

Own crop price -1.160*** 0.197** -1.317*** -0.859*** 

 
(0.053) (0.075) (0.095) (0.056) 

Own price volatility 4.875*** 0.978* 1.113* -0.009 

 
(0.565) (0.553) (0.642) (0.385) 

Fertilizer price index 0.811*** 0.114** 0.897*** 0.856*** 

 
(0.046) (0.042) (0.092) (0.058) 

Growing tmp. squared 0.002 0.001 0.004*** 0.004*** 

 
(0.001) (0.001) (0.001) (0.001) 

Growing  tmp. variation 0.001** 0.0002 -0.004*** -0.0002 

 
(0.001) (0.0003) (0.001) (0.001) 

Growing rainfall shock 0.095 0.141** 0.0002 0.057 

 
(0.062) (0.057) (0.138) (0.343) 

Linear trend -0.090*** -0.033*** -0.085*** -0.060*** 
 (0.005) (0.006) (0.007) (0.004) 
Intercept -9.896*** -13.720*** -3.136*** -11.380*** 

 
(1.114) (1.853) (0.892) (1.125) 

N 1330 1072 1259 1247 

 

6. Implications for future global food production  

Quantifying the potential impact of future climate change on global food production requires 

undertaking two steps. The first step involves estimating the historical relationship between 

climate variables and global food production (as done in tables 3-6), whereas the second step 

uses these estimates and projected changes in climate variables to calculate the projected 
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production impacts of climate change (Burke et al., 2015). We obtain future climate data for 

2030s and 2050s from the Climate Change, Agriculture and Food Security (CCAFS) data portal 

for 32 global circulation models (GCMs) provided by the coupled model inter-comparison project 

phase 5 (CIMP5). The GCM data were downscaled using the Delta method.6 The baseline 

climate (2000s) data were downloaded from the Worldclim online database.7 In particular, we 

obtained data on average minimum temperature, average maximum temperature and total 

precipitation for the greenhouse gas representative concentration pathway RCP8.5. Compared 

to other representative concentration pathways, RCP8.5 leads to high energy demand and GHG 

emissions in the absence of climate change policies as it assumes high population and 

relatively slow income growth with modest rates of technological change and energy intensity 

improvements (Riahi et al., 2011). 

There are several institutions that develop climate models and that support the IPCC activities. 

However, there are marked differences between these models, which employ different 

numerical methods, spatial resolutions, and subgrid-scale parameters (IPCC, 2007, 2014). 

Because of uncertainties associated with each model, it is recommended to use an ensemble of 

available GCMs instead of selecting one or a subset of GCMs. Moreover, since the inherent 

uncertainty in existing projections of climate change is very large, we estimate projected 

production changes using data from the average of these GCMs. This is very important as 

climate models can simply disagree not only on the magnitude of future changes in precipitation 

and temperature but also on the sign of future changes (Burke et al., 2015). In fact, these 

authors reviewed seven well-cited articles in the climate impacts literature that explore potential 

impacts on agricultural productivity and found a far more negative point estimates when 

accounting for climate uncertainty.  

Based on the average projections of the 32 GCMs, predicted changes in mean temperature 

range from an increase of 20C in the 2030s to 3.50C in the 2050s (table 8). In addition, predicted 

changes show an increase in both minimum and maximum temperature.8  Precipitation is also 

predicted to be slightly higher in the 2030s and 2050s. However, the data show a large 

heterogeneity in predicted changes, in particular of rainfall, across months.  

 

 

                                                        
6 

http://www.ccafs-climate.org/
 

7
 http://www.worldclim.org/ 

8
 These statistics are available as a supplementary material (table S8). 

http://www.ccafs-climate.org/
http://www.worldclim.org/
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Table 8. Mean predicted changes in climate variables under RCP8.5 

 2030s 2050s 

 Mean SD Mean SD 

Mean temperature, January (°C) 1.99 0.57 3.80 2.95 

Mean temperature, February (°C) 2.01 0.52 3.76 2.8 

Mean temperature, March (°C) 1.9 0.44 3.53 2.6 

Mean temperature, April (°C) 1.82 0.34 3.3 2.25 

Mean temperature, May (°C) 1.87 0.30 3.14 1.83 

Mean temperature, June (°C) 2.04 0.35 3.28 1.55 

Mean temperature, July (°C) 2.24 0.58 3.51 1.58 

Mean temperature, August (°C) 2.32 0.61 3.63 1.69 

Mean temperature, September (°C) 2.18 0.47 3.61 1.7 

Mean temperature, October (°C) 2.06 0.42 3.45 2.21 

Mean temperature, November (°C) 1.97 0.55 3.54 2.76 

Mean temperature, December (°C) 1.99 0.6 3.7 2.98 

Annual average change (°C) 2.03 0.48 3.52 2.24 

Precipitation, January (mm) -33.82 117.5 -32.4 117.5 

Precipitation, February (mm)  -4.9 13.8 -4.8 13.9 

Precipitation, March (mm) -18.27 56.6 -17.6 56.5 

Precipitation, April (mm) 2.2 4.4 2.6 6.1 

Precipitation, May (mm) 7.6 56.7 7.8 58.4 

Precipitation, June (mm) 36.3 92.7 35.9 94.9 

Precipitation, July (mm) 9.8 30.4 9.5 33.5 

Precipitation, August (mm) 1.54 6.8 2.1 10.7 

Precipitation, September (mm) 23.9 99.8 25.3 102.4 

Precipitation, October (mm) -4.7 45.9 -2.9 45.1 

Precipitation, November (mm) -5.9 40.5 -4.0 41.1 

Precipitation, December (mm) 19.8 29.5 21.6 31.2 

Annual average change (mm) 2.8 49.55 21.6 31.2 

 

Fig. 2 illustrates the projected impacts of climate change on agricultural production. We find that 

production of all four crops is adversely affected by climate change. More specifically, climate 

change decreases the weighted average crop production by 9% in the 2030s9. The climate 

change impacts are more severe in the 2050s: on average, aggregate production declines by 

about 21%.  

                                                        
9
 The effect on aggregate production is obtained by multiplying the share of each crop from total production by 

individual effects sizes for each crop. The share of wheat, maize, rice and soybeans is 0.29, 0.32, 0.31 and 0.08 
respectively. 
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Fig. 2. Projected effect of climate change on food production (%) 

Fig. 3 depicts predicted weighted average crop production changes in key producer countries. 

We find largely negative albeit heterogeneous effects across crops and countries. Projected 

average crop production shows positive but small changes for countries such as the Russian 

Federation, Turkey, and Ukraine in the 2030s, whereas production changes are negative and 

more pronounced for all countries in the 2050s.  

The results on the climate induced average food production changes have a significant 

implication for global food security at least for two reasons: 1) wheat, rice, maize, and soybeans 

make up about three-quarters of the food calories of the global population; 2) our study 

countries produce above 85% of the global production of these crops. The projected climate-

induced production changes are consistent with other findings, albeit the latter are national or 

regional level studies. For instance, Schlenker and Roberts (2009) indicated that average yields 

in the United States are predicted to decline by 30-46% and 63–82% under the slowest and 

most rapid warming scenario, respectively, under the Hadley III model before the end of this 

century. Similarly, Schlenker and Lobell (2010) reported a 22% reduction in aggregate maize 

production throughout sub-Saharan Africa by 2050.  
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Fig. 3. Projected effect of climate change on (production weighted) average crop production of 
major producer countries (%) 

7. Conclusions 

As the earth’s climate is changing, agriculture is one of the drivers of this change, and it is also 

one that is severely affected by the change. Climate-resilient agriculture is vital for achieving 

enhanced food security—which is a crucial component of the SDGs. This study provides 

answers to questions that are prerequisite for policies that address agriculture and climate 

change. This study evaluates the extent to which climate change affects global production of 

major staple crops and identifies specific climate and weather patterns that most harmfully affect 

crop production. The study analyzes the determinants of global average crop production for 

maize, wheat, rice, and soybeans over the period 1961–2013.  

We develop the reduced form empirical framework of this paper with the premise that crop 

production is influenced not only by climate factors but also by changes in economic variables. 

These effects include changes in farmers’ crop management practices and land allocation 

decisions in response to input prices and expected output prices and price volatility. 

Additionally, as compared to previous studies, we analyze the impact on global crop production 

variance of price and weather extremes. It is worth to note here that our estimates are global 

average effects, that is, country variations (especially of temperature variables), are subtly 

captured with the quadratic terms. Our empirical results, however, yield estimates that can 
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serve as parameters for projections that look for potential impact of climate change on food 

security with reasonable level of trade among countries.  

In agreement with previous studies, we find that climate change has statistically significant 

adverse effects on production of the world’s key staple crops, through both yield and acreage 

effects. Our findings indicate that higher average temperature during the growing season is not 

all bad—having a positive and statistically significant effect on productions of maize and rice. 

Instead, increasing temperature values at the two extremes—higher minimum temperature for 

rice and higher maximum temperature for maize—are detrimental to crop production. Similarly, 

higher average temperature becomes problematic for wheat and soybeans after a certain critical 

level, albeit being statistically insignificant for the former. Moreover, this study finds that weather 

extremes—shocks in both temperature and precipitation—during the growing months have 

detrimental impacts on the production of the abovementioned food crops. This paper also finds 

negative impacts of price and weather extremes on the stochastic component of crop 

production, that is, on the variance of global crop production. In other words, price and weather 

extremes do not only adversely affect average global food production; they also positively 

contribute to the year-to-year fluctuations of food availability.  

Furthermore, by using future climate data from 32 GCMs, we estimate projected effects of 

climate change on global food production. Climate change is predicted to reduce total 

production on average by up to 9% in 2030s and by 21% in 2050s, with large heterogeneity 

across countries and crops. Last but not least, we find that the linear time trend is statistically 

significant and positive in both the average production and the production variance estimations 

of all crops. This result is compelling as it shows that improvements in technology and 

agronomic practices have the capacity to boost global food production as well as to reduce 

annual fluctuations in food availability. Combating climate change using both mitigation and 

adaptation technologies is therefore crucial to check its adverse impacts on global production 

and hence on food security.  
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