Identification- and Singularity-Robust Inference
for Moment Condition Models

Donald W. K. Andrews
Cowles Foundation
Yale University

Patrik Guggenberger
Department of Economics
Pennsylvania State University

First Version: March 25, 2011
Revised: December 31, 2014*

*Andrews and Guggenberger gratefully acknowledge the research support of the National Science Foundation via grant numbers SES-1058376 and SES-1355504, and SES-1021101 and SES-1326827, respectively. The authors thank Isaiah Andrews for providing the details of the simulation designs employed in I. Andrews (2014), which are used in some of the simulations given in this paper. For helpful comments, the authors thank Isaiah Andrews, Xu Cheng, Kirill Evdokimov, Anna Mikusheva, Zhongjun Qu, Jim Stock, and the participants of seminars at the following universities: Boston, Boston College, Brown, Chicago, Columbia, Freiburg, Hanover, Harvard/MIT, Hebrew Jerusalem, Konstanz, Maryland, Michigan, New York, Northwestern, Ohio State, Princeton, Queen’s, Strasbourg, and Wisconsin.
Abstract

This paper introduces two new identification- and singularity-robust conditional quasi-likelihood ratio (SR-CQLR) tests and a new identification- and singularity-robust Anderson and Rubin (1949) (SR-AR) test for linear and nonlinear moment condition models. The paper shows that the tests have correct asymptotic size and are asymptotically similar (in a uniform sense) under very weak conditions. For two of the three tests, all that is required is that the moment functions and their derivatives have $2 + \gamma$ bounded moments for some $\gamma > 0$ in i.i.d. scenarios. In stationary strong mixing time series cases, the same condition suffices, but the magnitude of γ is related to the magnitude of the strong mixing numbers. For the third test, slightly stronger moment conditions and a (standard, though restrictive) multiplicative structure on the moment functions are imposed. For all three tests, no conditions are placed on the expected Jacobian of the moment functions, on the eigenvalues of the variance matrix of the moment functions, or on the eigenvalues of the expected outer product of the (vectorized) orthogonalized sample Jacobian of the moment functions.

The two SR-CQLR tests are shown to be asymptotically efficient in a GMM sense under strong and semi-strong identification (for all $k \geq p$, where k and p are the numbers of moment conditions and parameters, respectively). The two SR-CQLR tests reduce asymptotically to Moreira’s CLR test when $p = 1$ in the homoskedastic linear IV model. The first SR-CQLR test, which relies on the multiplicative structure on the moment functions, also does so for $p \geq 2$.

Keywords: asymptotics, conditional likelihood ratio test, confidence set, identification, inference, moment conditions, robust, singular variance, test, weak identification, weak instruments.

JEL Classification Numbers: C10, C12.
1 Introduction

Weak identification and weak instruments (IV’s) can arise in a wide variety of empirical applications in economics. Examples include: in macroeconomics and finance, new Keynesian Phillips curve models, dynamic stochastic general equilibrium (DSGE) models, consumption capital asset pricing models (CCAPM), and interest rate dynamics models; in industrial organization, the Berry, Levinsohn, and Pakes (1995) (BLP) model of demand for differentiated products; and in labor economics, returns-to-schooling equations that use IV’s, such as quarter of birth or Vietnam draft lottery status, to avoid ability bias. Other examples include nonlinear regression, autoregressive-moving average, GARCH, and smooth transition autoregressive (STAR) models; parametric selection models estimated by Heckman’s two step method or maximum likelihood; mixture models and regime switching models; and all models where hypothesis testing problems arise where a nuisance parameter appears under the alternative hypothesis, but not under the null. Given this wide range of applications, numerous methods have been developed in the econometrics literature over the last two decades that aim to be identification-robust.

The most important feature of tests and confidence sets (CS’s) that aim to be identification-robust is that they control size for a wide range of null distributions regardless of the strength of identification of the parameters. This holds if the tests have correct asymptotic size for a broad class of null distributions. However, the asymptotic size of many tests in the literature that are designed to be identification-robust has not been established. This paper and its companion paper, Andrews and Guggenberger (2014a) (hereafter AG1), help fill this void by establishing the asymptotic size and similarity properties of three new tests and CS’s and the influential nonlinear Lagrange multiplier (LM) and conditional likelihood ratio (CLR) tests and CS’s of Kleibergen (2005, 2007) and the GMM versions of the tests that appear in Guggenberger and Smith (2005), Otsu (2006), Smith (2007), Newey and Windmeijer (2009), and Guggenberger, Ramalho, and Smith (2012). None of the aforementioned tests and CS’s have been shown to have correct asymptotic size for moment condition models (even linear ones) with multiple sources of possible weak identification.

By this we mean that one or more parameters (or transformations of parameters) may be weakly or strongly identified. In addition, the approach and results of the present paper and AG1 should be useful for assessing the asymptotic size of other tests and CS’s for moment condition models that allow for multiple sources of weak identification.

The three new tests introduced here include two singularity-robust (SR) conditional quasi-likelihood ratio (SR-CQLR) tests and an SR nonlinear Anderson and Rubin (1949) (SR-AR) test. These tests and CS’s are shown to have correct asymptotic size and to be asymptotically similar (in a uniform sense) under very weak conditions. All that is required is that the expected moment functions equal zero at the true parameter value and the moment functions and their derivatives satisfy mild moment conditions. Thus, no identification assumptions of any type are imposed. The results hold for arbitrary fixed $k, p \geq 1$, where k is the number of moment conditions and p is the number of parameters. The case $k \geq p$ is of greatest interest in practice, but the results also hold for $k < p$ and treatment of the $k < p$ case is needed for the SR results. The results allow for any of the p parameters to be weakly or strongly identified, which yields multiple possible sources of weak identification. Results are given for independent identically distributed (i.i.d.) observations as well as stationary strong mixing time series observations.

The asymptotic results allow the variance matrix of the moments to be singular (or near singular). This is particularly important in models where lack of identification is accompanied by singularity of the variance matrix of the moments. For example, this occurs in all maximum likelihood scenarios and many quasi-likelihood scenarios. Other examples where it holds are given below. Some finite-sample simulation results, given in the Supplemental Material (SM) to this paper, show that the SR-AR and SR-CQLR tests perform well (in terms of null rejection probabilities) under singular and near singular variance matrices of the moments in the model considered.

In addition, the asymptotic results allow the expected outer-product of the vectorized orthogonalized sample Jacobian to be singular. For example, this occurs when some moment conditions do not depend on some parameters. Finally, the asymptotic results allow the true parameter to be on, or near, the boundary of the parameter space.

The two SR-CQLR tests are shown to be asymptotically efficient in a GMM sense under strong and semi-strong identification (when the variance matrix of the moments is nonsingular and the null parameter value is not on the boundary of the parameter space). Furthermore, as shown in the SM, they reduce to Moreira’s (2003) CLR test in the homoskedastic linear IV model with fixed IV’s when $p = 1$. This is desirable because the latter test has been shown to have approximate optimal power properties in this model under normality, see Andrews, Moreira, and Stock (2006, 2008) and
The first SR-CQLR test applies when the moment functions are of the form $u_i(\theta)Z_i$, where $u_i(\theta)$ is a scalar and Z_i is a k vector of IV’s, as in Stock and Wright (2000). It reduces to Moreira’s CLR test for all $p \geq 1$. The second SR-CQLR test does not require the moment functions to have this form. A drawback of the SR-CQLR tests is that they are not known to have optimality properties under weak identification in other models, see the discussion in Section 2 below. The SR-CQLR tests are easy to compute and their conditional critical values can be simulated easily and very quickly. Constructing CS’s by inverting the tests typically is more challenging computationally.

Now, we contrast the aforementioned asymptotic size results with the asymptotic size results of AG1 for Kleibergen’s (2005) Lagrange multiplier (LM) and conditional likelihood ratio (CLR) tests. AG1 shows that Kleibergen’s LM test has correct asymptotic size for a certain parameter space of null distributions \mathcal{F}_0. AG1 shows that this also holds for Kleibergen’s CLR tests that are based on (what AG1 calls) moment-variance-weighting (MVW) of the orthogonalized sample Jacobian matrix, combined with a suitable form of a rank statistic, such as the Robin and Smith (2000) rank statistic. Tests of this type have been considered by Newey and Windmeijer (2009) and Guggenberger, Ramalho, and Smith (2012). AG1 also determines a formula for the asymptotic size of Kleibergen’s CLR tests that are based on (what AG1 calls) Jacobian-variance-weighting (JVW) of the orthogonalized sample Jacobian matrix, which is the weighting suggested by Kleibergen. However, AG1 does not show that the latter CLR tests necessarily have correct asymptotic size when $p \geq 2$ (i.e., in the case of multiple sources of weak identification). The reason is that for some sequences of distributions, the asymptotic versions of the sample moments and the (suitably normalized) rank statistic are not necessarily independent and asymptotic independence is needed to show that the asymptotic null rejection probabilities reduce to the nominal size α.

AG1 does show that these tests have correct asymptotic size when $p = 1$, for a certain subset of the parameter space \mathcal{F}_0.

Although Kleibergen’s CLR tests with moment-variance-weighting have correct asymptotic size for \mathcal{F}_0, they have some drawbacks. First, the variance matrix of the moment functions must be nonsingular, which can be restrictive (as noted above). Second, the parameter space \mathcal{F}_0 restricts

3For related results, see Chamberlain (2007), Mikusheva (2010), Montiel Olea (2012), and Ploberger (2012).

4Lack of asymptotic independence can occur because the estimation of the variance matrix of the Jacobian of the moments can affect the asymptotic distribution of the Jacobian-variance weighted CLR test statistic under sequences of null distributions that exhibit weak identification of some parameters, or some transformation of the parameters, and strong identification of other parameters, or other transformations of the parameters. Such scenarios occur when $p \geq 2$, but cannot occur when $p = 1$.

5Nonsingularity of the variance matrix of the moments is needed for Kleibergen’s CLR tests, because the inverse of the sample moments variance matrix is employed to orthogonalize the sample Jacobian from the sample moments when constructing a conditioning statistic.
the eigenvalues of the expected outer product of the vectorized orthogonalized sample Jacobian, which can be restrictive and can be difficult to verify in some models. Third, as shown in the SM, Kleibergen’s CLR tests with moment-variance-weighting do not reduce to Moreira’s CLR test in the homoskedastic normal linear IV model with fixed IV’s when \(p = 1 \). In fact, with the moment-variance-weighting that has been considered in the literature, across different model configurations for which Moreira’s conditioning statistic displays the same asymptotic behavior, the magnitude of the conditioning statistic for Kleibergen’s CLR tests can be arbitrarily close to zero or infinity (with probability that goes to one). Simulation results given in the SM show that this leads to substantial power loss, in some scenarios of this model, relative to the SR-CQLR tests considered here, Moreira’s CLR test, and Kleibergen’s CLR test with Jacobian-variance weighting. Fourth, the form of Kleibergen’s CLR test statistic for \(p \geq 2 \) is based on the form of Moreira’s test statistic when \(p = 1 \). In consequence, one needs to make a somewhat arbitrary choice of some rank statistic to reduce the \(k \times p \) weighted orthogonalized sample Jacobian to a scalar random variable.

Kleibergen’s CLR tests with Jacobian-variance weighting also possess drawbacks one, two, and four stated in the previous paragraph, as well as the asymptotic size issue discussed above when \(p \geq 2 \). In contrast, the two SR-CQLR tests considered in this paper do not have any of these drawbacks.

To establish the asymptotic size and similarity results of the paper, we use the approach in Andrews, Cheng, and Guggenberger (2009) and Andrews and Guggenberger (2010). With this approach, one needs to determine the asymptotic null rejection probabilities of the tests under various drifting sequences of distributions \(\{ F_n : n \geq 1 \} \). Different sequences can yield different strengths of identification of the unknown parameter \(\theta \). The strength of identification of \(\theta \) depends on the expected Jacobian of the moment functions evaluated at the true parameter, which is a \(k \times p \) matrix. When \(k < p \), the parameter \(\theta \) is unidentified. When \(k \geq p \), the magnitudes of the \(p \) singular values of this matrix determine the strength of identification of \(\theta \). To determine the asymptotic size of a test (or CS), one needs to determine the test’s asymptotic null rejection probabilities under sequences that exhibit: (i) standard weak, (ii) nonstandard weak, (iii) semi-strong, and (iv) strong identification.

6 It is shown in Section 12 in the Appendix to AG1 that this condition is not redundant. Without it, for some models, some sequences of distributions, and some (consistent) choices of variance and covariance estimators, Kleibergen’s (2005) LM statistic has a \(\chi^2_k \) asymptotic distribution, where \(k \) is the number of moment conditions. This leads to over-rejection of the null by this LM test when the standard \(\chi^2_p \) critical value is used, where \(p \) is the dimension of the parameter, and the parameter is over-identified (i.e., \(k > p \)). Kleibergen’s CLR tests depend on his LM test statistic, so his CLR tests also rely on the expected outer-product condition.

7 Several rank statistics in the literature have been suggested, including Cragg and Donald (1996, 1997), Robin and Smith (2000), and Kleibergen and Paap (2006).

8 As used in this paper, the term “identification” means “local identification.” It is possible for a value \(\theta \in \Theta \) to be “strongly identified,” but still be globally unidentified if there exist multiple solutions to the moment functions.
To be more precise, we define these identification categories (when $k \geq p$) here. Let the k vector of moment functions be $g_i(\theta)$ and the $k \times p$ Jacobian matrix be $G_i(\theta) := (\partial/\partial \theta')g_i(\theta)$. The expected Jacobian at the true null value θ_0 is $E_F G_i(\theta_0)$, where F denotes the distribution that generates the observations. The variance matrix of $g_i(\theta_0)$ under F is denoted by $\Omega_F(\theta_0)$.

Let $\{s_{jp} : j \leq p\}$ denote the singular values of $\Omega_F^{-1/2}(\theta_0)E_F G_i(\theta_0)$ in nonincreasing order (when $\Omega_F(\theta_0)$ is nonsingular). For a sequence of distributions $\{F_n : n \geq 1\}$, we say that the parameter θ_0 is: (i) weakly identified in the standard sense if $\lim n^{1/2} s_{1F_n} < \infty$; (ii) weakly identified in the nonstandard sense if $\lim n^{1/2} s_{F_n} < 1$ and $\lim s_{pF_n} = 0$; (iii) semi-strongly identified if $\lim n^{1/2} s_{pF_n} = 1$ and $\lim s_{pF_n} = 0$; and (iv) strongly identified if $\lim s_{pF_n} > 0$. For sequences $\{F_n : n \geq 1\}$ for which the previous limits exist (and may equal ∞), these categories are mutually exclusive and exhaustive. We say that the parameter θ_0 is weakly identified if $\lim n^{1/2} s_{pF_n} < \infty$, which is the union of the standard and nonstandard weak identification categories. Note that the asymptotics considered in Staiger and Stock (1997) are of the standard weak identification type. The nonstandard weak identification category can be divided into two subcategories: some weak/some strong identification and joint weak identification, see AG1 for details. The asymptotics considered in Stock and Wright (2000) are of the some weak/some strong identification type.

The SR-CQLR statistics have χ_p^2 asymptotic null distributions under strong and semi-strong identification and noticeably more complicated asymptotic null distributions under weak identification. Standard weak identification sequences are relatively easy to analyze asymptotically because all p of the singular values are $O(n^{-1/2})$. Nonstandard weak identification sequences are much more difficult to analyze asymptotically because the p singular values have different orders of magnitude. This affects the asymptotic properties of both the test statistics and the conditioning statistics. Contiguous alternatives θ are at most $O(n^{-1/2})$ from θ_0 when θ_0 is strongly identified, but more distant when θ_0 is semi-strongly or weakly identified. Typically the parameter θ is not consistently estimable when it is weakly identified.

To obtain the robustness of the three new tests to the singularity of the variance matrix of the moments, we use the rank of the sample variance matrix of the moments to estimate the rank of the population variance matrix. We use a spectral decomposition of the sample variance matrix to estimate all linear combinations of the moments that are stochastic. We construct the test statistics using these estimated stochastic linear combinations of the moments. When the sample variance matrix is singular, we employ an extra rejection condition that improves power by fully exploiting the nonstochastic part of the moment conditions associated with the singular part of

The asymptotic size and similarity results given below do not rely on local or global identification.

The definitions of the identification categories when $\Omega_F(\theta_0)$ may be singular, as is allowed in this paper, is somewhat more complicated than the definitions given here.
the variance matrix. We show that the resulting tests and CS’s have correct asymptotic size. This method of robustifying tests and CS’s to singularity of the population variance matrix also can be applied to other tests and CS’s in the literature. Hence, it should be a useful addition to the literature with widespread applications. The robustness of the SR-CQLR tests to any form of the expected outer product matrix of the vectorized orthogonalized Jacobian occurs because the SR-CQLR test statistics do not depend on Kleibergen’s LM statistic, but rather, on a minimum eigenvalue statistic.

We carry out some asymptotic power comparisons via simulation using eleven linear IV regression models with heteroskedasticity and/or autocorrelation and one right-hand side (rhs) endogenous variable \((p = 1) \) and four IV’s \((k = 4) \). The scenarios considered are the same as in I. Andrews (2014). They are designed to mimic models for the elasticity of inter-temporal substitution estimated by Yogo (2004) for eleven countries using quarterly data from the early 1970’s to the late 1990’s. The results show that, in an overall sense, the SR-CQLR tests introduced here perform well in the scenarios considered. They have asymptotic power that is competitive with that of the PI-CLC test of I. Andrews (2014) and the MM2-SU test of Moreira and Moreira (2013), have somewhat better overall power than the JVW-CLR and MVW-CLR tests of Kleibergen (2005) and the MM1-SU test of Moreira and Moreira (2013), and have noticeably higher power than Kleibergen’s (2005) LM test and the AR test. These results are reported in the SM.

Fast computation of tests is useful when constructing confidence sets by inverting the tests, especially when \(p \geq 2 \). The SR-CQLR\(_2\) test (employed using 5000 critical value repetitions) can be computed 29,411 times in one minute using a laptop with Intel i7-3667U CPU @2.0GHz in the \((k,p) = (4,1)\) scenarios described above. The SR-CQLR\(_2\) test is found to be 115, 292, and 302 times faster to compute than the PI-CLC, MM1-SU, and MM2-SU tests, respectively, 1.2 times slower to compute than the JVW-CLR and MVW-CLR tests, and 372 and 495 times slower to compute than the LM and AR tests in the scenarios considered. The SR-CQLR\(_2\) test is found to be noticeably easier to implement than the PI-CLC, MM1-SU, and MM2-SU tests and comparable

\(^{10}\) These computation times are for the data generating process corresponding to the country Australia, although the choice of country has very little effect on the times. Note that the computation times for the PI-CLC, MM1-SU, and MM2-SU tests depend greatly on the choice of implementation parameters. For the PI-CLC test, these include (i) the number of linear combination coefficients \(a \) considered in the search over \([0, 1]\), which we take to be 100, (ii) the number of simulation repetitions used to determine the best choice of \(a \) which we take to be 2000, and (iii) the number of alternative parameter values considered in the search for the best \(a \), which we take to be 41 for \(p = 1 \). For the MM1-SU and MM2-SU tests, the implementation parameters include (i) the number of variables in the discretization of the maximization problem, which we take to be 1000, and (ii) the number of points used in the numerical approximations of the integrals \(h1 \) and \(h2 \) that appear in the definitions of these tests, which we take to be 1000. The run-times for the PI-CLC, MM1-SU, and MM2-SU tests exclude some items, such as a critical value look up table for the PI-CLC test, that only need to be computed once when carrying out multiple tests. The computations are done in GAUSS using the lmpt application to do the linear programming required by the MM1-SU and MM2-SU tests. Note that the computation time for the SR-CQLR tests could be reduced by using a look up table for the data-dependent critical values, which depend on \(p \) singular values. This would be most useful when \(p = 2 \).
to the JVW-CLR and MVW-CLR tests, in terms of the choice of implementation parameters (see footnote 10) and the robustness of the results to these choices.

The computation time of the SR-CQLR\textsubscript{2} test increases relatively slowly with k and p. For example, the times (in minutes) to compute the SR-CQLR test 5000 times (using 5000 critical value repetitions) for $k = 8$ and $p = 1, 2, 4, 8$ are .26, .49, 1.02, 2.46. The times for $p = 1$ and $k = 1, 2, 4, 8, 16, 32, 64, 128$ are .14, .15, .18, .26, .44, .99, 2.22, 7.76. The times for $(k, p) = (64, 8)$ and $(128, 8)$ are 14.5 and 57.9. Hence, computing tests for large values of (k, p) is quite feasible. These times are for linear IV regression models, but they are the same for any model, linear or nonlinear, when one takes as given the sample moment vector and sample Jacobian matrix.

In contrast, computation of the PI-CLC, MM1-SU, and MM2-SU tests can be expected to increase very rapidly in p. The computation time of the PI-CLC test can be expected to increase in p proportionally to n_θ^p, where n_θ is the number of points in the grid of alternative parameter values for each component of $\theta = (\theta_1, ..., \theta_p)'$, which are used to assess the minimax regret criterion. We use $n_\theta = 41$ in the simulations reported above. Hence, the computation time for $p = 3$ should be 1681 times longer than for $p = 1$. The MM1-SU and MM2-SU tests are not defined in Moreira and Moreira (2013) for $p > 1$, but doing so should be feasible. However, even for $p = 2$, one would obtain an infinite number of constraints on the directional derivatives to impose local unbiasedness, in contrast to the k constraints required when $p = 1$. In consequence, computation of the MM1-SU and MM2-SU tests can be expected to be challenging when $p \geq 2$.

Andrews and Guggenberger (2014c) provides SM to this paper. The SM to AG1 is given in Andrews and Guggenberger (2014b).

The paper is organized as follows. Section 2 discusses the related literature. Section 3 introduces the linear IV model and defines Moreira’s (2003) CLR test for this model for the case of $p \geq 1$ rhs endogenous variables. Section 4 defines the general moment condition model. Section 5 introduces the SR-AR test. Sections 6 and 7 define the SR-CQLR\textsubscript{1} and SR-CQLR\textsubscript{2} tests, respectively. Section 8 provides the asymptotic size and similarity results for the tests. Section 9 establishes the asymptotic efficiency in a GMM sense of the SR-CQLR tests under strong and semi-strong identification. An Appendix provides parts of the proofs of the asymptotic size results given in Section 8.

The SM contains the following. Section 12 provides the time series results. Section 13 provides finite-sample null rejection probability simulation results for the SR-AR and SR-CQLR\textsubscript{2} tests for cases where the variance matrix of the moment functions is singular and near singular. Section 14 compares the test statistics and conditioning statistics of the SR-CQLR\textsubscript{1}, SR-CQLR\textsubscript{2}, and Kleibergen’s (2005, 2007) CLR tests to those of Moreira’s (2003) LR statistic and conditioning statistic in the homoskedastic linear IV model with fixed (i.e., nonrandom) IV’s. Section 15 provides
finite-sample simulation results that illustrate that Kleibergen’s CLR test with moment-variance weighting can have low power in certain linear IV models with a single rhs endogenous variable, as the theoretical results in Section 14 suggest. Section 16 gives the asymptotic power comparisons based on the estimated models in Yogo (2004). Section 17 establishes some properties of an eigenvalue-adjustment procedure used in the definitions of the two SR-CQLR tests. Section 18 defines a new SR-LM test. The rest of the SM, in conjunction with the Appendix, provides the proofs of the results stated in AG2 and the SM.

All limits below are taken as $n \to \infty$ and $A := B$ denotes that A is defined to equal B.

2 Discussion of the Related Literature

In this section, we discuss the related literature and, in particular, existing asymptotic results in the literature. Kleibergen (2005) considers standard weak identification and strong identification. This excludes all cases in the nonstandard weak and semi-strong identification categories.

The other papers in the literature that deal with LM and CLR tests for nonlinear moment condition models, including Guggenberger and Smith (2005), Otsu (2006), Smith (2007), Chaudhuri and Zivot (2011), Guggenberger, Ramalho, and Smith (2012), and I. Andrews (2014), rely on Stock and Wright’s (2000) Assumption C. (An exception is a recent paper by I. Andrews and Mikusheva (2014a), which considers a different form of CLR test.) Stock and Wright’s (2000) Assumption C is an innovative contribution to the literature, but it has some notable drawbacks. For a detailed discussion of Assumption C of Stock and Wright (2000), see Section 2 of AG1. Here we just provide a summary.

First, Assumption C is hard to verify or refute in nonlinear models. As far as we know it has only been verified in the literature for one nonlinear moment condition model, which is a polynomial approximation to the nonlinear CCAPM of interest in Stock and Wright (2000) and Kleibergen (2005). Second, Assumption C is restrictive. It rules out some fairly simple nonlinear models, see AG1. Third, while it covers cases where some parameters are weakly identified and other are strongly identified, it does not cover cases where some transformations of the parameters are weakly identified and other transformations are strongly or semi-strongly identified.

The asymptotic results in this paper and AG1 do not require Assumption C or any related conditions of this type.

11 The same is true of Andrews and Soares (2007), who consider rank-type CLR tests for linear IV models with multiple endogenous variables. Moreira (2003) considers only standard weak identification asymptotics in the latter model.

12 The additive separability of the expected moment conditions, which is required by Assumption C, is the condition that leads to the first two drawbacks described here.
Mikusheva (2010) establishes the correct asymptotic size of LM and CLR tests in the linear IV model when there is one rhs endogenous variable \(p = 1 \) and the errors are homoskedastic. Guggenberger (2012) establishes the correct asymptotic size of heteroskedasticity-robust LM and CLR tests in a heteroskedastic linear IV model with \(p = 1 \).

Compared to the standard GMM tests and CS’s considered in Hansen (1982), the SR-CQLR and SR-AR tests considered here are robust to weak identification and singularity of the variance matrix of the moments. In particular, the tests considered here have correct asymptotic size even when any of the following conditions employed in Hansen (1982) fails: (i) the moment functions have a unique zero at the true value, (ii) the expected Jacobian of the moment functions has full column rank, (iii) the variance matrix of the moment functions is nonsingular, and (iv) the true parameter lies on the interior of the parameter space. Under strong and semi-strong identification, the SR-CQLR procedures considered are asymptotically equivalent under contiguous local alternatives to the procedures considered in Hansen (1982) when the latter are based on asymptotically efficient weighting matrices.

A drawback of the SR-CQLR tests is that they do not have any known optimal power properties under weak identification, except in the homoskedastic normal linear IV model with \(p = 1 \). In contrast, Moreira and Moreira (2013) provide methods for constructing finite-sample unbiased tests that maximize weighted average power in parametric models. They apply these methods to the heteroskedastic and autocorrelated normal linear IV regression model with \(p = 1 \). I. Andrews (2014) develops tests that minimize asymptotic maximum regret among tests that are linear combinations of Kleibergen’s LM and AR tests for linear and nonlinear minimum distance and moment condition models. Although these tests are computationally tractable for minimum distance models, they are not for moment condition models. Hence, for moment condition models, I. Andrews proposes plug-in tests that aim to mimic the features of the infeasible optimal tests. (These feasible plug-in tests do not have optimality properties.) He discusses the heteroskedastic normal linear IV regression model with \(p = 1 \) in detail. Montiel Olea (2012) considers tests that have weighted average power optimality properties in a GMM sense under weak identification in moment condition models when \(p = 1 \). Elliott, Müller, and Watson (2012) consider tests that maximize weighted average power in a variety of (finite-sample) parametric models where a nuisance parameter appears.

\[\text{Conditions (i)-(iv) appear in Hansen’s (1982) assumption (iii) of his Theorem 2.1, Assumption 3.4, assumption that } S_w (the asymptotic variance matrix of the sample moments in Hansen’s notation) \text{ is nonsingular (which is employed in his Theorem 3.2), and Assumption 3.2, respectively.} \]

\[\text{For } p \geq 2, \text{ the SR-CQLR tests are not in the class of tests considered in I. Andrews (2014).} \]

\[\text{See Appendix G of Montiel Olea (2012). Whether these tests are asymptotically efficient under strong and semi-strong identification seems to be an open question. Montiel Olea (2012) also considers tests that maximize weighted average power among tests that depend on a score statistic and an identification statistic in the extremum estimator framework of Andrews and Cheng (2012). Only one source of weak identification arises in this framework.} \]
under the null.

None of the previous papers provide asymptotic size results. Moreira and Moreira (2013) only consider finite-sample results. I. Andrews (2014) provides asymptotic results under Stock and Wright’s (2000) Assumption C. Montiel Olea (2012) considers standard weak identification asymptotics. The asymptotic framework and results of this paper and AG1 should be useful for determining the asymptotic sizes of the tests considered in these papers. In particular, AG1 shows that the sample moments and the (suitably normalized) Jacobian-variance weighted conditioning statistic are not necessarily asymptotically independent when \(p \geq 2 \). This may have implications for the asymptotic size properties of moment condition tests that rely on estimation of the variance matrix of the (orthogonalized) sample Jacobian, such as the tests considered in Moreira and Moreira (2013) and I. Andrews (2014), when \(p \geq 2 \).\(^{16}\)

A recent paper by I. Andrews and Mikusheva (2014a) considers an identification-robust inference method based on a conditional likelihood ratio approach that differs from those discussed above. The test considered in this paper is asymptotically similar conditional on the entire sample mean process that is orthogonalized to be asymptotically independent of the sample moments evaluated at the null parameter value.

The SR-CQLR and SR-AR tests considered in this paper are for full vector inference. To obtain subvector inference, one needs to employ the Bonferroni method or the Scheffé projection method, see Cavanagh, Elliott, and Stock (1995), Chaudhuri, Richardson, Robins, and Zivot (2010), Chaudhuri and Zivot (2011), and McCloskey (2011) for Bonferroni’s method, and Dufour (1989) and Dufour and Jasiak (2001) for the projection method. Both methods are conservative, but Bonferroni’s method is found to work quite well by Chaudhuri, Richardson, Robins, and Zivot (2010) and Chaudhuri and Zivot (2011).\(^{17}\)

Other results in the literature on subvector inference include the following. Subvector inference in which nuisance parameters are profiled out is possible in the linear IV regression model with homoskedastic errors using the AR test, but not the LM or CLR tests, see Guggenberger, Kleibergen, Mavroeidis, and Chen (2012). Andrews and Cheng (2012, 2013a,b) provide subvector tests with correct asymptotic size based on extremum estimator objective functions. These subvector methods depend on the following: (i) one has knowledge of the source of the potential lack of identification (i.e., which subvectors play the roles of \(\beta, \pi, \) and \(\zeta \) in their notation), (ii) there is only

\(^{16}\)Moreira and Moreira (2013) do not explicitly consider tests in linear IV models when \(p \geq 2 \). However, their approach could be applied in such cases and would require estimation of (what amounts to) the variance matrix of the orthogonalized sample Jacobian when this matrix is unknown (which includes all practical cases of interest), see the appearance of \(\Sigma^{-1} \) in their conditioning statistic \(T \).

\(^{17}\)Cavanagh, Elliott, and Stock (1995) provide a refinement of Bonferroni’s method that is not conservative, but it is much more intensive computationally. McCloskey (2011) also considers a refinement of Bonferroni’s method.
one source of lack of identification, and (iii) the estimator objective function does not depend on the weakly identified parameters \(\pi \) (in their notation) when \(\beta = 0 \), which rules out some weak IV’s models. Cheng (2014) provides subvector inference in a nonlinear regression model with multiple nonlinear regressors and, hence, multiple potential sources of lack of identification. I. Andrews and Mikusheva (2012) develop subvector inference methods in a minimum distance context based on Anderson-Rubin-type statistics. I. Andrews and Mikusheva (2014b) provide conditions under which subvector inference is possible in exponential family models (but the requisite conditions seem to be quite restrictive).

Phillips (1989) and Choi and Phillips (1992) provide asymptotic and finite-sample results for estimators and classical tests in simultaneous equations models that may be unidentified or partially identified when \(p \geq 1 \). However, their results do not cover weak identification (of standard or nonstandard form) or identification-robust inference. Hillier (2009) provides exact finite-sample results for CLR tests in the linear model under the assumption of homoskedastic normal errors and known covariance matrix. Antoine and Renault (2009, 2010) consider GMM estimation under semi-strong and strong identification, but do not consider tests or CS’s that are robust to weak identification. Armstrong, Hong, and Nekipelov (2012) show that standard Wald tests for multiple restrictions in some nonlinear IV models can exhibit size distortions when some IV’s are strongly identified and others are semi-strongly identified—not weakly identified. These results indicate that identification issues can be more severe in nonlinear models than in linear models, which provides further motivation for the development of identification-robust tests for nonlinear models.

3 Linear IV Model with \(p \geq 1 \) Endogenous Variables

In this section, we define the CLR test of Moreira (2003) in the homoskedastic Gaussian linear (HGL) IV model with \(p \geq 1 \) endogenous regressor variables and \(k \geq p \) fixed (i.e., nonrandom) IV’s. The SR-CQLR\(_1\) test introduced below is designed to reduce to Moreira’s CLR test in this model asymptotically. The SR-CQLR\(_2\) test introduced below reduces to Moreira’s CLR test in this model asymptotically when \(p = 1 \) and in some, but not all, cases when \(p \geq 2 \) (depending on the behavior of the reduced-form parameters).

\(^{18}\)Montiel Olea (2012) also provides some subvector analysis in the extremum estimator context of Andrews and Cheng (2012). His efficient conditionally similar tests apply to the subvector \((\pi, \zeta) \) of \((\beta, \pi, \zeta) \) (in Andrews and Cheng’s (2012) notation), where \(\beta \) is a parameter that determines the strength of identification and is known to be strongly identified. The scope of this subvector analysis is analogous to that of Stock and Wright (2000) and Kleibergen (2004).
The linear IV regression model is

\[y_{1i} = Y_{2i}'\theta + u_i \text{ and } \]
\[Y_{2i} = \pi'Z_i + V_{2i}, \] (3.1)

where \(y_{1i} \in R \) and \(Y_{2i} \in R^p \) are endogenous variables, \(Z_i \in R^k \) for \(k \geq p \) is a vector of fixed IV’s, and \(\pi \in R^{k \times p} \) is an unknown unrestricted parameter matrix. In terms of its reduced-form equations, the model is

\[y_{1i} = Z_i'\pi \theta + V_{1i}, \quad Y_{2i} = \pi'Z_i + V_{2i}, \quad V_i := (V_{1i}, V_{2i}'), \quad V_{1i} = u_i + V_{2i}'\theta, \text{ and } \Sigma_Y := EV_i'V_i'. \] (3.2)

For simplicity, no exogenous variables are included in the structural equation. The reduced-form errors are \(V_i \in R^{p+1} \). In the HGL model, \(V_i \sim N(0^{p+1}, \Sigma_Y) \) for some positive definite \((p+1) \times (p+1)\) matrix \(\Sigma_Y \).

The IV moment functions and their derivatives with respect to \(\theta \) are

\[g(W_i, \theta) = Z_i(y_{1i} - Y_{2i}'\theta) \text{ and } G(W_i, \theta) = -Z_iY_{2i}' \text{, where } W_i := (y_{1i}, Y_{2i}', Z_i'). \] (3.3)

Moreira (2003, p. 1033) shows that the LR statistic for testing \(H_0 : \theta = \theta_0 \) against \(H_1 : \theta \neq \theta_0 \) in the HGL model in \((3.1)-(3.2)\) when \(\Sigma_Y \) is known is

\[LR_{HGL,n} := \mathcal{S}_n'\mathcal{S}_n - \lambda_{\min}((\mathcal{S}_n, \mathcal{T}_n)'(\mathcal{S}_n, \mathcal{T}_n)), \]

where

\[\mathcal{S}_n := (Z_{n,k}Z_{n,k})^{-1/2}Z_{n,k}Yb_0(b_0'\Sigma_Yb_0)^{-1/2} = (n^{-1}Z_{n,k}'Z_{n,k})^{-1/2}n^{1/2}g_n(b_0'\Sigma_Yb_0)^{-1/2} \in R^k, \]
\[\mathcal{T}_n := (Z_{n,k}'Z_{n,k})^{-1/2}Z_{n,k}'Y\Sigma_Y^{-1}A_0(A_0'\Sigma_Y^{-1}A_0)^{-1/2} \]
\[= -(n^{-1}Z_{n,k}'Z_{n,k})^{-1/2}n^{1/2}(\hat{G}_n\theta_0 - \hat{g}_n, \hat{G}_n)\Sigma_Y^{-1}A_0(A_0'\Sigma_Y^{-1}A_0)^{-1/2} \in R^{k \times p}, \]
\[Z_{n,k} := (Z_1, ..., Z_n)' \in R^{n \times k}, \quad Y := (Y_1, ..., Y_n)' \in R^{n \times (p+1)}, \quad Y_i := (y_{1i}, Y_{2i}') \in R^{p+1}, \]
\[b_0 := (1, -\theta_0) \in R^{p+1}, \quad \hat{g}_n := n^{-1} \sum_{i=1}^n g(W_i, \theta_0), \quad A_0 := (\theta_0, I_p)' \in R^{(p+1) \times p}, \]
\[\hat{G}_n := n^{-1} \sum_{i=1}^n G(W_i, \theta_0), \] (3.4)

\(\lambda_{\min}(\cdot) \) denotes the smallest eigenvalue of a matrix, and the second equality for \(\mathcal{T}_n \) holds by (24.12) in the SM.\(^{19}\) Note that \((\mathcal{S}_n, \mathcal{T}_n)\) is a (conveniently transformed) sufficient statistic for \((\theta, \pi)\) under

\(^{19}\)We let \(Z_{n,k} \) (rather than \(Z \)) denote \((Z_1, ..., Z_n)', \) because we use \(Z \) to denote a \(k \) vector of standard normals.
normality of V_i, known variance matrix Σ_V, and fixed IV’s.

Moreira’s (2003) CLR test uses the $LR_{HGL,n}$ statistic and a conditional critical value that depends on the $k \times p$ matrix \mathbf{T}_n through a conditional critical value function $c_{k,p}(D, 1 - \alpha)$, which is defined as follows. For nonrandom $D \in \mathbb{R}^{k \times p}$, let

$$CLR_{k,p}(D) := Z'Z - \lambda_{\min}((Z,D)'(Z,D)), \quad \text{where } Z \sim N(0^k, I_k).$$

(3.5)

Define $c_{k,p}(D, 1 - \alpha)$ to be the $1 - \alpha$ quantile of the distribution of $CLR_{k,p}(D)$. For $\alpha \in (0, 1)$, Moreira’s CLR test with nominal level α rejects H_0 if

$$LR_{HGL,n} > c_{k,p}(\mathbf{T}_n, 1 - \alpha).$$

(3.6)

When Σ_V is unknown, Moreira (2003) replaces Σ_V by a consistent estimator.

Moreira’s (2003) CLR test is similar with finite-sample size α in the HGL model with known Σ_V. Intuitively, the strength of the IV’s affects the null distribution of the test statistic $LR_{HGL,n}$ and the critical value $c_{k,p}(\mathbf{T}_n, 1 - \alpha)$ adjusts accordingly to yield a test with size α using the dependence of the null distribution of \mathbf{T}_n on the strength of the IV’s. When $p = 1$, this test has been shown to have some (approximate) asymptotic optimality properties, see Andrews, Moreira, and Stock (2006, 2008) and Chernozhukov, Hansen, and Jansson (2009).

For $p \geq 2$, the asymptotic properties of Moreira’s CLR test, such as its asymptotic size and similarity, are not available in the literature. The results for the SR-CQLR$_1$ test, specialized to the linear IV model (with or without Gaussianity, homoskedasticity, and/or independence of the errors), fill this gap.

4 Moment Condition Model

4.1 Moment Functions

The general moment condition model that we consider is

$$E_F g(W_i, \theta) = 0^k,$$

(4.1)

where the equality holds when $\theta \in \Theta \subset \mathbb{R}^p$ is the true value, $0^k = (0, ..., 0)' \in \mathbb{R}^k$, $\{W_i \in \mathbb{R}^m : i = 1, ..., n\}$ are i.i.d. observations with distribution F, g is a known (possibly nonlinear) function from \mathbb{R}^{m+p} to \mathbb{R}^k, $E_F(\cdot)$ denotes expectation under F, and $p, k, m \geq 1$. As noted in the Introduction, below.
we allow for \(k \geq p \) and \(k < p \). In Section 12 in the SM, we consider models with stationary strong mixing observations. The parameter space for \(\theta \) is \(\Theta \subset \mathbb{R}^p \).

The Jacobian of the moment functions is

\[
G(W_i, \theta) := \frac{\partial}{\partial \theta} g(W_i, \theta) \in \mathbb{R}^{k \times p} \tag{4.2}
\]

For notational simplicity, we let \(g_i(\theta) \) and \(G_i(\theta) \) abbreviate \(g(W_i, \theta) \) and \(G(W_i, \theta) \), respectively. We denote the \(j \)th column of \(G_i(\theta) \) by \(G_{ij}(\theta) \) and \(G_{ij} = G_{ij}(\theta_0) \), where \(\theta_0 \) is the (true) null value of \(\theta \), for \(j = 1, \ldots, p \). Likewise, we often leave out the argument \(\theta_0 \) for other functions as well. Thus, we write \(g_i \) and \(G_i \), rather than \(g_i(\theta_0) \) and \(G_i(\theta_0) \). We let \(I_r \) denote the \(r \) dimensional identity matrix.

We are concerned with tests of the null hypothesis

\[
H_0 : \theta = \theta_0 \text{ versus } H_1 : \theta \neq \theta_0. \tag{4.3}
\]

The SR-CQLR \(_1 \) test that we introduce in Section 6 below applies when \(g_i(\theta) \) has the form

\[
g_i(\theta) = u_i(\theta)Z_i, \tag{4.4}
\]

where \(Z_i \) is a \(k \) vector of IV’s, \(u_i(\theta) \) is a scalar residual, and the (random) function \(u_i(\cdot) \) is known. This is the case considered in Stock and Wright (2000). It covers many GMM situations, but can be restrictive. For example, it rules out Hansen and Scheinkman’s (1995) moment conditions for continuous-time Markov processes, the moment conditions often used with dynamic panel models, e.g., see Ahn and Schmidt (1995), Arellano and Bover (1995), and Blundell and Bond (1995), and moment conditions of the form \(g_i(\theta) = u_i(\theta) \otimes Z_i \), where \(u_i(\theta) \) is a vector. For the cases ruled out, we introduce a second SR-CQLR test in Section 7 that does not rely on (4.4). The SR-AR test defined in Section 3 also does not require that \(g_i(\theta) \) satisfies (4.4).

When (4.4) holds, we define

\[
\begin{align*}
 u_{\theta_i}(\theta) &:= \frac{\partial}{\partial \theta} u_i(\theta) \in \mathbb{R}^p \quad \text{and} \quad u_{\theta_i}^*(\theta) := \begin{pmatrix} u_i(\theta) \\ u_{\theta_i}(\theta) \end{pmatrix} \in \mathbb{R}^{p+1}, \\
 \text{and we have } G_i(\theta) &= Z_i u_{\theta_i}(\theta)'.
\end{align*}
\]

\[\text{The asymptotic size results given below do not actually require } G(W_i, \theta) \text{ to be the derivative matrix of } g(W_i, \theta). \]

\[\text{The matrix } G(W_i, \theta) \text{ can be any } k \times p \text{ matrix that satisfies the conditions in } F_j^{iR}, \text{ defined in (4.9) below. For example, } G(W_i, \theta) \text{ can be the derivative of } g(W_i, \theta) \text{ almost surely, rather than for all } W_i, \text{ which allows } g(W_i, \theta) \text{ to have kinks. The function } G(W_i, \theta) \text{ also can be a numerical derivative, such as } ((g(W_i, \theta + \varepsilon e_j) - g(W_i, \theta))/\varepsilon, \ldots, (g(W_i, \theta + \varepsilon e_p) - g(W_i, \theta))/\varepsilon) \in \mathbb{R}^{k \times p} \text{ for some } \varepsilon > 0, \text{ where } e_j \text{ is the } j \text{th unit vector, e.g., } e_1 = (1, 0, \ldots, 0)'.
\]

\[\text{As with } G(W_i, \theta) \text{ defined in (4.2), } u_{\theta_i}(\theta) \text{ need not be a vector of partial derivatives of } u_i(\theta) \text{ for all sample realizations of the observations. It could be the vector of partial derivatives of } u_i(\theta) \text{ almost surely, rather than for all } W_i, \text{ which allows } u_i(\theta) \text{ to have kinks, or a vector of finite differences of } u_i(\theta). \text{ For the asymptotic size results for the}\]

\[20\text{The asymptotic size results given below do not actually require } G(W_i, \theta) \text{ to be the derivative matrix of } g(W_i, \theta). \]

\[21\text{As with } G(W_i, \theta) \text{ defined in (4.2), } u_{\theta_i}(\theta) \text{ need not be a vector of partial derivatives of } u_i(\theta) \text{ for all sample realizations of the observations. It could be the vector of partial derivatives of } u_i(\theta) \text{ almost surely, rather than for all } W_i, \text{ which allows } u_i(\theta) \text{ to have kinks, or a vector of finite differences of } u_i(\theta). \text{ For the asymptotic size results for the}\]
4.2 Parameter Spaces of Distributions F

The variance matrix of the moments, $\Omega_F(\theta)$, is defined by

$$\Omega_F(\theta) := E_F(g_i(\theta) - E_Fg_i(\theta))(g_i(\theta) - E_Fg_i(\theta))'.$$

(Under H_0, $\Omega_F(\theta_0) = E_Fg_i(\theta_0)g_i(\theta_0)'$.) We allow for the case where $\Omega_F(\theta)$ is singular. The rank and spectral decomposition of $\Omega_F(\theta)$ are denoted by

$$r_F(\theta) := rk(\Omega_F(\theta)) \text{ and } \Omega_F(\theta) := A_F^\dagger(\theta)\Pi_F(\theta)A_F^\dagger(\theta)'$$

where $rk(\cdot)$ denotes the rank of a matrix, $\Pi_F(\theta)$ is the $k \times k$ diagonal matrix with the eigenvalues of $\Omega_F(\theta)$ on the diagonal in nonincreasing order, and $A_F^\dagger(\theta)$ is a $k \times k$ orthogonal matrix of eigenvectors corresponding to the eigenvalues in $\Pi_F(\theta)$. We partition $A_F^\dagger(\theta)$ according to whether the corresponding eigenvalues are positive or zero:

$$A_F^\dagger(\theta) = [A_F(\theta), A_F^\dagger(\theta)], \text{ where } A_F(\theta) \in R^{k \times r_F(\theta)} \text{ and } A_F^\dagger(\theta) \in R^{k \times (k - r_F(\theta))}.$$

By definition, the columns of $A_F(\theta)$ are eigenvectors of $\Omega_F(\theta)$ that correspond to positive eigenvalues of $\Omega_F(\theta)$.

Let $\Pi_{1F}(\theta)$ denote the upper left $r_F(\theta) \times r_F(\theta)$ submatrix of $\Pi_F(\theta)$. The matrix $\Pi_{1F}(\theta)$ is diagonal with the positive eigenvalues of $\Omega_F(\theta)$ on its diagonal in nonincreasing order.

The r_F vector $\Pi_{1F}^{-1/2}A_F^\dagger g_i$ is a vector of non-redundant linear combinations of the moment functions evaluated at θ_0 rescaled to have variances equal to one: $Var_F(\Pi_{1F}^{-1/2}A_F^\dagger g_i) = \Pi_{1F}^{-1/2}A_F^\dagger\Omega_F A_F \Pi_{1F}^{-1/2} = I_{r_F}$. The $r_F \times p$ matrix $\Pi_{1F}^{-1/2}A_F^\dagger G_i$ is the analogously transformed Jacobian matrix.

We consider the following parameter spaces for the distribution F that generates the data under $H_0: \theta = \theta_0$,

$$\mathcal{F}_{AR}^{SR} := \{ F: E_F g_i = 0^k \text{ and } E_F \|\Pi_{1F}^{-1/2}A_F^\dagger g_i\|^{2+\gamma} \leq M \},$$

$$\mathcal{F}_2^{SR} := \{ F \in \mathcal{F}_{AR}^{SR}: E_F \|\text{vec}(\Pi_{1F}^{-1/2}A_F^\dagger G_i)\|^{2+\gamma} \leq M \}, \text{ and}$$

$$\mathcal{F}_1^{SR} := \{ F \in \mathcal{F}_2^{SR}: E_F \|\Pi_{1F}^{-1/2}A_F^\dagger Z_i\|^{4+\gamma} \leq M, \ E_F \|u_i^*\|^{2+\gamma} \leq M, \text{ and} \ E_F \|\Pi_{1F}^{-1/2}A_F^\dagger Z_i\|^2 u_i^2 1(u_i^2 > c) \leq 1/2 \}$$

SR-CQLR$_1$ test given below to hold, $u_{\theta_i}(\theta)$ can be any random p vector that satisfies the conditions in \mathcal{F}_1^{SR} (defined in (4.9)).
for some $\gamma > 0$ and some $M, c < \infty$, where $\| \cdot \|$ denotes the Euclidean norm, and $\text{vec}(\cdot)$ denotes the vector obtained from stacking the columns of a matrix. By definition, $F_{1SR}^{SR} \subset F_{2SR}^{SR} \subset F_{AR}^{SR}$.

The null parameter spaces $F_{AR}^{SR}, F_{2SR}^{SR},$ and F_{1SR}^{SR} are used for the SR-AR, SR-CQLR$_2,$ and SR-CQLR$_1$ tests, respectively. The first condition in F_{AR}^{SR} is the defining condition of the model. The second condition in F_{AR}^{SR} is a mild moment condition on the rescaled non-redundant moment functions $\Pi_{1F}^{-1/2} A'_F g_i$. The condition in F_{2SR}^{SR} is a mild moment condition on the analogously transformed derivatives of the moment conditions $\Pi_{1F}^{-1/2} A'_F G_i$. The conditions in F_{1SR}^{SR} are only marginally stronger than those in F_{2SR}^{SR}. A sufficient condition for the last condition in F_{1SR}^{SR} to hold for some $c < \infty$ is $E_F a_i^2 \leq M_*$ for some sufficiently large $M_* < \infty$ (using the first condition in F_{1SR}^{SR} and the Cauchy-Bunyakovsky-Schwarz inequality).

Identification issues arise when $E_F G_i$ has, or is close to having, less than full column rank, which occurs when $k < p$ or $k \geq p$ and one or more of its singular values is zero or close to zero. The conditions in $F_{AR}^{SR}, F_{2SR}^{SR},$ and F_{1SR}^{SR} place no restrictions on the column rank or singular values of $E_F G_i$.

The conditions in $F_{AR}^{SR}, F_{2SR}^{SR},$ and F_{1SR}^{SR} also place no restrictions on the variance matrix $\Omega_F := E_F g_i g'_i$ of g_i, such as $\lambda_{\min}(\Omega_F) \geq \delta$ for some $\delta > 0$ or $\lambda_{\min}(\Omega_F) > 0$. Hence, Ω_F can be singular. This is particularly desirable in cases where identification failure yields singularity of Ω_F (and weak identification is accompanied by near singularity of Ω_F). For example, this occurs in all likelihood scenarios, in which case $g_i(\theta)$ is the score function. In such scenarios, the information matrix equality implies that minus the expected Jacobian matrix $E_F G_i$ equals the information matrix, which also equals the expected outer product of the score function Ω_F, i.e., $-E_F G_i = \Omega_F$. In this case, weak identification occurs when Ω_F is close to being singular. Furthermore, identification failure yields singularity of Ω_F in all quasi-likelihood scenarios when the quasi-likelihood does not depend on some element(s) of θ (or some transformation(s) of θ) for θ in a neighborhood of θ_0.

A second example where Ω_F may be singular is the following homoskedastic linear IV model:

$$y_{1i} = Y_{2i}\beta + U_i \quad \text{and} \quad Y_{2i} = Z'_i \pi + V_i,$$

where all quantities are scalars except $Z_i, \pi \in \mathbb{R}^{d_2}$, $\theta = (\beta, \pi)' \in \mathbb{R}^{\beta + d_2}$, $E_U = EV_{2i} = 0$, $EU_i Z_i = EV_i Z_i = 0^{d_2}$, and $E(V_i V_i' Z_i) = \Sigma_V$ a.s. for

\footnote{In the results below, we assume that whichever parameter space is being considered is non-empty.}

\footnote{The moment bounds in $F_{AR}^{SR}, F_{2SR}^{SR},$ and F_{1SR}^{SR} can be weakened very slightly by, e.g., replacing $E_F ||\Pi_{1F}^{-1/2} A'_F g_i||^2 + \gamma \leq M$ in F_{AR}^{SR} by $E_F ||\Pi_{1F}^{-1/2} A'_F g_i||^2 1(\|\Pi_{1F}^{-1/2} A'_F g_i\| > j) \leq \varepsilon_j$ for all integers $j \geq 1$ for some $\varepsilon_j > 0$ (that does not depend on F) for which $\varepsilon_j \to 0$ as $j \to \infty$. The latter conditions are weaker because, for any random variable X and constants $\gamma, j > 0$, $EX^2(1(|X| > j) \leq E|X|^{2 + \gamma}/j^\gamma$. The latter conditions allow for the application of Lindeberg’s triangular array central limit theorem for independent random variables, e.g., see Billingsley (1979, Thm. 27.2, p. 310), in scenarios where the distribution F depends on n. For simplicity, we define the parameter spaces as is.}

\footnote{In this case, the moment functions equal the quasi-score and some element(s) or linear combination(s) of elements of moment functions, equal zero a.s. at θ_0 (because the quasi-score is of the form $g_i(\theta) = (\partial/\partial \theta) \log f(W_i, \theta)$ for some density or conditional density $f(W_i, \theta)$). This yields singularity of the variance matrix of the moment functions and of the expected Jacobian of the moment functions.}
$V_i := (V_{1i}, V_{2i})'$ and some 2×2 constant matrix Σ_V. The corresponding reduced-form equations are $y_{1i} = Z_i' \pi + V_{1i}$ and $y_{2i} = Z_i' \pi + V_{1i}$, where $V_{1i} = U_i + V_{2i}/\beta$. The moment conditions for θ are $g_i(\theta) = ((y_{1i} - Z_i' \pi)Z_i', (y_{2i} - Z_i' \pi)Z_i')' \in \mathbb{R}^k$, where $k = 2d_Z$. The variance matrix $\Sigma_V \otimes E Z_i Z_i'$ of $g_i(\theta_0) = (V_{1i}, V_{2i})'$ is singular whenever the covariance between the reduced-form errors V_{1i} and V_{2i} is one (or minus one) or $E Z_i Z_i'$ is singular. In this model, we are interested in joint inference concerning β and π. This is of interest when one wants to see how the magnitude of π affects the range of plausible β values.

A third case where Ω_F can be singular is in the model for interest rate dynamics discussed in Jegannathan, Skoulakis, and Wang (2002, Sec. 6.2) (JSW). JSW consider five moment conditions for a four dimensional parameter θ. Grant (2013) points out that the variance matrix of the moment functions for this model is singular when one or more of three restrictions on the parameters holds. When any two of these restrictions hold, the parameter also is unidentified.\(^{25}\)

In examples one and three above and others like them, $E_F G_i$ is close to having less than full column rank (i.e., its smallest singular value is small) and Ω_F is close to being singular (i.e., $\lambda_{\min}(\Omega_F)$ is small) when the null value θ_0 is close to a value which yields reduced column rank of $E_F G_i$ and singularity of Ω_F. Null hypotheses of this type are important for the properties of CS’s because uniformity over null hypothesis values is necessary for CS’s to have correct asymptotic size. Hence, it is important to have procedures available that place no restrictions on either $E_F G_i$ or Ω_F.

In contrast, to obtain the correct asymptotic size of Kleibergen’s (2005) LM and moment-variance-weighted CLR tests (and his Jacobian-weighted CLR test when $p = 1$), AG1 imposes the condition $\lambda_{\min}(\Omega_F) > 0$ on all null distributions F, because these tests rely on the inverse of the sample variance matrix $\tilde{\Omega}_n$ being well-defined and well-behaved. AG1 also imposes a second condition that does not appear in the parameter spaces $\mathcal{F}_{AR}^{SR}, \mathcal{F}_{2}^{SR}$, and $\mathcal{F}_{1}^{SR}\(^{26}\)$. This second condition can be restrictive and, in some models, difficult to verify. This condition arises because Kleibergen’s LM statistic projects onto a p dimensional column space of a weighted version of the $k \times p$ orthogonalized sample Jacobian. To obtain the desired χ^2_p asymptotic null distribution of this statistic via the continuous mapping theorem, one needs the orthogonalized sample Jacobian to be full column rank p a.s. asymptotically (after suitable renormalization). To obtain this under weak identification, AG1 imposes the condition referred to above.\(^{27}\) It is shown in Section 12 in

\(^{25}\)The first four moment functions in JSW are $(a(b - r_i)r_i^{-\gamma} - \gamma \sigma^2 r_i^{-1}, a(b - r_i)r_i^{-2\gamma + 1} - (\gamma - 1/2)\sigma^2, (b - r_i)r_i^{-a} - (1/2)\sigma^2 r_i^{-2\gamma - a - 1}, a(b - r_i)r_i^{-\gamma} - (1/2)\sigma^2 r_i^{-2\gamma - \sigma - 1})'$, where $a = (a, b, \sigma, \gamma)'$, and r_i is the interest rate. The second and third functions are equivalent if $\gamma = (a + 1)/2$; the second and fourth functions are equivalent if $\gamma = (\sigma + 1)/2$; and the third and fourth functions are equivalent if $\sigma = a$.

\(^{26}\)See the definition of \mathcal{F}_0 in Section 3 of AG1.

\(^{27}\)This condition is used in the proof of Lemma 8.3(d) in the Appendix of AG1, which is given in Section 15 in the SM to AG1.
the Appendix to AG1 that this condition is not redundant.

Given the discussion of the previous paragraph, it is clear that the SR-AR, SR-CQLR\textsubscript{1}, and SR-CQLR\textsubscript{2} tests introduced below have advantages over Kleibergen’s LM and CLR tests in terms of the robustness of their correct asymptotic size properties.

Next, we specify the parameter spaces for \((F, \theta)\) that are used with the SR-AR, SR-CQLR\textsubscript{2}, and SR-CQLR\textsubscript{1} CS’s. They are denoted by \(\mathcal{F}_{\Theta, AR}^{SR}, \mathcal{F}_{\Theta, 2}^{SR}, \) and \(\mathcal{F}_{\Theta, 1}^{SR}\), respectively. For notational simplicity, the dependence of the parameter spaces \(\mathcal{F}_{AR}^{SR}, \mathcal{F}_{2}^{SR}, \) and \(\mathcal{F}_{1}^{SR}\) in (4.9) on \(\theta\) is suppressed. When dealing with CS’s, rather than tests, we make the dependence explicit and write them as \(\mathcal{F}_{AR}^{SR}(\theta), \mathcal{F}_{2}^{SR}(\theta), \) and \(\mathcal{F}_{1}^{SR}(\theta)\), respectively. We define

\[
\mathcal{F}_{\Theta, AR}^{SR} := \{ (F, \theta_0) : F \in \mathcal{F}_{AR}^{SR}(\theta_0), \theta_0 \in \Theta \}, \\
\mathcal{F}_{\Theta, 2}^{SR} := \{ (F, \theta_0) : F \in \mathcal{F}_{2}^{SR}(\theta_0), \theta_0 \in \Theta \}, \text{ and} \\
\mathcal{F}_{\Theta, 1}^{SR} := \{ (F, \theta_0) : F \in \mathcal{F}_{1}^{SR}(\theta_0), \theta_0 \in \Theta \}. \quad (4.10)
\]

4.3 Definitions of Asymptotic Size and Similarity

Here, we define the asymptotic size and asymptotic similarity of a test of \(H_0 : \theta = \theta_0\) for some given parameter space \(\overline{F}(\theta_0)\) of null distributions \(F\). Let \(RP_n(\theta_0, F, \alpha)\) denote the null rejection probability of a nominal size \(\alpha\) test with sample size \(n\) when the null distribution of the data is \(F\). The asymptotic size of the test for the null parameter space \(\overline{F}(\theta_0)\) is defined by

\[
AsySz := \lim_{n \to \infty} \sup_{F \in \overline{F}(\theta_0)} \sup RP_n(\theta_0, F, \alpha). \quad (4.11)
\]

The test is asymptotically similar (in a uniform sense) for the null parameter space \(\overline{F}(\theta_0)\) if

\[
\liminf_{n \to \infty} \inf_{F \in \overline{F}(\theta_0)} RP_n(\theta_0, F, \alpha) = \limsup_{n \to \infty} \sup_{F \in \overline{F}(\theta_0)} RP_n(\theta_0, F, \alpha). \quad (4.12)
\]

Below we establish the correct asymptotic size (i.e., asymptotic size equals nominal size) and the asymptotic similarity of the SR-AR, SR-CQLR\textsubscript{1}, and SR-CQLR\textsubscript{2} tests for the parameters spaces \(\mathcal{F}_{AR}^{SR}, \mathcal{F}_{1}^{SR}, \) and \(\mathcal{F}_{2}^{SR}\), respectively.

Now we consider a CS that is obtained by inverting tests of \(H_0 : \theta = \theta_0\) for all \(\theta_0 \in \Theta\). The asymptotic size of the CS for the parameter space \(\overline{F}_{\Theta} := \{ (F, \theta_0) : F \in \overline{F}(\theta_0), \theta_0 \in \Theta \}\) is \(AsySz := \liminf_{n \to \infty} \inf_{(F, \theta_0) \in \overline{F}_{\Theta}} (1 - RP_n(\theta_0, F, \alpha))\). The CS is asymptotically similar (in a uniform sense) for the parameter space \(\overline{F}_{\Theta}\) if \(\liminf_{n \to \infty} \inf_{(F, \theta_0) \in \overline{F}_{\Theta}} (1 - RP_n(\theta_0, F, \alpha)) = \limsup_{n \to \infty} \sup_{(F, \theta_0) \in \overline{F}_{\Theta}} (1 - RP_n(\theta_0, F, \alpha))\). As defined, asymptotic size and similarity of a CS require uniformity over the null values \(\theta_0 \in \Theta\), as
well as uniformity over null distributions \(F \) for each null value \(\theta_0 \). With the SR-AR, SR-CQLR_1, and SR-CQLR_2 CS’s considered here, this additional level of uniformity does not cause complications. The same proofs for tests deliver results for CS’s with very minor adjustments.

5 Singularity-Robust Nonlinear Anderson-Rubin Test

The nonlinear Anderson-Rubin (AR) test was introduced by Stock and Wright (2000). (They refer to it as an S test.) It is robust to identification failure and weak identification, but it relies on nonsingularity of the variance matrix of the moment functions. In this section, we introduce a singularity-robust nonlinear AR (SR-AR) test that has correct asymptotic size without any conditions on the variance matrix of the moment functions. The SR-AR test generalizes the S test of Stock and Wright (2000).

When the model is just identified (i.e., the dimension \(p \) of \(\theta \) equals the dimension \(k \) of \(g_i(\theta) \)), the SR-AR test has good power properties. For example, this occurs in likelihood scenarios, in which case the vector of moment functions consists of the score function. However, when the model is over-identified (i.e., \(k > p \)); the SR-AR test generally sacrifices power because it is a \(k \) degrees of freedom test concerning \(p (<k) \) parameters. Hence, its power is often less than that of the SR-CQLR_1 and SR-CQLR_2 tests introduced below.

The sample moments and an estimator of the variance matrix of the moments, \(\Omega_F(\theta) \), are:

\[
\tilde{g}_n(\theta) := n^{-1} \sum_{i=1}^n g_i(\theta) \quad \text{and} \quad \tilde{\Omega}_n(\theta) := n^{-1} \sum_{i=1}^n g_i(\theta)g_i(\theta)' - \tilde{g}_n(\theta)\tilde{g}_n(\theta)'. \tag{5.1}
\]

The usual nonlinear AR statistic is

\[
AR_n(\theta) := n\tilde{g}_n(\theta)'\tilde{\Omega}_n^{-1}(\theta)\tilde{g}_n(\theta). \tag{5.2}
\]

The nonlinear AR test rejects \(H_0 : \theta = \theta_0 \) if \(AR_n(\theta_0) > \chi^2_{k,1-\alpha} \), where \(\chi^2_{k,1-\alpha} \) is the \(1 - \alpha \) quantile of the chi-square distribution with \(k \) degrees of freedom.

Now, we introduce a singularity-robust nonlinear AR statistic which applies even if \(\Omega_F(\theta) \) is singular. First, we introduce sample versions of the population quantities \(r_F(\theta) \), \(A^T_F(\theta) \), \(A_F(\theta) \), \(A^T_F(\theta) \), and \(\Pi_F(\theta) \), which are defined in \((4.7) \) and \((4.8) \). The rank and spectral decomposition of \(\tilde{\Omega}_n(\theta) \) are denoted by

\[
\hat{r}_n(\theta) := rk(\tilde{\Omega}_n(\theta)) \quad \text{and} \quad \hat{\Omega}_n(\theta) := \hat{A}^T_n(\theta)\tilde{\Omega}_n(\theta)\hat{A}_n(\theta)', \tag{5.3}
\]

where \(\hat{\Pi}_n(\theta) \) is the \(k \times k \) diagonal matrix with the eigenvalues of \(\tilde{\Omega}_n(\theta) \) on the diagonal in non-
increasing order, and $\hat{A}_n(\theta)$ is a $k \times k$ orthogonal matrix of eigenvectors corresponding to the eigenvalues in $\hat{\Omega}_n(\theta)$. We partition $\hat{A}_n(\theta)$ according to whether the corresponding eigenvalues are positive or zero:

$$\hat{A}_n(\theta) = [\hat{A}_n(\theta), \hat{A}_n^+(\theta)], \quad \text{where} \quad \hat{A}_n(\theta) \in R^{k \times \hat{r}_n(\theta)} \quad \text{and} \quad \hat{A}_n^+(\theta) \in R^{k \times (k - \hat{r}_n(\theta))}. \quad (5.4)$$

By definition, the columns of $\hat{A}_n(\theta)$ are eigenvectors of $\hat{\Omega}_n(\theta)$ that correspond to positive eigenvalues of $\hat{\Omega}_n(\theta)$. The eigenvectors in $\hat{A}_n(\theta)$ are not uniquely defined, but the eigenspace spanned by these vectors is. The tests and CS’s defined here and below using $\hat{A}_n(\theta)$ are numerically invariant to the particular choice of $\hat{A}_n(\theta)$ (by the invariance results given in Lemma 6.2 below).

Define $\hat{g}_{An}(\theta)$ and $\hat{\Omega}_{An}(\theta)$ as $\hat{g}_n(\theta)$ and $\hat{\Omega}_n(\theta)$ are defined in (5.1), but with $\hat{A}_n(\theta)'g_i(\theta)$ in place of $g_i(\theta)$. That is,

$$\hat{g}_{An}(\theta) := \hat{A}_n(\theta)'\hat{g}_n(\theta) \in R^{\hat{r}_n(\theta)} \quad \text{and} \quad \hat{\Omega}_{An}(\theta) := \hat{A}_n(\theta)'\hat{\Omega}_n(\theta)\hat{A}_n(\theta) \in R^{\hat{r}_n(\theta) \times \hat{r}_n(\theta)}. \quad (5.5)$$

The SR-AR test statistic is defined by

$$SR-AR_n(\theta) := n\hat{g}_{An}(\theta)'\hat{\Omega}_{An}^{-1}(\theta)\hat{g}_{An}(\theta). \quad (5.6)$$

The SR-AR test rejects the null hypothesis $H_0 : \theta = \theta_0$ if

$$SR-AR_n(\theta_0) > \chi^2_{\hat{r}_n(\theta_0), 1-\alpha} \text{ or } \hat{A}_n^+(\theta_0)'\hat{g}_n(\theta_0) \neq 0^{k-\hat{r}_n(\theta_0)}, \quad (5.7)$$

where by definition the latter condition does not hold if $\hat{r}_n(\theta_0) = k$. For completeness of the specification of the SR-AR test, if $\hat{r}_n(\theta_0) = 0$, then we define $SR-AR_n(\theta_0) := 0$ and $\chi^2_{\hat{r}_n(\theta_0), 1-\alpha} := 0$.

Thus, when $\hat{r}_n(\theta_0) = 0$, we have $\hat{A}_n^+(\theta_0) = I_k$ and the SR-AR test rejects H_0 if $\hat{g}_n(\theta_0) \neq 0^k$.

The extra rejection condition, $\hat{A}_n^+(\theta_0)'\hat{g}_n(\theta_0) \neq 0^{k-\hat{r}_n(\theta_0)}$, improves power, but we show it has no effect under H_0 with probability that goes to one (wp→1). It improves power because it fully exploits, rather than ignores, the nonstochastic part of the moment conditions associated with the singular part of the variance matrix. For example, if the moment conditions include some identities and the moment variance matrix excluding the identities is nonsingular, then $\hat{A}_n^+(\theta_0)'\hat{g}_n(\theta_0)$ consists of the identities and the SR-AR test rejects H_0 if the identities do not hold when evaluated at θ_0 or if the SR-AR statistic, which ignores the identities, is sufficiently large.

Two other simple examples where the extra rejection condition improves power are the following. First, suppose $(X_{1i}, X_{2i})' \sim \text{i.i.d. } N(\theta, \Omega_F)$, where $\theta = (\theta_1, \theta_2)' \in R^2$, Ω_F is a 2×2 matrix of ones, and the moment functions are $g_i(\theta) = (X_{1i} - \theta_1, X_{2i} - \theta_2)'$. In this case, Ω_F is singular, $\hat{A}_n(\theta_0) =$
(1,1)′ a.s., \(\tilde{A}_n(\theta_0) = (1, -1)′\) a.s., the SR-AR statistic is a quadratic form in \(\tilde{A}_n(\theta_0)′\tilde{g}_n(\theta_0) = \bar{X}_{1n} + \bar{X}_{2n} - (\theta_{10} + \theta_{20})\), where \(\bar{X}_{mn} = n^{-1} \sum_{i=1}^{m} X_{mi}\) for \(m = 1, 2\), and \(A_{n}^{-1}(\theta_0)′\tilde{g}_n(\theta_0) = \bar{X}_{1n} - \bar{X}_{2n} - (\theta_{10} - \theta_{20})\) a.s. If one does not use the extra rejection condition, then the SR-AR test has no power against alternatives \(\theta = (\theta_1, \theta_2)' (\neq \theta_0)\) for which \(\theta_1 + \theta_2 = \theta_{10} + \theta_{20}\). However, when the extra rejection condition is utilized, all \(\theta \in \mathbb{R}^2\) except those on the line \(\theta_1 - \theta_2 = \theta_{10} - \theta_{20}\) are rejected with probability one (because \(\bar{X}_{1n} - \bar{X}_{2n} = E_F X_{1i} - E_F X_{2i} = \theta_1 - \theta_2\) a.s.) and this includes all of the alternative \(\theta\) values for which \(\theta_1 + \theta_2 = \theta_{10} + \theta_{20}\).

Second, suppose \(X_i \sim \text{i.i.d. } N(\theta_1, \theta_2)\), \(\theta = (\theta_1, \theta_2)′ \in \mathbb{R}^2\), the moment functions are \(g_i(\theta) = (X_i - \theta_1, X_i^2 - \theta_1^2 - \theta_2′)′\), and the null hypothesis is \(H_0 : \theta = (\theta_{10}, \theta_{20})′\). Consider alternative parameters of the form \(\theta = (\theta_1, 0)'\). Under \(\theta\), \(X_i\) has variance zero, \(X_i = \bar{X}_n = \theta_1\) a.s., \(X_i^2 = \bar{X}_n^2 = \theta_1^2\) a.s., where \(\bar{X}_n^2 := n^{-1} \sum_{i=1}^{n} X_i^2\), \(\tilde{g}_n(\theta_0) = (\theta_1 - \theta_{10}, \theta_1^2 - \theta_{10} - \theta_{20})′\) a.s., \(\tilde{\Omega}_n(\theta_0) = \tilde{g}_n(\theta_0)\tilde{g}_n(\theta_0)' - \tilde{g}_n(\theta_0)\tilde{g}_n(\theta_0)' = 0^2 \times 2\) a.s. (provided \(\tilde{\Omega}_n(\theta_0)\) is defined as in (5.1) with the sample means subtracted off), and \(\tilde{r}_n(\theta_0) = 0\) a.s. In consequence, if one does not use the extra rejection condition, then the SR-AR test has no power against alternatives of the form \(\theta = (\theta_1, 0)'\) (because by definition the SR-AR test statistic and its critical value equal zero when \(\tilde{r}_n(\theta_0) = 0\)). However, when the extra rejection condition is utilized, all alternatives of the form \(\theta = (\theta_1, 0)'\) are rejected with probability one.

This holds because the extra rejection condition in this case leads one to reject \(H_0\) if \(X_n \neq \theta_{10} + \frac{\bar{X}_n^2 - \theta_{10}^2 - \theta_{20}}{n} \neq 0\), which is equivalent a.s. to rejecting if \(\theta_{10} \neq \theta_{10}\) or \(\theta_{20} \neq 0\) (because \(\bar{X}_n = \theta_1\) a.s. and \(\bar{X}_n^2 = \theta_1^2\) a.s. under \(\theta\)), which in turn is equivalent to rejecting if \(\theta \neq \theta_0\) (because if \(\theta_{20} > 0\) one or both of the two conditions is violated when \(\theta \neq \theta_0\) and if \(\theta_{20} = 0\), then \(\theta \neq \theta_0\) only if \(\theta_1 \neq \theta_{10}\) since we are considering the case where \(\theta_2 = 0\)).

In this second example, suppose the null hypothesis is \(H_0 : \theta = (\theta_{10}, 0)'\). That is, \(\theta_2 = 0\). Then, the SR-AR test rejects with probability zero under \(H_0\) and the test is not asymptotically similar. This holds because \(\tilde{g}_n(\theta_0) = (\bar{X}_n - \theta_{10}, \bar{X}_n^2 - \theta_{10}^2)' = (0, 0)'\) a.s., \(\tilde{r}_n(\theta_0) = 0\) a.s., \(\text{SR-AR}_n(\theta_0) = X_{n,1}^2\) a.s. (because \(\tilde{r}_n(\theta_0) = 0\) a.s.), and the extra rejection condition leads one to reject \(H_0\) if \(X_n \neq \theta_{10} + \frac{\bar{X}_n^2 - \theta_{10}^2 - \theta_{20}}{n} \neq 0\), which is equivalent to \(\theta_{10} \neq \theta_{10} + \frac{\bar{X}_n^2 - \theta_{10}^2 - \theta_{20}}{n} \neq 0\) (because \(X_i = \theta_1\) a.s.), which holds with probability zero.

As shown in Theorem 5.1 below, the SR-AR test is asymptotically similar (in a uniform sense) if one excludes null distributions \(F\) for which the \(g_i(\theta_0) = 0^k\) a.s. under \(F\), such as in the present example, from the parameter space of null distributions. But, the SR-AR test still has correct asymptotic size without such exclusions.

We thank Kirill Evdokimov for bringing these two examples to our attention.

An alternative definition of the SR-AR test is obtained by altering its definition given here as follows. One omits the extra rejection condition given in (5.7), one defines the SR-AR statistic using a weight matrix that is nonsingular by construction when \(\tilde{\Omega}_n(\theta_0)\) is singular, and one determines the critical value by simulation of the appropriate quadratic form in mean zero normal variates when \(\tilde{\Omega}_n(\theta_0)\) is singular. For example, such a weight matrix can be constructed by adjusting the eigenvalues of \(\tilde{\Omega}_n(\theta_0)\) to be bounded away from zero, and using its inverse. However, this method has two drawbacks. First, it sacrifices power relative to the definition of the SR-AR test in (5.7). The reason is that it does not reject \(H_0\) with probability one when a violation of the nonstochastic part of the moment conditions occurs. This can be seen in the example with identities and the two examples that follow it. Second, it cannot be used with the SR-CQLR tests introduced in Sections 6 and 7 below. The reason is that these tests rely on a statistic \(\tilde{D}_n(\theta_0)\), defined in (6.2) below, that employs \(\tilde{\Omega}_n^{-1}(\theta_0)\) and if \(\tilde{\Omega}_n^{-1}(\theta_0)\) is replaced by a matrix that is nonsingular by construction, such as the eigenvalue-adjusted matrix suggested above, then one does not obtain asymptotic independence of \(\tilde{g}_n(\theta_0)\) and \(\tilde{D}_n(\theta_0)\) after suitable normalization, which is needed to obtain the correct asymptotic size of the SR-CQLR tests.
The SR-AR test statistic can be written equivalently as
\[
SR-AR_n(\theta) = n\tilde{g}_n(\theta)'\widehat{\Omega}^+_n(\theta)\tilde{g}_n(\theta) = n\tilde{g}_n(\theta)'\widehat{\Pi}^{-1}_{1n}(\theta)\tilde{g}_n(\theta),
\]
(5.8)
where \(\widehat{\Omega}^+_n(\theta)\) denotes the Moore-Penrose generalized inverse of \(\widehat{\Omega}_n(\theta)\), when \(\widehat{r}_n(\theta) \neq 0\). The expression for the SR-AR statistic given in (5.6) is preferable to the Moore-Penrose expression in (5.8) for the derivation of the asymptotic results. It is not the case that \(SR-AR_n(\theta)\) equals the rhs expression in (5.8) with probability one when \(\widehat{\Omega}^+_n(\theta)\) is replaced by an arbitrary generalized inverse of \(\widehat{\Omega}_n(\theta)\).

The nominal 100(1 - \(\alpha\))\% SR-AR CS is
\[
CS_{SR-AR,n} := \{\theta_0 \in \Theta : SR-AR_n(\theta_0) \leq \chi^2_{\widehat{r}_n(\theta_0),1-\alpha} \text{ and } \widehat{A}_n^+(\theta_0)'\tilde{g}_n(\theta_0) = 0^{k-\widehat{r}_n(\theta_0)}\}.
\]
(5.9)
By definition, if \(\widehat{r}_n(\theta_0) = k\), the condition \(\widehat{A}_n^+(\theta_0)'\tilde{g}_n(\theta_0) = 0^{k-\widehat{r}_n(\theta_0)}\) holds.

When \(\widehat{r}_n(\theta_0) = k\), the SR-AR\(n(\theta_0)\) statistic equals \(AR_n(\theta_0)\) because \(\widehat{A}_n(\theta_0)\) is invertible and \(\Omega^{-1}_{An}(\theta_0) = \widehat{A}_n^{-1}(\theta_0)\Omega^{-1}_{rn}(\theta_0)\widehat{A}_n^{-1}(\theta_0)'\).

Section 13 in the SM provides some finite-sample simulations of the null rejection probabilities of the SR-AR test when the variance matrix of the moments is singular and near singular. The results show that the SR-AR test works very well in the model that is considered in the simulations.

6 SR-CQLR\(_1\) Test

This section defines the SR-CQLR\(_1\) test. This test applies when the moment functions are of the product form in (4.4). For expositional clarity and convenience (here and in the proofs), we first define the test in Section 6.1 for the case of nonsingular sample and population moments variance matrices, \(\widehat{\Omega}_n(\theta)\) and \(\Omega_F(\theta)\), respectively. Then, we extend the definition in Section 6.2 to the case where these variance matrices may be singular.

32 This holds by the following calculations. For notational simplicity, we suppress the dependence of quantities on \(\theta\). We have \(SR-AR_n = n\tilde{g}_n^\prime\widehat{A}_n(\widehat{\Omega}_n\widehat{A}_n)^{-1}\widehat{A}_n\tilde{g}_n = n\tilde{g}_n^\prime\widehat{A}_n(\widehat{A}_n^\prime\widehat{A}_n)^{-1}\widehat{A}_n\tilde{g}_n = n\tilde{g}_n^\prime\widehat{A}_n\Pi_{1n}^{-1}\widehat{A}_n^\prime\tilde{g}_n\) and
\[
n\tilde{g}_n^\prime\widehat{\Omega}_n\tilde{g}_n = n\tilde{g}_n^\prime\widehat{\Omega}_n\widehat{A}_n^\prime \begin{bmatrix} \widehat{\Pi}_{1n}^{-1} & 0^{(k-\widehat{r}_n)\times(k-\widehat{r}_n)} \\ 0^{(k-\widehat{r}_n)\times(k-\widehat{r}_n)} & 0^{(k-\widehat{r}_n)\times(k-\widehat{r}_n)} \end{bmatrix} [\widehat{A}_n, \widehat{A}_n^\prime]' \tilde{g}_n = n\tilde{g}_n^\prime\widehat{A}_n\Pi_{1n}^{-1}\widehat{A}_n^\prime\tilde{g}_n,
\]
where the spectral decomposition of \(\widehat{\Omega}_n\) given in (4.7) and (4.4) is used once in each equation above.
6.1 CQLR₁ Test for Nonsingular Moments Variance Matrices

The sample Jacobian is
\[
\hat{G}_n(\theta) := n^{-1} \sum_{i=1}^{n} G_i(\theta) = (\hat{G}_{1n}(\theta), \ldots, \hat{G}_{pn}(\theta)) \in R^{k \times p}. \tag{6.1}
\]

The conditioning matrix \(\hat{D}_n(\theta)\) is defined, as in Kleibergen (2005), to be the sample Jacobian matrix \(\hat{G}_n(\theta)\) adjusted to be asymptotically independent of the sample moments \(\hat{g}_n(\theta)\):
\[
\hat{D}_n(\theta) := (\hat{D}_{1n}(\theta), \ldots, \hat{D}_{pn}(\theta)) \in R^{k \times p} , \quad \text{where}
\]
\[
\hat{D}_{jn}(\theta) := \hat{G}_{jn}(\theta) - \hat{\Gamma}_{jn}(\theta)\hat{\Omega}_n^{-1}(\theta)\hat{g}_n(\theta) \in R^k \quad \text{for} \quad j = 1, \ldots, p , \quad \text{and}
\]
\[
\hat{\Gamma}_{jn}(\theta) := n^{-1} \sum_{i=1}^{n} (G_{ij}(\theta) - \hat{G}_{jn}(\theta))g_i(\theta)' \in R^{k \times k} \quad \text{for} \quad j = 1, \ldots, p . \tag{6.2}
\]

We call \(\hat{D}_n(\theta)\) the orthogonized sample Jacobian matrix. This statistic requires that \(\hat{\Omega}_n^{-1}(\theta)\) exists.

The statistics \(\hat{g}_n(\theta), \hat{\Omega}_n(\theta), A\hat{R}_n(\theta), \) and \(\hat{D}_n(\theta)\) are used by both the (non-SR) CQLR₁ test and the (non-SR) CQLR₂ test. The CQLR₁ test alone uses the following statistics:
\[
\tilde{R}_n(\theta) := (B(\theta)' \otimes I_k) \tilde{V}_n(\theta) (B(\theta) \otimes I_k) \in R^{(p+1)k \times (p+1)k} , \quad \text{where}
\]
\[
\tilde{V}_n(\theta) := n^{-1} \sum_{i=1}^{n} (u_i^*(\theta) - \tilde{u}_{in}^*(\theta)) (u_i^*(\theta) - \tilde{u}_{in}^*(\theta))' \otimes (Z_iZ_i') \in R^{(p+1)k \times (p+1)k} ,
\]
\[
\tilde{u}_{in}^*(\theta) := \tilde{Z}_n(\theta)' Z_i \in R^{p+1} ,
\]
\[
\tilde{Z}_n(\theta) := (Z_{n \times k}' Z_{n \times k})^{-1} Z_{n \times k}' U^*(\theta) \in R^{k \times (p+1)} ,
\]
\[
Z_{n \times k} := (Z_1, \ldots, Z_n)' \in R^{n \times k} , \quad U^*(\theta) := (u_1^*(\theta), \ldots, u_n^*(\theta))' \in R^{n \times (p+1)} , \quad \text{and}
\]
\[
B(\theta) := \begin{pmatrix} 1 & 0_p' \\ \theta & -I_p \end{pmatrix} \in R^{(p+1) \times (p+1)} , \tag{6.3}
\]

where \(u_i^*(\theta) := (u_i(\theta), u_{\theta i}(\theta))'\) is defined in (4.5). Note that (i) \(\tilde{V}_n(\theta)\) is an estimator of the variance matrix of the moment function and its vectorized derivatives, (ii) \(\tilde{V}_n(\theta)\) exploits the functional form of the moment conditions given in (4.4), (iii) \(\tilde{V}_n(\theta)\) typically is not of a Kronecker product form, and (iv) \(\tilde{u}_{in}^*(\theta)\) is the best linear predictor of \(u_i^*(\theta)\) based on \(\{Z_i : n \geq 1\}\). The estimators \(\tilde{R}_n(\theta), \tilde{V}_n(\theta), \) and \(\tilde{Z}_n(\theta)\) (defined immediately below) are defined so that the SR-CQLR₁ test, which employs them, is asymptotically equivalent to Moreira’s (2003) CLR test under all strengths of identification in the homoskedastic linear IV model with fixed IV’s and \(p\) rhs endogenous variables for any \(p \geq 1\). See Section 14 in the SM for details.
We define \(\widehat{\Sigma}_n(\theta) \in R^{(p+1)\times(p+1)} \) to be the symmetric pd matrix that minimizes

\[
\left\| (I_{p+1} \otimes \widehat{\Omega}_n^{-1/2}(\theta)) [\Sigma \otimes \widehat{\Omega}_n(\theta) - \widehat{R}_n(\theta)] (I_{p+1} \otimes \widehat{\Omega}_n^{-1/2}(\theta)) \right\|
\]

over all symmetric pd matrices \(\Sigma \in R^{(p+1)\times(p+1)} \), where \(\| \cdot \| \) denotes the Frobenius norm (i.e., the Euclidean norm of the vectorized matrix). This is a weighted minimization problem with the weights given by \(I_{p+1} \otimes \widehat{\Omega}_n^{-1/2}(\theta) \). We employ these weights because they lead to a matrix \(\widehat{\Sigma}_n(\theta) \) that is invariant to nonsingular transformations of the moment functions. (That is, \(\widehat{\Sigma}_n(\theta) \) is invariant to the multiplication of \(g_i(\theta) \) and \(G_i(\theta) \) by any nonsingular matrix \(M \in R^{k \times k} \), wherever \(g_i(\theta) \) and \(G_i(\theta) \) appear in the definitions of the statistics above, see Lemma 6.2 below.) Equation (6.4) is a least squares minimization problem and, hence, has a closed form solution, which is given as follows. Let \(\widehat{\Sigma}_{j\ell n}(\theta) \) denote the \((j, \ell)\) element of \(\widehat{\Sigma}_n(\theta) \). By Theorems 3 and 10 of Van Loan and Pitsianis (1993), for \(j, \ell = 1, ..., p + 1 \),

\[
\widehat{\Sigma}_{j\ell n}(\theta) = tr(\widehat{R}_{j\ell n}(\theta)^T\widehat{\Omega}_n^{-1}(\theta))/k, \tag{6.5}
\]

where \(\widehat{R}_{j\ell n}(\theta) \) denotes the \((j, \ell)\) submatrix of dimension \(k \times k \) of \(\widehat{R}_n(\theta) \).

The estimator \(\widehat{\Sigma}_n(\theta) \) is an estimator of a matrix that could be singular or nearly singular in some cases. For example, in the homoskedastic linear IV model in Section 3, \(\widehat{\Sigma}_n(\theta) \) is an estimator of the variance matrix \(\Sigma_V \) of the reduced-form errors when \(\theta \) is the true parameter, and \(\Sigma_V \) could be singular or nearly singular. In the definition of the QLR\(_{1n}(\theta)\) statistic, we use an eigenvalue-adjusted version of \(\widehat{\Sigma}_n(\theta) \), denoted by \(\widehat{\Sigma}_n^{\varepsilon}(\theta) \), whose condition number (i.e., \(\lambda_{\max}(\widehat{\Sigma}_n(\theta))/\lambda_{\min}(\widehat{\Sigma}_n(\theta)) \)) is bounded above by construction. The reason for making this adjustment is that the inverse of this matrix enters the definition of QLR\(_{1n}(\theta)\). The adjustment improves the asymptotic and finite-sample performance of the test by making it robust to singularities and near singularities of the matrix that \(\widehat{\Sigma}_n(\theta) \) estimates. The adjustment affects the test statistic (i.e., \(\widehat{\Sigma}_n^{\varepsilon}(\theta) \neq \widehat{\Sigma}_n(\theta) \)) only if the condition number of \(\widehat{\Sigma}_n(\theta) \) exceeds \(1/\varepsilon \). Hence, for a reasonable choice of \(\varepsilon \), it often has no effect even in finite samples. This differs from many tuning parameters employed in the literature, such as the ones that appear in nonparametric and semiparametric procedures, because their choice often has a substantial effect on the statistic being considered. Based on the finite-sample simulations, we recommend using \(\varepsilon = .05 \).

The eigenvalue-adjustment procedure is defined as follows for an arbitrary non-zero positive semi-definite (psd) matrix \(H \in R^{d_H \times d_H} \) for some positive integer \(d_H \). Let \(\varepsilon \) be a positive constant.

\[\text{That is, } \widehat{R}_{j\ell n}(\theta) \text{ contains the elements of } \widehat{R}_n(\theta) \text{ indexed by rows } (j-1)k+1 \text{ to } jk \text{ and columns } (\ell-1)k \text{ to } \ell k.\]

\[\text{Moreira and Moreira (2013) utilize the best unweighted Kronecker-product approximation to a matrix, as developed in Van Loan and Pitsianis (1993), but with a different application and purpose than here.}\]
Let $A_H \Lambda_H A'_H$ be a spectral decomposition of H, where $\Lambda_H = \text{Diag}\{\lambda_{H1}, ..., \lambda_{Hd_H}\} \in \mathbb{R}^{d_H \times d_H}$ is the diagonal matrix of eigenvalues of H with nonnegative nonincreasing diagonal elements and A_H is a corresponding orthogonal matrix of eigenvectors of H. The eigenvalue-adjusted version of H, denoted $H^\varepsilon \in \mathbb{R}^{d_H \times d_H}$, is defined by

$$H^\varepsilon := A_H \Lambda_H^\varepsilon A'_H,$$

where $\Lambda_H^\varepsilon := \text{Diag}\{\max\{\lambda_{H1}, \lambda_{\max}(H)\varepsilon\}, ..., \max\{\lambda_{Hd_H}, \lambda_{\max}(H)\varepsilon\}\}, \quad (6.6)$

where $\lambda_{\max}(H)$ denotes the maximum eigenvalue of H. Note that $\lambda_{\max}(H) = \lambda_{H1}$, and $\lambda_{\max}(H) > 0$ provided the psd matrix H is non-zero. From its definition, it is clear that $H^\varepsilon = H$ whenever the condition number of H is less than or equal to $1/\varepsilon$ (provided $\varepsilon \leq 1$).

In Lemma 17.1 in Section 17 in the SM, we show that the eigenvalue-adjustment procedure possesses the following desirable properties: (i) (uniqueness) H^ε is uniquely defined (i.e., every choice of spectral decomposition of H yields the same matrix H^ε), (ii) (eigenvalue lower bound) $\lambda_{\min}(H^\varepsilon) \geq \lambda_{\max}(H)\varepsilon$, (iii) (condition number upper bound) $\lambda_{\max}(H^\varepsilon)/\lambda_{\min}(H^\varepsilon) \leq \max\{1/\varepsilon, 1\}$, (iv) (scale equivariance) for all $c > 0$, $(cH)^\varepsilon = cH^\varepsilon$, and (v) (continuity) $H_n^\varepsilon \to H^\varepsilon$ for any sequence of psd matrices $\{H_n \in \mathbb{R}^{d_H \times d_H} : n \geq 1\}$ that satisfies $H_n \to H$.

The QLR$_1$ statistic, which applies when (4.4) holds, is defined as follows:

$$QLR_{1,n}(\theta) := AR_n(\theta) - \lambda_{\min}(n\tilde{Q}_n(\theta)),$$

where $\tilde{Q}_n(\theta) := (\tilde{Q}_n^{-1/2}(\theta)\tilde{g}_n(\theta), \tilde{D}_n^*(\theta))^T (\tilde{Q}_n^{-1/2}(\theta)\tilde{g}_n(\theta), \tilde{D}_n^*(\theta)) \in \mathbb{R}^{(p+1) \times (p+1)}$,

$$\tilde{D}_n^*(\theta) := \tilde{\Omega}_n^{-1/2}(\theta)\tilde{D}_n(\theta)\tilde{L}_n^{1/2}(\theta) \in \mathbb{R}^{k \times p},$$

and

$$\tilde{L}_n(\theta) := (\theta, I_p)(\tilde{\Sigma}_n(\theta))^{-1}(\theta, I_p)^T \in \mathbb{R}^{p \times p}, \quad (6.7)$$

where $\tilde{\Sigma}_n(\theta)$ is defined in (6.6) with $H = \tilde{\Sigma}_n(\theta)$.

Comparing (3.4) and (6.7), one sees the common structure of the LR$_{HGL,n}$ and QLR$_{1,n}(\theta_0)$ statistics, where θ_0 is the null value. The k vector $n^{1/2}\tilde{\Omega}_n^{-1/2}(\theta_0)\tilde{g}_n(\theta_0)$ plays the role of $\tilde{\Sigma}_n$, and the $k \times p$ matrix $n^{1/2}\tilde{D}_n^*(\theta_0)$ plays the role of \tilde{T}_n. The matrix $\tilde{L}_n(\theta)$ is defined such that these quantities are asymptotically equivalent in the homoskedastic linear IV regression model with fixed IV’s (in scenarios where the eigenvalue adjustment is irrelevant wp→1).

The CQLR$_1$ test uses the QLR$_1$ statistic and a conditional critical value that depends on the $k \times p$ matrix $n^{1/2}\tilde{D}_n^*(\theta_0)$ through the conditional critical value function $c_{k,p}(D, 1 - \alpha)$, which is

\[\text{provided the parameter space of distributions } \mathcal{F}_i^{S_H} \text{ is restricted so that the population version of } \tilde{\Sigma}_n(\theta) \text{ has a condition number that is bounded above.}\]
defined in (3.5). For $\alpha \in (0, 1)$, the nominal α CQLR test rejects $H_0 : \theta = \theta_0$ if

$$QLR_{1n}(\theta_0) > c_{k,p}(n^{1/2}\hat{D}_n^*(\theta_0), 1 - \alpha). \quad (6.8)$$

The nominal 100(1 - α)% CQLR CS is $C_{SCQLR_{1n}} := \{\theta_0 \in \Theta : QLR_{1n}(\theta_0) \leq c_{k,p}(n^{1/2}\hat{D}_n^*(\theta_0), 1 - \alpha)\}$.

The following lemma shows that the critical value function $c_{k,p}(D, 1 - \alpha)$ depends on D only through its singular values.

Lemma 6.1 Let D be a $k \times p$ matrix with the singular value decomposition $D = CYB'$, where C is a $k \times k$ orthogonal matrix of eigenvectors of DD', B is a $p \times p$ orthogonal matrix of eigenvectors of $D'D$, and Y is the $k \times p$ matrix with the min{k,p} singular values $\{\tau_j : j \leq \min\{k,p\}\}$ of D as its first min{k,p} diagonal elements and zeros elsewhere, where τ_j is nonincreasing in j. Then, $c_{k,p}(D, 1 - \alpha) = c_{k,p}(Y, 1 - \alpha)$.

Comment: A consequence of Lemma 6.1 is that the critical value $c_{k,p}(n^{1/2}\hat{D}_n^*(\theta_0), 1 - \alpha)$ of the CQLR$_1$ test depends on $\hat{D}_n^*(\theta_0)$ only through $\hat{D}_n^*(\theta_0)'\hat{D}_n^*(\theta_0)$ (because, when $k \geq p$, the p singular values of $n^{1/2}\hat{D}_n^*(\theta_0)$ equal the square roots of the eigenvalues of $n\hat{D}_n^*(\theta_0)'\hat{D}_n^*(\theta_0)$ and, when $k < p$, $c_{k,p}(D, 1 - \alpha)$ is the $1 - \alpha$ quantile of the χ^2_k distribution which does not depend on D).

The following lemma shows that the CQLR$_1$ test is invariant to nonsingular transformations of the moment functions/IV’s. For notational simplicity, we suppress the dependence on θ of the statistics that appear in the lemma.

Lemma 6.2 The statistics $QLR_{1n}, c_{k,p}(n^{1/2}\hat{D}_n^*, 1 - \alpha), \hat{D}_n^*, \hat{D}_n^*, \hat{D}_n^*, \hat{D}_n^*, \hat{D}_n^*$, and \hat{D}_n^* are invariant to the transformation $(Z_i, u_i^*) \sim (MZ_i, u_i^*)$ for any $k \times k$ nonsingular matrix M. This transformation induces the following transformations: $g_i \sim Mg_i, G_i \sim MG_i, \hat{g}_n \sim M\hat{g}_n, \hat{G}_n \sim M\hat{G}_n, \hat{\Omega}_n \sim M\hat{\Omega}_nM', \hat{\Gamma}_{jn} \sim M\hat{\Gamma}_{jn}M', \hat{\Delta}_n \sim M\hat{\Delta}_n, Z_{n \times k} \sim Z_{n \times k}M', \hat{\Xi}_n \sim M^{-1}\hat{\Xi}_n, \hat{V}_n \sim (I_{p+1} \otimes M)\hat{V}_n (I_{p+1} \otimes M'), \text{ and } \hat{R}_n \sim (I_{p+1} \otimes M)\hat{R}_n (I_{p+1} \otimes M')$.

Comment: This Lemma is important because it implies that one can obtain the correct asymptotic size of the CQLR$_1$ test defined above without assuming that $\lambda_{\min}(\Omega_F)$ is bounded away from zero. It suffices that Ω_F is nonsingular. The reason is that (in the proofs) one can transform the moments by $g_i \sim MFg_i$, where $MF\Omega_FM' = I_k$, such that the transformed moments have a variance matrix whose eigenvalues are bounded away from zero for some $\delta > 0$ (since $Var_F(M_Fg_i) = I_k$) even if the original moments g_i do not.
6.2 Singularity-Robust CQLR$_1$ Test

Now, we extend the CQLR$_1$ test to allow for singularity of the population and sample variance matrices of $g_i(\theta)$. First, we adjust $\hat{D}_n(\theta)$ to obtain a conditioning statistic that is robust to the singularity of $\Omega_n(\theta)$. For $\hat{r}_n(\theta) \geq 1$, where $\hat{r}_n(\theta)$ is defined in (5.3), we define $\hat{D}_{An}(\theta)$ as $\hat{D}_n(\theta)$ is defined in (6.2), but with $\hat{A}_n(\theta)'g_i(\theta)$, $\hat{A}_n(\theta)'G_{ij}(\theta)$, and $\hat{\Omega}_{An}(\theta)$ in place of $g_i(\theta)$, $G_{ij}(\theta)$, and $\Omega_n(\theta)$, respectively, for $j = 1, ..., p$, where $\hat{A}_n(\theta)$ and $\hat{\Omega}_{An}$ are defined in (5.4) and (5.5), respectively. That is,

$$\hat{D}_{An}(\theta) := (\hat{D}_{A1n}(\theta), ..., \hat{D}_{Apn}(\theta)) \in R^{\hat{r}_n(\theta) \times p},$$

$$\hat{D}_{An} := G_{An}(\theta) - \hat{\Gamma}_{An}(\theta)\hat{\Omega}_{An}^{-1}(\theta)\hat{\Omega}_{An}(\theta) \in R^{\hat{r}_n(\theta)}$$

for $j = 1, ..., p$.

$$\hat{G}_{An}(\theta) := \hat{A}_n(\theta)'\hat{G}_n(\theta) = (\hat{G}_{A1n}(\theta), ..., \hat{G}_{Apn}(\theta)) \in R^{\hat{r}_n(\theta) \times p},$$

and

$$\hat{\Gamma}_{An}(\theta) := \hat{A}_n(\theta)'\hat{\Gamma}_{jn}(\theta)\hat{A}_n(\theta)$$

for $j = 1, ..., p$. (6.9)

Let $Z_{Ai}(\theta) := \hat{A}_n(\theta)'Z_i \in R^{\hat{r}_n(\theta)}$ and $Z_{An \times k}(\theta) := Z_{n \times k}\hat{A}_n(\theta) \in R^{n \times \hat{r}_n(\theta)}$.

The SR-CQLR$_1$ test employs statistics $\hat{R}_{An}(\theta)$, $\hat{\Sigma}_{An}(\theta)$, $\hat{\Lambda}_{An}(\theta)$, and \hat{D}_{An}^*, which are defined just as $\hat{R}_n(\theta)$, $\hat{\Sigma}_n(\theta)$, $\hat{\Lambda}_n(\theta)$, and \hat{D}_n^* are defined in Section 6.1, but with $\hat{g}_n(\theta)$, $\hat{G}_n(\theta)$, $\hat{\Omega}_n(\theta)$, $Z_{Ai}(\theta)$, $Z_{An \times k}(\theta)$, and $\hat{r}_n(\theta)$ in place of $g_n(\theta)$, $G_n(\theta)$, $\Omega_n(\theta)$, Z_i, $Z_{n \times k}$, and k, respectively, using the definitions in (5.3), (5.5) and (6.9). In particular, we have

$$\hat{R}_{An}(\theta) := (B(\theta)' \otimes I_{\hat{r}_n(\theta)}) \hat{V}_{An}(\theta) (B(\theta) \otimes I_{\hat{r}_n(\theta)}) \in R^{(p+1)\hat{r}_n(\theta) \times (p+1)\hat{r}_n(\theta)},$$

$$\hat{V}_{An}(\theta) := n^{-1}\sum_{i=1}^{n} ((u^*_i(\theta) - \hat{u}^*_{Ai}(\theta)) (u^*_i(\theta) - \hat{u}^*_{Ai}(\theta))' \otimes (Z_{Ai}(\theta) Z_{Ai}(\theta)'),$$

$$\hat{u}^*_{Ai}(\theta) := \hat{F}_{An}(\theta)'Z_{Ai}(\theta) \in R^{p+1},$$

$$\hat{F}_{An}(\theta) := (Z_{An \times k}(\theta)' Z_{An \times k}(\theta) - Z_{An \times k}(\theta)' U^*_{Ai}(\theta) \in R^{\hat{r}_n(\theta) \times (p+1)},$$

$$\hat{\Sigma}_{Aj\ell n}(\theta) := tr(\hat{R}_{Aj\ell n}(\theta)\hat{\Omega}_{An}^{-1}(\theta)) \hat{r}_n(\theta)$$

for $j, \ell = 1, ..., p + 1$,

$$\hat{\Lambda}_{An}(\theta) := (\theta, I_p) (\hat{\Sigma}_{An}(\theta))^{-1} (\theta, I_p)' \in R^{p \times p},$$

$$\hat{D}_{An}^*(\theta) := \hat{\Omega}_{An}^{-1/2}(\theta) \hat{D}_{An}(\theta) \hat{\Omega}_{An}^{1/2}(\theta) \in R^{\hat{r}_n(\theta) \times p}.$$ (6.10)

$\hat{A}_n(\theta)$ is defined in (5.4), $\hat{\Sigma}_{Aj\ell n}(\theta)$ denotes the (j, ℓ) element of $\hat{\Sigma}_{An}(\theta)$, and $\hat{R}_{Aj\ell n}(\theta)$ denotes the (j, ℓ) submatrix of dimension $\hat{r}_n(\theta) \times \hat{r}_n(\theta)$ of $\hat{R}_{An}(\theta)$.
If \(\hat{r}_n(\theta) > 0 \), the SR-QLR\(_1\) statistic is defined by

\[
SR-QLR_{1n}(\theta) := SR-AR_n^*(\theta) - \lambda_{\min}(n\hat{Q}_{An}(\theta)), \quad \text{where} \quad \hat{Q}_{An}(\theta) := \left(\Omega_{An}^{-1/2}(\theta)\hat{\gamma}_{An}(\theta), \hat{D}_{An}(\theta) \right) \left(\Omega_{An}^{-1/2}(\theta)\hat{\gamma}_{An}(\theta), \hat{D}_{An}(\theta) \right) \in \mathbb{R}^{(p+1) \times (p+1)}. \tag{6.11}
\]

For \(\alpha \in (0, 1) \), the nominal size \(\alpha \) SR-CQLR\(_1\) test rejects \(H_0 : \theta = \theta_0 \) if

\[
SR-QLR_{1n}(\theta_0) > c_{\hat{r}_n(\theta_0), p}(n^{1/2}\hat{D}_{An}^*(\theta_0), 1 - \alpha) \quad \text{or} \quad \hat{A}_n(\theta_0)^\top\hat{g}_n(\theta_0) \neq 0^{k - \hat{r}_n(\theta_0)} \tag{6.12}
\]

The nominal size 100(1 - \(\alpha \))% SR-CQLR\(_1\) CS is \(CS_{SR-QLR_{1n}} := \{ \theta_0 \in \Theta : SR-QLR_{1n}(\theta_0) \leq c_{\hat{r}_n(\theta_0), p}(n^{1/2}\hat{D}_{An}^*(\theta_0), 1 - \alpha) \text{ and } \hat{A}_n(\theta_0)^\top\hat{g}_n(\theta_0) = 0^{k - \hat{r}_n(\theta_0)} \} \tag{6.13}

Note that if \(r \leq p \), then \(c_{r,p}(D, 1 - \alpha) \) is the 1 - \(\alpha \) quantile of

\[
CLR_{r,p}(D) := Z'Z - \lambda_{\min}((Z, D)'(Z, D)) = Z'Z \sim \chi^2_r,
\]

where \(Z \sim N(0^r, I_r) \) and the last equality holds because \((Z, D)'(Z, D)\) is a \((p + 1) \times (p + 1)\) matrix of rank \(r \leq p \), which implies that its smallest eigenvalue is zero. Hence, if \(\hat{r}_n(\theta_0) \leq p \), then the critical value for the SR-CQLR\(_1\) test is the 1 - \(\alpha \) quantile of \(\chi^2_{\hat{r}_n(\theta_0), 1 - \alpha} \), which is denoted by \(\chi^2_{\hat{r}_n(\theta_0), 1 - \alpha} \).

When \(\hat{r}_n(\theta_0) = k \), \(\hat{A}_n(\theta_0) \) is a nonsingular \(k \times k \) matrix. In consequence, by Lemma 6.2, SR-QLR\(_{1n}(\theta_0) = QLR_{1n}(\theta_0) \) and \(c_{\hat{r}_n(\theta_0), p}(n^{1/2}\hat{D}_{An}^*(\theta_0), 1 - \alpha) = c_{k, p}(n^{1/2}\hat{D}_{n}^*(\theta_0), 1 - \alpha) \). That is, the SR-CQLR\(_1\) test is the same as the CQLR\(_1\) test defined in Section 6.1. Of course, when \(\hat{r}_n(\theta) < k \), the CQLR\(_1\) test defined in Section 6.1 is not defined, whereas the SR-CQLR\(_1\) test is. Thus, the SR-CQLR\(_1\) test defined here is, indeed, an extension of the CQLR\(_1\) test defined in Section 6.1 to the case where \(\hat{r}_n(\theta_0) < k \). Furthermore, if \(rk(\Omega_{F_n}(\theta_0)) = k \) for all \(n \) large, then \(\hat{r}_n(\theta_0) = k \) and \(SR-QLR_{1n}(\theta_0) = QLR_{1n}(\theta_0) \) wp\(\rightarrow 1 \) under \(\{ F_n \in \mathcal{F}_2^{SR} : n \geq 1 \} \) (by Lemmas 6.2 and 10.6 below).

\[7\] \textbf{SR-CQLR\(_2\) Test}

In this section, we define the SR-CQLR\(_2\) test, which is quite similar to the SR-CQLR\(_1\) test, but does not rely on \(g_i(\theta) \) having the form in \([4,4]\). First, we define the CQLR\(_2\) test without the SR

\[36\] By definition, \(\hat{A}_n(\theta_0)^\top\hat{g}_n(\theta_0) \neq 0^{k - \hat{r}_n(\theta_0)} \) does not hold if \(\hat{r}_n(\theta_0) = k \). If \(\hat{r}_n(\theta_0) = 0 \), then \(SR-QLR_{1n}(\theta_0) := 0 \) and \(\hat{Q}_{\hat{r}_n(\theta_0), 1 - \alpha} := 0 \). In this case, \(\hat{A}_n(\theta_0) = I_k \) and the SR-CQLR\(_1\) test rejects \(H_0 \) if \(\hat{g}_n(\theta_0) \neq 0^k \).

\[37\] By definition, if \(\hat{r}_n(\theta_0) = k \), the condition \(\hat{A}_n(\theta_0)^\top\hat{g}_n(\theta_0) = 0^{k - \hat{r}_n(\theta_0)} \) holds.
extension. We define an analogue $\tilde{R}_n(\theta)$ of $\tilde{R}_n(\theta)$ as follows:

\[
\tilde{R}_n(\theta) := (B(\theta)' \otimes I_k) \tilde{V}_n(\theta) (B(\theta) \otimes I_k) \in R^{(p+1)k \times (p+1)k}, \quad \text{where}
\]

\[
\tilde{V}_n(\theta) := n^{-1} \sum_{i=1}^{n} \left(f_i(\theta) - \hat{f}_n(\theta) \right) \left(f_i(\theta) - \hat{f}_n(\theta) \right)' \in R^{(p+1)k \times (p+1)k},
\]

\[
f_i(\theta) := \begin{pmatrix} g_i(\theta) \\ \text{vec}(G_i(\theta)) \end{pmatrix}, \quad \text{and} \quad \hat{f}_n(\theta) := \begin{pmatrix} \hat{g}_n(\theta) \\ \text{vec}(\hat{G}_n(\theta)) \end{pmatrix}.
\]

(7.1)

The SR-CQLR$_2$ test differs from the SR-CQLR$_1$ test because $\tilde{V}_n(\theta)$ (and the statistics that depend on it) differs from $\hat{V}_n(\theta)$ (and the statistics that depend on it). The estimator $\tilde{V}_n(\theta)$ does not depend on the product form of the moment conditions given in (4.4).

We define $\tilde{\Sigma}_n(\theta) \in R^{(p+1) \times (p+1)}$ just as $\hat{\Sigma}_n(\theta)$ is defined in (6.4) and (6.5), but with $\tilde{R}_n(\theta)$ in place of $\hat{R}_n(\theta)$. We define $\tilde{D}_n^*(\theta)$ just as $\hat{D}_n^*(\theta)$ is defined in (6.7), but with $\tilde{\Sigma}_n(\theta)$ in place of $\hat{\Sigma}_n(\theta)$. That is,

\[
\tilde{D}_n^*(\theta) := \tilde{\Omega}_n(\theta)^{-1/2} \tilde{D}_n(\theta) \tilde{L}_n^{1/2}(\theta) \in R^{k \times p}, \quad \text{where} \quad \tilde{L}_n(\theta) := (\theta, I_p)(\tilde{\Sigma}_n^e(\theta))^{-1}(\theta, I_p)'.
\]

(7.2)

We use an eigenvalue-adjusted version of $\tilde{\Sigma}_n(\theta)$ in the definition of $\tilde{L}_n(\theta)$ because it yields an SR-CQLR test that has correct asymptotic size even if $\text{Var}_F(f_i)$ is singular for some F in the parameter space of distributions.

The QLR$_2$ statistic without the SR extension, denoted by $QLR_{2n}(\theta)$, is defined just as $QLR_{1n}(\theta)$ is defined in (6.7), but with $\tilde{D}_n(\theta)$ in place of $\hat{D}_n^*(\theta)$. For $\alpha \in (0, 1)$, the nominal size α CQLR$_2$ test (without the SR extension) rejects $H_0 : \theta = \theta_0$ if

\[
QLR_{2n}(\theta_0) > c_{k,p}(n^{1/2} \tilde{D}_n^*(\theta_0), 1 - \alpha).
\]

(7.3)

The nominal size $100(1 - \alpha)$% CQLR$_2$ CS is $CS_{CQLR_{2n}} := \{\theta_0 \in \Theta : QLR_{2n}(\theta_0) \leq c_{k,p}(n^{1/2} \tilde{D}_n^*(\theta_0), 1 - \alpha)\}$.

\[\text{38} \]

For the CQLR$_2$ test with the SR extension, we define $\tilde{D}_n(\theta)$ as in (6.9). We define

\[
\tilde{V}_n(\theta) := (I_{p+1} \otimes \tilde{\Lambda}_n(\theta))' \tilde{V}_n(\theta)(I_{p+1} \otimes \tilde{\Lambda}_n(\theta)) \in R^{(p+1)\tilde{r}_n(\theta) \times (p+1)\tilde{r}_n(\theta)},
\]

(7.4)

where $\tilde{r}_n(\theta)$ and $\tilde{\Lambda}_n(\theta)$ are defined in (5.3) and (5.4), respectively. In addition, we define $\tilde{R}_n(\theta)$,

\[\text{38} \text{Analogously to the results of Lemma 6.2, the statistics QLR}_{2n}, c_{k,p}(n^{1/2}\tilde{D}_n^*, 1 - \alpha), \tilde{D}_n^* \tilde{r}_n, \tilde{\Sigma}_n, \text{and} \tilde{L}_n \text{are} \text{invariant to the transformation } (g_i, G_i) \sim (Mg_i, MG_i) \text{for any } k \times k \text{nonsingular matrix } M. \text{This transformation induces the following equivariant transformations: } \tilde{D}_n^* \sim M\tilde{D}_n^*, \tilde{V}_n \sim (I_{p+1} \otimes M)\tilde{V}_n(I_{p+1} \otimes M'), \text{and } \tilde{R}_n \sim (I_{p+1} \otimes M)\tilde{R}_n(I_{p+1} \otimes M').\]
Asymptotic Size

which is introduced above, works quite well in the model that is considered.

Comments: (i) For distributions

The asymptotic sizes of the tests are as follows.

The nominal size \(100(1 - \alpha)\%\) SR-CQLR2 CS is \(CS_{SR-CQLR2,n} := \{\theta_0 \in \Theta : SR-QLR2_n(\theta_0) \leq c_{\tilde{r}_n(\theta_0), p}(n^{1/2}D_{\tilde{A}_n}(\theta_0), 1 - \alpha)\) and \(\tilde{A}_{\tilde{g}_n}(\theta_0) = 0^{k-\tilde{r}_n(\theta_0)}\) \(\text{[40]}\)

Section \([13]\) in the SM provides finite-sample null rejection probabilities of the SR-CQLR2 test for singular and near singular variance matrices of the moment functions \([41]\) The results show that singularity and near singularity of the variance matrix does not lead to distorted null rejection probabilities. The method of robustifying the SR-CQLR2 test to allow for singular variance matrices, which is introduced above, works quite well in the model that is considered.

8 Asymptotic Size

The correct asymptotic size and similarity results for the SR-AR, SR-CQLR1, and SR-CQLR2 tests are as follows.

Theorem 8.1 The asymptotic sizes of the SR-AR, SR-CQLR1, and SR-CQLR2 tests defined in \([5.7\), \(6.12\), and \(7.5\), respectively, equal their nominal size \(\alpha \in (0, 1)\) for the null parameter spaces \(\mathcal{F}_{AR}^{SR}, \mathcal{F}_{1}^{SR},\) and \(\mathcal{F}_{2}^{SR}\), respectively. Furthermore, these tests are asymptotically similar (in a uniform sense) for the subsets of these parameter spaces that exclude distributions \(F\) under which \(g_i = 0^k\) a.s. Analogous results hold for the corresponding SR-AR, SR-CQLR1, and SR-CQLR2 CS’s for the parameter spaces \(\mathcal{F}_{\Theta, AR}^{SR}, \mathcal{F}_{\Theta, 1}^{SR},\) and \(\mathcal{F}_{\Theta, 2}^{SR}\), respectively, defined in \([4.10]\).

Comments: (i) For distributions \(F\) under which \(g_i = 0^k\) a.s., the SR-AR and SR-CQLR tests reject the null hypothesis with probability zero when the null is true. Hence, asymptotic similarity only holds when these distributions are excluded from the null parameter spaces.

\(^{39}\) By definition, \(\tilde{A}_{\tilde{g}_n}(\theta_0) \neq 0^{k-\tilde{r}_n(\theta_0)}\) does not hold if \(\tilde{r}_n(\theta_0) = k\). If \(\tilde{r}_n(\theta_0) = 0\), then \(SR-QLR2_n(\theta_0) := 0\) and \(\tilde{A}_{\tilde{g}_n}(\theta_0) = 1_k\) and the SR-CQLR2 test rejects \(H_0\) if \(\tilde{g}_n(\theta_0) \neq 0^k\).

\(^{40}\) By definition, if \(\tilde{r}_n(\theta_0) = k\), the condition \(\tilde{A}_{\tilde{g}_n}(\theta_0) \neq 0^{k-\tilde{r}_n(\theta_0)}\) holds.

\(^{41}\) Analogous results are not given for the SR-CQLR1 test because the moment functions considered are not of the form in \([4.4]\), which is necessary to apply the SR-CQLR1 test.
(ii) SR-LM versions of Kleibergen’s LM test and CS can be defined analogously to the SR-AR and SR-CQLR tests and CS’s. However, these procedures are only partially singularity robust. See Section 18 in the SM.

(iii) The proof of Theorem 8.1 is given partly in the Appendix and partly in the SM.

9 Asymptotic Efficiency of the SR-CQLR Tests under Strong Identification

Next, we show that the SR-CQLR$_1$ and SR-CQLR$_2$ tests are asymptotically efficient in a GMM sense under strong and semi-strong identification (when the variance matrix of the moments is nonsingular and the null parameter value is not on the boundary of the parameter space). By this we mean that they are asymptotically equivalent (under the null and contiguous alternatives) to a Wald test constructed using an asymptotically efficient GMM estimator, see Newey and West (1987).

Kleibergen’s LM statistic and the standard GMM LM statistic, see Newey and West (1987), are defined by

$$LM_n := n g_n^T \hat{\Omega}_n^{-1/2} P_{\hat{\Omega}_n^{-1/2} \hat{g}_n} \hat{\Omega}_n^{-1/2} \hat{g}_n \quad \text{and} \quad LM_n^{GMM} := n g_n^T \hat{\Omega}_n^{-1/2} P_{\hat{\Omega}_n^{-1/2} \hat{g}_n} \hat{\Omega}_n^{-1/2} \hat{g}_n,$$

(9.1)

respectively, where \hat{G}_n is the sample Jacobian defined in (5.1) with $\theta = \theta_0$. The test based on the standard GMM LM statistic (combined with a χ^2_p critical value) is asymptotically equivalent to the Wald test based on an asymptotically efficient GMM estimator under (i) strong identification (which requires $k \geq p$), (ii) nonsingular moments-variance matrices (i.e., $\lambda_{\min}(\Omega_{F_n}) \geq \delta > 0$ for all $n \geq 1$), and (iii) a null parameter value that is not on the boundary of the parameter space, see Newey and West (1987). This also holds true under semi-strong identification (which also requires $k \geq p$). For example, Theorem 5.1 of Andrews and Cheng (2013) shows that the Wald statistic for testing $H_0 : \theta = \theta_0$ based on a GMM estimator with asymptotically efficient weight matrix has a χ^2_p distribution under semi-strong identification. This Wald statistic can be shown to be asymptotically equivalent to the LM_n^{GMM} statistic under semi-strong identification. (For brevity, we do not do so here.)

Suppose $k \geq p$. Let A_F and Π_{1F} be defined as in (4.7) and (4.8) and the paragraph following these equations with $\theta = \theta_0$. Define λ_F^*, Λ_1^*, Λ_2^*, and $\{\lambda_{n,h}^* : n \geq 1\}$ as λ_F, Λ_1, Λ_2, and $\{\lambda_{n,h} : n \geq 1\}$, respectively, are defined in (10.16)-(10.18) in the Appendix, but with g_i and G_i replaced by $g_{F_i}^* := \Pi_{1F}^{-1/2} A_F g_i$ and $G_{F_i}^* := \Pi_{1F}^{-1/2} A_F' G_i$, with F_1 replaced by F_1^{SR}, with F_2 replaced by F_2^{SR} in
the definition of \mathcal{F}_{W_i}, and with $W_F := W_1(W_2F)$ and $U_F := U_1(U_2F)$ defined as in (10.8) and (10.11) in the Appendix for the CQLR$_1$ and CQLR$_2$ tests, respectively, with g_i and G_i replaced by g_{i^*} and G_{i^*}. In addition, we restrict $\{\lambda_{n,h}^*: n \geq 1\}$ to be a sequence for which $\lambda_{\min}(E_{F_i} g_{i} g_{i}^*) > 0$ for all $n \geq 1$. By definition, a sequence $\{\lambda_{n,h}^*: n \geq 1\}$ is said to exhibit strong or semi-strong identification if $n^{1/2}s_{pF_n}^* \to \infty$, where s_{pF}^* denotes the smallest singular value of $E_{F}G_{i^*}^*$.

Let $\chi_{p,1-\alpha}^2$ denote the $1 - \alpha$ quantile of the χ_p^2 distribution. The critical value for the LM_n and LM_n^{GMM} tests is $\chi_{p,1-\alpha}^2$.

Theorem 9.1 Suppose $k \geq p$. For any sequence $\{\lambda_{n,h}^*: n \geq 1\}$ that exhibits strong or semi-strong identification (i.e., for which $n^{1/2}s_{pF_n}^* \to \infty$) and for which $\lambda_{n,h}^* \in \Lambda_1^* \forall n \geq 1$ for the SR-CQLR$_1$ test statistic and critical value and $\lambda_{n,h}^* \in \Lambda_2^* \forall n \geq 1$ for the SR-CQLR$_2$ test statistic and critical value, we have

(a) SR-$QLR_{j,n} = QLR_{j,n} + o_p(1) = LM_n + o_p(1) = LM_n^{GMM} + o_p(1)$ for $j = 1, 2$,
(b) $c_{k,p}(n^{1/2}\tilde{D}_{n}^*, 1 - \alpha) \to_p \chi_{p,1-\alpha}^2$, and
(c) $c_{k,p}(n^{1/2}\tilde{D}_{n}^*, 1 - \alpha) \to_p \chi_{p,1-\alpha}^2$.

Comments: (i) Theorem 9.1 establishes the asymptotic efficiency (in a GMM sense) of the SR-CQLR$_1$ and SR-CQLR$_2$ tests under strong and semi-strong identification. Note that Theorem 9.1 provides asymptotic equivalence results under the null hypothesis, but, by the definition of contiguity, these asymptotic equivalence results also hold under contiguous local alternatives.

(ii) The proof of Theorem 9.1 is given in Section 23 in the SM.

42 Thus, $A_{F} = A_{F_i}^*$, $\Pi_{F} = \Pi_{F_i}$, $W_F := (\Pi_{1F}^{-1/2}A_{F_i}^* \Omega_{F} A_{F} \Pi_{1F}^{-1/2})^{-1/2} = I_{k}$, and by an invariance property, which follows from calculations similar to those used to establish Lemma 6.2, U_F (defined in the Appendix) is the same whether it is defined using g_i and G_i, or g_{i^*} and G_{i^*}.

43 The singular value $s_{pF_i}^*$, defined here, equals s_{pF_i}, defined in the Introduction, for all F with $\lambda_{\min}(\Omega_{F}) > 0$, because in this case $\Omega_{F} = A_{F} \Pi_{1F} A_{F}^*$, $\Pi_{F}^{-1/2} = A_{F} \Pi_{1F}^{-1/2} A_{F}^*$, $\Omega_{F}^{-1/2}E_{F} G_{i} = A_{F} \Pi_{1F}^{-1/2}A_{F}^*E_{F} G_{i} = A_{F}E_{F} G_{i}$, and A_{F} is an orthogonal $k \times k$ matrix. Since we consider sequences here with $\lambda_{\min}(\Omega_{F_n}) = \lambda_{\min}(E_{F_n} g_{i} g_{i}^*) > 0$ for all $n \geq 1$, the definitions of strong and semi-strong identification used here and in the Introduction are equivalent.
10 Appendix

This Appendix, along with parts of the SM, is devoted to the proof of Theorem 8.1. The proof proceeds in two steps. First, we establish the correct asymptotic size and asymptotic similarity of the tests and CS’s without the SR extension for parameter spaces of distributions that bound $\lambda_{\min}(\Omega_F)$ away from zero. (These tests are defined in (5.2), (6.8), and (7.3).) We provide some parts of the proof of this result in Section 10.1 below. The details are given in Section 22 in the SM. Second, we extend the proof to the case of the SR tests and CS’s. We provide the proof of this extension in Section 10.2 below.

10.1 Tests without the Singularity-Robust Extension

10.1.1 Asymptotic Results for Tests without the SR Extension

For the AR and CQLR tests without the SR extension, we consider the following parameter spaces for the distribution F that generates the data under $H_0 : \theta = \theta_0$:

$$
\mathcal{F}_{AR} := \{ F : E_F g_i = 0^k, \ E_F \| g_i \|^{2+\gamma} \leq M, \text{ and } \lambda_{\min}(E_F g_i g_i') \geq \delta \},
$$

$$
\mathcal{F}_2 := \{ F \in \mathcal{F}_{AR} : E_F \| \text{vec}(G_i) \|^{2+\gamma} \leq M \}, \text{ and}
$$

$$
\mathcal{F}_1 := \{ F \in \mathcal{F}_2 : E_F \| Z_i \|^{4+\gamma} \leq M, \ E_F \| u_i^* \|^{2+\gamma} \leq M, \ \lambda_{\min}(E_F Z_i Z_i') \geq \delta \} \quad (10.1)
$$

for some $\gamma, \delta > 0$ and $M < \infty$. By definition, $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \mathcal{F}_{AR}$. The parameter spaces \mathcal{F}_{AR}, \mathcal{F}_2, and \mathcal{F}_1, are used for the AR, CQLR$_2$, and CQLR$_1$ tests, respectively. For the corresponding CS’s, we use the parameter spaces: $\mathcal{F}_{\theta,AR} := \{ (F, \theta_0) : F \in \mathcal{F}_{AR}(\theta_0), \theta_0 \in \Theta \}$, $\mathcal{F}_{\theta,2} := \{ (F, \theta_0) : F \in \mathcal{F}_2(\theta_0), \theta_0 \in \Theta \}$, and $\mathcal{F}_{\theta,1} := \{ (F, \theta_0) : F \in \mathcal{F}_1(\theta_0), \theta_0 \in \Theta \}$, where $\mathcal{F}_{AR}(\theta_0)$, $\mathcal{F}_2(\theta_0)$, and $\mathcal{F}_1(\theta_0)$ equal \mathcal{F}_{AR}, \mathcal{F}_2, and \mathcal{F}_1, respectively, with their dependence on θ_0 made explicit.

Theorem 10.1 The AR, CQLR$_1$, and CQLR$_2$ tests (without the SR extensions), defined in (5.2), (6.8), and (7.3), respectively, have asymptotic sizes equal to their nominal size $\alpha \in (0,1)$ and are asymptotically similar (in a uniform sense) for the parameter spaces \mathcal{F}_{AR}, \mathcal{F}_1, and \mathcal{F}_2, respectively. Analogous results hold for the corresponding AR, CQLR$_1$, and CQLR$_2$ CS’s for the parameter spaces $\mathcal{F}_{\theta,AR}$, $\mathcal{F}_{\theta,1}$, and $\mathcal{F}_{\theta,2}$, respectively.

Comment: (i) The first step of the proof of Theorem 8.1 is to prove Theorem 10.1.

(ii) Theorem 10.1 holds for both $k \geq p$ and $k < p$. Both cases are needed in the proof of Theorem 8.1 (even if $k \geq p$ in Theorem 8.1).
10.1.2 Uniformity Framework

The proof of Theorem 10.1 uses Corollary 2.1(c) in Andrews, Cheng, and Guggenberger (2009) (ACG), which provides general sufficient conditions for the correct asymptotic size and (uniform) asymptotic similarity of a sequence of tests.

Now we state Corollary 2.1(c) of ACG. Let \(\{\phi_n : n \geq 1\} \) be a sequence of tests of some null hypothesis whose null distributions are indexed by a parameter \(\lambda \) with parameter space \(\Lambda \). Let \(R_{P,n}(\lambda) \) denote the null rejection probability of \(\phi_n \) under \(\lambda \). For a finite nonnegative integer \(J \), let \(\{h_n(\lambda) = (h_{1n}(\lambda), \ldots, h_{Jn}(\lambda))' \in R^J : n \geq 1\} \) be a sequence of functions on \(\Lambda \). Define

\[
H := \{h \in (R \cup \{\pm \infty\})^J : h_{wn}(\lambda_{wn}) \rightarrow h \text{ for some subsequence } \{w_n\}
\]
of \(\{n\} \) and some sequence \(\{\lambda_{wn} \in \Lambda : n \geq 1\} \).

(10.2)

Assumption B: For any subsequence \(\{w_n\} \) of \(\{n\} \) and any sequence \(\{\lambda_{wn} \in \Lambda : n \geq 1\} \) for which \(h_{wn}(\lambda_{wn}) \rightarrow h \in H, R_{P,wn}(\lambda_{wn}) \rightarrow \alpha \) for some \(\alpha \in (0, 1) \).

Proposition 10.2 (ACG, Corollary 2.1(c)) Under Assumption B, the tests \(\{\phi_n : n \geq 1\} \) have asymptotic size \(\alpha \) and are asymptotically similar (in a uniform sense). That is, \(\text{AsySz} := \limsup_{n \rightarrow \infty} \sup_{\lambda \in \Lambda} R_{P,n}(\lambda) = \alpha \) and \(\liminf_{n \rightarrow \infty} \inf_{\lambda \in \Lambda} R_{P,n}(\lambda) = \limsup_{n \rightarrow \infty} \sup_{\lambda \in \Lambda} R_{P,n}(\lambda) \).

Comments: (i) By Comment 4 to Theorem 2.1 of ACG, Proposition 10.2 provides asymptotic size and similarity results for nominal \(1 - \alpha \) CS’s, rather than tests, by defining \(\lambda \) as one would for a test, but having it depend also on the parameter that is restricted by the null hypothesis, by enlarging the parameter space \(\Lambda \) correspondingly (so it includes all possible values of the parameter that is restricted by the null hypothesis), and by replacing (a) \(\phi_n \) by a CS based on a sample of size \(n \), (b) \(\alpha \) by \(1 - \alpha \), (c) \(R_{P,n}(\lambda) \) by \(C_{P,n}(\lambda) \), where \(C_{P,n}(\lambda) \) denotes the coverage probability of the CS under \(\lambda \) when the sample size is \(n \), and (d) the first \(\limsup_{n \rightarrow \infty} \sup_{\lambda \in \Lambda} \) that appears by \(\liminf_{n \rightarrow \infty} \inf_{\lambda \in \Lambda} \). In the present case, where the null hypotheses are of the form \(H_0 : \theta = \theta_0 \) for some \(\theta_0 \in \Theta \), to establish the asymptotic size of CS’s, the parameter \(\theta_0 \) is taken to be a subvector of \(\lambda \) and \(\Lambda \) is specified so that the value of this subvector ranges over \(\Theta \).

(ii) In the application of Proposition 10.2 to prove Theorem 10.1, one takes \(\Lambda \) to be a one-to-one transformation of \(\mathcal{F}_{AR}, \mathcal{F}_2, \) or \(\mathcal{F}_1 \) for tests, and one takes \(\Lambda \) to be a one-to-one transformation of \(\mathcal{F}_{\Theta,AR}, \mathcal{F}_{\Theta,2}, \) or \(\mathcal{F}_{\Theta,1} \) for CS’s. With these changes, the proofs for tests and CS’s are the same. In consequence, we provide explicit proofs for tests only and obtain the proofs for CS’s by analogous applications of Proposition 10.2.

(iii) We prove the test results in Theorem 10.1 using Proposition 10.2 by verifying Assumption
B* for a suitable choice of λ, h_n(λ), and Λ. The verification of Assumption B* is quite easy for the AR test. It is given in Section 22.6 in the SM. The verifications of Assumption B* for the CQLR_1 and CQLR_2 tests are much more difficult. In the remainder of this Section 10.1, we provide some key results that are used in doing so. (These results are used only for the CQLR tests, not the AR test.) The complete verifications for the CQLR_1 and CQLR_2 tests are given in Section 22 in the SM.

10.1.3 General Weight Matrices \(\hat{W}_n \) and \(\hat{U}_n \)

As above, for notational simplicity, we suppress the dependence on \(\theta_0 \) of many quantities, such as \(g_i, G_i, u_{gi}, B, \) and \(f_i \), as well as the quantities \(V_F, \Xi_F, R_F, \tilde{V}_F, \) and \(\tilde{R}_F \), that are introduced below. To provide asymptotic results for the CQLR_1 and CQLR_2 tests simultaneously, we prove asymptotic results for a QLR test statistic and a conditioning statistic that depend on general random weight matrices \(\hat{W}_n \in R^{k \times k} \) and \(\hat{U}_n \in R^{p \times p} \). In particular, we consider statistics of the form \(\hat{W}_n \hat{D}_n \hat{U}_n \) and functions of this statistic, where \(\hat{D}_n \) is defined in (6.2). Let \(^{44}\)

\[
QLR_n := AR_n - \lambda_{\min}(n\hat{Q}_{WU,n}), \quad \hat{Q}_{WU,n} := \left(\hat{W}_n \hat{D}_n \hat{U}_n; \Omega_n^{-1/2}g_n\right)\left(\hat{W}_n \hat{D}_n \hat{U}_n; \Omega_n^{-1/2}g_n\right)' \in R^{(p+1) \times (p+1)}. \tag{10.3}
\]

The definitions of the random weight matrices \(\hat{W}_n \) and \(\hat{U}_n \) depend upon the statistic that is of interest. They are taken to be of the form

\[
\hat{W}_n := W_1(\hat{W}_2) \in R^{k \times k} \quad \text{and} \quad \hat{U}_n := U_1(\hat{U}_2) \in R^{p \times p}, \tag{10.4}
\]

where \(\hat{W}_2 \) and \(\hat{U}_2 \) are random finite-dimensional quantities, such as matrices, and \(W_1(\cdot) \) and \(U_1(\cdot) \) are nonrandom functions that are assumed below to be continuous on certain sets. The estimators \(\hat{W}_2 \) and \(\hat{U}_2 \) have corresponding population quantities \(W_2F \) and \(U_2F \), respectively. Thus, the population quantities corresponding to \(\hat{W}_n \) and \(\hat{U}_n \) are

\[
W_F := W_1(W_2F) \quad \text{and} \quad U_F := U_1(U_2F), \tag{10.5}
\]

respectively.

\(^{44}\)The definition of \(\hat{Q}_{WU,n} \) in (10.3) writes the \(\lambda_{\min}(\cdot) \) quantity in terms of \((\hat{W}_n \hat{D}_n \hat{U}_n; \Omega_n^{-1/2}g_n) \), whereas (6.7) writes the \(\lambda_{\min}(\cdot) \) quantity in terms of \((\Omega_n^{-1/2}g_n, D_n^*) \), which has the \(\Omega_n^{-1/2}g_n \) vector as the first column rather than the last column. The ordering of the columns does not affect the value of the \(\lambda_{\min}(\cdot) \) quantity. We use the order \((\Omega_n^{-1/2}g_n, D_n^*)\) in (6.7) because it is consistent with the order in Moreira (2003) and Andrews, Moreira, and Stock (2006, 2008). We use the order \((\hat{W}_n \hat{D}_n \hat{U}_n; \Omega_n^{-1/2}g_n)\) here because it has significant notational advantages in the proof of Theorem 10.3 below, which is given in Section 21 in the SM.
Example 1: For the CQLR test, one takes

\[
\tilde{W}_n := \tilde{\Omega}_n^{-1/2} \text{ and } \tilde{U}_n := \tilde{L}_n^{-1/2} := ((\theta_0, I_p)(\tilde{\Sigma}_n^e)^{-1}(\theta_0, I_p))^{1/2}, \tag{10.6}
\]

where \(\tilde{\Omega}_n\) is defined in (5.1) and \(\tilde{\Sigma}_n\) is defined in (6.4) and (6.5).

The population analogues of \(\tilde{V}_n\) and \(\tilde{R}_n\), defined in (6.3), are

\[
V_F := E_F f_i' - E_F((g_i, G_i)\Xi_F \otimes Z_iZ_i') - E_F(\Xi_F (g_i, G_i) \otimes Z_iZ_i')
+ E_F(\Xi_F'Z_iZ_i'\Xi_F \otimes Z_iZ_i') \in R^{(p+1)k \times (p+1)k} \text{ and}
\]

\[
R_F := (B' \otimes I_k)V_F(B \otimes I_k) \in R^{(p+1)k \times (p+1)k}, \tag{10.7}
\]

\[
\Xi_F := (E_F Z_iZ_i')^{-1}E_F (g_i, G_i) \in R^{k \times (p+1)}, \quad f_i := (g_i', vec(G_i'))' \in R^{(p+1)k},
\]

and \(B = B(\theta_0)\) is defined in (6.3).

For the CQLR test,

\[
\tilde{W}_{2n} := \tilde{\Omega}_n, \quad W_{2F} := \Omega_F := E_F g_i g_i', \quad W_1(W_{2F}) := W_{2F}^{-1/2},
\]

\[
\tilde{U}_{2n} := (\tilde{\Omega}_n, \tilde{R}_n), \quad U_{2F} := (\Omega_F, R_F), \quad U_1(U_{2F}) := ((\theta_0, I_p)(\Sigma^e(\Omega_F, R_F))^{-1}(\theta_0, I_p))^{1/2}, \text{ and}
\]

\[
\Sigma_{j\ell}(\Omega_F, R_F) = tr(R_{j\ell F}(\Omega_F^{-1})/k) \tag{10.8}
\]

for \(j, \ell = 1, \ldots, p + 1\), where \(\Sigma_{j\ell}(\Omega_F, R_F) \in R^{(p+1) \times (p+1)}\) denotes the \((j, \ell)\) element \(\Sigma(\Omega_F, R_F)\), \(\Sigma(\Omega_F, R_F)\) is defined to minimize \(||(I_{p+1} \otimes \Omega_F^{-1/2})[\Sigma \otimes \Omega_F - R_F] (I_{p+1} \otimes \Omega_F^{-1/2})||\) over symmetric pd matrices \(\Sigma \in R^{(p+1) \times (p+1)}\) (analogously to the definition of \(\tilde{\Sigma}_n(\theta)\) in (6.4)), the last equality in (10.8) holds by the same argument as used to obtain (6.5), \(\Sigma^e(\Omega_F, R_F)\) is defined given \(\Sigma(\Omega_F, R_F)\) by (6.6), and \(R_{j\ell F}\) denotes the \((j, \ell)\) \(k \times k\) submatrix of \(R_F\).

Example 2: For the CQLR test, one takes \(\tilde{W}_n, \tilde{W}_{2n}, W_{2F}, \) and \(W_1(\cdot)\) as in Example 1 and

\[
\tilde{U}_n := \tilde{L}_n^{1/2} := ((\theta_0, I_p)(\tilde{\Sigma}_n^e)^{-1}(\theta_0, I_p))^{1/2}, \tag{10.9}
\]

where \(\tilde{\Sigma}_n\) is defined in Section 7.

The population analogues of \(\tilde{V}_n\) and \(\tilde{R}_n\), defined in (7.1), are

\[
V_F := E_F f_i - E_F f_i f_i' f_i - E_F f_i f_i' \in R^{(p+1)k \times (p+1)k} \text{ and}
\]

\[
R_F := (B' \otimes I_k)V_F(B \otimes I_k) \in R^{(p+1)k \times (p+1)k}. \tag{10.10}
\]

\[\text{Note that } W_1(W_{2F}) \text{ and } U_1(U_{2F}) \text{ in (10.8) define the functions } W_1(\cdot) \text{ and } U_1(\cdot) \text{ for any conformable arguments, such as } \tilde{W}_{2n} \text{ and } \tilde{U}_{2n}, \text{ not just for } W_{2F} \text{ and } U_{2F}.\]
In this case,
\[
\hat{U}_{2n} := (\hat{\Omega}_n, \hat{R}_n), \quad U_{2F} := (\Omega_F, \bar{R}_F),
\]
(10.11)

\(W_1(\cdot)\) and \(U_1(\cdot)\) are as in (10.8), and \(\hat{R}_n\) is defined in (7.1). We let \(\hat{\Sigma}_F\) denote \(\Sigma(\Omega_F, \bar{R}_F)\), which appears in the definition of \(U_1(U_{2F})\) in this case. The matrix \(\hat{\Sigma}_F\) is defined as \(\Sigma_F\) is defined following (10.8) but with \(\bar{R}_F\) in place of \(R_F\). As defined, \(\hat{\Sigma}_F\) minimizes \(|(I_p+1 \otimes \Omega_F^{-1/2})[\Sigma \otimes \Omega_F - \bar{R}_F](I_p+1 \otimes \Omega_F^{-1/2})|\) over symmetric pd matrices \(\Sigma \in R^{(p+1) \times (p+1)}\).

We provide results for distributions \(F\) in the following set of null distributions:
\[
\mathcal{F}_{WU} := \{ F \in \mathcal{F}_2 : \lambda_{\min}(W_F) \geq \delta_1, \lambda_{\min}(U_F) \geq \delta_1, ||W_F|| \leq M_1, \text{ and } ||U_F|| \leq M_1 \}
\]
(10.12)
for some constants \(\delta_1 > 0\) and \(M_1 < \infty\), where \(\mathcal{F}_2\) is defined in (10.1).

For the CQLR1 test, which uses the definitions in (10.6)-(10.8), we show that \(\mathcal{F}_1 \subset \mathcal{F}_{WU}\) for \(\delta_1 > 0\) sufficiently small and \(M_1 < \infty\) sufficiently large, where \(\mathcal{F}_1\) is defined in (10.1), see Lemma 22.4(a) in Section 22.1 in the SM. Hence, uniform results over \(\mathcal{F}_1 \cap \mathcal{F}_{WU}\) for arbitrary \(\delta_1 > 0\) and \(M_1 < \infty\) for this test imply uniform results over \(\mathcal{F}_1\).

For the CQLR2 test, which uses the definitions in (10.9)-(10.11), we show that \(\mathcal{F}_2 \subset \mathcal{F}_{WU}\) for \(\delta_1 > 0\) sufficiently small and \(M_1 < \infty\) sufficiently large, see Lemma 22.4(b). Hence, uniform results over \(\mathcal{F}_{WU}\) for this test imply uniform results over \(\mathcal{F}_2\).

10.1.4 Uniformity Reparametrization

To apply Proposition 10.2, we reparametrize the null distribution \(F\) to a vector \(\lambda\). The vector \(\lambda\) is chosen such that for a subvector of \(\lambda\) convergence of a drifting subsequence of the subvector (after suitable renormalization) yields convergence in distribution of the test statistic and convergence in distribution of the critical value in the case of the CQLR tests. In this section, we define \(\lambda\) for the CQLR tests. Its (much simpler) definition for the AR test is given in Section 22.6 in the SM.

The vector \(\lambda\) depends on the following quantities. Let

\[
B_F \text{ denote a } p \times p \text{ orthogonal matrix of eigenvectors of } U_F^\prime(E_FG_i)^\prime W_F W_F(E_FG_i)U_F
\]
(10.13)

ordered so that the corresponding eigenvalues \((\kappa_{1F}, ..., \kappa_{pF})\) are nonincreasing. The matrix \(B_F\) is such that the columns of \(W_F(E_FG_i)U_F B_F\) are orthogonal. Let

\[
C_F \text{ denote a } k \times k \text{ orthogonal matrix of eigenvectors of } W_F(E_FG_i)U_F U_F^\prime(E_FG_i)^\prime W_F^{1/2}
\]
(10.14)

\[\text{The matrices } B_F \text{ and } C_F \text{ are not uniquely defined. We let } B_F \text{ denote one choice of the matrix of eigenvectors of}\]

37
The corresponding eigenvalues are \((\kappa_{1F}, \ldots, \kappa_{kF}) \in R^k\). Let

\[
(\tau_{1F}, \ldots, \tau_{\min\{k,p\}F}) \text{ denote the } \min\{k,p\} \text{ singular values of } W_F(E_FG_i)U_F, \tag{10.15}
\]

which are nonnegative, ordered so that \(\tau_{jF}\) is nonincreasing. (Some of these singular values may be zero.) As is well-known, the squares of the \(\min\{k,p\}\) singular values of a \(k \times p\) matrix \(A\) equal the \(\min\{k,p\}\) largest eigenvalues of \(A' A\) and \(AA'\). In consequence, \(\kappa_{jF} = \tau_{jF}^2\) for \(j = 1, \ldots, \min\{k,p\}\). In addition, \(\kappa_{jF} = 0\) for \(j = \min\{k,p\}, \ldots, \max\{k,p\}\).

Define the elements of \(\lambda\) to be \(^{47,48}\)

\[
\begin{align*}
\lambda_{1,F} &:= (\tau_{1F}, \ldots, \tau_{\min\{k,p\}F})' \in R^{\min\{k,p\}}, \\
\lambda_{2,F} &:= B_F \in R^{p \times p}, \\
\lambda_{3,F} &:= C_F \in R^{k \times k}, \\
\lambda_{4,F} &:= (E_Fg_{i1}, \ldots, E_Fg_{ip}) \in R^{k \times p}, \\
\lambda_{5,F} &:= E_F \left(\begin{array}{c} g_i \\ \text{vec}(G_i) \end{array} \right)' \left(\begin{array}{c} g_i \\ \text{vec}(G_i) \end{array} \right) \in R^{(p+1)k \times (p+1)k}, \\
\lambda_{6,F} &:= \left(\lambda_{6,1F}, \ldots, \lambda_{6,(\min\{k,p\} - 1)F} \right)' := \left(\frac{\tau_{2F}}{\tau_{1F}}, \ldots, \frac{\tau_{\min\{k,p\}F}}{\tau_{(\min\{k,p\} - 1)F}} \right)' \in [0, 1]^{\min\{k,p\} - 1}, \text{ where } 0/0 := 0, \\
\lambda_{7,F} &:= W_{2F}, \\
\lambda_{8,F} &:= U_{2F}, \\
\lambda_{9,F} &:= F, \text{ and} \\
\lambda &= \lambda_F := (\lambda_{1,F}, \ldots, \lambda_{9,F}). \tag{10.16}
\end{align*}
\]

The dimensions of \(W_{2F}\) and \(U_{2F}\) depend on the choices of \(\widehat{W}_n = W_1(\widehat{W}_{2n})\) and \(\widehat{U}_n = U_1(\widehat{U}_{2n})\). We let \(\lambda_{5,GF}\) denote the upper left \(k \times k\) submatrix of \(\lambda_{5,F}\). Thus, \(\lambda_{5,GF} = E_Fg_i g_i' = \Omega_F\). We consider two parameter spaces for \(\lambda\): \(\Lambda_1\) and \(\Lambda_2\), which correspond to \(\mathcal{F}_{WU} \cap \mathcal{F}_1\) and \(\mathcal{F}_{WU}\), respectively, where \(\mathcal{F}_1\) and \(\mathcal{F}_{WU}\) are defined in (10.1) and (10.12), respectively. The space \(\Lambda_1\) is used for the CQLR test. The space \(\Lambda_2\) is used for the CQLR2 test.\(^{19}\) The parameter spaces \(\Lambda_1\) and \(\Lambda_2\) and

\[^{47}\text{For simplicity, when writing } \lambda = (\lambda_{1,F}, \ldots, \lambda_{9,F}), \text{ we allow the elements to be scalars, vectors, matrices, and distributions and likewise in similar expressions.}\]

\[^{48}\text{If } p = 1, \text{ no vector } \lambda_{6,F} \text{ appears in } \lambda \text{ because } \lambda_{1,F} \text{ only contains a single element.}\]

\[^{19}\text{Note that the parameter } \lambda \text{ has different meanings for the CQLR1 and CQLR2 tests because } U_{2F} \text{ and } U_F \text{ are different for the two tests.}\]
the function \(h_n(\lambda) \) are defined by

\[
\begin{align*}
\Lambda_1 & := \{ \lambda : \lambda = (\lambda_{1,F}, \ldots, \lambda_{9,F}) \text{ for some } F \in \mathcal{F}_{WU} \cap \mathcal{F}_1 \}, \\
\Lambda_2 & := \{ \lambda : \lambda = (\lambda_{1,F}, \ldots, \lambda_{9,F}) \text{ for some } F \in \mathcal{F}_{WU} \}, \text{ and} \\
h_n(\lambda) & := (n^{1/2}\lambda_{1,F}, \lambda_{2,F}, \lambda_{3,F}, \lambda_{4,F}, \lambda_{5,F}, \lambda_{6,F}, \lambda_{7,F}, \lambda_{8,F}).
\end{align*}
\] (10.17)

By the definition of \(\mathcal{F}_2 \), \(\Lambda_1 \) and \(\Lambda_2 \) index distributions that satisfy the null hypothesis \(H_0 : \theta = \theta_0 \). The dimension \(J \) of \(h_n(\lambda) \) equals the number of elements in \((\lambda_{1,F}, \ldots, \lambda_{8,F})\). Redundant elements in \((\lambda_{1,F}, \ldots, \lambda_{8,F})\), such as the redundant off-diagonal elements of the symmetric matrix \(\lambda_{5,F} \), are not needed, but do not cause any problem.

We define \(\lambda \) and \(h_n(\lambda) \) as in \((10.16) \) and \((10.17) \) because, as shown below, the asymptotic distributions of the test statistics under a sequence \(\{ F_n : n \geq 1 \} \) for which \(h_n(\lambda_{F_n}) \rightarrow h \in H \) depend on the behavior of \(\lim n^{1/2}\lambda_{1,F_n} \), as well as \(\lim \lambda_{m,F_n} \) for \(m = 2, \ldots, 8 \).

For notational convenience,

\[
\{ \lambda_{n,h} : n \geq 1 \} \text{ denotes a sequence } \{ \lambda_n \in \Lambda_2 : n \geq 1 \} \text{ for which } h_n(\lambda_n) \rightarrow h \in H
\] (10.18)

for \(H \) defined in \((10.2) \) with \(\Lambda \) equal to \(\Lambda_2 \)

By the definitions of \(\Lambda_2 \) and \(\mathcal{F}_{WU} \), \(\{ \lambda_{n,h} : n \geq 1 \} \) is a sequence of distributions that satisfies the null hypothesis \(H_0 : \theta = \theta_0 \).

We decompose \(h \) (defined by \((10.2) \), \((10.16) \), and \((10.17) \)) analogously to the decomposition of the first eight components of \(\lambda \): \(h = (h_1, \ldots, h_8) \), where \(\lambda_{m,F} \) and \(h_m \) have the same dimensions for \(m = 1, \ldots, 8 \). We further decompose the vector \(h_1 \) as \(h_1 = (h_{1,1}, \ldots, h_{1,\min(k,p)})' \), where the elements of \(h_1 \) could equal \(\infty \). We decompose \(h_6 \) as \(h_6 = (h_{6,1}, \ldots, h_{6,\min(k,p)-1})' \). In addition, we let \(h_{5,g} \) denote the upper left \(k \times k \) submatrix of \(h_5 \). In consequence, under a sequence \(\{ \lambda_{n,h} : n \geq 1 \} \), we have

\[
\begin{align*}
n^{1/2} \tau_jf_n & \rightarrow h_{1,j} \geq 0 \ \forall j \leq \min\{k,p\}, \ \lambda_{m,F_n} \rightarrow h_m \ \forall m = 2, \ldots, 8, \\
\lambda_{5,g}f_n & = \Omega f_n = E_{f_n}g_{i}'g_{i}' \rightarrow h_{5,g}, \text{ and } \lambda_{6,j}f_n \rightarrow h_{6,j} \ \forall j = 1, \ldots, \min\{k,p\} - 1.
\end{align*}
\] (10.19)

By the conditions in \(\mathcal{F}_2 \), defined in \((10.1) \), \(h_{5,g} \) is pd.

\footnote{Analogously, for any subsequence \(\{ w_n : n \geq 1 \} \), \(\{ \lambda_{w_n,h} : n \geq 1 \} \) denotes a sequence \(\{ \lambda_{w_n} \in \Lambda : n \geq 1 \} \) for which \(h_{w_n}(\lambda_{w_n}) \rightarrow h \in H \).}
10.1.5 Assumption WU

We assume that the random weight matrices $\hat{W}_n = W_1(W_2n)$ and $\hat{U}_n = U_1(U_2n)$ defined in (10.4) satisfy the following assumption that depends on a suitably chosen parameter space Λ^*_s (⊂ Λ2), such as Λ1 or Λ2.

Assumption WU for the parameter space Λ^*_s ⊂ Λ2: Under all subsequences $\{w_n\}$ and all sequences $\{w_n; h_n\}$ such as 1 or 2, Assumption WU for the parameter spaces Λ^*_1 and Λ^*_2 is verified in Lemma 22.4 in Section 22 in the SM for the CQLR1 and CQLR2 tests, respectively.

10.1.6 Asymptotic Distributions

This section provides the asymptotic distributions of QLR test statistics and corresponding conditioning statistics that are used in the proof of Theorem 10.1 to verify Assumption B* of Proposition 10.2.

For any $F \in \mathcal{F}_2$, define

$$
\Phi^\text{vec}(G_i) := \text{Var}_F(\text{vec}(G_i)) - (E_F\text{vec}(G_i)g_i'\Omega_F^{-1}g_i)$$

and

$$
\Phi_h^\text{vec}(G_i) := \lim \Phi^\text{vec}(G_i)
$$

whenever the limit exists, where the distributions $\{F_{w_n} : n \geq 1\}$ correspond to $\{\lambda_{w_n,h} : n \geq 1\}$ for any subsequence $\{w_n : n \geq 1\}$. The assumptions allow $\Phi_h^\text{vec}(G_i)$ to be singular.

By the CLT and some straightforward calculations, the joint asymptotic distribution of $n^{1/2}(\hat{g}_n', \text{vec}(\hat{D}_n - E_{F_n}G_i)')'$ under $\{\lambda_{n,h} : n \geq 1\}$ is given by

$$
\left(\begin{array}{c} \bar{h}_h \\ \text{vec}(\bar{D}_h) \end{array} \right) \sim N \left(0^{(p+1)k}, \begin{pmatrix} h_{5,g} & 0^{k \times p} \\ 0^{p \times k} & \Phi_h^\text{vec}(G_i) \end{pmatrix} \right),
$$

(10.21)
where $\bar{g}_h \in R^k$ and $\bar{D}_h \in R^{k \times p}$ are independent by the definition of \hat{D}_n, see Lemma 10.3 below.

To determine the asymptotic distributions of the QLR_{1n} and QLR_{2n} statistics (defined in (6.7) and just below (7.2)) and the conditional critical value of the CQLR tests (defined in (3.5), (6.8), and (7.3)), we need to determine the asymptotic distribution of $W_{F_n} \hat{D}_n U_{F_n}$ without recentering by $E_{F_n} G_i$. To do so, we post-multiply $W_{F_n} \hat{D}_n U_{F_n}$ first by B_{F_n} and then by a nonrandom diagonal matrix $S_n \in R^{p \times p}$ (which may depend on F_n and h). The matrix S_n rescales the columns of $W_{F_n} \hat{D}_n U_{F_n} B_{F_n}$ to ensure that $n^{1/2} W_{F_n} \hat{D}_n U_{F_n} B_{F_n} S_n$ converges in distribution to a (possibly) random matrix that is finite a.s. and not a.s. zero.

The following is an important definition for the scaling matrix S_n and asymptotic distributions given below. Consider a sequence $\{\lambda_{n,h} : n \geq 1\}$. Let $q = q_h (\in \{0, ..., \min\{k, p\}\})$ be such that

$$h_{1,j} = \infty \text{ for } 1 \leq j \leq q_h \text{ and } h_{1,j} < \infty \text{ for } q_h + 1 \leq j \leq \min\{k, p\}, \quad (10.22)$$

where $h_{1,j} := \lim n^{1/2} \tau_{jF_n} \geq 0$ for $j = 1, ..., \min\{k, p\}$ by (10.19) and the distributions $\{F_n : n \geq 1\}$ correspond to $\{\lambda_{n,h} : n \geq 1\}$ defined in (10.18). This value q exists because $\{h_{1,j} : j \leq \min\{k, p\}\}$ are nonincreasing in j (since $\{\tau_{jF} : j \leq \min\{k, p\}\}$ are nonincreasing in j, as defined in (10.15)). Note that q is the number of singular values of $W_{F_n} (E_{F_n} G_i) U_{F_n}$ that diverge to infinity when multiplied by $n^{1/2}$. Heuristically, q is the maximum number of parameters, or one-to-one transformations of the parameters, that are strongly or semi-strongly identified. (That is, one could partition θ, or a one-to-one transformation of θ, into subvectors of dimension q and $p - q$ such that if the $p - q$ subvector was known and, hence, was no longer part of the parameter, then the q subvector would be strongly or semi-strongly identified in the sense used in this paper.)

Let

$$S_n := \text{Diag}\{n^{1/2} \tau_{1F_n}^{-1}, ..., (n^{1/2} \tau_{qF_n})^{-1}, 1, ..., 1\} \in R^{p \times p} \text{ and } T_n := B_{F_n} S_n \in R^{p \times p}, \quad (10.23)$$

where $q = q_h$ is defined in (10.22). Note that S_n is well defined for n large, because $n^{1/2} \tau_{jF_n} \to \infty$ for all $j \leq q$.

The asymptotic distribution of \hat{D}_n after suitable rotations and rescaling, but without recentering (by subtracting $E_{F} G_i$), depends on the following quantities. We partition h_2 and h_3 and define Δ_h...
Lemma 10.3

Suppose Assumption WU holds for some non-empty parameter space \(\Lambda_* \subset \Lambda_2 \). Under all sequences \(\{ \lambda_{n,h} : n \geq 1 \} \) with \(\lambda_{n,h} \in \Lambda_* \),

\[
n^{1/2}(\bar{g}_n, \bar{D}_n - E_{F_n} G_t, W_{F_n} \tilde{D}_n U_{F_n} T_n) \to_d (\bar{g}_h, \bar{D}_h, \bar{\Sigma}_h),
\]

where (a) \((\bar{g}_h, \bar{D}_h) \) are defined in (10.21), (b) \(\bar{\Sigma}_h \) is the nonrandom function of \(h \) and \(\bar{D}_h \) defined in (10.24), (c) \((\bar{D}_h, \bar{\Sigma}_h) \) and \(\bar{g}_h \) are independent, and (d) under all subsequences \(\{ w_n \} \) and all sequences \(\{ \lambda_{w_n,h} : n \geq 1 \} \) with \(\lambda_{w_n,h} \in \Lambda_* \), the convergence result above and the results of parts (a)-(c) hold with \(n \) replaced with \(w_n \).

Comments: (i) Lemma 10.3(c) is a key property that leads to the correct asymptotic size of the CQLR_1 and CQLR_2 tests.

(ii) Lemma 8.3 in the Appendix to AG1 contains a part (part (d)), which does not appear in Lemma 10.3. It states that \(\bar{\Sigma}_h \) has full column rank a.s. under some additional conditions. For Kleibergen’s (2005) LM statistic and Kleibergen’s (2005) CLR statistics that employ it, which are considered in AG1, one needs the (possibly) random limit matrix of \(n^{1/2} W_{F_n} \tilde{D}_n U_{F_n} B_{F_n} S_n \), viz., \(\bar{\Sigma}_h \), to have full column rank with probability one, in order to apply the continuous mapping theorem.
Suppose Assumption (CMT), which is used to determine the asymptotic distribution of the test statistics. To obtain this full column rank property, AG1 restricts the parameter space for the tests based on aforementioned statistics to be a subset \(\mathcal{F}_0 \) of \(\mathcal{F}_2 \), where \(\mathcal{F}_0 \) is defined in Section 3 of AG1. In contrast, the \(QLR_{1n} \) and \(QLR_{2n} \) statistics considered here do not depend on Kleibergen’s LM statistic and do not require the asymptotic distribution of \(n^{1/2} W_{F_n} \hat{D}_n U_{F_n} B_{F_n} S_n \) to have full column rank a.s. In consequence, it is not necessary to restrict the parameter space from \(\mathcal{F}_2 \) to \(\mathcal{F}_0 \) when considering these statistics.

Let

\[
\hat{\kappa}_{jn} \text{ denote the } j\text{th eigenvalue of } n \hat{U}_n \hat{D}_n' \hat{W}_n \hat{D}_n \hat{U}_n, \quad \forall j = 1, \ldots, p, \quad (10.25)
\]

ordered to be nonincreasing in \(j \). The \(j \)th singular value of \(n^{1/2} \hat{W}_n \hat{D}_n \hat{U}_n \) equals \(\hat{\kappa}_{jn}^{1/2} \) for \(j = 1, \ldots, \min\{k, p\} \).

The following proposition, combined with Lemma 6.1, is used to determine the asymptotic behavior of the data-dependent conditional critical values of the CQLR \(_1\) and CQLR \(_2\) tests. The proposition is the same as Theorem 8.4(c)-(f) in the Appendix to AG1, except that it is extended to cover the case \(k < p \), not just \(k \geq p \). For brevity, the proof of the proposition given in Section 20 in the SM just describes the changes needed to the proof of Theorem 8.4(c)-(f) of AG1 in order to cover the case \(k < p \). The proof of Theorem 8.4(c)-(f) in AG1 is similar to, but simpler than, the proof of Theorem 10.5 below, which is given in Section 21 in the SM.

Proposition 10.4 Suppose Assumption WU holds for some non-empty parameter space \(\Lambda_* \subset \Lambda_2 \).

Under all sequences \(\{\lambda_n, h : n \geq 1\} \) with \(\lambda_{n, h} \in \Lambda_* \),

(a) \(\hat{\kappa}_{jn} \to_p \infty \) for all \(j \leq q \),

(b) the (ordered) vector of the smallest \(p-q \) eigenvalues of \(n \hat{U}_n \hat{D}_n' \hat{W}_n \hat{D}_n \hat{U}_n \), i.e., \((\hat{\kappa}_{(q+1)n}, \ldots, \hat{\kappa}_{pn})' \), converges in distribution to the (ordered) \(p-q \) vector of the eigenvalues of \(\Delta_{h,p-q} h_{3,k-q} h_{3,k-q} \times \Delta_{h,p-q} \in R^{(p-q) \times (p-q)} \),

(c) the convergence in parts (a) and (b) holds jointly with the convergence in Lemma 10.3 and

(d) under all subsequences \(\{w_n\} \) and all sequences \(\{\lambda_{w_n, h} : n \geq 1\} \) with \(\lambda_{w_n, h} \in \Lambda_* \), the results in parts (a)-(c) hold with \(n \) replaced with \(w_n \).

Comment: Proposition 10.4(a) and (b) with \(\hat{W}_n = \hat{\Omega}_n^{-1/2} \) and \(\hat{U}_n = \hat{L}_n^{1/2} \) is used to determine the asymptotic behavior of the critical value function for the CQLR \(_1\) test, which depends on \(n^{1/2} \hat{D}_n \) defined in (6.7), see the proof of Theorem 22.1 in Section 22.2 in the SM. Proposition 10.4(a) and (b) with \(\hat{W}_n = \hat{\Omega}_n^{-1/2} \) and \(\hat{U}_n = \hat{L}_n^{1/2} \) is used to determine the asymptotic behavior of the critical value function for the CQLR \(_2\) test, which depends on \(n^{1/2} \hat{D}_n \) defined in (7.2), see the proof of Theorem 22.1 in Section 22.2 in the SM.
The next theorem provides the asymptotic distribution of the general QLR_n statistic defined in (10.3) and, as special cases, those of the QLR_{1n} and QLR_{2n} statistics.

Theorem 10.5 Suppose Assumption WU holds for some non-empty parameter space $\Lambda_* \subset \Lambda_2$. Under all sequences $\{\lambda_{n,h} : n \geq 1\}$ with $\lambda_{n,h} \in \Lambda_*$,

$$QLR_n \to_d \bar{\theta}_h h_{5,g}^{-1} \bar{g}_h - \lambda_{\min}((\bar{\Sigma}_{h,p-q}, h_{5,g}^{-1/2} \bar{g}_h)' h_{3,k-q} h_{3,k-q} (\bar{\Sigma}_{h,p-q}, h_{5,g}^{-1/2} \bar{g}_h))$$

and the convergence holds jointly with the convergence in Lemma 10.3 and Proposition 10.4. When $q = p$ (which can only hold if $k \geq p$ because $q \leq \min\{k, p\}$), $\bar{\Sigma}_{h,p-q}$ does not appear in the limit random variable and the limit random variable reduces to $(h_{5,g}^{-1/2} \bar{g}_h)' h_{3,p} h_{3,p}^{-1/2} \bar{g}_h \sim \chi^2_p$. When $q = k$ (which can only hold if $k \leq p$), the $\lambda_{\min}(\cdot)$ expression does not appear in the limit random variable and the limit random variable reduces to $\bar{\theta}_h h_{5,g}^{-1} \bar{g}_h \sim \chi^2_k$. When $k \leq p$ and $q < k$, the $\lambda_{\min}(\cdot)$ expression equals zero and the limit random variable reduces to $\bar{\theta}_h h_{5,g}^{-1} \bar{g}_h \sim \chi^2_k$. Under all subsequences $\{w_n\}$ and all sequences $\{\lambda_{w_n,h} : n \geq 1\}$ with $\lambda_{w_n,h} \in \Lambda_*$, the same results hold with n replaced with w_n.

Comments: (i) Theorem 10.5 gives the asymptotic distributions of the QLR_{1n} and QLR_{2n} statistics (defined by (6.7) and (7.2)) once it is verified that the choices of (\bar{W}_n, \bar{U}_n) for these statistics satisfy Assumption WU for the parameter spaces Λ_1 and Λ_2, respectively. The latter is done in Lemma 22.3 in Section 22.1 in the SM.

(ii) When $q = p$, the parameter θ_0 is strongly or semi-strongly identified and Theorem 10.5 shows that the QLR_n statistic has a χ^2_p asymptotic null distribution.

(iii) When $k = p$, Theorem 10.5 shows that the QLR_n statistic has a χ^2_k asymptotic null distribution regardless of the strength of identification.

(iv) When $k < p$, the parameter is necessarily unidentified and Theorem 10.5 shows that the asymptotic null distribution of QLR_n is χ^2_k.

(v) The proof of Theorem 10.5 given in Section 21 in the SM also shows that the largest q eigenvalues of $n(\bar{W}_n \bar{D}_n \bar{U}_n, \bar{\Omega}_n^{-1/2} \bar{g}_n)'(\bar{W}_n \bar{D}_n \bar{U}_n, \bar{\Omega}_n^{-1/2} \bar{g}_n)$ diverge to infinity in probability and the (ordered) vector of the smallest $p + 1 - q$ eigenvalues of this matrix converges in distribution to the (ordered) vector of the $p + 1 - q$ eigenvalues of $(\bar{\Sigma}_{h,p-q}, h_{5,g}^{-1/2} \bar{g}_h)' h_{3,k-q} h_{3,k-q} (\bar{\Sigma}_{h,p-q}, h_{5,g}^{-1/2} \bar{g}_h)$.

Propositions 10.2 and 10.4 and Theorem 10.5 are used to prove Theorem 10.1. The proof is given in Section 22 in the SM. Note, however, that the proof is not a straightforward implication of these results. The proof also requires (i) determining the behavior of the conditional critical value function $c_{k,p}(D, 1 - \alpha)$, defined in the paragraph containing (3.5), for sequences of nonrandom $k \times p$ matrices.
\{D_n : n \geq 1\} whose singular values may converge or diverge to infinity at any rates, (ii) showing that the distribution function of the asymptotic distribution of the \(QLR_n\) statistic, conditional on the asymptotic version of the conditioning statistic, is continuous and strictly increasing at its \(1 - \alpha\) quantile for all possible \((k, p, q)\) values and all possible limits of the scaled population singular values \(\{n^{1/2} \sigma_{jF_n} : n \geq 1\}\) for \(j = 1, \ldots, \min\{k, p\}\), and (iii) establishing that Assumption WU holds for the CQLR\(_1\) and CQLR\(_2\) tests. These results are established in Lemmas 22.2, 22.3, and 22.4 respectively, in Section 22 in the SM.

10.2 Singularity-Robust Tests

In this section, we prove the main Theorem 8.1 for the SR tests using Theorem 10.1 for the tests without the SR extension. The SR-AR and SR-CQLR tests, defined in \((5.7)\), \((6.12)\), and \((7.5)\), depend on the random variable \(\hat{r}_n(\theta)\) and random matrices \(\hat{A}_n(\theta)\) and \(\hat{A}_{n}^{\dagger}(\theta)\), defined in \((5.3)\) and \((5.4)\). First, in the following lemma, we show that with probability that goes to one as \(n \rightarrow \infty\) (\(wp\rightarrow 1\)), the SR test statistics and data-dependent critical values are the same as when the non-random and rescaled population quantities \(r_F(\theta)\) and \(\Pi_{1F}^{-1/2}(\theta)A_F(\theta)'\) are used to define these statistics, rather than \(\hat{r}_n(\theta)\) and \(\hat{A}_n(\theta)'\), where \(r_F(\theta), A_F(\theta),\) and \(\Pi_{1F}(\theta)\) are defined as in \((4.7)\) and \((4.8)\). The lemma also shows that the extra rejection condition in \((5.7)\), \((6.12)\), and \((7.5)\) fails to hold \(wp\rightarrow 1\) under all sequences of null distributions.

In the following lemma, \(\theta_{0n}\) is the true value that may vary with \(n\) (which is needed for the CS results) and \(\text{col}(\cdot)\) denotes the column space of a matrix.

Lemma 10.6 For any sequence \(\{(F_n, \theta_{0n}) \in \mathcal{F}^{SR}_{\Theta,AR} : n \geq 1\}\), (a) \(\hat{r}_n(\theta_{0n}) = r_{F_n}(\theta_{0n})\) \(wp\rightarrow 1\), (b) \(\text{col}(\hat{A}_n(\theta_{0n})) = \text{col}(A_{F_n}(\theta_{0n}))\) \(wp\rightarrow 1\), (c) the statistics \(\text{SR-AR}_n(\theta_{0n}),\ \text{SR-QLR}_{1n}(\theta_{0n}),\ \text{SR-QLR}_{2n}(\theta_{0n}),\ c_{\hat{r}_n(\theta_{0n}),\mathbf{p}}(n^{1/2}\hat{D}_{An}(\theta_{0n}), 1-\alpha)\), and \(c_{\hat{r}_n(\theta_{0n}),\mathbf{p}}(n^{1/2}\hat{D}_{An}(\theta_{0n}), 1-\alpha)\) are invariant \(wp\rightarrow 1\) to the replacement of \(\hat{r}_n(\theta_{0n})\) and \(\hat{A}_n(\theta_{0n})'\) by \(r_{F_n}(\theta_{0n})\) and \(\Pi_{1F}^{-1/2}(\theta_{0n})A_{F_n}(\theta_{0n})'\), respectively, and (d) \(\hat{A}_{n}^{\dagger}(\theta_{0n})'\mathbf{g}_n(\theta_{0n}) = 0^{k-\hat{r}_n(\theta_{0n})}\) \(wp\rightarrow 1\), where this equality is defined to hold when \(\hat{r}_n(\theta_{0n}) = k\).

Proof of Lemma 10.6 For notational simplicity, we suppress the dependence of various quantities on \(\theta_{0n}\). By considering subsequences, it suffices to consider the case where \(r_{F_n} = r\) for all \(n \geq 1\) for some \(r \in \{0, 1, \ldots, k\}\).

First, we establish part (a). We have \(\hat{r}_n \leq r\) a.s. for all \(n \geq 1\) because for any constant vector \(\lambda \in \mathbb{R}^k\) for which \(\lambda'\Omega_{F_n}\lambda = 0\), we have \(\lambda'g_i = 0\) a.s.\([F_n]\) and \(\lambda'\widehat{\Omega}_{n}\lambda = n^{-1} \sum_{i=1}^{n} (\lambda'g_i)^2 - (\lambda'\mathbf{g}_n)^2 = 0\) a.s.\([F_n]\), where a.s.\([F_n]\) means “with probability one under \(F_n\)” This completes the proof of part (a) when \(r = 0\). Hence, for the rest of the proof of part (a), we assume \(r > 0\).
We have \(\hat{r}_n := rk(\hat{\Omega}_n) \geq rk(\Pi_{1F_n}^{-1/2}A_{F_n}'\hat{\Omega}_nA_{F_n}\Pi_{1F_n}^{-1/2}) \) because \(\hat{\Omega}_n \) is \(k \times k \), \(A_{F_n}\Pi_{1F_n}^{-1/2} \) is \(k \times r \), and \(1 \leq r \leq k \). In addition, we have

\[
\Pi_{1F_n}^{-1/2}A_{F_n}'\hat{\Omega}_nA_{F_n}\Pi_{1F_n}^{-1/2} = n^{-1} \sum_{i=1}^{n} (\Pi_{1F_n}^{-1/2}A_{F_n}'g_i)(\Pi_{1F_n}^{-1/2}A_{F_n}'g_i)^\prime
\]

\[-(n^{-1} \sum_{i=1}^{n} \Pi_{1F_n}^{-1/2}A_{F_n}'g_i)(n^{-1} \sum_{i=1}^{n} \Pi_{1F_n}^{-1/2}A_{F_n}'g_i)^\prime,\]

\[
E_{F_n}(\Pi_{1F_n}^{-1/2}A_{F_n}'g_i)(\Pi_{1F_n}^{-1/2}A_{F_n}'g_i)^\prime = \Pi_{1F_n}^{-1/2}A_{F_n}'\Omega_{F_n}A_{F_n}\Pi_{1F_n}^{-1/2}
\]

\[
= \Pi_{1F_n}^{-1/2}A_{F_n}'A_{F_n}\Pi_{1F_n}^{-1/2} = I_r, \quad (10.26)
\]

and \(E_{F_n}\Pi_{1F_n}^{-1/2}A_{F_n}'g_i = 0^r \), where the second last equality in (10.26) holds by the spectral decomposition in [4.7] and the last equality in (10.26) holds by the definitions of \(A_{F_n}' \), \(A_{F_n} \), and \(\Pi_{1F_n} \) in [4.7] and [4.8]. By (10.26), the moment conditions in \(F_{2SR}^* \), and the weak law of large numbers for \(L^{1+\gamma/2} \)-bounded i.i.d. random variables for \(\gamma > 0 \), we obtain \(\Pi_{1F_n}^{-1/2}A_{F_n}'\hat{\Omega}_nA_{F_n}\Pi_{1F_n}^{-1/2} \rightarrow_p I_r \). In consequence, \(r(k(\Pi_{1F_n}^{-1/2}A_{F_n}'\hat{\Omega}_nA_{F_n}\Pi_{1F_n}^{-1/2})) \geq r \) wp\(-1\), which concludes the proof that \(\hat{r}_n = r \) wp\(-1\).

Next, we prove part (b). Let \(N(\cdot) \) denotes the null space of a matrix. We have

\[
\lambda \in N(\Omega_{F_n}) \implies \lambda'\Omega_{F_n}\lambda = 0 \implies Var_{F_n}(\lambda'g_i) = 0 \implies \lambda'g_i = 0 \text{ a.s.}[F_n]
\]

\[
\implies \hat{\Omega}_n\lambda = 0 \text{ a.s.}[F_n] \implies \lambda \in N(\hat{\Omega}_n) \text{ a.s.}[F_n]. \quad (10.27)
\]

That is, \(N(\Omega_{F_n}) \subset N(\hat{\Omega}_n) \text{ a.s.}[F_n] \). This and \(rk(\Omega_{F_n}) = rk(\hat{\Omega}_n) \text{ wp\(-1\)} \) imply that \(N(\Omega_{F_n}) = N(\hat{\Omega}_n) \text{ wp\(-1\)} \) (because if \(N(\hat{\Omega}_n) \) is strictly larger than \(N(\Omega_{F_n}) \) then the dimension and rank of \(\hat{\Omega}_n \) must exceed the dimension and rank of \(N(\Omega_{F_n}) \), which is a contradiction). In turn, \(N(\Omega_{F_n}) = N(\hat{\Omega}_n) \text{ wp\(-1\)} \) implies that \(\text{col}(\hat{A}_n) = \text{col}(A_{F_n}) \text{ wp\(-1\)} \), which proves part (b).

To prove part (c), it suffices to consider the case where \(r \geq 1 \) because the test statistics and their critical values are all equal to zero by definition when \(\hat{r}_n = 0 \) and \(\hat{r}_n = 0 \) wp\(-1\) when \(r = 0 \) by part (a). Part (b) of the Lemma implies that there exists a random \(r \times r \) nonsingular matrix

\footnote{We now provide an example that appears to be a counter-example to the claim that \(\hat{r}_n = r \text{ wp\(-1\)} \). We show that it is not a counter-example because the distributions considered violate the moment bound in \(F_{XIR}^* \). Suppose \(k = 1 \) and \(g_i = 1, -1, \) and 0 with probabilities \(p_n/2, p_n/2, \) and \(1 - p_n \), respectively, under \(F_n \), where \(p_n = c/n \) for some \(0 < c < \infty \). Then, \(E_{F_n}g_i = 0 \), as required, and \(rk(\Omega_{F_n}) = rk(E_{F_n}g_i^2) = rk(p_n) = 1 \). We have \(\Omega_n = 0 \) if \(g_i = 0 \forall i \leq n \). The latter holds with probability \((1 - p_n)^n = (1 - c/n)^n \to e^{-c} > 0 \) as \(n \to \infty \). In consequence, \(F_n \{ rk(\Omega_{F_n}) = rk(p_n) \} = F_n \{ rk(p_n) = 1 \} \leq 1 - P_{F_n}(g_i = 0 \forall i \leq n) \to 1 - e^{-c} < 1 \), which is inconsistent with the claim that \(\hat{r}_n = r \text{ wp\(-1\)} \). However, the distributions \(\{ F_n : n \geq 1 \} \) in this example violate the moment bound \(E_F[|\Pi_{1F_n}^{-1/2}A_{F_n}'g_i|^2]^{2+\gamma} \leq M \text{ in } F_{XIR}^* \), so there is no inconsistency with the claim. This holds because for these distributions \(E_{F_n}(|\Pi_{1F_n}^{-1/2}A_{F_n}'g_i|^2)^{2+\gamma} = E_{F_n}[Var_{F_n}^{-1/2}(g_i)g_i]^{2+\gamma} = p_n^{-((2+\gamma)/2)}E_{F_n}[g_i] = p_n^{-\gamma/2} \to \infty \text{ as } n \to \infty \), where the second equality uses \(|g_i| \) equals 0 or 1 and the third equality uses \(E_{F_n}[g_i] = p_n \).}
\(\hat{\mathbf{M}}_n \) such that
\[
\hat{A}_n = A_F n^{-1/2} \hat{\mathbf{M}}_n \text{ wp} \to 1,
\]
(10.28)
because \(\Pi_{1F_n} \) is nonsingular (since it is a diagonal matrix with the positive eigenvalues of \(\Omega_{F_n} \) on its diagonal by its definition following (4.8)). Equation (10.28) and \(\hat{\tau}_n = r \text{ wp} \to 1 \) imply that the statistics \(SR-AR_n, SR-QLR_{1m}, SR-QLR_{2m}, c_{\hat{\tau}_n} \beta(n^{1/2} \hat{D}_{An}^*, 1 - \alpha) \), and \(c_{\hat{\tau}_n} \beta(n^{1/2} \hat{D}_{An}^*, 1 - \alpha) \) are invariant \(\text{ wp} \to 1 \) to the replacement of \(\hat{\tau}_n \) and \(\hat{A}_n \) by \(r \) and \(\hat{\mathbf{M}}_n^{-1/2} A_{F_n}', \) respectively. Now we apply the invariance result of Lemma 6.2 with \((k, g_i, G_i) \) replaced by \((r, \Pi_{1F_n}^{-1/2} A_{F_n}' g_i, \Pi_{1F_n}^{-1/2} A_{F_n}' G_i) \) and with \(\mathbf{M} \) equal to \(\hat{\mathbf{M}}_n \). (The extension of Lemma 6.2 to cover the statistics employed by the CQLR2 test is stated in a footnote in Section 7.) This result implies that the previous five statistics when based on \(r \) and \(\Pi_{1F_n}^{-1/2} A_{F_n}' g_i \) are invariant to the multiplication of the moments \(\Pi_{1F_n}^{-1/2} A_{F_n}' g_i \) by the nonsingular matrix \(\hat{\mathbf{M}}_n^{-1/2} \). Thus, these five statistics, defined as in Sections 6.2 and 7, are invariant \(\text{ wp} \to 1 \) to the replacement of \(\hat{\tau}_n \) and \(\hat{A}_n \) by \(r \) and \(\Pi_{1F_n}^{-1/2} A_{F_n}' \), respectively.

Lastly, we prove part (d). The equality \((\hat{A}_n')^{-1} \hat{g}_n = 0^{k-\hat{\tau}_n} \) holds by definition when \(\hat{\tau}_n = k \) (see the statement of Lemma 10.6(d)) and \(\hat{\tau}_n = r \text{ wp} \to 1 \). Hence, it suffices to consider the case where \(r \in \{0, ..., k-1\} \). For all \(n \geq 1 \), we have \(E_{F_n} (A_{F_n}^f)' \hat{g}_n = 0^{k-r} \) and
\[
n \Var_{F_n} ((A_{F_n}^f)' \hat{g}_n) = (A_{F_n}^f)'\Omega_{F_n} A_{F_n}^f = (A_{F_n}^f)' A_{F_n}^f \Pi_{F_n} (A_{F_n}^f)' A_{F_n}^f = 0^{(k-r) \times (k-r)},
\]
(10.29)
where the second equality uses the spectral decomposition in (4.7) and the last equality uses \(A_{F_n}^f = [A_F, A_{F_n}^f] \), see (4.8). In consequence, \((A_{F_n}^f)' \hat{g}_n = 0^{k-r} \) a.s. This and and the result of part (b) that \(\text{ col}(\hat{A}_n^f) = \text{ col}(A_{F_n}^f) \) wp \(\to 1 \) establish part (d). \(\square \)

Given Lemma 10.6(d), the extra rejection conditions in the SR-AR and SR-CQLR tests and CS’s (i.e., the second conditions in (5.7), (5.9), (6.12), (7.5), and in the SR-CQLR CS definitions following (6.12) and (7.5)) can be ignored when computing the asymptotic size properties of these tests and CS’s (because the condition fails to hold for each test wp \(\to 1 \) under any sequence of null hypothesis values for any sequence of distributions in the null hypotheses, and the condition holds for each CS wp \(\to 1 \) under any sequence of true values \(\theta_{0n} \) for any sequence of distributions for which the moment conditions hold at \(\theta_{0n} \).

Given Lemma 10.6(c), the asymptotic size properties of the SR-AR and SR-CQLR tests and CS’s can be determined by the analogous tests and CS’s that are based on \(r_{F_n}(\theta_0) \) and \(\Pi_{1F_n}^{-1/2}(\theta_0) A_{F_n}(\theta_0)' \) (for fixed \(\theta_0 \) with tests and for any \(\theta_0 \in \Theta \) with CS’s). For the tests, we do so by partitioning \(\mathcal{F}_{AR}^{SR}, \mathcal{F}_{2}^{SR}, \) and \(\mathcal{F}_{1}^{SR} \) into \(k \) sets based on the value of \(rk(\Omega_{F}(\theta_0)) \) and establishing the correct asymptotic size and asymptotic similarity of the analogous tests separately for each parameter space. That is, we write \(\mathcal{F}_{AR}^{SR} = \bigcup_{r=0}^{k-1} \mathcal{F}_{AR}[r] \), where \(\mathcal{F}_{AR}[r] := \{ F \in \mathcal{F}_{AR}^{SR} : rk(\Omega_{F}(\theta_0)) = r \} \), and establish
the desired results for $\mathcal{F}_{AR[r]}^{SR}$ separately for each r. Analogously, we write $\mathcal{F}_{2[r]}^{SR} = \cup_{r=0}^{k} \mathcal{F}_{2[r]}^{SR}$ and $\mathcal{F}_{1[r]}^{SR} = \cup_{r=0}^{k} \mathcal{F}_{1[r]}^{SR}$, where $\mathcal{F}_{2[r]}^{SR} := \mathcal{F}_{AR[r]}^{SR} \cap \mathcal{F}_{2[r]}^{SR}$ and $\mathcal{F}_{1[r]}^{SR} := \mathcal{F}_{AR[r]}^{SR} \cap \mathcal{F}_{1[r]}^{SR}$. Note that we do not need to consider the parameter space $\mathcal{F}_{AR[r]}^{SR}$ for $r = 0$ for the SR-AR test when determining the asymptotic size of the SR-AR test because the test fails to reject H_0 wp\rightarrow1 based on the first condition in (5.7) when $r = 0$ (since the test statistic and critical value equal zero by definition when $\hat{\tau}_n = 0$ and $\hat{\tau}_{n,r} = 0$ wp\rightarrow1 by Lemma 10.6(a)). In addition, we do not need consider the parameter space $\mathcal{F}_{AR[r]}^{SR}$ for $r = 0$ for the SR-AR test when determining the asymptotic similarity of the test because such distributions are excluded from the parameter space $\mathcal{F}_{AR[r]}^{SR}$ by the statement of Theorem 8.1. Analogous arguments regarding the parameter spaces corresponding to $r = 0$ apply to the other tests and CS’s. Hence, from here on, we assume $r \in \{1, \ldots, k\}$.

For given $r = rk(\Omega_F(\theta_0))$, the moment conditions and Jacobian are

$$g_{Fr}^* := \Pi_{1F}^{-1/2} A_F^t g_i \quad \text{and} \quad G_{Fr}^* := \Pi_{1F}^{-1/2} A_F^t G_i,$$

(10.30)

where $A_F \in R^{k \times r}$, $\Pi_{1F} \in R^{r \times r}$, and dependence on θ_0 is suppressed for notational simplicity. Given the conditions in $\mathcal{F}_{2[r]}^{SR}$, we have

$$E_F||g_{Fr}^*||^{2+\gamma} = E_F||\Pi_{1F}^{-1/2} A_F^t g_i||^{2+\gamma} \leq M,$$

$$E_F||\text{vec}(G_{Fr}^*)||^{2+\gamma} = E_F||\text{vec}(\Pi_{1F}^{-1/2} A_F^t G_i)||^{2+\gamma} \leq M,$$

$$\lambda_{\min}(E_F g_{Fr}^* G_{Fr}^* g_{Fr}^*) = \lambda_{\min}(\Pi_{1F}^{-1/2} A_F^t \Omega_F A_F \Pi_{1F}^{-1/2}) = \lambda_{\min}(I_r) = 1,$$

(10.31)

and $E_F g_{Fr}^* = 0^r$, where the second equality in the third line of (10.31) holds by the spectral decomposition in (4.7) and the partition $A_F^t = [A_F^t, A_F^t]^t$ in (4.8). Thus, $F \in \mathcal{F}_{2[r]}^{SR}$ for (g_i, G_i) implies that $F \in \mathcal{F}_{2}^{SR}$ with $\delta \leq 1$ for (g_{Fr}^*, G_{Fr}^*), where the definition of \mathcal{F}_{2}^{SR} in (10.1) is extended to allow g_i and G_i to depend on F. Now we apply Theorem 10.1 with (g_{Fr}^*, G_{Fr}^*) and r in place of (g_i, G_i) and k and with $\delta \leq 1$, to obtain the correct asymptotic size and asymptotic similarity of the SR-CQLR$_2$ test for the parameter space $\mathcal{F}_{2[r]}^{SR}$ for $r = 1, \ldots, k$. This requires that Theorem 10.1 holds for $k < p$, which it does. The fact that g_{Fr}^* and G_{Fr}^* depend on F, whereas g_i and G_i do not, does not cause a problem, because the proof of Theorem 10.1 goes through as is if g_i and G_i depend on F. This establishes the results of Theorem 8.1 for the SR-CQLR$_2$ test. The proof for the SR-CQLR$_2$ CS is essentially the same, but with θ_0 taking any value in Θ and with $\mathcal{F}_{2[r]}^{SR}$ and $\mathcal{F}_{\Theta,2}$, defined in (4.10) and just below (10.1), in place of $\mathcal{F}_{2[r]}^{SR}$ and \mathcal{F}_{2}, respectively.

The proof for the SR-AR test and CS is the same as that for the SR-CQLR$_2$ test and CS, but with $\text{vec}(G_{Fr}^*)$ deleted in (10.31) and with the subscript 2 replaced by AR on the parameter spaces that appear.
Next, we consider the SR-CQLR$_1$ test. When the moment functions satisfy (4.3), i.e., $g_i = u_i Z_i$, we define $Z_{F_i}^* := \Pi_{1F}^{-1/2} A'_F Z_i$, $g_{F_i}^* = u_i Z_{F_i}^*$, and $G_{F_i}^* = Z_{F_i}^* u_{\theta_i}$, where u_{θ_i} is defined in (4.5) and the dependence of various quantities on θ_0 is suppressed. In this case, by the conditions in F_{1}^{SR}, the IV’s $Z_{F_i}^*$ satisfy $E_F||Z_{F_i}^*||^{4+\gamma} = E_F||\Pi_{1F}^{-1/2} A'_F Z_i||^{4+\gamma} \leq M$ and $E_F||u_i^*||^{2+\gamma} \leq M$, where $u_i^* := (u_i, u_{\theta_i})'$. Next we show that $\lambda_{\text{min}}(E_F Z_{F_i}^* Z_{F_i}^*)$ is bounded away from zero for $F \in F_{1[r]}^{SR}$. We have

$$
\lambda_{\text{min}}(E_F Z_{F_i}^* Z_{F_i}^*) = \lambda_{\text{min}}(E_F \Pi_{1F}^{-1/2} A'_F Z_i Z_i' A_F \Pi_{1F}^{-1/2})
$$

$$
= \inf_{\lambda \in R^r: ||\lambda|| = 1} \left[E_F (\lambda \Pi_{1F}^{-1/2} A'_F Z_i)^2 1(u_i^2 \leq c) + E_F (\lambda \Pi_{1F}^{-1/2} A'_F Z_i)^2 1(u_i^2 > c) \right]
$$

$$
\geq \inf_{\lambda \in R^r: ||\lambda|| = 1} \left[c^{-1} E_F (\lambda \Pi_{1F}^{-1/2} A'_F Z_i)^2 u_i^2 1(u_i^2 \leq c) \right]
$$

$$
= c^{-1} \inf_{\lambda \in R^r: ||\lambda|| = 1} \left[E_F (\lambda \Pi_{1F}^{-1/2} A'_F Z_i)^2 u_i^2 - E_F (\lambda \Pi_{1F}^{-1/2} A'_F Z_i)^2 u_i^2 1(u_i^2 > c) \right]
$$

$$
\geq c^{-1} \left[\lambda_{\text{min}}(\Pi_{1F}^{-1/2} A'_F \Omega_F A_F \Pi_{1F}^{-1/2}) - \sup_{\lambda \in R^r: ||\lambda|| = 1} E_F (\lambda \Pi_{1F}^{-1/2} A'_F Z_i)^2 u_i^2 1(u_i^2 > c) \right]
$$

$$
\geq c^{-1} \left[1 - E_F ||\Pi_{1F}^{-1/2} A'_F Z_i||^2 u_i^2 1(u_i^2 > c) \right]
$$

$$
\geq 1/(2c),
$$

(10.32)

where the second inequality uses $g_i = Z_i u_i$ and $\Omega_F := E_F g_i g_i'$, the third inequality holds by $\Pi_{1F}^{-1/2} A'_F \Omega_F A_F \Pi_{1F}^{-1/2} = I_F$ (using (4.7) and (4.8)) and by the Cauchy-Bunyakovsky-Schwarz inequality applied to $\lambda \Pi_{1F}^{-1/2} A'_F Z_i$, and the last inequality holds by the condition $E_F ||\Pi_{1F}^{-1/2} A'_F Z_i||^2 u_i^2 \times 1(u_i^2 > c) \leq 1/2$ in $F_{1[r]}^{SR}$.

The moment bounds above and (10.32) establish that $F \in F_{1[r]}^{SR}$ for (g_i, G_i) implies that $F \in F_1$ for $(g_{F_i}^*, G_{F_i}^*)$ for $\delta \leq \min\{1, 1/(2c)\}$, where the definition of F_1 in (10.1) is taken to allow g_i and G_i to depend on F.[54] Now we apply Theorem 10.1 with $(g_{F_i}^*, G_{F_i}^*)$ and r in place of (g_i, G_i) and k and $\delta \leq \min\{1, 1/(2c)\}$ to obtain the correct asymptotic size and asymptotic similarity of the CQLR$_1$ test based on $(g_{F_i}^*, G_{F_i}^*)$ and r for the parameter space $F_{1[r]}^{SR}$ for $r = 1, ..., k$. As noted above, the dependence of $g_{F_i}^*$ and $G_{F_i}^*$ on F does not cause a problem in the application of Theorem 10.1. This establishes the results of Theorem 8.1 for the SR-CQLR$_1$ test by the argument given above.[55]

The proof for the SR-CQLR$_1$ CS is essentially the same, but with θ_0 taking any value in Θ and with $\mathcal{F}_{\Theta_1}^{AR}$ and \mathcal{F}_{Θ_1}, defined in (4.10) and just below (10.1), in place of $\mathcal{F}_{1[r]}^{SR}$ and \mathcal{F}_1, respectively.

This completes the proof of Theorem 8.1 given Theorem 10.1.

[54] We require $\delta \leq \min\{1, 1/(2c)\}$, rather than $\delta \leq 1/(2c)$, because $\lambda_{\text{min}}(E_F g_{F_i}^* g_{F_i}^*) = 1$ by (10.31) and $\mathcal{F}_1 \subset \mathcal{F}_{AR}$ requires $\lambda_{\text{min}}(E_F g_{F_i}^* g_{F_i}^*) \geq \delta$.

[55] The fact that Z_{F_i} depends on θ_0 through $\Pi_{1F}^{-1/2}(\theta_0) A_F(\theta_0)'$ and that $G_{F_i}(\theta_0) \neq (\partial/\partial \theta') g_{F_i}(\theta_0)$ (because $\partial/\partial \theta') Z_{F_i}$ is ignored in the specification of $G_{F_i}(\theta_0)$) does not affect the application of Theorem 10.1. The reason is that the proof of this Theorem goes through even if Z_i depends on θ_0 and for any $G_i(\theta_0)$ that satisfies the conditions in \mathcal{F}_1, not just for $G_i(\theta_0) := (\partial/\partial \theta') g_i(\theta_0)$.

49
References

Supplemental Material

for

Identification- and Singularity-Robust Inference for Moment Condition Models

Donald W. K. Andrews
Cowles Foundation for Research in Economics
Yale University

Patrik Guggenberger
Department of Economics
Pennsylvania State University

First Version: March 25, 2011
Revised: December 31, 2014
Contents

11 Outline 2

12 Time Series Observations 3

13 Simulation Results for Singular and Near-Singular Variance Matrices 6

14 SR-CQLR\(_1\), SR-CQLR\(_2\), and Kleibergen’s Nonlinear CLR Tests in the Homoskedastic Linear IV Model 9

15 Simulation Results for Kleibergen’s MVW-CLR Test 18

16 Power Comparisons in Heteroskedastic/Autocorrelated Linear IV Models with \(p = 1 \) 19

17 Eigenvalue-Adjustment Procedure 23

18 Singularity-Robust LM Test 25

19 Proofs of Lemmas 6.1 and 6.2 27

20 Proofs of Lemma 10.3 and Proposition 10.4 29

21 Proof of Theorem 10.5 33

22 Proof of the Asymptotic Size Results 40

23 Proof of Theorem 9.1 67

24 Proofs of Lemmas 14.1, 14.2, and 14.3 71

25 Proof of Theorem 12.1 83
11 Outline

We let AG2 abbreviate the main paper “Identification- and Singularity-Robust Inference for Moment Condition Models.” References to sections with section numbers less than 11 refer to sections of AG2. All theorems, lemmas, and equations with section numbers less than 11 refer to results and equations in AG2.

We let SM abbreviate Supplemental Material. We let AG1 abbreviate the paper Andrews and Guggenberger (2014a). The SM to AG1 is given in Andrews and Guggenberger (2014b).

Section 12 generalizes the SR-AR, SR-CQLR$_1$, and SR-CQLR$_2$ tests from i.i.d. observations to strictly stationary strong mixing observations.

Section 13 provides finite-sample null rejection probability simulation results for the SR-AR and SR-CQLR$_2$ tests for cases where the variance matrix of the moment functions is singular and near singular.

Section 14 compares the test statistics and conditioning statistics of the SR-CQLR$_1$, SR-CQLR$_2$, and Kleibergen’s (2005, 2007) CLR tests to those of Moreira’s (2003) LR statistic and conditioning statistic in the homoskedastic linear IV model with fixed (i.e., nonrandom) IV’s.

Section 15 provides finite-sample simulation results that illustrate that Kleibergen’s CLR test with moment-variance weighting can have low power in certain linear IV models with a single right-hand side (rhs) endogenous variable, as the theoretical results in Section 14 suggest.

Section 16 provides asymptotic power comparisons based on the estimated linear IV models (with one rhs endogenous variable) in Yogo (2004). The tests considered are the AR test, Kleibergen’s (2005) LM, JVW-CLR, and MVW-CLR tests, the SR-CQLR$_2$ test, I. Andrews’s (2014) plug-in conditional linear combination (PI-CLC) test, and Moreira and Moreira’s (2013) MM1-SU and MM2-SU tests.

Section 17 establishes some properties of the eigenvalue-adjustment procedure defined in Section 6.1 and used in the definitions of the two SR-CQLR tests.

Section 18 defines a new SR-LM test.

The remainder of the SM, in conjunction with the Appendix to AG2, provides the proofs of the results stated in AG2 and the SM. Section 19 proves Lemmas 6.1 and 6.2. Section 20 proves Lemma 10.3 and Proposition 10.4. Section 21 proves Theorem 10.5. Section 22 proves Theorem 10.1 (using Theorem 10.5). Section 23 proves Theorem 9.1. Section 24 proves Lemmas 14.1, 14.2, and 14.3. Section 25 proves Theorem 12.1.

For notational simplicity, throughout the SM, we often suppress the argument θ_0 for various quantities that depend on the null value θ_0.
12 Time Series Observations

In this section, we define the SR-AR, SR-CQLR1, and SR-CQLR2 tests for observations that are strictly stationary strong mixing. We also generalize the asymptotic size results of Theorem 8.1 from i.i.d. observations to strictly stationary strong mixing observations. In the time series case, F denotes the distribution of the stationary infinite sequence $\{W_i : i = ..., 0, 1, ...\}$.

We define

$$V_{F,n}(\theta) := \text{Var}_F \left(n^{-1/2} \sum_{i=1}^{n} \left(g_i(\theta) \right) \right),$$

$$\Omega_{F,n}(\theta) := \text{Var}_F (n^{-1/2} \sum_{i=1}^{n} g_i(\theta)), \text{ and } r_{F,n}(\theta) := r_k(\Omega_{F,n}(\theta)). \tag{12.1}$$

Note that $V_{F,n}(\theta)$, $\Omega_{F,n}(\theta)$, and $r_{F,n}(\theta)$ depend on n in the time series case, but not in the i.i.d. case. We define $A_{F,n}(\theta)$ and $\Pi_{1F,n}(\theta)$ as $A_F(\theta)$ and $\Pi_{1F}(\theta)$ are defined in (4.7), (4.8), and the paragraph following (4.8), but with $\Omega_{F,n}(\theta)$ in place of $\Omega_F(\theta)$.

For the SR-AR test, the parameter space of time series distributions F for the null hypothesis $H_0 : \theta = \theta_0$ is taken to be

$$\mathcal{F}^{SR}_{TS;AR} := \{ F : \{W_i : i = ..., 0, 1, ...\} \text{ are stationary and strong mixing under } F \}$$

subject to the moment conditions in $\mathcal{F}^{SR}_{TS;AR}$ are placed on the normalized moment functions $\Pi_{1F,n}^{-1/2} A'_{F,n_1} g_i$ that satisfy $\text{Var}_F(n^{-1/2} \sum_{i=1}^{n} \Pi_{1F,n}^{-1/2} A'_{F,n_1} g_i) = I_k$ for all $n \geq 1$.

For the SR-CQLR1 and SR-CQLR2 tests, we use the null parameter spaces $\mathcal{F}^{SR}_{TS;1}$ and $\mathcal{F}^{SR}_{TS;2}$, respectively, which are defined as \mathcal{F}^{SR}_{1} and \mathcal{F}^{SR}_{2} are defined in (4.9), but with (i) $\mathcal{F}^{SR}_{TS;AR}$ in place of \mathcal{F}^{SR}_{AR}, (ii) A_F and Π_{1F} replaced by $A_{F,n}$ and $\Pi_{1F,n}$, respectively, and (iii) $\sup_{n \geq 1}$ added before the quantities \mathcal{F}^{SR}_{1} and \mathcal{F}^{SR}_{2} that depend on $A_{F,n}$ and $\Pi_{1F,n}$. For SR-CQLR1 and SR-CQLR2 CS’s, we use the parameter spaces $\mathcal{F}^{SR}_{TS;\Theta,1}$ and $\mathcal{F}^{SR}_{TS;\Theta,2}$, respectively, which are defined as $\mathcal{F}^{SR}_{TS;\Theta,AR}$ is

56Asymptotics under drifting sequences of true distributions $\{F_n : n \geq 1\}$ are used to establish the correct asymptotic size of the SR-AR and SR-CQLR tests and CS’s. Under such sequences, the observations form a triangular array of row-wise strictly stationary observations.
defined, but with $F_{TS,1}^{SR}(\theta_0)$ and $F_{TS,2}^{SR}(\theta_0)$ in place of $F_{TS,AR}^{SR}(\theta_0)$, where $F_{TS,1}^{SR}(\theta_0)$ and $F_{TS,2}^{SR}(\theta_0)$ denote $F_{TS,1}^{SR}$ and $F_{TS,2}^{SR}$ with their dependence on θ_0 made explicit.

The SR-CQLR test statistics depend on some estimators $\hat{V}_n (= \hat{V}_n(\theta_0))$ of $V_{F,n}$. The SR-AR test statistic only depends on an estimator $\hat{\Omega}_n (= \hat{\Omega}_n(\theta_0))$ of the submatrix $\Omega_{F,n}$ of $V_{F,n}$. For the SR-AR, SR-CQLR$_1$, and SR-CQLR$_2$ tests, these estimators are heteroskedasticity and autocorrelation consistent (HAC) variance matrix estimators based on $\{g_i - \hat{g}_n : i \leq n\}$, $\{(u_i^* - \hat{u}_{in}^*) \otimes Z_i : i \leq n\}$ (defined in (6.3)), and $\{f_i - \hat{f}_n : i \leq n\}$ (defined in (7.1)), respectively. There are a number of HAC estimators available in the literature, e.g., see Newey and West (1987) and Andrews (1991).

We say that \hat{V}_n is
\textit{equivariant} if the replacement of g_i and G_i by $A'g_i$ and $A'G_i$, respectively, in the definition of \hat{V}_n transforms \hat{V}_n into $(I_{p+1} \otimes A')\hat{V}_n(I_{p+1} \otimes A)$, for any matrix $A \in R^{r \times k}$ with full row rank $r \leq k$ for any $r = \{1, \ldots, k\}$. Equivariance of $\hat{\Omega}_n$ means that the replacement of g_i by $A'g_i$ transforms $\hat{\Omega}_n$ into $A'\hat{\Omega}_n A$. Equivariance holds quite generally for HAC estimators in the literature.

We write the $(p+1)k \times (p+1)k$ matrix \hat{V}_n in terms of its $k \times k$ submatrices:

\[
\hat{V}_n = \begin{bmatrix}
\hat{\Omega}_n & \hat{\Gamma}_{1n} & \cdots & \hat{\Gamma}_{pn} \\
\hat{\Gamma}_{1n} & \hat{\Gamma}_{11n} & \cdots & \hat{\Gamma}_{1pn} \\
\vdots & \vdots & \ddots & \vdots \\
\hat{\Gamma}_{pn} & \hat{\Gamma}_{G1n} & \cdots & \hat{\Gamma}_{Gpn}
\end{bmatrix}
\] \hspace{1cm} (12.3)

We define $\hat{r}_n (= \hat{r}_n(\theta_0))$ and $\hat{A}_n (= \hat{A}_n(\theta_0))$ as in (5.3) and (5.4) with $\theta = \theta_0$, but with $\hat{\Omega}_n$ defined in (12.3), rather than in (5.1).

The asymptotic size and similarity properties of the tests considered here are the same for any consistent HAC estimator. Hence, for generality, we do not specify a particular estimator \hat{V}_n (or $\hat{\Omega}_n$). Rather, we state results that hold for any estimator \hat{V}_n (or $\hat{\Omega}_n$) that satisfies one of the following assumptions when the null value θ_0 is the true value. The following assumptions are used with the SR-CQLR$_2$ test and CS, respectively.

\textbf{Assumption \textit{SR-V$_2$:}}

(a) $[I_{p+1} \otimes (\prod_{n=1}^{n=1/2}(\Pi_{F,n}(\theta_0)A'_{F,n}(\theta_0)))]\hat{V}_n(\theta_0) - V_{F,n}(\theta_0)[I_{p+1} \otimes (A_{F,n}(\theta_0)\Pi_{1,n}(\theta_0))] \rightarrow_p 0(p+1)k \times (p+1)k$ under $\{F_n : n \geq 1\}$ for any sequence $\{F_n \in F_{TS,2}^{SR} : n \geq 1\}$ for which $V_{F,n}(\theta_0) \rightarrow V$ for some matrix V and $r_{F,n}(\theta_0) = r$ for all n large, for any $r \in \{1, \ldots, k\}$.

(b) $\hat{V}_n(\theta_0)$ is equivariant.

(c) $\lambda'g_i(\theta_0) = 0$ a.s.$[F]$ implies that $\lambda'\hat{\Omega}_n(\theta_0)\lambda = 0$ a.s.$[F]$ for all $\lambda \in R^k$ and $F \in F_{TS,2}^{SR}$.

For SR-CQLR$_2$ CS’s, we use the following assumption that allows both the null parameter θ_0, as well as the distribution F_n, to drift with n.

4
Assumption SR-V_{2-CS}: \[I_{p+1} \otimes (\Pi_{1T}^{-1/2}(\theta_0)A_{F,n}(\theta_0)) \mathbf{V}_{n}(\theta_0) \rightarrow V_{F,n}(\theta_0) \mathbf{I}_{p+1} \otimes (A_{F,n}(\theta_0)\Pi_{1T}^{-1/2}(\theta_0)) \]

This can be verified using standard methods. For typical HAC estimators, the critical value for the SR-AR test in the time series case is defined in the same way as in the i.i.d. context given in Sections 5, 6, and 7 with the following changes. For all three tests, \(\hat{r}_n \) and \(\hat{A}_n \) in the condition \(\hat{A}_n^{\perp}g_n \neq 0^{k \times k} \) are defined as in (5.3) and (5.4), but with \(\hat{\Theta}_n \) defined to satisfy Assumption SR-\(\Omega \), rather than being defined in (5.1). The SR-AR statistic is defined as in Section 5, but with \(\hat{\Theta}_n \) defined to satisfy Assumption SR-\(\Omega \). This affects the definitions of \(\hat{r}_n \) and \(\hat{A}_n \), given in (5.3) and (5.4). With these changes, the critical value for the SR-AR test in the time series case is defined in the same way as in the i.i.d. case.

In the time series case, the SR-QLR_{1} statistic is defined as in Section 6, but with \(\hat{\Theta}_n \) defined to satisfy Assumption SR-V_{1} and (12.3) based on \(\{(a^*_i - \hat{a}_m^i) \otimes Z_i : i \leq n\} \), rather than in (6.3) and (5.1), respectively. In turn, this affects the definitions of \(\hat{R}_n, \hat{\Sigma}_n, \hat{\Delta}_n, \hat{D}_n, \hat{Q}_n, \hat{r}_n, \hat{A}_n \), and SR-AR_{n} (which appears in (6.7)). Given the changes described above, the definition of the SR-CQLR_{1} critical value is unchanged.

In the time series case, the SR-QLR_{2} statistic is defined as in Section 7, but with \(\hat{\Theta}_n \) defined to satisfy Assumption SR-V_{2-CS} and (5.1) respectively, but with (i) Assumption SR-\(\Omega \) being as in (i), but with \(\theta_0 \) and \(\mathcal{F}_{TS,\Theta_1}^{SR} \) in place of \(\mathcal{F}_{TS,\Theta_2}^{SR} \).
defined to satisfy Assumption SR-V₂ and [12.3] based on \(\{ f_i - \hat{f}_i : i \leq n \} \), in place of \(\hat{V}_n \) and \(\hat{\Omega}_n \) defined in [7.1] and [5.1], respectively. This affects the definitions of \(\tilde{R}_n, \tilde{\Sigma}_n, \tilde{L}_n, \tilde{D}_n, \tilde{\tau}_n, \tilde{A}_n \), and \(SR-AR_n \). Given the previous changes, the definition of the SR-CQLR₂ critical value is unchanged.

In the time series context,

\[
V_F := \lim Var_F \left(n^{-1/2} \sum_{i=1}^{n} \begin{pmatrix} g_i \\ vec(G_i) \end{pmatrix} \right) \\
= \sum_{m=-\infty}^{\infty} E_F \begin{pmatrix} g_i \\ vec(G_i - E_F G_i) \end{pmatrix} \begin{pmatrix} g_{i-m} \\ vec(G_{i-m} - E_F G_{i-m}) \end{pmatrix}',
\]

\[
\Omega_F := \sum_{m=-\infty}^{\infty} E_F g_i g_i',
\]

where the dependence of various quantities on the null value \(\theta_0 \) is suppressed for notational simplicity. The second equality holds for \(F \in \mathcal{F}^{SR}_{TS,2} \).

For the time series case, the asymptotic size and similarity results for the tests described above are as follows.

Theorem 12.1 Suppose the SR-AR, SR-CQLR₁, and SR-CQLR₂ tests are defined as in this section, the null parameter spaces for \(F \) are \(\mathcal{F}^{SR}_{TS,AR}, \mathcal{F}^{SR}_{TS,1}, \) and \(\mathcal{F}^{SR}_{TS,2} \), respectively, and the corresponding Assumption SR-Ω, SR-V₁, or SR-V₂ holds for each test. Then, these tests have asymptotic sizes equal to their nominal size \(\alpha \in (0,1) \). These tests also are asymptotically similar (in a uniform sense) for the subsets of these parameter spaces that exclude distributions \(F \) under which \(g_i = 0^k \) a.s. Analogous results hold for the SR-AR, SR-CQLR₁, and SR-CQLR₂ CS’s for the parameter spaces \(\mathcal{F}^{SR}_{TS,\theta,AR}, \mathcal{F}^{SR}_{TS,\theta,1}, \) and \(\mathcal{F}^{SR}_{TS,\theta,2} \), respectively, provided the corresponding Assumption SR-Ω-CS, SR-V₁-CS, or SR-V₂-CS holds for each CS, rather than Assumption SR-Ω, SR-V₁, or SR-V₂.

13 Simulation Results for Singular and Near-Singular Variance Matrices

Here, we provide some finite-sample simulations of the null rejection probabilities of the nominal 5% SR-AR and SR-CQLR₂ tests when the variance matrix of the moments is singular and near singular. The model we consider is the second example discussed in Section 4.2 in AG2 in which the reduced-form equations are \(y_{1i} = Z_i' \pi + V_{1i} \) and \(Y_{2i} = Z_i' \pi + V_{2i} \) and the moment functions are

57 This is shown in the proof of Lemma 19.1 in Section 19 in the SM to AG1.

58 Analogous results for the SR-CQLR₁ test are not provided because the moment functions considered are not of the form in [4.4] in AG2, which is necessary to apply the SR-CQLR₁ test.
Table I. Null Rejection Probabilities ($\times 100$) of Nominal 5% SR-AR and SR-CQLR$_2$ Tests with Singular and Near Singular Variance Matrices of the Moment Functions and $k = 8$

<table>
<thead>
<tr>
<th>n</th>
<th>SR-AR</th>
<th>SR-CQLR$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ρ_V:</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>6.0</td>
<td>6.0</td>
</tr>
<tr>
<td>500</td>
<td>5.5</td>
<td>5.5</td>
</tr>
<tr>
<td>1,000</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>2,000</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>4,000</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>8,000</td>
<td>5.1</td>
<td>5.1</td>
</tr>
<tr>
<td>16,000</td>
<td>5.0</td>
<td>5.0</td>
</tr>
</tbody>
</table>

$g_i(\theta) = ((y_{1i} - Z_i'\pi \beta)Z_i'(Y_{2i} - Z_i'\pi)Z_i')' \in R^k$, where $k = 2d_Z$ and d_Z is the dimension of Z_i. We take $(V_{1i}, V_{2i}) \sim N(0^2, \Sigma_V)$, where Σ_V has unit variances and correlation ρ_V, $Z_i \sim N(0^2, I_{d_Z})$, (V_{1i}, V_{2i}) and Z_i are independent, and the observations are i.i.d. across i. The null hypothesis is $H_0: (\beta, \pi) = (\beta_0, \pi_0)$. We consider the values: $\rho_V = .95, .999, 999$, and 1.0; $n = 250, 500, 1,000, 2,000, 4,000, 8,000$, and 16,000; $\pi_0 = (\pi_{10}, 0, 0, 0)'$, where $\pi_{10} = \pi_{10n} = C/n^{1/2}$ and $C = \sqrt{16}$, which yields a concentration parameter of $\lambda = \pi'EZ_iZ_i'\pi = 10$ for all $n \geq 1$; and $\beta_0 = 0$. The variance matrix Ω_f of the moment functions is singular when $\rho_V = 1$ (because $g_i(\theta_0) = (V_{1i}Z_i', V_{1i}Z_i')'$ a.s.) and near singular when ρ_V is close to one. Under H_0, with probability one, the extra rejection condition in (5.7) is: reject H_0 if $[I_4, -I_4]\hat{g}_n(\theta_0) \neq 0^4$, which fails to hold a.s. and, hence, can be ignored in probability calculations made under H_0. Forty thousand simulation repetitions are employed.

Tables I-III report results for $k = 8$ (which corresponds to $d_Z = 4$), $k = 4$, and $k = 12$, respectively. Table I shows that the SR-AR and SR-CQLR$_2$ tests have null rejection probabilities that are close to the nominal 5% level for singular and near singular variance matrices as measured by ρ_V. As expected, the deviations from 5% decrease with n. For all 40,000 simulation repetitions, all values of n considered, and $k = 8$, we obtain $\hat{r}_n(\theta_0) = 8$ when $\rho_V < 1.0$ and $\hat{r}_n(\theta_0) = 4$ when $\rho_V = 1$. The estimator $\hat{r}_n(\theta_0)$ also makes no errors when $k = 4$ and 12. Tables II and III show that the deviations of the null rejection probabilities from 5% are somewhat smaller when $k = 4$ and $n \leq 1000$ than when $k = 8$, and somewhat larger when $k = 12$ and $n \leq 500$. Results for $k = 8$ and $C = 0, 2, \sqrt{30}$, and 10 produced similar results. For brevity, these results are not reported.

We conclude that the method introduced in Section 5 to make the SR-AR and SR-CQLR$_2$ tests robust to singularity works very well in the model that is considered in the simulations.
Table II. Null Rejection Probabilities (×100) of Nominal 5% SR-AR and SR-CQLR\textsubscript{2} Tests with Singular and Near Singular Variance Matrices of the Moment Functions and \(k = 4\)

<table>
<thead>
<tr>
<th>n</th>
<th>(\rho_V: .95)</th>
<th>.999,999</th>
<th>1.0</th>
<th>(\rho_V: .95)</th>
<th>.999,999</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>5.5</td>
<td>5.5</td>
<td>5.2</td>
<td>5.4</td>
<td>5.4</td>
<td>4.9</td>
</tr>
<tr>
<td>500</td>
<td>5.1</td>
<td>5.1</td>
<td>5.2</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>1,000</td>
<td>4.9</td>
<td>4.9</td>
<td>5.1</td>
<td>4.8</td>
<td>4.8</td>
<td>4.8</td>
</tr>
<tr>
<td>2,000</td>
<td>5.1</td>
<td>5.1</td>
<td>5.2</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>4,000</td>
<td>5.1</td>
<td>5.1</td>
<td>5.1</td>
<td>5.0</td>
<td>5.0</td>
<td>4.9</td>
</tr>
<tr>
<td>8,000</td>
<td>5.1</td>
<td>5.1</td>
<td>5.1</td>
<td>5.0</td>
<td>5.0</td>
<td>4.8</td>
</tr>
<tr>
<td>16,000</td>
<td>5.1</td>
<td>5.1</td>
<td>5.0</td>
<td>4.9</td>
<td>4.9</td>
<td>4.8</td>
</tr>
</tbody>
</table>

Table III. Null Rejection Probabilities (×100) of Nominal 5% SR-AR and SR-CQLR\textsubscript{2} Tests with Singular and Near Singular Variance Matrices of the Moment Functions and \(k = 12\)

<table>
<thead>
<tr>
<th>n</th>
<th>(\rho_V: .95)</th>
<th>.999,999</th>
<th>1.0</th>
<th>(\rho_V: .95)</th>
<th>.999,999</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>7.0</td>
<td>7.0</td>
<td>5.6</td>
<td>7.0</td>
<td>7.0</td>
<td>5.5</td>
</tr>
<tr>
<td>500</td>
<td>6.0</td>
<td>6.0</td>
<td>5.4</td>
<td>6.0</td>
<td>6.0</td>
<td>5.4</td>
</tr>
<tr>
<td>1,000</td>
<td>5.5</td>
<td>5.5</td>
<td>5.3</td>
<td>5.5</td>
<td>5.5</td>
<td>5.3</td>
</tr>
<tr>
<td>2,000</td>
<td>5.2</td>
<td>5.2</td>
<td>5.1</td>
<td>5.2</td>
<td>5.2</td>
<td>5.1</td>
</tr>
<tr>
<td>4,000</td>
<td>5.1</td>
<td>5.1</td>
<td>5.1</td>
<td>5.1</td>
<td>5.1</td>
<td>5.1</td>
</tr>
<tr>
<td>8,000</td>
<td>5.0</td>
<td>5.0</td>
<td>4.9</td>
<td>5.0</td>
<td>5.0</td>
<td>4.8</td>
</tr>
<tr>
<td>16,000</td>
<td>4.9</td>
<td>4.9</td>
<td>5.0</td>
<td>4.9</td>
<td>4.9</td>
<td>5.0</td>
</tr>
</tbody>
</table>
14 SR-CQLR$_1$, SR-CQLR$_2$, and Kleibergen’s Nonlinear CLR Tests in the Homoskedastic Linear IV Model

It is desirable for tests to reduce asymptotically to Moreira’s (2003) CLR test in the homoskedastic linear IV regression model with fixed (i.e., nonrandom) IV’s when $p = 1$, where p is the number of endogenous rhs variables, which equals the dimension of θ. The reason is that the latter test has been shown to have some (approximate) optimality properties under normality of the errors, see Andrews, Moreira, and Stock (2006, 2008) and Chernozhukov, Hansen, and Jansson (2009).

In this section, we show that the components of the SR-QLR$_1$ statistic and its corresponding conditioning matrix are asymptotically equivalent to those of Moreira’s (2003) LR statistic and its conditioning statistic, respectively, in the homoskedastic linear IV model with $k \geq p$ fixed (i.e., nonrandom) IV’s and nonsingular moments variance matrix (whether or not the errors are Gaussian). This holds for all values of $p \geq 1$.

We also show that the same is true for the SR-QLR$_2$ statistic and its conditioning matrix in some, but not in all cases (where the cases depend on the behavior of the reduced-form parameter matrix $\pi \in R^{k \times p}$ as $n \to \infty$.) Nevertheless, when $p = 1$, the SR-CQLR$_2$ test and Moreira’s (2003) CLR test are asymptotically equivalent. When $p \geq 2$, for the cases where asymptotic equivalence of these tests does not hold, the difference is due only to the IV’s being fixed, whereas the SR-QLR$_2$ statistic and its conditioning matrix are designed (essentially) for random IV’s.

We also evaluate the behavior of Kleibergen’s (2005, 2007) nonlinear CLR tests in the homoskedastic linear IV model with fixed IV’s. Kleibergen’s tests depend on the choice of a weight matrix for the conditioning statistic (which enters both the CLR test statistic and the critical value function). We find that when $p = 1$ Kleibergen’s CLR test statistic and conditioning statistic reduce asymptotically to those of Moreira (2003) when one employs the Jacobian-variance weighted conditioning statistic suggested by Kleibergen (2005, 2007) and Smith (2007). However, they do not when one employs the moments-variance weighted conditioning statistic suggested by Newey and Windmeijer (2009) and Guggenberger, Ramalho, and Smith (2012). Notably, the scale of the scalar conditioning statistic can differ from the desired value of one by a factor that can be arbitrarily close to zero or infinity (depending on the value of the reduced-form error matrix Σ_V and null hypothesis value θ_0), see Lemma 14.3 and Comment (iv) following it. Kleibergen’s nonlinear CLR tests depend on the form of a rank statistic. When $p \geq 2$, we find that no choice of rank statistic makes Kleibergen’s CLR test statistic and conditioning statistic reduce asymptotically to those of Moreira (2003) (when Jacobian- or moments-variance weighting is employed).

Whether this also holds for $p \geq 2$ is an open question.
Section 15 below provides finite-sample simulation results that illustrate the results of the previous paragraph for Kleibergen’s CLR test with moment-variance weighting.

14.1 Homoskedastic Linear IV Model

The model we consider is the homoskedastic linear IV model introduced in Section 3 but without the assumption of normality of the reduced-form errors \(V_i \). Specifically, we use the following assumption.

Assumption HLIV: (a) \(\{V_i \in R^{n+1} : i \geq 1\} \) are i.i.d., \(\{Z_i \in R^k : i \geq 1\} \) are fixed, not random, and \(k \geq p \).
(b) \(EV_i = 0, \Sigma_V := EV_iV_i' \) is pd, and \(E||V_i||^4 < \infty \).
(c) \(n^{-1}\sum_{i=1}^{n}Z_iZ_i' \rightarrow K_Z \) for some pd matrix \(K_Z \in R^{k \times k}, n^{-1}\sum_{i=1}^{n}|Z_i|^6 = o(n) \), and \(\sup_{l \leq n}(c'Z_i)^2/\sum_{i=1}^{n}(c'Z_i)^2 \rightarrow 0 \forall c \not= 0^k \).
(d) \(\sup_{\pi \in \Pi}||\pi|| < \infty \), where \(\Pi \) is the parameter space for \(\pi \).
(e) \(\lambda_{\max}(\Sigma_V)/\lambda_{\min}(\Sigma_V) \leq 1/\varepsilon \) for \(\varepsilon > 0 \) as in the definition of the SR-QLR_1 or SR-QLR_2 statistic.

Here HLIV abbreviates “homoskedastic linear IV model.” Assumption HLIV(b) specifies that the reduced-form errors are homoskedastic (because their variance matrix does not depend on \(i \) or \(Z_i \)). Assumptions HLIV(c) and (d) are used to obtain a weak law of large numbers (WLLN) and central limit theorem (CLT) for certain quantities under drifting sequences of reduced-form parameters \(\{\pi_n : n \geq 1\} \). These assumptions are not very restrictive. Note that Assumptions HLIV(a)-(c) imply that the variance matrix of the sample moments is pd. This implies that \(\hat{r}_n (= \hat{r}_n(\theta_0)) = k \) wp→1 (by Lemma 14.1(b) below) and no SR adjustment of the SR-CQLR tests occurs (wp→1). Assumption HLIV(e) guarantees that the eigenvalue adjustment used in the definition of the SR-QLR statistics does not have any effect asymptotically. One could analyze the properties of the SR-CQLR tests when this condition is eliminated. One would still obtain asymptotic null rejection probabilities equal to \(\alpha \), but the eigenvalue adjustment would render the SR-CQLR tests to behave somewhat differently than Moreira’s CLR test, because the latter test does not employ an eigenvalue adjustment.

60In this section, the underlying i.i.d. random variables \(\{V_i : i \geq 1\} \) have a distribution that does not depend on \(n \). Hence, for notational simplicity, we denote expectations by \(E \), rather than \(E_{F_n} \). Nevertheless, it should be kept in mind that the reduced-form parameters \(\pi_n \) may depend on \(n \).
14.2 SR-CQLR\textsubscript{1} Test

The components of the SR-QLR\textsubscript{1} statistic and its conditioning matrix are \(n^{1/2} \hat{\Sigma}_n^{-1/2} g_n \) and \(n^{1/2} \hat{D}_n^* \) (see (3.2) and (6.7)) when \(\hat{r}_n = k \), which holds \(\text{wp} \to 1 \) under Assumption HLIV. Those of Moreira (2003) are \(\bar{S}_n \) and \(T_n \) (see (3.4)). The asymptotic equivalence of these components in the model specified by (3.1)-(3.2) and Assumption HLIV is established in parts (e) and (f) of the following lemma. Parts (a)-(d) of the lemma establish the asymptotic behavior of the components \(\hat{\Omega}_n \) and \(\hat{\Sigma}_n \) of the test statistic \(SR-QLR\textsubscript{1}n \) and its conditioning statistic.

Lemma 14.1 Suppose Assumption HLIV holds. Under the null hypothesis \(H_0 : \theta = \theta_0 \), for any sequence of reduced-form parameters \(\{\pi_n \in \Pi : n \geq 1\} \) and any \(p \geq 1 \), we have

(a) \(\hat{R}_n \to_p \Sigma_V \otimes K_Z \),

(b) \(\hat{\Omega}_n \to_p (b'_0 \Sigma_V b_0) K_Z \), where \(b_0 := (1, -\theta_0')' \),

(c) \(\hat{\Sigma}_n \to_p (b'_0 \Sigma_V b_0)^{-1} \Sigma_V \),

(d) \(\hat{\Sigma}_n^\pi \to_p (b'_0 \Sigma_V b_0)^{-1} \Sigma_V \),

(e) \(n^{1/2} \hat{\Omega}_n^{-1/2} \hat{g}_n = \bar{S}_n + o_p(1) \), and

(f) \(n^{1/2} \hat{D}_n^* = -(I_k + o_p(1)) T_n (I_p + o_p(1)) + o_p(1) \).

Comments: (i) The minus sign in Lemma 14.1(f) is not important because \(QLR\textsubscript{1}n \) in (6.7) is unchanged if \(\hat{D}_n^* \) is replaced by \(-\hat{D}_n^* \) in the definition of \(\hat{Q}_n \) (and \(SR-QLR\textsubscript{1}n = QLR\textsubscript{1}n \) \(\text{wp} \to 1 \) under Assumption HLIV).61

(ii) The results of Lemma 14.1 hold under the null hypothesis. Statistics that differ by \(o_p(1) \) under sequences of null distributions also differ by \(o_p(1) \) under sequences of contiguous alternatives. Hence, the asymptotic equivalence results of Lemma 14.1(e) and (f) also hold under contiguous alternatives to the null.

Note that in the linear IV regression model the alternative parameter values \(\{\theta_n : n \geq 1\} \) that yield contiguous sequences of distributions from a sequence of null distributions depend on the strength of identification as measured by \(\pi_n \). The reduced-form equation (3.2) states that \(y_{1i} = Z_i' \pi_n \theta_n + V_{1i} \) when \(\pi_n \) and \(\theta_n \) are the true values of \(\pi \) and \(\theta \). Contiguous alternatives to the null distributions with parameters \(\pi_n \) and \(\theta_0 \) are obtained for parameter values \(\pi_n \) and \(\theta_n (\neq \theta_0) \) that satisfy \(\pi_n \theta_n - \pi_n \theta_0 = \pi_n (\theta_n - \theta_0) = O(n^{-1/2}) \). If the IV’s are strong, i.e., \(\liminf_{n \to \infty} \pi_n n^{-1} \sum_{i=1}^{n} Z_i Z_i' \pi_n > 0 \), then contiguous alternatives have true \(\theta_n \) values of distance \(O(n^{-1/2}) \) from the null value \(\theta_0 \). If the IV’s are weak in the standard sense, e.g., \(\pi_n = n^{-1/2} \) for

61This holds because for \(a_1 \in \mathbb{R}^k \) and \(A_2 \in \mathbb{R}^{k \times p} \) we have \(\lambda_{\min}((a_1, -A_2)'(a_1, -A_2)) = \inf_{\lambda = (\lambda_2, \lambda_2')' : ||\lambda||=1} (a_1 \lambda_1 - A_2 \lambda_2)'(a_1 \lambda_1 - A_2 \lambda_2) = \inf_{\lambda = (\lambda_2, \lambda_2')' : ||\lambda||=1} (a_1 \lambda_1 + A_2 \lambda_2)'(a_1 \lambda_1 + A_2 \lambda_2) = \inf_{\lambda = (\lambda_2, \lambda_2')' : ||\lambda||=1} (a_1 \lambda_1 + A_2 \lambda_2)'(a_1 \lambda_1 + A_2 \lambda_2) = \lambda_{\min}((a_1, A_2)'(a_1, A_2))$.

11
some fixed matrix π, then all θ values not equal θ_0 yield contiguous alternatives. For semi-strong identification in the standard sense, e.g., $\pi_n = \pi n^{-\delta}$ for some $\delta \in (0, 1/2)$ and some fixed full-column-rank matrix π, the contiguous alternatives have $\theta_n - \theta_0 = O(n^{-1/2-\delta})$. For joint weak identification, contingency occurs when $\pi_n = (\pi_{1n}, \ldots, \pi_{pn}) \in \mathbb{R}^{k \times p}$, $n^{1/2}||\pi_{jn}|| \to \infty$ for all $j \leq p$, $\limsup_{n \to \infty} \lambda_{\min}(n\pi'_{n\pi_n}) < \infty$, and θ_n is such that $\pi_n(\theta_n - \theta_0)L = O(n^{-1/2}).$

(iii) The proofs of Lemma 14.1 and Lemmas 14.2 and 14.3 below are given in Section 24 below.

14.3 SR-CQLR$_2$ Test

The components of the SR-QLR$_2$ statistic and its conditioning matrix are $n^{1/2}\tilde{\Omega}_n^{-1/2}\tilde{g}_n$ and $n^{1/2}\tilde{D}_n^*$ (see (3.2), (6.7), and (7.2)) when $\tilde{r}_n = k$, which holds wp--1 under Assumption HLIV. Here we show that the conditioning statistic $n^{1/2}\tilde{D}_n^*$ is asymptotically equivalent to Moreira’s (2003) conditioning statistic T_n (in the homoskedastic linear IV model with fixed IV’s) when $\pi_n \to 0^{k \times p}$. This includes the cases of standard weak identification and semi-strong identification. It is not asymptotically equivalent in other circumstances. (See Comment (ii) to Lemma 14.2 below.) Nevertheless, under strong and semi-strong IV’s, the SR-CQLR$_2$ test and Moreira’s CLR test are asymptotically equivalent.

In consequence, when $p = 1$, the SR-CQLR$_2$ test and Moreira’s CLR test are asymptotically equivalent (because standard weak, strong, and semi-strong identification cover all possible cases). When $p \geq 2$, this is not true (because weak identification can occur even when $\pi_n \to 0^{k \times p}$, if $n^{1/2}$ times the smallest singular value of π_n is $O(1)$). Although asymptotic equivalence of the tests fails in some cases when $p \geq 2$, the differences appear to be small because they are due only to the differences between fixed IV’s and random IV’s (which cause Σ_V to differ somewhat from Σ_{V*} defined below).

For $\pi \in \mathbb{R}^{k \times p}$, define

$$\zeta_n(\pi) := n^{-1} \sum_{i=1}^{n} (\pi' \otimes Z_i)Z'_i(\pi \otimes Z'_i) - \left(n^{-1} \sum_{i=1}^{n} (\pi' \otimes Z_i)Z_i\right) \left(n^{-1} \sum_{i=1}^{n} (\pi' \otimes Z_i)Z'_i\right)' \in \mathbb{R}^{kp \times kp}.$$

(14.1)

If $\lim n^{-1} \sum_{i=1}^{n} vec(Z_iZ'_i)vec(Z'_iZ_i)'$ exists, then $\zeta(\pi) := \lim \zeta_n(\pi)$ exists for all $\pi \in \mathbb{R}^{k \times p}$. Define

$$R(\pi) := \Sigma_V \otimes K_Z + (B' \otimes I_k) \begin{bmatrix} 0^{k \times k} & 0^{k \times kp} \\ 0^{kp \times k} & \zeta(\pi) \end{bmatrix} (B \otimes I_k) \in \mathbb{R}^{(p+1) \times (p+1)}.$$

(14.2)

This holds because, under strong and semi-strong IV’s, the SR-QLR$_2$ statistic and Moreira’s CLR statistic behave asymptotically like LM statistics that project onto $n^{1/2}\tilde{\Omega}_n^{-1/2}\tilde{D}_n$ (or equivalently, $n^{1/2}\tilde{\Omega}_n^{-1/2}\tilde{D}_n\tilde{L}_n^{1/2}$) and T_n, respectively, see Theorem 9.1 for the SR-QLR$_2$ statistic, and $n^{1/2}\tilde{\Omega}_n^{-1/2}\tilde{D}_n\tilde{L}_n^{1/2}$ and T_n are asymptotically equivalent (up to multiplication by -1) by Lemma 14.1). Furthermore, the conditional critical values of the two tests both converge in probability to $\chi^2_{p,1-\alpha}$ under strong and semi-strong identification, see Theorem 9.1 for the SR-CQLR$_2$ critical value.
where \(B = B(\theta_0) \) is defined in \([6.3]\).

The probability limit of \(\tilde{\Sigma}_n \) is shown below to be the symmetric matrix \((b_0'\Sigma_V b_0)^{-1}\Sigma_{V^*} \in R^{(p+1)\times(p+1)}, \) where \(\Sigma_{V^*} \) is defined as follows. The \((j, \ell)\) element of \(\Sigma_{V^*} \) is

\[
\Sigma_{V^*j\ell} := tr(R_{j\ell}(\pi_\ast)'^{(K_Z^{-1})}/k),
\]

where \(R_{j\ell}(\pi_\ast) \) denotes the \((j, \ell)\) \(k \times k \) submatrix of \(R(\pi_\ast) \) for \(j, \ell = 1, ..., p + 1 \) and \(\pi_\ast = \lim \pi_n \).

Equivalently, \(\Sigma_{V^*} \) is the unique minimizer of \(||[I_{p+1} \otimes ((b_0'\Sigma_V b_0)^{-1/2}K_Z^{-1/2})][\Sigma \otimes K_Z - R(\pi_\ast)]\)

\[
[I_{p+1} \otimes ((b_0'\Sigma_V b_0)^{-1/2}K_Z^{-1/2})]||
\]

over all symmetric pd matrices \(\Sigma \in R^{(p+1)\times(p+1)} \). Note that when

\[
\zeta(\pi_\ast) = 0 \quad (\text{as occurs when } \pi_\ast = 0^{k\times p}), \quad \Sigma_{V^*} = \Sigma_V \quad (\text{because } R(\pi_\ast) = \Sigma_V \otimes K_Z \text{ in this case}).
\]

We use the following assumption.

Assumption HLIV2: (a) \(\lim n^{-1} \sum_{i=1}^{n} vec(Z_i'Z_i')vec(Z_i'Z_i')' \) exists and is finite,

(b) \(\pi_n \to \pi_\ast \) for some \(\pi_\ast \in R^{k\times p}, \) and

(c) \(\lambda_{\max}(\Sigma_{V^*})/\lambda_{\min}(\Sigma_{V^*}) \leq 1/\varepsilon \) for \(\varepsilon > 0 \) as in the definition of the SR-QLRD statistic.

Assumption HLIV2(c) implies that the eigenvalue adjustment to \(\tilde{\Sigma}_n \) employed in the SR-QLRD statistic has no effect asymptotically. One could analyze the behavior of the SR-CQLR test when this condition is eliminated. This would not affect the asymptotic null rejection probabilities, but it would affect the form of the asymptotic distribution when the condition is violated. For brevity, we do not do so here.

The asymptotic behavior of \(n^{1/2}\tilde{D}_n^* \) is given in the following lemma. Under Assumption HLIV, \(n^{1/2}\tilde{D}_n^* \) equals the SR-CQLR conditioning statistic \(n^{1/2}\tilde{D}_{nC}^* \) wp\(\to 1 \) (because \(\tilde{r}_n = k \) wp\(\to 1 \)).

Lemma 14.2 Suppose Assumptions HLIV and HLIV2 hold. Under the null hypothesis \(H_0 : \theta = \theta_0 \) and any \(p \geq 1 \), we have

(a) \(\tilde{R}_n \to_p R(\pi_\ast) \),

(b) \(\tilde{\Sigma}_n \to_p (b_0'\Sigma_V b_0)^{-1}\Sigma_{V^*} \),

(c) \(\tilde{\Sigma}_n^c \to_p (b_0'\Sigma_V b_0)^{-1}\Sigma_{V^*} \), and

(d) \(n^{1/2}\tilde{D}_n^* = -(I_k + o_p(1))T_n(L_{V_0}^{-1/2}L_{V^*}^{-1/2} + o_p(1)) + o_p(1) \), where \(L_{V_0} := (\theta_0, I_p)\Sigma_V^{-1}(\theta_0, I_p)' \in R^{p\times p} \) and \(L_{V^*} := (\theta_0, I_p)\Sigma_{V^*}^{-1}(\theta_0, I_p)' \in R^{p\times p} \).

Comments: (i) If \(\pi_\ast = 0^{k\times p} \), which occurs when all \(\theta \) parameters are either weakly identified in the standard sense or semi-strongly identified, then \(\zeta(\pi_\ast) = 0^{kp\times kp} \), \(R(\pi_\ast) = \Sigma_V \otimes K_Z \), and \(\Sigma_{V^*} = \Sigma_V \). In this case, Lemma 14.2(d) yields

\[
n^{1/2}\tilde{D}_n^* = -(I_k + o_p(1))T_n(I_p + o_p(1)) + o_p(1)
\]

(14.4)
and \(n^{1/2} \tilde{D}_n^* \) is asymptotically equivalent to \(T_n \) (up to multiplication by \(-1\)).

(ii) On the other hand, if \(\pi_\star \neq 0^{k \times p} \), then \(n^{1/2} D_n^* \) is not asymptotically equivalent to \(T_n \) in general due to the \(\zeta(\pi_\star) \) factor that appears in the second summand of \(R(\pi_\star) \) in (14.2). This factor arises because the IV’s are fixed in the linear IV model (by assumption), but the variance estimator \(\tilde{V}_n \), which appears in \(\tilde{R}_n \), see (7.1), and which determines \(\tilde{\Sigma}_n \) and \(\Sigma_{V_\star} \), treats the IV’s as though they are random.

14.4 Kleibergen’s Nonlinear CLR Tests

This section analyzes the behavior of Kleibergen’s (2005, 2007) nonlinear CLR tests in the homoskedastic linear IV regression model with \(k \geq p \) fixed IV’s. The behavior of Kleibergen’s nonlinear CLR tests is found to depend on the choice of weighting matrix for the conditioning statistic. We find that when \(p = 1 \) (where \(p \) is the dimension of \(\theta \)) and one employs the Jacobian-variance weighted conditioning statistic, Kleibergen’s CLR test and conditioning statistics reduce asymptotically to those of Moreira’s (2003) CLR test, as desired. This type of weighting has been suggested by Kleibergen’s (2005, 2007) and Smith (2007). On the other hand, Kleibergen’s CLR test and conditioning statistics do not reduce asymptotically to those of Moreira (2003) when \(p = 1 \) and one employs the moments-variance weighted conditioning statistic. The latter has been suggested by Newey and Windmeijer (2009) and Guggenberger, Ramalho, and Smith (2012). Furthermore, the scale of the scalar conditioning statistic can differ from the desired value of one by a factor that can be arbitrarily close to zero or infinity (depending on the value of the reduced-form error matrix \(\Sigma_V \) and null hypothesis value \(\theta_0 \)). This has adverse effects on the power of the moment-variance weighted CLR test.

When \(p \geq 2 \), Kleibergen’s nonlinear CLR tests depend on the form of a rank statistic. In this case, we find that no choice of rank statistic makes Kleibergen’s CLR test statistic and conditioning statistic reduce asymptotically to those of Moreira (2003).

Kleibergen’s test statistic takes the form:

\[
\text{CLR}_n(\theta) := \frac{1}{2} \left(AR_n(\theta) - rk_n(\theta) + \sqrt{(AR_n(\theta) - rk_n(\theta))^2 + 4LM_n(\theta) \cdot rk_n(\theta)} \right),
\]

where

\[
LM_n(\theta) := \frac{n \tilde{g}_n(\theta) \tilde{\gamma}_n^{-1/2}(\theta) P_{\tilde{\gamma}_n^{-1/2}(\theta)} \tilde{D}_n(\theta) \tilde{D}_n(\theta)^{-1/2}(\theta) \tilde{g}_n(\theta)}
\]

and \(rk_n(\theta) \) is a real-valued rank statistic, which is a conditioning statistic (i.e., the critical value may depend on \(rk_n(\theta) \)).

The critical value of Kleibergen’s CLR test is \(c(1 - \alpha, rk_n(\theta)) \), where \(c(1 - \alpha, r) \) is the 1 – \(\alpha \)
quantile of the distribution of

\[
clr(r) := \frac{1}{2} \left(\chi_p^2 + \chi_{k-p}^2 - r + \sqrt{(\chi_p^2 + \chi_{k-p}^2 - r)^2 + 4\chi_p^2 r} \right)
\] (14.6)

for \(0 \leq r < \infty\) and the chi-square random variables \(\chi_p^2\) and \(\chi_{k-p}^2\) in (14.6) are independent. The CLR test rejects the null hypothesis \(H_0 : \theta = \theta_0\) if \(CLR_n > c(1 - \alpha, rk_n)\) (where, as elsewhere, the dependence of these statistics on \(\theta_0\) is suppressed for simplicity).

Kleibergen’s CLR test depends on the choice of the rank statistic \(rk_n(\theta)\). Kleibergen (2005, p. 1114, 2007, eqn. (37)) and Smith (2007, p. 7, footnote 4) propose to take \(rk_n(\theta)\) to be a function of \(\widetilde{V}_{Dn}^{-1/2}(\theta)vec(\widehat{D}_n(\theta))\), where \(\widetilde{V}_{Dn}(\theta) \in R^{kp \times kp}\) is a consistent estimator of the covariance matrix of the asymptotic distribution of \(vec(\widehat{D}_n(\theta))\) (after suitable normalization). We refer to \(\widetilde{V}_{Dn}^{-1/2}(\theta)vec(\widehat{D}_n(\theta))\) as the orthogonalized sample Jacobian with Jacobian-variance weighting. In the i.i.d. case considered here, we have

\[
\widetilde{V}_{Dn}(\theta) := n^{-1} \sum_{i=1}^{n} vec(G_i(\theta) - \widehat{G}_n(\theta))vec(G_i(\theta) - \widehat{G}_n(\theta))' - \widehat{\Gamma}_n(\theta)\hat{\Omega}_n^{-1}(\theta)\widehat{\Gamma}_n(\theta)',
\]

where

\[
\widehat{\Gamma}_n(\theta) := (\widehat{\Gamma}_{1n}(\theta)',...,\widehat{\Gamma}_{pn}(\theta)')' \in R^{pk \times k}
\]

and \(\widehat{\Gamma}_{1n}(\theta),...,\widehat{\Gamma}_{pn}(\theta)\) are defined in (6.2).

Newey and Windmeijer (2009) and Guggenberger, Ramalho, and Smith (2012) propose to take \(rk_n(\theta)\) to be a function of \(\hat{\Omega}_n^{-1/2}(\theta)\widehat{D}_n(\theta)\). We refer to \(\hat{\Omega}_n^{-1/2}(\theta)\widehat{D}_n(\theta)\) as the orthogonalized sample Jacobian with moment-variance weighting. Below we consider both choices. For reasons that will become apparent, we treat the cases \(p = 1\) and \(p \geq 2\) separately.

14.5 \(p = 1\) Case

Whether Kleibergen’s nonlinear CLR test reduces asymptotically to Moreira’s CLR test in the homoskedastic linear IV regression model depends on the rank statistic chosen. Here we consider the two choices of rank statistic that have been considered in the literature. We find that Kleibergen’s nonlinear CLR test reduces asymptotically to Moreira’s CLR test with a rank statistic based on \(\widetilde{V}_{Dn}(\theta)\), but not with a rank statistic based on \(\hat{\Omega}_n(\theta)\). This illustrates that the flexibility in the choice of the rank statistic for Kleibergen’s CLR test can have drawbacks. It may lead to a test that has reduced power.

When \(p = 1\), some calculations (based on the closed-form expression for the minimum eigenvalue
of a 2×2 matrix) show that

$$CLR_n(\theta) = AR_n(\theta) - \lambda_{\min}((n^{1/2}\Omega_n^{-1/2}(\theta)\hat{g}_n(\theta), r_n(\theta)))'(n^{1/2}\Omega_n^{-1/2}(\theta)\hat{g}_n(\theta), r_n(\theta)))$$

provided

$$rk_n(\theta) = r_n(\theta)'r_n(\theta)$$

for some random vector $r_n(\theta) \in \mathbb{R}^k$. \hfill (14.8)

This equivalence is the origin of the $p = 1$ formula for the LR statistic in Moreira (2003). Hence, when $p = 1$, for testing $H_0 : \theta = \theta_0$, Kleibergen’s test statistic with $rk_n(\theta) = r_n(\theta)'r_n(\theta)$ is of the same form as Moreira’s (2003) LR statistic with $r_n(\theta_0)$ in place of \mathcal{T}_n and with $n^{1/2}\Omega_n^{-1/2}(\theta_0)\hat{g}_n(\theta_0)$ in place of \mathcal{S}_n, where θ_0 is the null value of θ.\footnote{The functional form of the rank statistics that have been considered in the literature, such as the statistics of Cragg and Donald (1996, 1997), Robin and Smith (2000), and Kleibergen and Paap (2006) all reduce to the same function when $p = 1$. Specifically, $rk_n(\theta)$ equals the squared length of some k vector $r_n(\theta)$.}

The two choices for $rk_n(\theta)$ that we consider when $p = 1$ are

$$rk_{1n}(\theta) := n\hat{D}_n(\theta)'\hat{V}_{Dn}(\theta)\hat{D}_n(\theta)$$

and

$$rk_{2n}(\theta) := n\hat{D}_n(\theta)'\hat{\Omega}_n^{-1}(\theta)\hat{D}_n(\theta). \hfill (14.9)$$

The statistic $rk_{1n}(\theta)$ has been proposed by Kleibergen (2005, 2007) and Smith (2007) and $rk_{2n}(\theta)$ has been proposed by Newey and Windmeijer (2009) and Guggenberger, Ramalho, and Smith (2012).

Let

$$\zeta_n(\pi) := n^{-1} \sum_{i=1}^{n} Z_iZ_i'(Z_i'\pi)^2 - \left(n^{-1} \sum_{i=1}^{n} Z_iZ_i'\pi\right)\left(n^{-1} \sum_{t=1}^{n} Z_tZ_t'\pi\right)' \hfill (14.10)$$

This definition of $\zeta_n(\pi)$ is the same as in \hfill (14.1) when $p = 1$.

Lemma 14.3 Suppose Assumption HLIV holds and $p = 1$. Under the null hypothesis $H_0 : \theta = \theta_0$, for any sequence of reduced-form parameters $\{\pi_n \in \Pi : n \geq 1\}$, we have

(a) $rk_{1n}(\theta_0) = \mathcal{T}'_n[I_k + L_{V0}K^{-1/2}_Z(\pi_n)K^{-1/2}_Z + \rho_1(1)]^{-1}\mathcal{T}_n \cdot (1 + o_p(1)) + o_p(1),$

(b) $rk_{2n}(\theta_0) = \mathcal{T}'_n[L_{V0}b_0'(\Sigma_Vb_0)^{-1} \cdot (1 + o_p(1)) + o_p(1),$ where $L_{V0} := (\theta_0, 1)\Sigma_V^{-1}(\theta_0, 1)' \in \mathbb{R}$, and

(c) $L_{V0}b_0'(\Sigma_Vb_0) = \frac{(1-2\rho_0\rho_1+\rho_0^2c^2)^2}{c^2(1-\rho^2)}$, where $c^2 := \text{Var}(V_{2i})/\text{Var}(V_{1i}) > 0$ and $\rho = \text{Corr}(V_{12}, V_{21}) \in (-1, 1)$.

Comments: (i) If $\pi_n \to 0$, then $\zeta_n(\pi_n) \to 0$ and Lemma 14.3(a) shows that $rk_{1n}(\theta_0)$ equals $\mathcal{T}'_n\mathcal{T}_n(1 + o_p(1)) + o_p(1)$. That is, under weak IV’s and semi-strong IV’s, $rk_{1n}(\theta_0)$ reduces asymptotically to Moreira’s (2003) conditioning statistic. Under strong IV’s, this does not occur. However, under strong IV’s, we have $rk_{1n}(\theta_0) \to_p \infty$, just as $\mathcal{T}'_n\mathcal{T}_n \to_p \infty$. In consequence, the test constructed using $rk_{1n}(\theta_0)$ has the same asymptotic properties as Moreira’s (2003) CLR test under the null and contiguous alternative distributions.
(ii) Simple calculations show that \(\zeta_n(\pi_n) \) is positive semi-definite (psd). Hence, \(r k_{1n}(\theta_0) \) is smaller than it would be if the second summand in the square brackets in Lemma 14.3(a) was zero.

(iii) Lemma 14.3(b) shows that the rank statistic \(r k_{2n}(\theta_0) \) differs asymptotically from Moreira’s conditioning statistic \(\bar{T}_n^rT_n \) by the scale factor \((L_{V0}b_0^r\Sigma_Vb_0)^{-1}\). Thus, the nonlinear CLR test considered by Newey and Windmeijer (2009) and Guggenberger, Ramalho, and Smith (2012) does not reduce asymptotically to Moreira’s (2003) CLR test in the homoskedastic linear IV regression model with fixed IV’s under weak IV’s. This has negative consequences for its power. Under strong or semi-strong IV’s, this test does reduce asymptotically to Moreira’s (2003) CLR test because \(r k_{1n}(\theta_0) \to_p \infty \), just as \(T_n^rT_n \to_p \infty \), which is sufficient for asymptotic equivalence in these case.

(iv) For example, if \(\rho = 0 \) and \(c = 1 \) in Lemma 14.3(c), then \((L_{V0}b_0^r\Sigma_Vb_0)^{-1} = (1+\theta_0^2)^{-2} \leq 1\). In this case, if \(|\theta_0| = 1\), then \((L_{V0}b_0^r\Sigma_Vb_0)^{-1} = 1/4 \) and \(r k_{2n}(\theta_0) \) is \(1/4 \) as large as \(T_n^rT_n \) asymptotically.

Third, Moreira’s conditioning statistic is the \(k \times p \) matrix \(T_n \). Conditioning on this random ma-

14.6 \(p \geq 2 \) Case

When \(p \geq 2 \), Kleibergen’s (2005) nonlinear CLR test does not reduce asymptotically to Moreira’s (2003) CLR test for any choice of rank statistic \(r k_n(\theta_0) \) for several reasons.

First, Moreira’s (2003) LR statistic is given in (3.4), whereas Kleibergen’s (2005) nonlinear LR statistic is defined in (14.5). By Lemma 14.1(e), \(n^{1/2}\hat{\Omega}_n^{-1/2}\hat{g}_n = \hat{S}_n + o_p(1) \), where, here and below, we suppress the dependence of various quantities on \(\theta_0 \). Hence, \(AR_n = \hat{S}_n^r\hat{S}_n + o_p(1) \). Even if \(r k_n \) takes the form \(r'_n r_n \) for some random \(k \) vector \(r_n \), it is not the case that

\[
CLR_n = AR_n - \lambda_{\min}\left((n^{1/2}\hat{\Omega}_n^{-1/2}\hat{g}_n, r_n')(n^{1/2}\hat{\Omega}_n^{-1/2}\hat{g}_n, r_n)\right)
\]

(14.11)

when \(p \geq 2 \). Hence, the functional form of Kleibergen’s test statistic differs from that of Moreira’s LR statistic when \(p \geq 2 \).

Second, for the rank statistics that have been suggested in the literature, viz., those of Cragg and Donald (1996, 1997), Robin and Smith (2000), and Kleibergen and Paap (2006), \(r k_n \) is not of the form \(r'_n r_n \), when \(p \geq 2 \).

Third, Moreira’s conditioning statistic is the \(k \times p \) matrix \(T_n \). Conditioning on this random ma-
trix is equivalent asymptotically to conditioning on the $k \times p$ matrix $n^{1/2} \hat{D}_n^*$ by Lemma 14.1(f). But, it is not equivalent asymptotically to conditioning on any of the scalar rank statistics considered in the literature when $p \geq 2$.

Fourth, if one weights the conditioning statistic in the way suggested by Kleibergen (2005) and Smith (2007), then the resulting CLR test is not guaranteed to have correct asymptotic size, see Section 5 of AG1. If one weights the conditioning statistic by $\hat{\Omega}^{-1}_n$, as suggested by Newey and Windmeijer (2009) and Guggenberger, Ramalho, and Smith (2012), then the CLR test is guaranteed to have correct asymptotic size under the conditions given in AG1, but the conditioning statistic is not asymptotically equivalent to Moreira’s (2003) conditioning statistic and the difference can be substantial, see Lemma 14.3(b) and (c) for the $p = 1$ case.

15 Simulation Results for Kleibergen’s MVW-CLR Test

This section presents finite-sample simulation results that show that Kleibergen’s (2005) CLR test with moment-variance weighting (MVW-CLR) has low power in some scenarios in the homoskedastic linear IV model with normal errors, relative to the power of the SR-CQLR$_1$ and SR-CQLR$_2$ tests, Kleibergen’s CLR test with Jacobian-variance weighting (JVW-CLR), and the CLR test of Moreira (2003) (Mor-CLR)\footnote{The MVW-CLR and JVW-CLR tests denote Kleibergen’s (2005) CLR test with the rank statistic given by the Robin and Smith (2000) statistics $rk_n = \lambda_{\min}(n\hat{D}_n^r\hat{\Omega}_n^{-1/2}\hat{D}_n)$ and $rk_n = \lambda_{\min}(n\hat{D}_n^r\hat{V}_n^{-1}\hat{D}_n)$, respectively, where $\hat{\Omega}_n$ and \hat{D}_n are defined in \ref{5.1} and \ref{6.2} with $\theta = \theta_0$ and \hat{V}_n is an estimator of the asymptotic variance of \hat{D}_n (after suitable normalization) and is defined in \ref{14.7}. Note that the second formula for rk_n is appropriate only for the case $p = 1$, which is the case considered here. The estimators $\hat{\Omega}_n$ and \hat{V}_n are estimators of the asymptotic variances of the sample moments and Jacobian, respectively, which leads to the MVW and JVW terminology.}. As noted at the beginning of Section 14.4, Lemma 14.3 and Comment (iv) following it show that the scale (denoted by $scale$ below) of the moment-variance weighting conditioning statistic can be far from the optimal value of one\footnote{The constant $scale$ is the constant $(L_V\theta_0^\prime \Sigma_V \theta_0)^{-1}$ in Lemma 14.3(b) and (c).}. We provide results for one scenario where $scale$ is too large and one scenario where it is too small. These scenarios are chosen based on the formula given in Lemma 14.3.

The model is the homoskedastic normal linear IV model introduced in Section 3 with unknown error variance matrix Σ_V and $p = 1$. The IV’s are fixed—they are generated once from a $N(0^k, I_k)$ distribution. The sample size n equals 1,000. The hypotheses are $H_0 : \theta = 0$ and $H_1 : \theta \neq 0$. The tests have nominal size .05. The power results are based on 40,000 simulation repetitions and 1,000 critical value repetitions and are size-corrected (by adding non-negative constants to the critical values of those tests that over-reject under the null). The reduced-form error variances and correlation are denoted by Σ_{V11}, Σ_{V22}, and ρ, respectively, and $\lambda := \pi'Z'Z\pi$. The number of IV’s is k. The MVW-CLR and JVW-CLR tests employ the Robin and Smith (2000) rank statistic.

64 The MVW-CLR and JVW-CLR tests denote Kleibergen’s (2005) CLR test with the rank statistic given by the Robin and Smith (2000) statistics $rk_n = \lambda_{\min}(n\hat{D}_n^r\hat{\Omega}_n^{-1/2}\hat{D}_n)$ and $rk_n = \lambda_{\min}(n\hat{D}_n^r\hat{V}_n^{-1}\hat{D}_n)$, respectively, where $\hat{\Omega}_n$ and \hat{D}_n are defined in \ref{5.1} and \ref{6.2} with $\theta = \theta_0$ and \hat{V}_n is an estimator of the asymptotic variance of \hat{D}_n (after suitable normalization) and is defined in \ref{14.7}. Note that the second formula for rk_n is appropriate only for the case $p = 1$, which is the case considered here. The estimators $\hat{\Omega}_n$ and \hat{V}_n are estimators of the asymptotic variances of the sample moments and Jacobian, respectively, which leads to the MVW and JVW terminology.

65 The constant $scale$ is the constant $(L_V\theta_0^\prime \Sigma_V \theta_0)^{-1}$ in Lemma 14.3(b) and (c).
Results are reported for the tests discussed above, as well as Kleibergen’s LM test and the AR test. Design 1 takes \(\Sigma_{V11} = 1.0, \Sigma_{V22} = 4.0, \rho = 0.5, \pi = 0.044, \lambda = 2.009, \) and \(k = 5 \). These parameter values yield \(\text{scale} = 30.0 \), which results in the MVW-CLR test behaving like Kleibergen’s LM test even though the LM test has low power in this scenario. Design 2 takes \(\Sigma_{V11} = 3.0, \Sigma_{V22} = 0.1, \rho = 0.95, \pi = 0.073, \lambda = 4.995, \) and \(k = 10 \). These parameter values yield \(\text{scale} = 0.0033 \), which results in the MVW-CLR test behaving like the AR test even though the AR test has low power in this scenario.

The power functions of the tests are reported in Figure 1 (with \(\theta \lambda^{1/2} \) on the horizontal axes with \(\lambda^{1/2} \) fixed). Figure 1(a) shows that, for Design 1, the MVW-CLR and LM tests have very similar power functions and both are substantially below the power functions of the SR-CQLR\(_1\), SR-CQLR\(_2\), JVW-CLR, and Mor-CLR tests, which have essentially equal and optimal power. The AR test has high power, like that of the SR-CQLR\(_1\), SR-CQLR\(_2\), JVW-CLR, and Mor-CLR tests, for positive \(\theta \), and low power, like that of the MVW-CLR and LM tests, for negative \(\theta \).

Figure 1(b) shows that, for Design 2, the MVW-CLR and AR tests have similar power functions and both are substantially below the power functions of the SR-CQLR\(_1\), SR-CQLR\(_2\), JVW-CLR, Mor-CLR, and LM tests, which have essentially equal and optimal power.

16 Power Comparisons in Heteroskedastic/Autocorrelated Linear IV Models with \(p = 1 \)

In this section, we present some power comparisons for the AR test, Kleibergen’s (2005) LM, JVW-CLR, and MVW-CLR tests, and the SR-CQLR\(_2\) test introduced in AG2.\(^{66}\) We also consider the plug-in conditional linear combination (PI-CLC) test introduced in I. Andrews (2014), as well as the MM1-SU and MM2-SU tests introduced in Moreira and Moreira (2013). The PI-CLC test aims to approximate the test that has minimum regret among conditional tests constructed using linear combinations of the LM and AR test statistics (with coefficients that depend on the conditioning statistic), see I. Andrews (2014) for details.\(^{67}\) The MM1-SU and MM2-SU tests have optimal weighted average power for two different weight functions (over the alternative parameter values \(\theta \) and the strength of identification parameter vector \(\mu \), given in (16.1) below) among tests that satisfy a sufficient condition for local unbiasedness.\(^{68}\)

\(^{66}\) See (5.2), (9.1), and a footnote in Section 15 for the definitions of AR test and Kleibergen’s LM, MVW-CLR, and JVW-CLR tests. The AR test is called the S test in Stock and Wright (2000). The LM and JVW-CLR tests are denoted by K and QCLR, respectively, in I. Andrews (2014).

\(^{67}\) The PI-CLC test does not possess an optimality property because it does not actually equal the minimum regret test.

\(^{68}\) The weight functions considered depend on the variance parameters \(\Sigma_{GG} \) and \(\Sigma_{GG} \) in (16.1) below.
We consider the same designs as in I. Andrews (2014, Sec. 6.2). These designs are for heteroskedastic and/or autocorrelated linear IV models with \(p = 1 \) and \(k = 4 \). The designs are calibrated to mimic the linear IV models for the elasticity of inter-temporal substitution estimated by Yogo (2004) for eleven countries using quarterly data from the early 1970’s to the late 1990’s. The power comparisons are for the limiting experiment under standard weak identification asymptotics. In consequence, for the simulations, the observations are drawn from the following model:

\[
\left(\begin{array}{c} \tilde{\Omega}_n^{-1/2} n^{1/2} \tilde{g}_n(\theta_0) \\ \tilde{\Omega}_n^{-1/2} n^{1/2} \tilde{g}_n(\theta_0) \end{array} \right) \sim N \left(\left(\begin{array}{c} \mu \theta \\ \mu \end{array} \right), \left(\begin{array}{cc} I_k & \Sigma_{G}\Sigma_{GG} \\ \Sigma_{G} & \Sigma_{GG} \end{array} \right) \right) \tag{16.1}
\]

for \(\theta \in \mathbb{R}, \mu \in \mathbb{R}^k \), and \(\Sigma_{G}, \Sigma_{GG} \in \mathbb{R}^{k \times k} \), where \(\Sigma_{G} \) and \(\Sigma_{GG} \) are assumed to be known.\(^{69}\)\(^{70}\) The values of \(\mu, \Sigma_{G}, \) and \(\Sigma_{GG} \) are taken to be equal to the estimated values using the data from Yogo (2004).\(^71\) A sample is a single observation from the distribution in (16.1) and the tests are constructed using the known values \(\Sigma_{G}\) and \(\Sigma_{GG}\).\(^72\) The hypotheses are \(H_0 : \theta = 0 \) and \(H_1 : \theta \neq 0 \).

Power is computed using 10,000 simulation repetitions for the rejection probabilities, 10,000 simulation repetitions for the data-dependent critical values of the MVW-CLR, JVW-CLR, and SR-CQLR\(_2\) tests, and two million simulation repetitions for the critical values for the PI-CLC tests (which are taken from a look-up table that is simulated just one time).

Some details concerning the computation and definitions of the SR-CQLR\(_2\), PI-CLC, MM1-SU, and MM2-SU tests are as follows. The SR-CQLR\(_2\) test uses \(\varepsilon = .05 \), where \(\varepsilon \) appears in the definition of \(\tilde{L}_n(\theta) \) in (7.2) of AG2. For the PI-CLC test, the number of values "a" considered in the search over \([0, 1]\) is 100, the number of simulation repetitions used to determine the best choice of "a" is 2000, and the number of alternative parameter values considered in the search for the best "a" is 41. For the MM1-SU and MM2-SU tests, the number of variables in the discretization of maximization problem is 1000, the number of points used in the numerical approximations of the integrals \(h_1 \) and \(h_2 \) that appear in the definitions of these tests is 1000, and when approximating integrals \(h_1 \) and \(h_2 \) by sums of 1000 rectangles these rectangles cover \([-4, 4]\).

\(^{69}\)In linear IV models with i.i.d. observations, the matrix \(\Sigma_G \) is necessarily symmetric. However, with autocorrelation, it need not be. In the eleven countries considered here, it is not.

\(^{70}\)The variance matrix in the limit experiment varies slightly depending on whether one treats the IV’s as fixed or random. For example, the asymptotic variance of \(n^{1/2} \hat{G}_n(\theta_0) \) under standard weak IV asymptotics varies slightly in these two cases. Power results for the SR-CQLR\(_1\) test when the limiting variance is computed using fixed IV’s are equivalent to those computed for the SR-CQLR\(_2\) test for the case where the limiting variance is computed using random IV’s. In consequence, we do not separately report power results for the SR-CQLR\(_1\) test.

\(^{71}\)See I. Andrews (2014, Appendices D.3 and D.4) for details on the calculations of the simulation designs based on Yogo’s (2004) data, as well as for details on the computation of I. Andrews’ PI test, referred to here as PI-CLC, and the two tests of Moreira and Moreira (2013), referred to here and in I. Andrews (2014) as MM1-SU and MM2-SU. The JVW-CLR and LM tests here are the same as the QCLR and K tests, respectively, in I. Andrews (2014).

\(^{72}\)For example, \(\hat{\Gamma}_n(\theta_0) \) in (6.2) is taken to be known and equal to \(\Sigma_{G} \), and \(V_n(\theta_0) \) in (7.1) is taken to be known and equal to the variance matrix in (16.1).
<table>
<thead>
<tr>
<th>Country</th>
<th>μ'</th>
<th>μ</th>
<th>non-Kron</th>
<th>SR-CQLR</th>
<th>JVV</th>
<th>MVW</th>
<th>PI-CLC</th>
<th>MM1</th>
<th>MM2</th>
<th>LM</th>
<th>AR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>138</td>
<td>17</td>
<td>.0</td>
<td>.1</td>
<td>.1</td>
<td>.2</td>
<td>2.4</td>
<td>.1</td>
<td>.1</td>
<td>.6</td>
<td>6.9</td>
</tr>
<tr>
<td>Canada</td>
<td>48</td>
<td>5</td>
<td>.0</td>
<td>.0</td>
<td>.2</td>
<td>.0</td>
<td>1.4</td>
<td>.5</td>
<td>.3</td>
<td>6.8</td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>79</td>
<td>6</td>
<td>.1</td>
<td>.2</td>
<td>.0</td>
<td>.3</td>
<td>.7</td>
<td>.3</td>
<td>.0</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>10</td>
<td>3</td>
<td>.0</td>
<td>.1</td>
<td>.4</td>
<td>.0</td>
<td>.2</td>
<td>.1</td>
<td>.2</td>
<td>6.5</td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td>84</td>
<td>15</td>
<td>.5</td>
<td>1.1</td>
<td>2.0</td>
<td>.2</td>
<td>1.1</td>
<td>.0</td>
<td>2.6</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td>17</td>
<td>14</td>
<td>3.3</td>
<td>3.2</td>
<td>8.9</td>
<td>.4</td>
<td>.0</td>
<td>2.4</td>
<td>17.4</td>
<td>.6</td>
<td></td>
</tr>
<tr>
<td>Netherlands</td>
<td>25</td>
<td>3</td>
<td>.0</td>
<td>.2</td>
<td>.1</td>
<td>.2</td>
<td>.9</td>
<td>.5</td>
<td>1.6</td>
<td>6.6</td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td>174</td>
<td>9</td>
<td>.3</td>
<td>.2</td>
<td>.1</td>
<td>.3</td>
<td>1.5</td>
<td>.0</td>
<td>.3</td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td>Switzerland</td>
<td>31</td>
<td>4</td>
<td>.1</td>
<td>.0</td>
<td>.0</td>
<td>.4</td>
<td>1.3</td>
<td>1.1</td>
<td>.5</td>
<td>7.2</td>
<td></td>
</tr>
<tr>
<td>U.K.</td>
<td>53</td>
<td>38</td>
<td>.7</td>
<td>6.0</td>
<td>5.4</td>
<td>.8</td>
<td>2.5</td>
<td>.0</td>
<td>7.8</td>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td>U.S.</td>
<td>81</td>
<td>10</td>
<td>.8</td>
<td>2.0</td>
<td>2.9</td>
<td>.0</td>
<td>7.3</td>
<td>.8</td>
<td>3.5</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>over</td>
<td>Countries</td>
<td>.5</td>
<td>1.2</td>
<td>1.8</td>
<td>.2</td>
<td>1.8</td>
<td>.5</td>
<td>3.3</td>
<td>5.7</td>
<td></td>
</tr>
</tbody>
</table>

The asymptotic power functions are given in Figure 2. Each graph is based on 41 equi-spaced values on the x axis covering $[-6, 6]$. The x axis variable is the parameter θ scaled by a fixed value of $||\mu||$ for a given country, thus $\theta||\mu|| \in [-6, 6]$, where θ is the alternative parameter value (when $\theta \neq 0$) defined in (16.1) of AG2 and μ is the mean vector that determines the strength of identification. The y axis variable is power $\times 100$.

Table IV provides the **shortfall in average-power ($\times 100$)** of each test for each country relative to the other seven tests considered, where average power is an unweighted average over the 40 alternative parameter values. Table V provides the **maximum power shortfall ($\times 100$)** of each test for each country relative to the other seven tests considered, where the maximum is taken over the 40 alternative parameter values. The shortfall in average-power is an unweighted average power criterion, whereas the maximum power shortfall is a minimax regret criterion.

The last row of Table IV shows the average (across countries) of the shortfall in average-power ($\times 100$) of each test. This provides a summary measure. Similarly, the last row of Table V shows the average (across countries) of the maximum power shortfall ($\times 100$) of each test.

The second and third columns of Table IV provide the concentration parameter, $\mu'\mu$, which measures of the strength of identification, and a non-Kronecker index, abbreviated by non-Kron, which measures the deviation of the variance matrix in (16.1), call it Ψ, from a Kronecker matrix.

More precisely, let AP_{tc} denote the average power of test t for country c, where the average is taken over the 40 parameter values in the alternative hypothesis. By definition, the shortfall in average-power of test t for country c is $\max_{s \leq 8} AP_{sc} - AP_{tc}$, where the maximum is taken over the eight tests considered.

Let $P_c(\theta)$ denote the power of test t in country c against the alternative θ. By definition, the power shortfall of test t in country c for alternative θ is $\max_{s \leq 8} P_c(\theta) - P_c(\theta)$ and the maximum power shortfall of test t in country c is $\max_{\theta \in \Theta_{40}} (\max_{s \leq 8} P_c(\theta) - P_c(\theta))$, where Θ_{40} contains the 40 alternative parameter values considered.

Note that, as defined, the shortfall in average-power is not equal to the average of the power shortfalls over $\theta \in \Theta_{40}$.

21
Table V. Maximum Power Shortfalls (×100)

<table>
<thead>
<tr>
<th>Country</th>
<th>μ′μ</th>
<th>non-Kron</th>
<th>SR-CQLR</th>
<th>JVW</th>
<th>MVW</th>
<th>PI</th>
<th>MM1</th>
<th>MM2</th>
<th>LM</th>
<th>AR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>138</td>
<td>17</td>
<td>.5</td>
<td>.6</td>
<td>.8</td>
<td>1.0</td>
<td>8.2</td>
<td>1.3</td>
<td>.9</td>
<td>17.2</td>
</tr>
<tr>
<td>Canada</td>
<td>48</td>
<td>5</td>
<td>.6</td>
<td>.5</td>
<td>.9</td>
<td>.7</td>
<td>5.4</td>
<td>3.0</td>
<td>1.7</td>
<td>17.7</td>
</tr>
<tr>
<td>France</td>
<td>79</td>
<td>6</td>
<td>.7</td>
<td>.8</td>
<td>.5</td>
<td>1.0</td>
<td>3.0</td>
<td>1.6</td>
<td>.4</td>
<td>19.9</td>
</tr>
<tr>
<td>Germany</td>
<td>10</td>
<td>3</td>
<td>.8</td>
<td>.8</td>
<td>2.2</td>
<td>.6</td>
<td>1.0</td>
<td>.8</td>
<td>10.6</td>
<td>18.4</td>
</tr>
<tr>
<td>Italy</td>
<td>84</td>
<td>15</td>
<td>4.4</td>
<td>5.7</td>
<td>6.5</td>
<td>3.9</td>
<td>9.7</td>
<td>2.3</td>
<td>7.1</td>
<td>17.7</td>
</tr>
<tr>
<td>Japan</td>
<td>17</td>
<td>14</td>
<td>21.3</td>
<td>41.4</td>
<td>44.9</td>
<td>8.6</td>
<td>10.1</td>
<td>13.6</td>
<td>85.8</td>
<td>11.9</td>
</tr>
<tr>
<td>Netherlands</td>
<td>25</td>
<td>3</td>
<td>.9</td>
<td>1.1</td>
<td>.9</td>
<td>1.4</td>
<td>3.9</td>
<td>3.3</td>
<td>8.2</td>
<td>18.6</td>
</tr>
<tr>
<td>Sweden</td>
<td>174</td>
<td>9</td>
<td>1.0</td>
<td>.6</td>
<td>1.0</td>
<td>.7</td>
<td>4.9</td>
<td>.4</td>
<td>1.1</td>
<td>19.6</td>
</tr>
<tr>
<td>Switzerland</td>
<td>31</td>
<td>4</td>
<td>.5</td>
<td>.3</td>
<td>.5</td>
<td>1.6</td>
<td>4.8</td>
<td>5.5</td>
<td>1.4</td>
<td>18.8</td>
</tr>
<tr>
<td>U. K.</td>
<td>53</td>
<td>38</td>
<td>8.4</td>
<td>27.3</td>
<td>23.2</td>
<td>9.0</td>
<td>20.6</td>
<td>7.1</td>
<td>37.0</td>
<td>14.7</td>
</tr>
<tr>
<td>U.S.</td>
<td>81</td>
<td>10</td>
<td>5.2</td>
<td>9.0</td>
<td>10.2</td>
<td>2.6</td>
<td>27.7</td>
<td>5.1</td>
<td>11.7</td>
<td>12.4</td>
</tr>
<tr>
<td>Average over Countries</td>
<td>4.0</td>
<td>8.0</td>
<td>8.3</td>
<td>2.8</td>
<td>9.0</td>
<td>4.0</td>
<td>14.9</td>
<td>17.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This deviation is given by the formula $1,000 \times \min_{B,C} \|B \otimes C - \Psi\|$, where the minimum is taken over symmetric pd matrices B and C of dimensions 2×2 and 4×4, respectively, $\| \cdot \|$ denotes the Frobenius norm, and the rescaling by 1,000 is for convenience.

Germany, Japan, and the Netherlands exhibit the weakest identification, while Sweden and Australia exhibit the strongest. The U.K., Australia, Italy, and Japan have variance matrices that are farthest from Kronecker-product form, while Germany, the Netherlands, and Switzerland have variance matrices that are closest to Kronecker-product form.

The test that performs best in Tables IV and V is the PI-CLC test, followed by the SR-CQLR$_2$ and MM2-SU tests. The difference between these tests is not large. For example, the difference in the average (across countries) shortfall in average-power (not rescaled by multiplication by 100 in contrast to the results in Table IV) of the PI-CLC test and the SR-CQLR$_2$ and MM2-SU tests is .003. This small power advantage is almost entirely due to the relative performances for Japan, which exhibits very weak identification and moderately large non-Kronecker index.

The remaining tests in decreasing order of power (in an overall sense) are the JVW-CLR, MVW-CLR, MM1-SU, LM, and AR tests. Not surprisingly, the LM and AR tests have noticeably lower power than the other tests in an overall sense, and the AR test has noticeably lower power than the LM test.

We conclude that the SR-CQLR$_2$ test has asymptotic power that is competitive with, or better than, that of other tests in the literature for the particular parameters considered here in the particular model considered here. The SR-CQLR$_2$ test has advantages compared to the PI-CLC,

74 The non-Kronecker index is computed using the Framework 2 method given in Section 4 of Van Loan and Pitsianis (1993) with symmetry of C imposed by replacing A_{ij} by $(A_{ij} + A_{ji})/2$ in equation (9) of that paper.
MM1-SU, and MM2-SU tests of (i) being applicable in almost any moment condition model, whereas the latter tests are not, (ii) being easy to implement (i.e., program), and (iii) being fast to compute.

17 Eigenvalue-Adjustment Procedure

Eigenvalue adjustments are made to two sample matrices that appear in the two SR-CQLR test statistics. These adjustments guarantee that the adjusted sample matrices have minimum eigenvalues that are not too close to zero even if the corresponding population matrices are singular or near singular. These adjustments improve the asymptotic and finite-sample performance of the tests by improving their robustness to singularities or near singularities.

The eigenvalue-adjustment procedure can be applied to any non-zero positive semi-definite (psd) matrix $H \in \mathbb{R}^{d_H \times d_H}$ for some positive integer d_H. Let ε be a positive constant. Let $A_H\Lambda_HA_H'$ be a spectral decomposition of H, where $\Lambda_H = \text{Diag}\{\lambda_{H1},...,\lambda_{d_H}\} \in \mathbb{R}^{d_H \times d_H}$ is the diagonal matrix of eigenvalues of H with nonnegative nonincreasing diagonal elements and A_H is a corresponding orthogonal matrix of eigenvectors of H. The eigenvalue-adjusted matrix $H^\varepsilon \in \mathbb{R}^{d_H \times d_H}$ is

$$H^\varepsilon := A_H\Lambda_H^\varepsilon A_H',$$

where $\Lambda_H^\varepsilon := \text{Diag}\{\max\{\lambda_{H1},\lambda_{\max}(H)\varepsilon\},...,\max\{\lambda_{d_H},\lambda_{\max}(H)\varepsilon\}\}$. (17.1)

We have $\lambda_{\max}(H) = \lambda_{H1}$, and $\lambda_{\max}(H) > 0$ provided the psd matrix H is non-zero.

The following lemma provides some useful properties of this eigenvalue adjustment procedure.

Lemma 17.1 Let d_H be a positive integer, let ε be a positive constant, and let $H \in \mathbb{R}^{d_H \times d_H}$ be a non-zero positive semi-definite non-random matrix. Then,

(a) (uniqueness) H^ε, defined in (17.1), is uniquely defined. (That is, every choice of spectral decomposition of H yields the same matrix H^ε),

(b) (eigenvalue lower bound) $\lambda_{\min}(H^\varepsilon) \geq \lambda_{\max}(H)\varepsilon$,

(c) (condition number upper bound) $\lambda_{\max}(H^\varepsilon)/\lambda_{\min}(H^\varepsilon) \leq \max\{1/\varepsilon,1\}$,

(d) (scale equivariance) For all $c > 0$, $(cH)^\varepsilon = cH^\varepsilon$, and

(e) (continuity) $H_n^\varepsilon \to H^\varepsilon$ for any sequence of psd matrices $\{H_n \in \mathbb{R}^{d_H \times d_H} : n \geq 1\}$ that satisfies $H_n \to H$.

Comments: (i) The lower bound $\lambda_{\max}(H)\varepsilon$ for $\lambda_{\min}(H^\varepsilon)$ given in Lemma 17.1b) is positive provided $H \neq 0^{d_H \times d_H}$.

(ii) Lemma 17.1(c) shows that one can choose ε to control the condition number of H^ε. The latter is a common measure of how ill-conditioned a matrix is. If $\varepsilon \leq 1$, which is a typical choice,
Proof of Lemma 17.1. For notational simplicity, we drop the H subscript on A_H, Λ_H, and Λ^*_H. We prove part (a) first. The eigenvectors of $H^\varepsilon = A\Lambda^\varepsilon A'$ defined in (6.6) are unique up to the choice of vectors that span the eigenspace that corresponds to any eigenvalue. Suppose the $j, \ldots, j+d$ eigenvalues of H are equal for some $d \geq 0$ and $1 \leq j < d_H$. We can write $A = (A_1, A_2, A_3)$, where $A_1 \in \mathbb{R}^{d_H \times (j-1)}$, $A_2 \in \mathbb{R}^{d_H \times (d+1)}$, and $A_3 \in \mathbb{R}^{d_H \times (d_H-j-d)}$. In addition, H can be written as $H = A_s \Lambda A'_s$, where $A_s = (A_1, A_{2s}, A_3)$, the column space of A_{2s} equals that of A_2, and A_s is an orthogonal matrix. As above, $H^\varepsilon = A\Lambda^\varepsilon A'$. To establish part (a), if suffices to show that $H^\varepsilon = A_s \Lambda^\varepsilon A'_s$, or equivalently, $A\Lambda^\varepsilon A'\xi = A_s \Lambda^\varepsilon A'_s \xi$ for any $\xi \in \mathbb{R}^{d_H}$.

For any $\xi \in \mathbb{R}^{d_H}$, we can write $\xi = \xi_1 + \xi_2$, where ξ_1 belongs to the column space of A_2 and A_{2s} and ξ_2 is orthogonal to this column space. We have

$$A\Lambda^\varepsilon A'\xi = A\Lambda^\varepsilon (A_1, A_2, A_3)'(\xi_1 + \xi_2)$$

$$= A\Lambda^\varepsilon (0^{j-1}, (A'_2 \xi_1)', 0^{d_H-j-d})' + A\Lambda^\varepsilon ((A'_1 \xi_2)', 0^{d+1}', (A'_3 \xi_2)')'$$

$$= A\lambda_j^\varepsilon (0^{j-1}, (A'_2 \xi_1)', 0^{d_H-j-d})' + (A_1, A_2, A_3) \Lambda^\varepsilon ((A'_1 \xi_2)', 0^{d+1}', (A'_3 \xi_2)')'$$

$$= A_2 A'_2 \xi_1 \lambda_j^\varepsilon + (A_1, A_3) \Lambda^\varepsilon ((A'_1 \xi_2)', (A'_3 \xi_2)')'$$

$$= A_2 A'_2 \xi_1 \lambda_j^\varepsilon + (A_1, A_3, A_3) \Lambda^\varepsilon ((A'_1 \xi_2)', (A'_3 \xi_2)')'$$

$$= A_s \Lambda^\varepsilon A'_s \xi,$$

where $\Lambda^\varepsilon_\downarrow \in \mathbb{R}^{(d_H-d-1) \times (d_H-d-1)}$ is the diagonal matrix equal to Λ^ε with its $j, \ldots, j+d$ rows and columns deleted, $\lambda_j^\varepsilon = \max\{\lambda_j, \lambda_{\max}(H)\varepsilon\}$, λ_j is the jth eigenvalue of Λ, the second equality uses $A'_1 \xi_1 = 0^{j-1}$, $A'_3 \xi_1 = 0^{d_H-j-d}$, and $A'_2 \xi_2 = 0^{d+1}$, the third equality holds because $\lambda_j = \ldots = \lambda_{j+d}$ implies that $\lambda_j^\varepsilon = \ldots = \lambda_{j+d}^\varepsilon$, the fourth equality holds using the definition of $\Lambda^\varepsilon_\downarrow$, the fifth equality holds because $A_2 A'_2 = A_2 A'_2$ (since both equal the projection matrix onto the column space of A_2 (and A_{2s})), and the last equality holds by reversing the steps in the previous equalities with $A_s = (A_1, A_{2s}, A_3)$ in place of $A = (A_1, A_2, A_3)$. Because (17.2) holds for any matrix A_{2s} defined as above and any feasible j and d, part (a) holds.

To prove parts (b) and (c), we note that the eigenvalues of H^ε are $\{\max\{\lambda_{Hj}, \lambda_{\max}(H)\varepsilon\} :
j = 1, ..., d_H} because \(H^\varepsilon = A \Lambda^\varepsilon A' \) and \(A \) is an orthogonal matrix. In consequence, \(\lambda_{\min}(H^\varepsilon) \geq \lambda_{\max}(H)\varepsilon \), which establishes part (b). If \(\lambda_{\min}(H) > \lambda_{\max}(H)\varepsilon \), then \(H^\varepsilon = H, \lambda_{\max}(H^\varepsilon)/\lambda_{\min}(H^\varepsilon) = \lambda_{\max}(H)/\lambda_{\min}(H) < 1/\varepsilon \), and the result of part (c) holds. Alternatively, if \(\lambda_{\min}(H) \leq \lambda_{\max}(H)\varepsilon \), then \(\lambda_{\min}(H^\varepsilon) = \lambda_{\max}(H)\varepsilon \). In addition, we have \(\lambda_{\max}(H^\varepsilon) = \max\{\lambda H_1, \lambda_{\max}(H)\varepsilon\} = \lambda_{\max}(H) \times \max\{1, \varepsilon\} \) using \(\lambda H_1 = \lambda_{\max}(H) \). Combining these two results gives \(\lambda_{\max}(H^\varepsilon)/\lambda_{\min}(H^\varepsilon) = \lambda_{\max}(H)\max\{1, \varepsilon\}/(\lambda_{\max}(H)\varepsilon) = \max\{1/\varepsilon, 1\} \), where the second equality uses the assumption that \(H \) is non-zero, which implies that \(\lambda_{\max}(H) > 0 \). This gives the result of part (c).

We now prove part (d) and for clarity make the \(H \) subscripts on \(A_H \) and \(\Lambda_H \) explicit in this paragraph. We have \(\Lambda_{cH} = c \Lambda_H \) and we can take \(A_{cH} = A_H \) by the definition of eigenvalues and eigenvectors. This implies that \(\Lambda_{cH}^\varepsilon = c \Lambda_H^\varepsilon \) (using the definition of \(\Lambda_H^\varepsilon \) in (6.6)) and \((cH)^\varepsilon = A_{cH} \Lambda_{cH}^\varepsilon A'_{cH} = c A_H \Lambda_{H}^\varepsilon A'_{H} = c H^\varepsilon \), which establishes part (d).

Now we prove part (e). Let \(A_n \Lambda_n A'_n \) be a spectral decomposition of \(H_n \) for \(n \geq 1 \). Let \(H_n^\varepsilon = A_n \Lambda_n^\varepsilon A'_n \) for \(n \geq 1 \), where \(\Lambda_n^\varepsilon \) is the diagonal matrix with \(j \)th diagonal element given by \(\lambda_n^\varepsilon_j = \max\{\lambda_{nj}, \lambda_{\max}(H_n)\varepsilon\} \) and \(\lambda_{nj} \) is the \(j \)th largest eigenvalue of \(H_n \). (By part (a) of the Lemma, \(H_n^\varepsilon \) is invariant to the choice of eigenvector matrix \(A_n \) used in its definition.)

Given any subsequence \(\{n_j\} \) of \(\{n\} \), let \(\{n_m\} \) be a subsubsequence such that \(A_{n_m} \to A \) for some orthogonal matrix \(A \) that may depend on the subsubsequence \(\{n_m\} \). (Such a subsubsequence exists because the set of orthogonal \(d_H \times d_H \) matrices is compact.) By assumption, \(H_n \to H \). This implies that \(\Lambda_n \to \Lambda \), where \(\Lambda \) is the diagonal matrix of eigenvalues of \(H \) in nonincreasing order (by Elsner’s Theorem, see Stewart (2001, Thm. 3.1, pp. 37–38)). In turn, this gives \(\Lambda_n^\varepsilon \to \Lambda^\varepsilon \), where \(\Lambda^\varepsilon \) is the diagonal matrix with \(j \)th diagonal element given by \(\lambda_j^\varepsilon = \max\{\lambda_j, \lambda_{\max}(H)\varepsilon\} \) and \(\lambda_j \) is the \(j \)th largest eigenvalue of \(H \), because \(\lambda_{\max}(\cdot) \) is a continuous function (by Elsner’s Theorem again). The previous results imply that \(H_{nm} = A_{n_m} \Lambda_{nm} A'_{n_m} \to \Lambda A \Lambda' \), \(H_n^\varepsilon = A_{n_m} \Lambda_n^\varepsilon A'_{n_m} \to \Lambda \Lambda^\varepsilon A' \), and \(\Lambda \Lambda^\varepsilon A' = H^\varepsilon \). Because every subsequence \(\{n_\ell\} \) of \(\{n\} \) has a subsubsequence \(\{n_m\} \) for which \(H_{nm}^\varepsilon \to H^\varepsilon \), we obtain \(H_n^\varepsilon \to H^\varepsilon \), which completes the proof of part (e). \(\square \)

18 Singularity-Robust LM Test

SR-LM versions of Kleibergen’s LM test and CS can be defined analogously to the SR-AR and SR-CQLR tests and CS’s. However, these procedures are only partially singularity robust, see the discussion below. In addition, LM tests have low power in some circumstances under weak identification.
The SR-LM test statistic is

\[SR-LM_n(\theta) := n\tilde{g}_n(\theta)'P_{\tilde{D}_n(\theta)}\tilde{g}_n(\theta), \]

(18.1)

where \(P_M \) denotes the projection matrix onto the column space of the matrix \(M \). For testing \(H_0 : \theta = \theta_0 \), the SR-LM test rejects the null hypothesis if

\[SR-LM_n(\theta_0) > x_{\min\{\tilde{r}_n(\theta_0), p\}, 1-\alpha}^2, \]

(18.2)

where \(x_{\min\{\tilde{r}_n(\theta_0), p\}, 1-\alpha} \) denotes the \(1 - \alpha \) quantile of a chi-squared distribution with \(\min\{\tilde{r}_n(\theta_0), p\} \) degrees of freedom. This test can be shown to have correct asymptotic size and to be asymptotically similar for the parameter space \(\mathcal{F}_{LM}^R \), which is a generalization of the parameter space \(\mathcal{F}_0 \) in AG1 and has a similar (rather complicated) form to \(\mathcal{F}_0 \). It is defined as follows: for some \(\delta_1 > 0 \),

\[\mathcal{F}_{LM}^R := \bigcup_{j=0}^{\min\{r_F^0, p\}} \mathcal{F}_{LM}^{R,j}, \]

where

\[\mathcal{F}_{LM}^{R,j} := \{ F \in \mathcal{F}_{2}^{SR} : \tau_{jF}^* \geq \delta_1 \} \text{ and } \lambda_{p-j} \left(\Psi_F^{C r_{p-j}}B_{r_F}^{*F}G_{r_F}^{*F}\xi \right) \geq \delta_1 \forall \xi \in \mathbb{R}^{p-j} \text{ with } ||\xi|| = 1, \]

\[G_{r_F}^{*} := \Pi_{1_F}^{-1/2}A_{r_F}^{*}g_{r_F} \in \mathbb{R}^{p_F \times (p-j)}, \]

\[\Psi_F^{B_i} := E_Fa_ia_i' - E_Fa_ig_i'^*(E_Fg_i'^*g_i^*)^{-1}E_Fg_i'^*g_i', \]

for any random vector \(a_i \),

(18.3)

\(\tau_{jF}^* \) is the \(j \)th largest singular value of \(E_FG_{r_F}^* \) for \(j = 1, ..., \min\{r_F, p\} \), \(\tau_{0F}^* := \delta_1 \), \(B_{r_F}^* \) is a \(p \times p \) orthogonal matrix of eigenvalues of \((E_FG_{r_F}^*)'E_FG_{r_F}^* \) ordered so that the corresponding eigenvalues \((\kappa_{1F}^*, ..., \kappa_{r_F}^*) \) are nonincreasing, \(C_F^* \) is an \(r_F \times r_F \) orthogonal matrix of eigenvalues of \((E_FG_{r_F}^*)'E_FG_{r_F}^* \) ordered so that the corresponding eigenvalues \((\kappa_{1F}^*, ..., \kappa_{r_F}^*) \) are nonincreasing, \(B_{r_F}^* := (B_{r_F}^{*j}, B_{r_F}^{*p-j}) \) for \(B_{r_F}^{*j} \in \mathbb{R}^{p \times j} \) and \(B_{r_F}^{*p-j} \in \mathbb{R}^{p \times (p-j)} \), and \(C_F^* := (C_{r_F}^{*j}, C_{r_F}^{*p-j}) \) for \(C_{r_F}^{*j} \in \mathbb{R}^{p \times j} \) and \(C_{r_F}^{*p-j} \in \mathbb{R}^{p \times (p-j)} \).

See Section 3 of AG1 for a discussion of the form of this parameter space and the quantities upon which it depends. Note that \(\Psi_F^{B_i} \) is the expected outer-product matrix of the vector of residuals, \(a_i - E_Fa_ig_i'^*(E_Fg_i'^*g_i^*)^{-1}g_i^* \), from the \(L^2(F) \) projections of \(a_i \) onto the space spanned by the components of \(g_i^* \), see AG1 for further discussion.

The conditions in \(\mathcal{F}_{LM}^{SR} \) (beyond those in \(\mathcal{F}_{2}^{SR} \)) are used to guarantee that the conditioning matrix \(\tilde{D}_n \in \mathbb{R}^{r_n \times p} \) has full rank \(\min\{\tilde{r}_n, p\} \) asymptotically with probability one (after pre- and post-multiplication by suitable matrices). AG1 shows that these conditions are not redundant.

\(^{75}\) The first \(\min\{r_F, p\} \) eigenvalues of \((E_FG_{r_F}^*)'E_FG_{r_F}^* \) are the same. If \(r_F > p \), the remaining \(r_F - p \) eigenvalues of \((E_FG_{r_F}^*)'E_FG_{r_F}^* \) are all zeros. If \(r_F < p \), the remaining \(p - r_F \) eigenvalues of \((E_FG_{r_F}^*)'E_FG_{r_F}^* \) are all zeros.

\(^{76}\) The matrices \(B_{r_F}^* \) and \(C_F^* \) are not necessarily uniquely defined. But, this is not of consequence because the \(\lambda_{p-j}(\cdot) \) condition is invariant to the choice of \(B_{r_F}^* \) and \(C_F^* \).
Given the need for these conditions, the SR-LM test is not fully singularity robust. The asymptotic size and similarity result for the SR-LM test stated above can be proved using Theorem 4.1 of AG1 combined with the argument given in Section 10.2 below. For brevity, we do not provide the details. Extensions of the asymptotic size and similarity results to SR-LM CS’s are analogous to those for the SR-AR and SR-CQLR CS’s.

A theoretical advantage of the SR-AR and SR-CQLR tests and CS’s considered in this paper, relative to tests and CS’s that make use of the LM statistic, is that they avoid the complicated conditions that appear in F_{LM}^{SR}:

19 Proofs of Lemmas 6.1 and 6.2

Lemma 6.1 of AG2. Let D be a $k \times p$ matrix with the singular value decomposition $D = C\Sigma B'$, where C is a $k \times k$ orthogonal matrix of eigenvectors of DD', B is a $p \times p$ orthogonal matrix of eigenvectors of $D'D$, and Υ is the $k \times p$ matrix with the $\min\{k, p\}$ singular values $\{\tau_j : j \leq \min\{k, p\}\}$ of D as its first $\min\{k, p\}$ diagonal elements and zeros elsewhere, where τ_j is nonincreasing in j. Then, $c_{k,p}(D, 1 - \alpha) = c_{k,p}(\Upsilon, 1 - \alpha)$.

Proof of Lemma 6.1 Define

$$B^+ := \begin{bmatrix} B & 0^p \\ 0^p & 1 \end{bmatrix} \in \mathbb{R}^{(p+1) \times (p+1)}.$$ (19.1)

The matrix B^+ is orthogonal because B is, where B is as in the statement of the lemma. The eigenvalues of $(D, Z)'(D, Z)$ are solutions $\{\kappa_j : j \leq p + 1\}$ to

$$|(D, Z)'(D, Z) - \kappa I_{p+1}| = 0 \text{ or}$$

$$|B^+(D, Z)'(D, Z)B^+ - \kappa I_{p+1}| = 0 \text{ or}$$

$$|(DB, Z)'(DB, Z) - \kappa I_{p+1}| = 0, \text{ or}$$

$$|(C\Upsilon, Z)'CC'(C\Upsilon, Z) - \kappa I_{p+1}| = 0, \text{ or,}$$

$$|(\Upsilon, Z^*)'(\Upsilon, Z^*) - \kappa I_{p+1}| = 0, \text{ where } Z^* := C'Z \sim N(0^k, I_k),$$ (19.2)

the equivalence of the first and second lines holds because $|A_1A_2| = |A_1| \cdot |A_2|$, $|B^+| = 1$, and $B^+B^+ = I_{p+1}$, the equivalence of the second and third lines holds by matrix algebra, the equivalence of the third and fourth lines holds because $DB = C\Upsilon B'B = C\Upsilon$ and $CC' = I_k$, and the equivalence of the last two lines holds by $CC' = I_k$ and the definition of Z^*. Equation (19.2) implies
Lemma 6.2 of AG2. The statistics $QLR_{1n}, c_{k,p}(n^{1/2} \hat{D}_n, 1 - \alpha), \hat{D}_n, AR_n, \hat{u}_{in}^*, \hat{\Sigma}_n,$ and $\hat{\lambda}_n$ are invariant to the transformation $(Z_i, u_i^*) \rightarrow (MZ_i, u_i^*)$ for any $k \times k$ nonsingular matrix M.

This transformation induces the following transformations: $g_i \rightarrow Mg_i, G_i \rightarrow MG_i, g_n \rightarrow M\hat{g}_n, \hat{G}_n \rightarrow MG_n, \hat{\Omega}_n \rightarrow M\hat{\Omega}_n, \hat{\Gamma}_j \rightarrow M\hat{\Gamma}_j M', \hat{D}_n \rightarrow M\hat{D}_n, Z_{n \times k} \rightarrow Z_{n \times k} M', \hat{\Xi}_n \rightarrow M^{-1}\hat{\Xi}_n, \hat{V}_n \rightarrow (I_{p+1} \otimes M) \hat{V}_n (I_{p+1} \otimes M'),$ and $\hat{R}_n \rightarrow (I_{p+1} \otimes M) \hat{R}_n (I_{p+1} \otimes M').$

Proof of Lemma 6.2. We will refer to the results of the Lemma for $g_i, G_i, ..., \hat{R}_n$ as equivariance results. The equivariance results are immediate for $g_i, G_i, \hat{g}_n, \hat{G}_n, \hat{\Omega}_n, \hat{\Gamma}_j,$ and $Z_{n \times k}.$ For $\hat{D}_n = (\hat{D}_{in}, ..., \hat{D}_{pn}),$ we have

$$\hat{D}_n := \hat{G}_n - \hat{\Gamma}_j \hat{\Xi}_n^{-1} \hat{g}_n \rightarrow M\hat{G}_n - M\hat{\Xi}_n M'(M\hat{\Omega}_n M')^{-1} M\hat{g}_n = M\hat{D}_n$$

for $j = 1, ..., p.$ We have $\hat{\Xi}_n := (Z_{n \times k} Z_{n \times k})^{-1} Z_{n \times k} U^* \rightarrow (MZ_{n \times k} Z_{n \times k} M')^{-1} MZ_{n \times k} U^* = M^{-1}\hat{\Xi}_n.$

We have $\hat{u}_{in}^* := \hat{\Xi}_n^* Z_i \rightarrow M^{-1}\hat{\Xi}_n^* \rightarrow \hat{u}_{in}^*.$ We have $\hat{V}_n := n^{-1} \sum_{i=1}^n [(u_i^* - \hat{u}_{in}^*) (u_i^* - \hat{u}_{in}^*)^\top MZ_i] = (I_{p+1} \otimes M) \hat{V}_n (I_{p+1} \otimes M')$ using the invariance of $\hat{u}_{in}^*.$ We have $\hat{R}_n := (B' \otimes I_k) \hat{V}_n (B \otimes I_k) \rightarrow (B' \otimes M) \hat{V}_n (B \otimes M') = (I_{p+1} \otimes M) \hat{R}_n (I_{p+1} \otimes M')$ using the equivariance result for $\hat{V}_n.$

We have $\hat{\Sigma}_{jn} := tr(\hat{R}_{jn} \hat{\Xi}_n^{-1})/k \rightarrow tr(M\hat{R}_{jn} M')/M\hat{\Xi}_n M'^{-1}/k = tr(M\hat{R}_{jn} M' M^{-1}\hat{\Omega}_n^{-1} M^{-1})/k = \hat{\Sigma}_{jn}$ for $j, \ell = 1, ..., p + 1$ using the equivariance result for $\hat{R}_n.$ We have $\hat{\Sigma}_n := (\theta, I_p) (\hat{\Sigma}_n) (\theta, I_p)^\top \rightarrow \hat{\Sigma}_n$ using the invariance result for $\hat{\Sigma}_n.$ We have $\hat{D}_n^* \hat{D}_n^* := \hat{L}_n^{1/2} \hat{D}_n \hat{\Omega}_n^{-1/2} \hat{D}_n^* \hat{L}_n^{1/2} \rightarrow \hat{L}_n^{1/2} \hat{D}_n^* M'(M\hat{\Omega}_n M')^{-1} M\hat{D}_n \hat{L}_n^{1/2} = \hat{D}_n^* \hat{D}_n^*.$ This implies that $c_{k,p}(n^{1/2} \hat{D}_n, 1 - \alpha) \rightarrow c_{k,p}(n^{1/2} \hat{D}_n, 1 - \alpha)$ because $c_{k,p}(n^{1/2} \hat{D}_n, 1 - \alpha)$ only depends on \hat{D}_n through $\hat{D}_n^* \hat{D}_n$ by the Comment to Lemma 6.1.

77 The quantity $CLR_{k,p}(D)$ is written in terms of (D, Z) in (19.3), whereas it is written in terms of (Z, D) in (19.3). Both expressions give the same value.
We have $\text{AR}_n := n\hat{\gamma}_n^T\hat{\Omega}_n^{-1}\hat{\gamma}_n \sim n\hat{\gamma}_n^TM'(M\hat{\Omega}_nM')^{-1}M\hat{\gamma}_n = \text{AR}_n$. We have

$$QLR_{1n} := \text{AR}_n - \lambda_{\min}\left(n \left(\hat{\gamma}_n, \hat{D}_n\hat{L}_n^{1/2}\right)\right)^\prime \hat{\Omega}_n^{-1} \left(\hat{\gamma}_n, \hat{D}_n\hat{L}_n^{1/2}\right)$$

$$\sim \text{AR}_n - \lambda_{\min}\left(n \left(M\hat{\gamma}_n, M\hat{D}_n\hat{L}_n^{1/2}\right)\right)^\prime (M\hat{\Omega}_nM')^{-1} \left(M\hat{\gamma}_n, M\hat{D}_n\hat{L}_n^{1/2}\right) = QLR_{1n}, \ (19.5)$$

using the invariance of AR_n and \hat{L}_n and the equivariance of the other statistics that appear. □

20 Proofs of Lemma 10.3 and Proposition 10.4

Lemma 10.3 of AG2. Suppose Assumption WU holds for some non-empty parameter space $\Lambda_* \subset \Lambda_2$. Under all sequences $\{\lambda_{n,h} : n \geq 1\}$ with $\lambda_{n,h} \in \Lambda_*$,

$$n^{1/2}(\hat{\gamma}_n, \hat{D}_n - E_{F_n}G_t, W_{F_n}\hat{D}_nU_{F_n}T_n) \rightarrow_d (\bar{\gamma}_h, \bar{D}_h, \bar{\Sigma}_h),$$

where (a) $(\bar{\gamma}_h, \bar{D}_h)$ are defined in (10.21), (b) $\bar{\Sigma}_h$ is the nonrandom function of h and \bar{D}_h defined in (10.24), (c) $(\bar{D}_h, \bar{\Sigma}_h)$ and $\bar{\gamma}_h$ are independent, and (d) under all subsequences $\{w_n\}$ and all sequences $\{\lambda_{w_n,h} : n \geq 1\}$ with $\lambda_{w_n,h} \in \Lambda_*$, the convergence result above and results of parts (a)-(c) hold with n replaced with w_n.

Here and below, we use the following simplified notation:

$$D_n := E_{F_n}G_t, \ B_n := B_{F_n}, \ C_n := C_{F_n}, \ B_n = (B_{n,q}, B_{n,p-q}), \ C_n = (C_{n,q}, C_{n,k-q}),$$

$$W_n := W_{F_n}, \ W_{2n} := W_{2F_n}, \ U_n := U_{F_n}, \text{ and } U_{2n} := U_{2F_n}, \ (20.1)$$

where $q = q_h$ is defined in (10.22), $B_{n,q} \in R^{p \times q}, \ B_{n,p-q} \in R^{p \times (p-q)}, \ C_{n,q} \in R^{k \times q}, \text{ and } C_{n,k-q} \in R^{k \times (k-q)}$. Let

$$\Upsilon_{n,q} := \text{Diag}\{\tau_{1F_n}, \ldots, \tau_{qF_n}\} \in R^{q \times q},$$

$$\Upsilon_{n,p-q} := \text{Diag}\{\tau_{(q+1)F_n}, \ldots, \tau_{pF_n}\} \in R^{(p-q) \times (p-q)} \text{ if } k \geq p,$$

$$\Upsilon_{n,k-q} := \text{Diag}\{\tau_{(q+1)F_n}, \ldots, \tau_{kF_n}\} \in R^{(k-q) \times (k-q)} \text{ if } k < p,$$

$$\Upsilon_n := \begin{bmatrix} \Upsilon_{n,q} & 0_{q \times (p-q)} \\ 0_{(p-q) \times q} & \Upsilon_{n,p-q} \\ 0_{(k-p) \times q} & 0_{(k-p) \times (p-q)} \end{bmatrix} \in R^{k \times p} \text{ if } k \geq p, \text{ and}$$

$$\Upsilon_n := \begin{bmatrix} \Upsilon_{n,q} & 0_{q \times (k-q)} & 0_{q \times (p-k)} \\ 0_{(k-q) \times q} & \Upsilon_{n,k-q} & 0_{(k-q) \times (p-k)} \end{bmatrix} \in R^{k \times p} \text{ if } k < p. \ (20.2)$$
As defined, Υ_n is the diagonal matrix of singular values of $W_nD_nU_n$, see (10.15).

Proof of Lemma 10.3. The asymptotic distribution of $n^{1/2}(\hat{g}_n, vec(\tilde{D}_n - E_{F_n}G_i))$ given in Lemma 10.3 follows from the Lyapunov triangular-array multivariate CLT (using the moment restrictions in F_2) and the following:

\[
n^{1/2}vec(\tilde{D}_n - E_{F_n}G_i) = n^{-1/2} \sum_{i=1}^{n} vec(G_i - E_{F_n}G_i) - \begin{pmatrix} \hat{\Gamma}_{1n} \\ \vdots \\ \hat{\Gamma}_{pn} \end{pmatrix} \Omega_n^{-1} n^{1/2} \tilde{g}_n
\]

where the second equality holds by (i) the weak law of large numbers (WLLN) applied to $n^{-1} \sum_{i=1}^{n} G_{ij}g_i^\ell$ for $j = 1, \ldots, p$, $n^{-1} \sum_{i=1}^{n} vec(G_i)$, and $n^{-1} \sum_{i=1}^{n} gt g_i^\ell$, (ii) $E_{F_n}g_i = 0^k$, (iii) $h_{5,g} = \lim \Omega_{F_n}$ is pd, and (iv) the CLT, which implies that $n^{1/2} \tilde{g}_n = O_p(1)$.

The limiting covariance matrix between $n^{1/2}vec(\tilde{D}_n - E_{F_n}G_i)$ and $n^{1/2} \tilde{g}_n$ is a zero matrix because $E_{F_n}[G_{ij} - E_{F_n}G_{ij} - (E_{F_n}G_{ij}g_i^\ell)\Omega_{F_n}^{-1}g_i]g_i^\ell = 0^{k \times k}$, where G_{ij} denotes the jth column of G_i. By the CLT, the limiting variance matrix of $n^{1/2}vec(\tilde{D}_n - D_n)$ equals lim $\text{Var}_{F_n}(vec(G_i)) - (E_{F_n}vec(G_i)g_i^\ell)\Omega_{F_n}^{-1}g_i = \lim \Phi_{F_n}^{vec(G_i)} = \Phi_{h}^{vec(G_i)}$, see (10.20), and the limit exists because (i) the components of $\Phi_{F_n}^{vec(G_i)}$ are comprised of λ_{4,F_n} and submatrices of λ_{5,F_n} and (ii) $\lambda_{s,F_n} \to h_s$ for $s = 4, 5$. By the CLT, the limiting variance matrix of $n^{1/2} \tilde{g}_n$ equals lim $E_{F_n}g_i^\ell g_i^\ell = h_{5,g}$.

The asymptotic distribution of $n^{1/2}W_{F_n}\tilde{D}_nU_{F_n}T_n$ is obtained as follows. Using (10.13)-(10.15), the singular value decomposition of $W_nD_nU_n$ is $W_nD_nU_n = C_n\Upsilon_nB_n'$. Using this, we get

\[
W_nD_nU_n B_{n,q} \Upsilon_n^{-1} = C_n \Upsilon_n B_{n,q} \Upsilon_n^{-1} = C_n \Upsilon_n \begin{pmatrix} I_q \\ 0^{(p-q)\times q} \end{pmatrix} \Upsilon_n^{-1} C_n \begin{pmatrix} I_q \\ 0^{(k-q)\times q} \end{pmatrix} = C_n, \quad n^{1/2} \tilde{D}_n U_{n,q} \Upsilon_n^{-1} = W_n D_n U_n B_{n,q} \Upsilon_n^{-1} + W_n n^{1/2}(\tilde{D}_n - D_n) U_n B_{n,q} (n^{1/2} \Upsilon_n)^{-1} = C_n + o_p(1) \to_h h_{3,q} = \Delta_{h,q},
\]

where the second equality uses (among other things) $n^{1/2} \tau_j F_n \to \infty$ for all $j \leq q$ (by the definition of q in (10.22)). The convergence in (20.5) holds by (10.19), (10.24), and (20.1), and the last equality in (20.5) holds by the definition of $\Delta_{h,q}$ in (10.24).
Using the singular value decomposition of $W_nD_nU_n$ again, we obtain: if $k \geq p$,

$$n^{1/2}W_nD_nU_nB_{n,p-q} = n^{1/2}C_n\Upsilon_nB_n' B_{n,p-q} = n^{1/2}C_n\Upsilon_n \begin{pmatrix} 0_{q\times(p-q)} \\ I_{p-q} \end{pmatrix}$$

$$= C_n \begin{pmatrix} 0_{q\times(p-q)} \\ n^{1/2}\Upsilon_n \end{pmatrix} \rightarrow h_3 \begin{pmatrix} 0_{q\times(p-q)} \\ Diag\{h_{1,q+1}, \ldots, h_{1,p}\} \end{pmatrix} = h_3 h_{1,p-q}^\circ, \quad (20.6)$$

where the second equality uses $B_n' B_n = I_p$, the third equality and the convergence hold by (10.19) using the definitions in (10.24) and (20.2) with $k \geq p$, and the last equality holds by the definition of $h_{1,p-q}^\circ$ in (10.24) with $k \geq p$. Analogously, if $k < p$, we have

$$n^{1/2}W_nD_nU_nB_{n,p-q} = n^{1/2}C_n\Upsilon_n \begin{pmatrix} 0_{q\times(k-q)} \\ 0_{q\times(p-k)} \\ 0_{(k-q)\times(p-k)} \end{pmatrix} = C_n \begin{pmatrix} 0_{q\times(k-q)} \\ n^{1/2}\Upsilon_n \end{pmatrix} \rightarrow h_3 \begin{pmatrix} 0_{q\times(k-q)} \\ Diag\{h_{1,q+1}, \ldots, h_{1,k}\} \end{pmatrix} = h_3 h_{1,p-q}^\circ, \quad (20.7)$$

where the third equality holds by (20.2) with $k < p$ and the last equality holds by the definition of $h_{1,p-q}^\circ$ in (10.24) with $k < p$.

Using (20.6), (20.7), and $n^{1/2}(\overline{g}_n, \overline{D}_n - E_{Fn}G_i) \rightarrow_d (\overline{g}_h, \overline{D}_h)$, we get

$$n^{1/2}W_n\overline{D}_nU_nB_{n,p-q} = n^{1/2}W_nD_nU_nB_{n,p-q} + W_n n^{1/2}(\overline{D}_n - D_n)U_nB_{n,p-q}$$

$$\rightarrow_d h_3 h_{1,p-q}^\circ + h_7 \overline{D}_h h_{81} h_{2,p-q} = \overline{\Lambda}_{h,p-q}, \quad (20.8)$$

where $B_{n,p-q} \rightarrow h_{2,p-q}$, $W_n \rightarrow h_7$, and $U_n \rightarrow h_{81}$, and the last equality holds by the definition of $\overline{\Lambda}_{h,p-q}$ in (10.24).

Equations (20.5) and (20.8) combine to establish

$$n^{1/2}W_n\overline{D}_nU_nT_n = n^{1/2}W_n\overline{D}_nU_nB_nS_n = (W_n\overline{D}_nU_nB_{n,q}^{-1}\Upsilon_n^{-1}, n^{1/2}W_n\overline{D}_nU_nB_{n,p-q})$$

$$\rightarrow_d (\overline{\Lambda}_{h,q}, \overline{\Lambda}_{h,p-q}) = \overline{\Lambda}_h, \quad (20.9)$$

using the definition of S_n in (10.23). This completes the proof of the convergence result of Lemma 10.3.

Parts (a) and (b) of the lemma hold by the definitions of $(\overline{g}_h, \overline{D}_h)$ and $\overline{\Lambda}_h$. The independence of $(\overline{D}_h, \overline{\Lambda}_h)$ and \overline{g}_h, stated in part (c) of the lemma, holds by the independence of \overline{g}_h and \overline{D}_h (which
Proposition 10.4 of AG2. Suppose Assumption WU holds for some non-empty parameter space \(\Lambda_s \subset \Lambda_2 \). Under all sequences \(\{\lambda_{n,h} : n \geq 1\} \) with \(\lambda_{n,h} \in \Lambda_s \),

(a) \(\hat{\kappa}_{jn} \to_p \infty \) for all \(j \leq q \),

(b) the (ordered) vector of the smallest \(p-q \) eigenvalues of \(n^\prime \hat{D}_n \hat{W}_n \hat{D}_n \hat{U}_n \), i.e., \(\hat{\kappa}_{(q+1)n}, \ldots, \hat{\kappa}_{pn} \)' converges in distribution to the (ordered) \(p-q \) vector of the eigenvalues of \(\Delta_{h,p-q} m_{3,k-q} m_{3,k-q} \times \Delta_{h,p-q} \in R^{(p-q)\times (p-q)} \),

(c) the convergence in parts (a) and (b) holds jointly with the convergence in Lemma 10.3 and

(d) under all subsequences \(\{w_n\} \) and all sequences \(\{\lambda_{w_n,h} : n \geq 1\} \) with \(\lambda_{w_n,h} \in \Lambda_s \), the results in parts (a)-(c) hold with \(n \) replaced by \(w_n \).

Proof of Proposition 10.4. For the case where \(k \geq p \), Proposition 10.4 is the same as Theorem 8.4(c)-(f) given in the Appendix to AG1, which is proved in Section 16 in the SM to AG1. For brevity, we only describe the changes that need to be made to that proof to cover the case where \(k < p \). Note that the proof of Theorem 8.4(c)-(f) in AG1 is similar to, but simpler than, the proof of Theorem 10.5 which is given in Section 21 below.

In the second line of the proof of Lemma 16.1 in the SM to AG1, \(p \) needs to be replaced by \(\min\{k, p\} \) times.

In the fourth line of (16.3) in the SM to AG1, the \(k \times p \) matrix that contains six submatrices needs to be replaced by the following matrix when \(k < p \):

\[
\begin{bmatrix}
 h_{6,q}^0 + o(1) & 0^{r_1\times (k-r_1)} & 0^{r_2\times (p-k)} \\
 0^{(k-r_1)\times r_1} & O(\tau_{r_2F_n/\tau_{1F_n}}(k-r_1)\times (k-r_1)) & 0^{(k-r_1)\times (p-k)} \\

\end{bmatrix} \in R^{k\times p}.
\]

In the first line of (16.22) in the SM to AG1, the \(k \times (p-r_0^g-1) \) matrix that contains three submatrices needs to be replaced by the following matrix when \(k < p \):

\[
\begin{bmatrix}
 0^{r_0^g-1\times (k-r_0^g-1)} & 0^{r_0^g-1\times (p-k)} \\
 Diag\{\tau_{gF_n}, \ldots, \tau_{kF_n}\}/\tau_{gF_n} & 0^{(k-r_0^g-1)\times (p-k)} \\
\end{bmatrix} \in R^{k\times (p-r_0^g-1)}.
\]

The limit of this matrix as \(n \to \infty \) equals the matrix given in the second line of (16.22) that contains three submatrices. Thus, the limit of the matrix on the first line of (16.22) is the same for the cases where \(k \geq p \) and \(k < p \).

In the third line of (16.25) in the SM to AG1, the second matrix that contains three submatrices (which is a \(k \times (p-r_0^g) \) matrix) is the same as the matrix in the first line of (16.22) in the SM to
AG1, but with r^1_g in place of r^1_{g-1} (using $r_{g+1} = r^1_g + 1$ and $r_g = r^1_{g-1} + 1$). When $k < p$, this matrix needs to be changed just as the matrix in the first line of (16.22) is changed in (20.11), but with r^1_g in place of r^1_{g-1}.

No other changes are needed. □

21 Proof of Theorem 10.5

Theorem 10.5 of AG2. Suppose Assumption WU holds for some non-empty parameter space $\Lambda_* \subseteq \Lambda_2$. Under all sequences $\{\lambda_{n,h} : n \geq 1\}$ with $\lambda_{n,h} \in \Lambda_*$,

$$QLR_n \rightarrow_d \bar{\gamma}_h h_{5,g}^{-1} \bar{\gamma}_h - \lambda_{\min}\left((\bar{\Delta}_{h,p-q}, h_{5,g}^{-1/2} \bar{\gamma}_h)' h_{3,k-q} h_{3,k-q}' (\bar{\Delta}_{h,p-q}, h_{5,g}^{-1/2} \bar{\gamma}_h)\right)$$

and the convergence holds jointly with the convergence in Lemma 10.3 and Proposition 10.4. When $q = p$ (which can only hold if $k \geq p$ because $q \leq \min\{k, p\}$), $\Delta_{h,p-q}$ does not appear in the limit random variable and the limit random variable reduces to $(h_{5,g}^{-1/2} \bar{\gamma}_h)' h_{3,p} h_{3,p}' h_{5,g}^{-1/2} \bar{\gamma}_h \sim \chi^2_p$. When $q = k$ (which can only hold if $k \leq p$), the $\lambda_{\min}()$ expression does not appear in the limit random variable and the limit random variable reduces to $\bar{\gamma}_h h_{5,g}^{-1} \bar{\gamma}_h \sim \chi^2_k$. When $k \leq p$ and $q < k$, the $\lambda_{\min}()$ expression equals zero and the limit random variable reduces to $\bar{\gamma}_h h_{5,g}^{-1} \bar{\gamma}_h \sim \chi^2_k$. Under all subsequences $\{w_n\}$ and all sequences $\{\lambda_{w_n,h} : n \geq 1\}$ with $\lambda_{w_n,h} \in \Lambda_*$, the same results hold with n replaced with w_n.

The proof of Theorem 10.5 uses the approach in Johansen (1991, pp. 1569-1571) and Robin and Smith (2000, pp. 172-173). In these papers, asymptotic results are established under a fixed true distribution under which certain population eigenvalues are either positive or zero. Here we need to deal with drifting sequences of distributions under which these population eigenvalues may be positive or zero for any given n, but the positive ones may drift to zero as $n \rightarrow \infty$, possibly at different rates. This complicates the proof considerably. For example, the rate of convergence result of Lemma 21.1(b) below is needed in the present context, but not in the fixed distribution scenario considered in Johansen (1991) and Robin and Smith (2000).
The proof uses the notation given in (20.1) and (20.2) above. The following definitions are used:

\[
\hat{D}_n^+ := (\hat{D}_n, \hat{W}_n^{-1/2} \hat{\Omega}_n^{-1/2} g_n) \in R^{k \times (p+1)}, \quad \hat{U}_n^+ := \begin{bmatrix} \hat{U}_n & 0^{p \times 1} \\ 0^{1 \times p} & 1 \end{bmatrix} \in R^{(p+1) \times (p+1)},
\]

\[
U_n^+ := \begin{bmatrix} U_n & 0^{p \times 1} \\ 0^{1 \times p} & 1 \end{bmatrix} \in R^{(p+1) \times (p+1)}, \quad h_{81}^+ := \begin{bmatrix} h_{81} & 0^{p \times 1} \\ 0^{1 \times p} & 1 \end{bmatrix} \in R^{(p+1) \times (p+1)},
\]

\[
B_n^+ := \begin{bmatrix} B_n & 0^{p \times 1} \\ 0^{1 \times p} & 1 \end{bmatrix} \in R^{(p+1) \times (p+1)},
\]

\[
B_n^{+} = (B_{n,q}^+, B_{n,p+1-q}^+) \text{ for } B_{n,q}^+ \in R^{(p+1) \times q} \text{ and } B_{n,p+1-q}^+ \in R^{(p+1) \times (p+1-q)},
\]

\[
D_n^+ := (D_n, 0^k) \in R^{k \times (p+1)}, \quad \Upsilon_n^+ := (\Upsilon_n, 0^k) \in R^{k \times (p+1)},
\]

\[
S_n^+ := \text{Diag}\{(n^{1/2} \tau_1 F_n)^{-1}, ..., (n^{1/2} \tau_q F_n)^{-1}, 1, ..., 1\} = \begin{bmatrix} S_n & 0^{p \times 1} \\ 0^{1 \times p} & 1 \end{bmatrix} \in R^{(p+1) \times (p+1)},
\]

where \(\hat{g}_n \) and \(\hat{\Omega}_n \) are defined in (5.1) with \(\theta = \theta_0 \), \(\hat{D}_n \) is defined in (6.2) with \(\theta = \theta_0 \), \(\hat{W}_n, \hat{U}_n, U_n \)
(\(:= U_{F_n} \)), and \(W_n \) (\(:= W_{F_n} \)) are defined in (10.4), \(h_{81} \) is defined in (10.24), \(B_n \) (\(:= B_{F_n} \)) is defined
in (10.13), \(D_n \) is defined in (20.1), \(\Upsilon_n \) is defined in (20.2), and \(S_n \) is defined in (10.23).

Let

\[
\hat{\kappa}_{jn}^+ \text{ denote the } j \text{th eigenvalue of } n \hat{U}_n^{+T} \hat{D}_n^{+T} \hat{W}_n^{T} \hat{D}_n^{+} \hat{U}_n^{+}, \forall j = 1, ..., p + 1,
\]

ordered to be nonincreasing in \(j \). We have\(^{78}\)

\[
\hat{W}_n \hat{D}_n^{+T} \hat{U}_n^{+} = (\hat{W}_n \hat{D}_n \hat{U}_n, \hat{\Omega}_n^{-1/2} g_n) \quad \text{and}
\]

\[
\lambda_{\min}(n(\hat{W}_n \hat{D}_n \hat{U}_n, \hat{\Omega}_n^{-1/2} g_n)) = \lambda_{\min}(n \hat{U}_n^{+T} \hat{D}_n^{+T} \hat{W}_n \hat{D}_n^{+} \hat{U}_n^{+}) = \hat{\kappa}_{(p+1)n}^+.
\]

The proof of Theorem 10.5 uses the following rate of convergence lemma, which is analogous to
Lemma 16.1 in Section 16 of the SM to AG1.

Lemma 21.1 Suppose Assumption WU holds for some non-empty parameter space \(\Lambda_* \subset \Lambda_2 \).

Under all sequences \(\{\lambda_{n,h} : n \geq 1\} \) with \(\lambda_{n,h} \in \Lambda_* \) for which \(q \) defined in (10.22) satisfies \(q \geq 1 \), we have (a) \(\hat{\kappa}_{jn}^+ \to_p \infty \) for \(j = 1, ..., q \) and (b) \(\hat{\kappa}_{jn}^+ = o_p((n^{1/2} \tau_{\ell F_n})^2) \) for all \(\ell \leq q \) and \(j = q+1, ..., p+1 \).

Under all subsequences \(\{w_n\} \) and all sequences \(\{\lambda_{w_n,h} : n \geq 1\} \) with \(\lambda_{w_n,h} \in \Lambda_* \), the same result

\(^{78}\)In (21.3), we write \((\hat{W}_n \hat{D}_n \hat{U}_n, \hat{\Omega}_n^{-1/2} g_n)\), whereas we write its analogue \((\hat{\Omega}_n^{-1/2} g_n, \hat{D}_n^*)\) in (6.7) with its columns
in the reverse order. Both ways give the same value for the minimum eigenvalue of the inner product of the matrix
with itself, which is the statistic of interest. We use the order \((\hat{\Omega}_n^{-1/2} g_n, \hat{D}_n^*)\) in AG2 because it is consistent with
the order in Moreira (2003) and Andrews, Moreira, and Stock (2006). We use the order \((\hat{W}_n \hat{D}_n \hat{U}_n, \hat{\Omega}_n^{-1/2} g_n)\) here
(and elsewhere in the SM) because it has significant notational advantages in the proofs, especially in the proof of
Theorem 10.5 in this Section.

holds with \(n \) replaced with \(w_n \).

Proof of Theorem [10.5] We have \(n^{1/2}g_n \rightarrow_d g_h \) (by Lemma [10.3]) and \(\hat{\Omega}_n^{-1/2} \rightarrow_p h_{5.g}^{-1/2} \) (because \(\hat{\Omega}_n - \Omega_{F_n} \rightarrow_d \OmegaF \) by the WLLN, \(\Omega_{F_n} \rightarrow h_{5,g}, \) and \(h_{5,g} \) is pd). In consequence, \(AR_n \rightarrow_d g_h h_{5,g}^{-1/2} \).

Given this, the definition of \(QLR_n \) in (10.3), and (21.3), to prove the convergence result in Theorem [10.5] it suffices to show that

\[
\lambda_{\text{min}}(n\hat{U}_n^+ \hat{D}_n^+ \hat{W}_n^+ \hat{W}_n \hat{D}_n^+ \hat{U}_n^+) \rightarrow_d \lambda_{\text{min}}((\mathbb{X}_{h,p-q}, h_{5,g}^{-1/2}g_h, h_{5,k-q}h_{3,k-q}^{-1} \mathbb{X}_{h,p-q}, h_{5,g}^{-1/2}g_h)). \tag{21.4}
\]

Now we establish (21.4). The eigenvalues \(\{\kappa^+_j : j \leq p + 1\} \) of \(n\hat{U}_n^+ \hat{D}_n^+ \hat{W}_n^+ \hat{W}_n \hat{D}_n^+ \hat{U}_n^+ \) are the ordered solutions to the determinantal equation \(n\hat{U}_n^+ \hat{D}_n^+ \hat{W}_n^+ \hat{W}_n \hat{D}_n^+ \hat{U}_n^+ = \kappa I_{p+1} \). Equivalently, with probability that goes to one (wp→1), they are the solutions to

\[
|Q_n^+(\kappa)| = 0, \tag{21.5}
\]

where

\[
Q_n^+(\kappa) := nS_n^+ B_n^+ U_n^+ \hat{D}_n^+ \hat{W}_n^+ \hat{D}_n^+ U_n^+ B_n^+ S_n^+ - \kappa S_n^+ B_n^+ U_n^+ (\hat{U}_n^+)^{-1} (\hat{U}_n^+)^{-1} U_n^+ B_n^+ S_n^+ ,
\]

because \(|S_n^+| > 0 \), \(|B_n^+| > 0 \), \(|U_n^+| > 0 \), and \(|\hat{U}_n^+| > 0 \) wp→1. Thus, \(\lambda_{\text{min}}(n\hat{U}_n^+ \hat{D}_n^+ \hat{W}_n^+ \hat{W}_n \hat{D}_n^+ \hat{U}_n^+) \) equals the smallest solution, \(\kappa^+_j \), to \(|Q_n^+(\kappa)| = 0 \) wp→1. (For simplicity, we omit the qualifier wp→1 that applies to several statements below.)

We write \(Q_n^+(\kappa) \) in partitioned form using

\[
B_n^+ S_n^+ = (B_n^{+q} S_{n,q}, B_n^{+p_{1-q}}), \quad \text{where} \quad S_{n,q} := \text{Diag}((n^{1/2}\tau_{1F_n})^{-1}, \ldots, (n^{1/2}\tau_{qF_n})^{-1}) \in \mathbb{R}^{q \times q}. \tag{21.6}
\]

The convergence result of Lemma [10.3] for \(n^{1/2}W_n \hat{D}_n U_n T_n (= n^{1/2}W_n \hat{D}_n U_n B_n S_n) \) can be written as

\[
n^{1/2}W_n \hat{D}_n^+ U_n^+ B_n^+ S_n = n^{1/2}W_n \hat{D}_n U_n B_n S_n \rightarrow_d \Xi_{h,q} := h_{3,q} \quad \text{and} \quad \\
n^{1/2}W_n \hat{D}_n^+ U_n^+ B_n^{+p_{1-q}} = n^{1/2}W_n (\hat{D}_n, \hat{W}_n^{-1} \hat{\Omega}_n^{-1/2} g_n) U_n^+ B_n^{+p_{1-q}} = n^{1/2}(W_n \hat{D}_n U_n B_n, W_n \hat{W}_n^{-1} \hat{\Omega}_n^{-1/2} g_n) \\
\rightarrow_d (\Xi_{h,p-q}, h_{5,g}^{-1/2} g_h), \tag{21.7}
\]

where \(\Xi_{h,q} \) and \(\Xi_{h,p-q} \) are defined in (10.24) and \(B_n^{+p_{1-q}} \) is defined in (20.1).

We have

\[
\hat{W}_n W_n^{-1} \rightarrow_p I_k \quad \text{and} \quad \hat{U}_n^+ (U_n^+)^{-1} \rightarrow_p I_{p+1}, \tag{21.8}
\]
because \(\hat{W}_n \to_p h_{71} := \lim W_n \) (by Assumption WU(a) and (c)), \(\hat{U}_n^+ \to_p h_{81}^+ := \lim U_n^+ \) (by Assumption WU(b) and (c)), and \(h_{71} \) and \(h_{81}^+ \) are pd (by the conditions in \(F_{WU} \)).

By (21.5)-(21.8), we have

\[
Q_n^+(\kappa) = \begin{bmatrix}
I_q + o_p(1) & h_{3,q,n}^1/2 W_n D_n^+ U_n^+ B_{n,p+1-q} + o_p(1) \\
\eta U_n^+ D_n^+ W_n^T U_n B_{n,p+1-q} + o_p(1) & \eta U_n^+ D_n^+ W_n^T U_n B_{n,p+1-q} + o_p(1)
\end{bmatrix}
\]

\[
-\kappa \begin{bmatrix}
S_{n,q}^2 & 0 \times (p+1-q) \\
0 \times (p+1-q) & I_{p+1-q}
\end{bmatrix} - \kappa \begin{bmatrix}
S_{n,q} A_{1n}^+ S_{n,q} & S_{n,q} A_{2n}^+ \\
A_{2n}^+ S_{n,q} & A_{3n}^+
\end{bmatrix},
\]

where (21.9)

\[
\hat{A}_n^+ = \begin{bmatrix}
A_{1n}^+ & A_{2n}^+ \\
A_{2n}^+ & A_{3n}^+
\end{bmatrix} =: B_n^+ U_n^+ (\hat{U}_n^+) \to_p (\hat{U}_n^+) \to_p U_n^+ B_n^+ - I_{p+1} = o_p(1)
\]

for \(A_{1n}^+ \in \mathbb{R}^{q \times q} \), \(A_{2n}^+ \in \mathbb{R}^{q \times (p+1-q)} \), and \(A_{3n}^+ \in \mathbb{R}^{(p+1-q) \times (p+1-q)} \), and the first equality uses \(\Delta_{h,q} := h_{3,q} \) and \(\Delta_{h,q}^T \Delta_{h,q} = h_{3,q}^2 = \lim C_{n,q}^T C_{n,q} = I_q \) (by (10.14), (10.16), (10.19), and (10.24)). Note that \(\hat{A}_j^+ \) (defined in (21.19) below) are not the same in general for \(j = 1, 2, 3 \) because their dimensions differ. For example, \(A_{1n}^+ \in \mathbb{R}^{q \times q} \), whereas \(\hat{A}_{1n}^+ \in \mathbb{R}^{q \times q} \).

If \(q = 0 \), then \(B_n^+ = B_{n,p+1-q} \) and

\[
nB_n^+ \hat{U}_n^+ D_n^+ \hat{W}_n^T W_n^T D_n^+ \hat{U}_n^+ B_n^+ = nB_n^+ ((U_n^+) \to_p \hat{U}_n^+) (B_n^+) \to_p U_n^+ D_n^+ W_n^T W_n^T D_n^+ \to_p \hat{U}_n^+ B_n^+ \to_p d (\Delta_{h,p-q}, h_{5,q}^{-1/2} \bar{g}_h) (\Delta_{h,p-q}, h_{5,q}^{-1/2} \bar{g}_h),
\]

where the convergence holds by (21.7) and (21.8) and \(\Delta_{h,p-q} \) is defined as in (10.24) with \(q = 0 \). The smallest eigenvalue of a matrix is a continuous function of the matrix (by Elsner’s Theorem, see Stewart (2001, Thm. 3.1, pp. 37–38)). Hence, the smallest eigenvalue of \(nB_n^+ \hat{U}_n^+ D_n^+ \hat{W}_n^T W_n^T D_n^+ \hat{U}_n^+ B_n^+ \) converges in distribution to the smallest eigenvalue of \((\Delta_{h,p-q}, h_{5,q}^{-1/2} \bar{g}_h) h_{3,k-q} \to_p \Delta_{h,p-q}, h_{5,q}^{-1/2} \bar{g}_h) \) (using \(h_{3,k-q} h_{3,k-q}^T = h_3 h_3^T = I_k \) when \(q = 0 \)), which proves (21.4) when \(q = 0 \).

In the remainder of (21.4), we assume \(q \geq 1 \), which is the remaining case to be considered in
The proof of (21.4). The formula for the determinant of a partitioned matrix and (21.9) give

\[|Q_n^+(\kappa)| = |Q_{1n}^+(\kappa)| \cdot |Q_{2n}^+(\kappa)|, \]

where

\[Q_{1n}^+(\kappa) := I_q + o_p(1) - \kappa S_{n,q}^2 - \kappa S_{n,q} A_{1n}^+ S_{n,q}, \]

\[Q_{2n}^+(\kappa) := n^{1/2} B_{n,p+1-q} U_n^+ D_n^+ W_{n} V_n^+ D_n^+ W_{n} B_{n,p+1-q}^+ + o_p(1) - \kappa I_{p+1-q} - \kappa A_{3n}^+ \]

\[-n^{1/2} B_{n,p+1-q} U_n^+ D_n^+ W_{n} V_n^+ D_n^+ W_{n} h_{3,q} + o_p(1) - \kappa A_{2n}^+ S_{n,q} (I_q + o_p(1) - \kappa S_{n,q}^2 - \kappa S_{n,q} A_{1n}^+ S_{n,q})^{-1} \times h_{3,q} n^{1/2} W_n D_n^+ U_n^+ B_{n,p+1-q}^+ + o_p(1) - \kappa S_{n,q} A_{2n}^+ \]

(21.11)

none of the \(o_p(1)\) terms depend on \(\kappa\), and the equation in the first line holds provided \(Q_{1n}^+(\kappa)\) is nonsingular.

By Lemma 21.1 (b) (which applies for \(q \geq 1\)), for \(j = q + 1, ..., p + 1\), and \(A_{1n}^+ = o_p(1)\) (by (21.9)), we have \(\tilde{\kappa}_{jn}^+ S_{n,q}^2 = o_p(1)\) and \(\tilde{\kappa}_{jn} S_{n,q} A_{1n}^+ S_{n,q} = o_p(1)\). Thus,

\[Q_{1n}^+(\tilde{\kappa}_{jn}^+) = I_q + o_p(1) - \tilde{\kappa}_{jn}^+ S_{n,q}^2 - \tilde{\kappa}_{jn}^+ S_{n,q} A_{1n}^+ S_{n,q} = I_q + o_p(1). \]

(21.12)

By (21.5) and (21.11), \(|Q_{1n}^+(\tilde{\kappa}_{jn}^+)| = |Q_{1n}^+(\tilde{\kappa}_{jn}^+)| \cdot |Q_{2n}^+(\tilde{\kappa}_{jn}^+)| = 0\) for \(j = 1, ..., p + 1\). By (21.12), \(|Q_{1n}^+(\tilde{\kappa}_{jn}^+)| \neq 0\) for \(j = q + 1, ..., p + 1\) wp→1. Hence, wp→1,

\[|Q_{2n}^+(\tilde{\kappa}_{jn}^+)| = 0 \text{ for } j = q + 1, ..., p + 1. \]

(21.13)

Now we plug in \(\tilde{\kappa}_{jn}^+\) for \(j = q + 1, ..., p + 1\) into \(Q_{2n}^+(\kappa)\) in (21.11) and use (21.12). We have

\[Q_{2n}^+(\tilde{\kappa}_{jn}^+) = n B_{n,p+1-q}^+ U_n^+ D_n^+ W_{n} V_n^+ D_n^+ W_{n} B_{n,p+1-q}^+ + o_p(1) \]

\[-n^{1/2} B_{n,p+1-q}^+ U_n^+ D_n^+ W_{n} V_n^+ D_n^+ W_{n} h_{3,q} + o_p(1))(I_q + o_p(1)) [h_{3,q} n^{1/2} W_n D_n^+ U_n^+ B_{n,p+1-q}^+ + o_p(1) \]

\[-\tilde{\kappa}_{jn}^+ (I_{p+1-q} + A_{3n}^+ - n^{1/2} B_{n,p+1-q}^+ U_n^+ D_n^+ W_{n} V_n^+ D_n^+ W_{n} h_{3,q} + o_p(1))(I_q + o_p(1)) S_{n,q} A_{2n}^+ \]

\[-A_{2n}^+ S_{n,q} (I_q + o_p(1)) (h_{3,q} n^{1/2} W_n D_n^+ U_n^+ B_{n,p+1-q}^+ + o_p(1)) \]

\[+ \tilde{\kappa}_{jn}^+ A_{2n}^+ S_{n,q} (I_q + o_p(1)) S_{n,q} A_{2n}^+. \]

(21.14)

The term in square brackets on the last three lines of (21.14) that multiplies \(\tilde{\kappa}_{jn}^+\) equals

\[I_{p+1-q} + o_p(1), \]

(21.15)

because \(A_{3n}^+ = o_p(1)\) (by (21.9)), \(n^{1/2} W_n D_n^+ U_n^+ B_{n,p+1-q}^+ = O_p(1)\) (by (21.7)), \(S_{n,q} = o(1)\) (by the definitions of \(q\) and \(S_{n,q}\) in (10.22) and (21.6), respectively, and \(h_{1,j} := \lim n^{1/2} \tau_{jF_n}\), \(A_{2n}^+ = o_p(1)\) (by (21.9)), and \(\tilde{\kappa}_{jn}^+ A_{2n}^+ S_{n,q} (I_q + o_p(1)) S_{n,q} A_{2n}^+ = A_{2n}^+ \tilde{\kappa}_{jn}^+ S_{n,q}^2 A_{2n}^+ + A_{2n}^+ \tilde{\kappa}_{jn}^+ S_{n,q} o_p(1)) S_{n,q} A_{2n}^+ = o_p(1)\)
(using $\kappa^+_j S^2_{n,q} = o_p(1)$ and $A_{2n}^+ = o_p(1)$).

Equations (21.14) and (21.15) give

$$Q^+_{2n}(\kappa^+_j) = n^{1/2} B_{n,p+1-q} U_{n}^T \hat{D}_n W_n' [I_k - h_{3,q} h_{3,q}'] + n^{1/2} W_n \hat{D}_n U_{n}^T B_{n,p+1-q} + o_p(1) - \kappa^+_j [I_{p+1-q} + o_p(1)]$$

$$= n^{1/2} B_{n,p+1-q} U_{n}^T \hat{D}_n W_n h_{3,k-q} h_{3,k-q}^T n^{1/2} W_n \hat{D}_n U_{n}^T B_{n,p+1-q} + o_p(1) - \kappa^+_j [I_{p+1-q} + o_p(1)]$$

$$:= M^+_{n,p+1-q} - \kappa^+_j [I_{p+1-q} + o_p(1)],$$

Equation (21.16)

where the second equality uses $I_k = h_{3} h_{3} = h_{3,q} h_{3,q}^T + h_{3,k-q} h_{3,k-q}^T$ (because $h_{3} = \lim C_{n}$ is an orthogonal matrix) and the last line defines the $(p + 1 - q) \times (p + 1 - q)$ matrix $M^+_{n,p+1-q}$.

Equations (21.13) and (21.16) imply that $\{\kappa^+_j : j = q + 1, ..., p + 1\}$ are the $p + 1 - q$ eigenvalues of the matrix

$$M^+_{n,p+1-q} := [I_{p+1-q} + o_p(1)]^{-1/2} M^+_{n,p+1-q} [I_{p+1-q} + o_p(1)]^{-1/2}$$

by pre- and post-multiplying the quantities in (21.16) by the rhs quantity $[I_{p+1-q} + o_p(1)]^{-1/2}$ in (21.16). By (21.7),

$$M^+_{n,p+1-q} \to_d (\Delta_{h,p-q}, h_{5,g}^{-1/2} \tilde{g}_h) h_{3,k-q} h_{3,k-q}^T (\Delta_{h,p-q}, h_{5,g}^{-1/2} \tilde{g}_h).$$

Equation (21.18)

The vector of (ordered) eigenvalues of a matrix is a continuous function of the matrix (by Elsner’s Theorem, see Stewart (2001, Thm. 3.1, pp. 37–38)). By (21.18), the matrix $M^+_{n,p+1-q}$ converges in distribution. In consequence, by the CMT, the vector of eigenvalues of $M^+_{n,p+1-q}$, viz., $\{\kappa^+_j : j = q + 1, ..., p + 1\}$, converges in distribution to the vector of eigenvalues of the limit matrix $(\Delta_{h,p-q}, h_{5,g}^{-1/2} \tilde{g}_h) h_{3,k-q} h_{3,k-q}^T (\Delta_{h,p-q}, h_{5,g}^{-1/2} \tilde{g}_h)$. Hence, $\lambda_{\min}(n^{1/2} \hat{D}_n W_n \hat{D}_n W_n \hat{D}_n U_{n}^T)$, which equals the smallest eigenvalue, $\kappa^+_j (p+1)$, converges in distribution to the smallest eigenvalue of $(\Delta_{h,p-q}, h_{5,g}^{-1/2} \tilde{g}_h) h_{3,k-q} h_{3,k-q}^T (\Delta_{h,p-q}, h_{5,g}^{-1/2} \tilde{g}_h)$, which completes the proof of (21.4).

The previous paragraph proves Comment (v) to Theorem 10.5 for the smallest $p + 1 - q$ eigenvalues of $n(\hat{W}_n \hat{D}_n \hat{\Omega}_n, \hat{\Omega}_n^{-1/2} \tilde{g}_n)'(\hat{W}_n \hat{D}_n \hat{\Omega}_n, \hat{\Omega}_n^{-1/2} \tilde{g}_n)$. In addition, by Lemma 21.1(a), the largest q eigenvalues of this matrix diverge to infinity in probability, which completes the proof of Comment (v) to Theorem 10.5.

When $q = p$, the third and fourth lines in (21.7) become

$$n^{1/2} W_n \hat{W}_n^{-1} \hat{\Omega}_n^{-1/2} \tilde{g}_n$$

and $h_{5,g}^{-1/2} \tilde{g}_h$, respectively, i.e., $n^{1/2} W_n \hat{D}_n U_{n} B_{n,p-q}$ and $\Delta_{h,p-q}$ drop out (because $U_{n+1}^T B_{n,p+1-q} = (0^p, 1)'$ in this case). In consequence, the limit in (21.18) becomes

$$(h_{5,g}^{-1/2} \tilde{g}_h) h_{3,k-q} h_{3,k-q}^T (h_{5,g}^{-1/2} \tilde{g}_h),$$

which has a χ^2_{p-k} distribution (because $h_{5,g}^{-1/2} \tilde{g}_h \sim N(0^k, I_k)$, $h_3 = (h_{3,q}, h_{3,k-q}) \in R^{k \times k}$ is an orthogonal matrix, and $h_{3,k-q}$ has $k - p$ columns when $q = p$).
The convergence in Theorem 10.5 holds jointly with that in Lemma 10.3 and Proposition 10.4 because the results in Proposition 10.4 and Theorem 10.5 just rely on the convergence in distribution of \(n^{1/2}W_n\hat{D}_nU_nT_n \), which is part of Lemma 10.3.

When \(q = k \), the \(\lambda_{\min}(\cdot) \) expression does not appear in the limit random variable in the statement of Theorem 10.5 because, in the second line of (21.16) above, the term \(I_k - h_{3,q}h'_{3,q} \) equals \(0^{k\times k} \), which implies that \(M_{n,p+1-q}^+ = 0^{(p+1-q)\times(p+1-q)} + o_p(1) \) and \(M_{n,p+1-q}^{++} = 0^{(p+1-q)\times(p+1-q)} + o_p(1) \) → \(0^{(p+1-q)\times(p+1-q)} \) in (21.17) and (21.18).

When \(k \leq p \) and \(q < k \), the \(\lambda_{\min}(\cdot) \) expression (in the limit random variable in the statement of Theorem 10.5) equals zero because \(h'_{3,k-q}(\Delta_{h,p-q},h_{5,q}^{-1/2}g_h) \) is a \((k-q) \times (p+1-q) \) matrix, which has fewer rows than columns when \(k < p + 1 \).

The convergence in Theorem 10.5 holds for a subsequence \(\{w_n : n \geq 1\} \) of \(\{n\} \) by the same proof as given above with \(n \) replaced by \(w_n \). □

Proof of Lemma 21.1. The proof of Lemma 21.1 is the same as the proof of Lemma 16.1 in Section 16 in the SM to AG1, but with \(p \) replaced by \(p + 1 \) (so \(p + 1 \) is always at least two), with \(\tau_{(p+1)F_n} := 0 \), with \(h_{6,p} := \lim \tau_{(p+1)F_n}/\tau_{pF_n} = 0 \) (using \(0/0 := 0 \)), and with \(\hat{D}_n, \hat{U}_n, B_n, \hat{\kappa}_{jn}, \hat{\lambda}_n, D_n, U_n, h_{81}, Y_n, B_{n,r_1^n}, \) and \(B_{n,p-r_1^n} \) replaced by \(\hat{D}_n^+, \hat{U}_n^+, B_n^+, \hat{\kappa}_{jn}^+, \hat{\lambda}_n^+, D_n^+, U_n^+, h_{81}^+, Y_n^+, B_{n,r_1^n}, \) and \(B_{n,p+1-r_1^n}, \) respectively, where

\[
\hat{A}_n^+ = \begin{bmatrix} \hat{A}_{1n}^+ & \hat{A}_{2n}^+ \\ \hat{A}_{2n}^{+t} & \hat{A}_{3n}^+ \end{bmatrix} := (B_{n}^+)'(U_{n}^+)'(\hat{U}_{n}^+)^{-1}(\hat{U}_{n}^+)^{-1}U_{n}^+D_n^+ - I_{p+1}, \tag{21.19}
\]

where \(\hat{A}_{1n}^+ \in R_{p\times r_1^n}, \hat{A}_{2n}^+ \in R_{r_1^n\times(p+1-r_1^n)}, \hat{A}_{3n}^+ \in R_{r_1^n\times(p+1-r_1^n)} \), and \(r_1^n \) is defined as in the proof of Lemma 13.1 in the SM to AG1. Note that the quantities \(\hat{A}_{\ell n} \) for \(\ell = 1, 2, 3 \), which depend on \(\hat{A}_n \) (see (13.18) in the SM to AG1), differ between the two proofs (because \(\hat{A}_n \) differs from \(\hat{A}_n^+ \)). Similarly, the quantities \(g_{\ell n} \) (defined in (13.24) in the SM to AG1), \(\hat{\xi}_{\ell n}(h) \) for \(\ell = 1, 2, 3 \) (defined in (13.25) in the SM to AG1), and \(\hat{A}_{j2n} \) (defined in (13.28) in the SM to AG1) differ between the two proofs (because the quantities on which they depend differ between the two proofs).

The following quantities are the same in both proofs: \(\{\tau_{jF_n} : j \leq p\}, q, \{h_{6,j} : j \leq p-1\}, G_h, \{r_j : j \leq G_h\}, \{r_j^2 : j \leq G_h\}, h_{6,0}^{r_1^n}, \hat{W}_n, \hat{W}_n, h_{71}, C_n, \) and \(h_3 \). Note that the first \(p \) singular values of \(W_nD_nU_n \) (i.e., \(\{\tau_{jF_n} : j \leq p\} \)) and the first \(p \) singular values of \(W_nD_n^+U_n^+ \) are the same. This holds because \(\tau_{jF_n} = \kappa_{jF_n}^{1/2} \) where \(\kappa_{jF_n} \) is the \(j \)th eigenvalue of \(W_nD_nU_nU_n'W_n', W_nD_n^+U_n^+ = W_n(D_n, 0^k)U_n^+ = (W_nD_nU_n, 0^k) \), and hence, \(W_nD_n^+U_n^+U_n'W_n' = W_nD_nU_nU_n'D_n^+W_n' \).

The second equality in (13.19) in the SM to AG1, which states that \(W_nD_nU_nB_n = C_n Y_n \), is a key equality in the proof of Lemma 13.1 in the SM to AG1. The analogue in the proof of the
current lemma is

$$W_n D_n^+ U_n^+ B_n^+ = (W_n D_n, 0^k) \left[\begin{array}{ccc} U_n B_n & 0^{p \times 1} \\ 0^1 & 1 \end{array} \right] = (W_n D_n U_n B_n, 0^k) = (C_n \Upsilon_n, 0^k) = C_n \Upsilon_n^+. \quad (21.20)$$

Hence, this part of the proof goes through when $D_n, U_n, B_n,$ and Υ_n are replaced by $D_n^+, U_n^+, B_n^+,$ and Υ_n^+, respectively. \qed

22 Proof of the Asymptotic Size Results

In this section we prove Theorem 10.1. For the reader’s convenience, we restate this theorem here.

Theorem 10.1 of AG2. The AR, CQLR$_1$, and CQLR$_2$ tests (without the SR extensions), defined in (5.2), (6.8), and (7.3), respectively, have asymptotic sizes equal to their nominal size $\alpha \in (0, 1)$ and are asymptotically similar (in a uniform sense) for the parameter spaces \mathcal{F}_{AR}, \mathcal{F}_1, and \mathcal{F}_2, respectively. Analogous results hold for the corresponding AR, CQLR$_1$, and CQLR$_2$ CS’s for the parameter spaces $\mathcal{F}_{\Theta,AR}$, $\mathcal{F}_{\Theta,1}$, and $\mathcal{F}_{\Theta,2}$, respectively.

Theorem 10.1 is proved first for the CQLR tests and CS’s. For the CQLR test results, we actually prove a more general result that applies to a CQLR test that is defined as the CQLR$_1$ test is defined in Section 6, but with the weight matrices $(\widehat{O}_n^{-1/2}, \widehat{L}_n^{1/2})$ replaced by any matrices $(\widehat{W}_n, \widehat{U}_n)$ that satisfy Assumption WU for some parameter space $\Lambda_1 \subset \Lambda_2$ (stated in Section 10.1.5). Then, we show that Assumption WU holds for the parameter spaces Λ_1 and Λ_2 for the weight matrices employed by the CQLR$_1$ and CQLR$_2$ tests, respectively, defined in Sections 6 and 7. These results combine to establish the CQLR test results of Theorem 10.1. The CQLR CS results of Theorem 10.1 are proved analogously to those for the tests, see the Comment to Proposition 10.2 for details.

In Section 22.6 we prove Theorem 10.1 for the AR test and CS.

22.1 Statement of Results

A general QLR test statistic for testing $H_0 : \theta = \theta_0$ is defined in (10.3) as

$$QLR_n := AR_n - \lambda_{\min}(n \widehat{Q}_{WU,n}), \quad \text{where}$$

$$\widehat{Q}_{WU,n} := (\widehat{W}_n \widehat{D}_n \widehat{U}_n, \widehat{O}_n^{-1/2} g_n) (\widehat{W}_n \widehat{D}_n \widehat{U}_n, \widehat{O}_n^{-1/2} g_n). \quad (22.1)$$

AR_n is defined in (6.2), and the dependence of $QLR_n, \widehat{Q}_{WU,n}, \widehat{W}_n, \widehat{D}_n, \widehat{U}_n, \widehat{O}_n,$ and \widehat{g}_n on θ_0 is suppressed for notational simplicity.
The general CQLR test rejects the null hypothesis if
\[QLR_n > c_{k,p}(n^{1/2} \hat{W}_n \hat{D}_n \hat{U}_n, 1 - \alpha), \]
(22.2)

where \(c_{k,p}(D, 1 - \alpha) \) is defined just below (3.5).

The correct asymptotic size of the general QLR test is established using the following theorem.

Theorem 22.1 Suppose Assumption WU (defined in Section 10.1.5) holds for some non-empty parameter space \(\Lambda_* \subset \Lambda_2 \). Then, the asymptotic null rejection probabilities of the nominal size \(\alpha \) CQLR test based on \((\hat{W}_{wn}, \hat{U}_{wn}) \) equal \(\alpha \) under all subsequences \(\{w_n\} \) and all sequences \(\{\lambda_{wn,h} : n \geq 1\} \) with \(\lambda_{wn,h} \in \Lambda_* \).

Comments: (i) Theorem 22.1 and Proposition 10.2 imply that any nominal size \(\alpha \) CQLR test based on matrices \((\hat{W}_n, \hat{U}_n) \) that satisfy Assumption WU for some parameter space \(\Lambda_* \) has correct asymptotic size \(\alpha \) and is asymptotically similar (in a uniform sense) for the parameter space \(\Lambda_* \).

(ii) In Lemma 22.4 below, we show that the choice of matrices \((\hat{W}_n, \hat{U}_n) \) for the CQLR \(1 \) and CQLR \(2 \) tests (defined in Sections 6 and 7, respectively) satisfy Assumption WU for the parameter spaces \(\Lambda_1 \) and \(\Lambda_2 \) (defined in (10.17)), respectively. In addition, Lemma 22.4 shows that \(\mathcal{F}_1 \subset \mathcal{F}_{WU} \) and \(\mathcal{F}_2 \subset \mathcal{F}_{WU} \) when \(\delta_{WU} \) and \(M_{WU} \) that appear in the definition of \(\mathcal{F}_{WU} \) are sufficiently small and large, respectively.\(^{79}\) In consequence, the CQLR \(1 \) and CQLR \(2 \) tests have correct asymptotic size \(\alpha \) and are asymptotically similar (in a uniform sense) for the parameter spaces \(\mathcal{F}_1 \) and \(\mathcal{F}_2 \), respectively, as stated in Theorem 10.1.

The proof of Theorem 22.1 uses Proposition 10.4 and Theorem 10.5, as well as the following lemmas.

Let \(\{D_n^c : n \geq 1\} \) be a sequence of constant (i.e., nonrandom) \(k \times p \) matrices. Here, we determine the limit as \(n \to \infty \) of \(c_{k,p}(D_n^c, 1 - \alpha) \) under certain assumptions on the singular values of \(D_n^c \).

Lemma 22.2 Suppose \(\{D_n^c : n \geq 1\} \) is a sequence of constant (i.e., nonrandom) \(k \times p \) matrices with singular values \(\{\tau_{jn}^c \geq 0 : j \leq \min\{k,p\}\} \) for \(n \geq 1 \) that satisfy (i) \(\{\tau_{jn}^c \geq 0 : j \leq \min\{k,p\}\} \) are nonincreasing in \(j \) for \(n \geq 1 \), (ii) \(\tau_{jn}^c \to \infty \) for \(j \leq q \) for some \(0 \leq q \leq \min\{k,p\} \) and (iii)\(^{79}\) Note that the set of distributions \(\mathcal{F}_{WU} \) depends on the definitions of \((W_F, U_F) \), see (10.12), and \((W_F, U_F) \) are defined differently for the QLR \(1 \) and QLR \(2 \) statistics, see (10.6)-(10.8) and (10.9)-(10.11), respectively. Hence, the set of distributions \(\mathcal{F}_{WU} \) differs for the CQLR \(1 \) and CQLR \(2 \) tests.
\(\tau^n_j \to \tau^c_j < \infty \) for \(j = q + 1, \ldots, \min\{k, p\} \). Then,

\[
\begin{align*}
c_{k,p}(D^n_c, 1 - \alpha) & \to c_{k,p,q}(\tau^c_\infty, 1 - \alpha), \text{ where } \tau^c_\infty := (\tau^c_{q+1}, \ldots, \tau^c_{\min\{k, p\} \infty})' \in \mathbb{R}^{\min\{k, p\} - q}, \\
\Upsilon(\tau^c_\infty) & := \begin{pmatrix}
\text{Diag}\{\tau^c_\infty\} \\
0^{(k-p) \times (p-q)}
\end{pmatrix} \in \mathbb{R}^{(k-q) \times (p-q)} \text{ if } k \geq p, \\
\Upsilon(\tau^c_\infty) & := \begin{pmatrix}
\text{Diag}\{\tau^c_\infty\}, 0^{(k-q) \times (p-k)}
\end{pmatrix} \in \mathbb{R}^{(k-q) \times (p-q)} \text{ if } k < p,
\end{align*}
\]

\(c_{k,p,q}(\tau^c_\infty, 1 - \alpha) \) denotes the \(1 - \alpha \) quantile of

\[
ACLR_{k,p,q}(\tau^c_\infty) := Z'Z - \lambda_{\min}(\Upsilon(\tau^c_\infty), Z_2)'(\Upsilon(\tau^c_\infty), Z_2),
\]

\[
Z := \begin{pmatrix}
Z_1 \\
Z_2
\end{pmatrix} \sim N(0^k, I_k) \text{ for } Z_1 \in \mathbb{R}^q \text{ and } Z_2 \in \mathbb{R}^{k-q}.
\]

Comments: (i) The matrix \(\Upsilon(\tau^c_\infty) \) is the diagonal matrix containing the \(\min\{k, p\} - q \) finite limiting eigenvalues of \(D^n_c \). Note that \(\Upsilon(\tau^c_\infty) \) has only \(k - q \) rows, not \(k \) rows.

(ii) If \(q = p \) (which requires that \(k \geq p \)), then \(\Upsilon(\tau^c_\infty) \) has no columns, \(ACLR_{k,p,q}(\tau^c_\infty) = Z_1'Z_1 \sim \chi^2_p \), and \(c_{k,p,q}(\tau^c_\infty, 1 - \alpha) \) equals the \(1 - \alpha \) quantile of the \(\chi^2_p \) distribution.

(iii) If \(q = k \) (which requires that \(k \leq p \)), then \(\Upsilon(\tau^c_\infty) \) and \(Z_2 \) have no rows, the \(\lambda_{\min}(\cdot) \) expression in \(ACLR_{k,p,q}(\tau^c_\infty) \) disappears, \(ACLR_{k,p,q}(\tau^c_\infty) = Z'Z \sim \chi^2_k \), and \(c_{k,p,q}(\tau^c_\infty, 1 - \alpha) \) is the \(1 - \alpha \) quantile of the \(\chi^2_k \) distribution.

(iv) If \(k \leq p \) and \(q < k \), then \((\Upsilon(\tau^c_\infty), Z_2) \) has fewer rows \((k - q) \) than columns \((p - q + 1) \) and, hence, the \(\lambda_{\min}(\cdot) \) expression in \(ACLR_{k,p,q}(\tau^c_\infty) \) equals zero, \(ACLR_{k,p,q}(\tau^c_\infty) = Z'Z \sim \chi^2_k \), and \(c_{k,p,q}(\tau^c_\infty, 1 - \alpha) \) is the \(1 - \alpha \) quantile of the \(\chi^2_k \) distribution.

(v) The distribution function (df) of \(ACLR_{k,p,q}(\tau^c_\infty) \) is shown in Lemma 22.3 below to be continuous and strictly increasing at its \(1 - \alpha \) quantile for all possible \((k, p, q, \tau^c_\infty) \) values, which is required in the proof of Lemma 22.2.

The following lemma proves that the df of \(ACLR_{k,p,q}(\tau^c_\infty) \), defined in Lemma 22.2, is continuous and strictly increasing at its \(1 - \alpha \) quantile. This is a key lemma for showing that the CQLR1 and CQLR2 tests have correct asymptotic size and are asymptotically similar.

Lemma 22.3 Let \(\tau^c_\infty \) and \(\Upsilon(\tau^c_\infty) \) be defined as in Lemma 22.2. For all admissible integers \((k, p, q) \) (i.e., \(k \geq 1, p \geq 1, \) and \(0 \leq q \leq \min\{k, p\} \)) and all \(\min\{k, p\} - q \) vectors \(\tau^c_\infty \) with non-negative elements in non-increasing order, the df of \(ACLR_{k,p,q}(\tau^c_\infty) := Z'Z - \lambda_{\min}(\Upsilon(\tau^c_\infty), Z_2)'(\Upsilon(\tau^c_\infty), Z_2) \) is continuous and strictly increasing at its \(1 - \alpha \) quantile \(c_{k,p,q}(\tau^c_\infty, 1 - \alpha) \) for all \(\alpha \in (0, 1) \), where \(Z := (Z_1', Z_2')' \sim N(0^k, I_k) \) for \(Z_1 \in \mathbb{R}^q \) and \(Z_2 \in \mathbb{R}^{k-q} \).

The next lemma verifies Assumption WU for the choices of \((\widehat{W}_n, \widehat{U}_n) \) that are used to construct
the CQLR$_1$ and CQLR$_2$ tests. Part (a) of the lemma shows that the parameter space \mathcal{F}_{WU}, when defined for (\hat{W}_n, \hat{U}_n) as in the CQLR$_1$ test, contains the parameter space \mathcal{F}_1 that appears in the statement of Theorem 10.1 (for suitable choices of the constants δ_1 and M_1 that appear in the definition of \mathcal{F}_{WU}). Part (b) of the lemma shows that \mathcal{F}_{WU}, when defined for (\hat{W}_n, \hat{U}_n) as in the CQLR$_2$ test, contains \mathcal{F}_2 for suitable δ_1 and M_1.

Lemma 22.4 (a) Suppose $g_i(\theta) = u_i(\theta)Z_i$, as in (4.4), and $(\hat{W}_n, \hat{U}_n) = (\hat{\Omega}_n^{-1/2}, \hat{L}_n^{1/2})$, where $\hat{\Omega}_n (= \hat{\Omega}_n(\theta_0))$ and $\hat{L}_n (= \hat{L}_n(\theta_0))$ are defined in (5.1) and (6.7), respectively. Then, (i) Assumption WU holds for the parameter space Λ_1 with $(\hat{W}_{2n}, \hat{U}_{2n}) = (\hat{\Omega}_n, (\hat{\Omega}_n, \hat{R}_n))$, $W_1(W_2) = W_2^{-1/2}$ for $W_2 \in R^{k \times k}$, $U_1(U_2F) = ((\theta_0, I_p)\Sigma^{-1}(\Omega_F, R_F)(\theta_0, I_p)'(1/2)$ for $U_2F = (\Omega_F, R_F)$, $h_7 = \lim W_{2Fw} = \lim \Omega_{Fw},$ and $h_8 = \lim U_{2Fw} = \lim (\Omega_{Fw}, R_{Fw})$, where $\Sigma_F := \Sigma(\Omega_F, R_F)$ is defined in (10.8), $\Omega_F := E_{Fg_i'g_i}$, and R_F is defined in (10.7), and (ii) $\mathcal{F}_1 \subset \mathcal{F}_{WU}$ for δ_1 sufficiently small and M_1 sufficiently large in the definition of \mathcal{F}_{WU}, where \mathcal{F}_1 is defined in (10.1) and \mathcal{F}_{WU} is defined in (10.12).

(b) Suppose $(\hat{W}_n, \hat{U}_n) = (\hat{\Omega}_n^{-1/2}, \hat{L}_n^{1/2})$, where $\hat{\Omega}_n (= \hat{\Omega}_n(\theta_0))$ and $\hat{L}_n (= \hat{L}_n(\theta_0))$ are defined in (5.1) and (7.2). Then, (i) Assumption WU holds for the parameter space Λ_2 with $(\hat{W}_{2n}, \hat{U}_{2n}) = (\hat{\Omega}_n, (\hat{\Omega}_n, \hat{R}_n))$, $W_1(\cdot)$ and $U_1(\cdot)$ are defined as in part (a) of the lemma, $h_7 = \lim W_{2Fw} = \lim \Omega_{Fw},$ and $h_8 = \lim U_{2Fw} = \lim (\Omega_{Fw}, \hat{R}_{Fw})$, where $\Omega_F := E_{Fg_i'g_i}$ and \hat{R}_F is defined in (10.10), and (ii) $\mathcal{F}_2 = \mathcal{F}_{WU}$ for δ_1 sufficiently small and M_1 sufficiently large in the definition of \mathcal{F}_{WU}, where \mathcal{F}_2 is defined in (10.1) and \mathcal{F}_{WU} is defined in (10.12).

Comment: Theorem 22.1, Lemma 22.4, and Proposition 10.2 combine to prove the CQLR test results of Theorem 10.1 which state that the CQLR$_1$ and CQLR$_2$ tests have correct asymptotic size and are asymptotically similar (in a uniform sense) for the parameter spaces \mathcal{F}_1 and \mathcal{F}_2, respectively. As stated at the beginning of this section, the proofs of the CQLR CS results of Theorem 10.1 are analogous to those for the tests, see the Comment to Proposition 10.2 and, hence, are not stated explicitly.

22.2 Proof of Theorem 22.1

Theorem 22.1 is stated in Section 22.1.

For notational simplicity, the proof below is given for the sequence $\{n\}$, rather than a subsequence $\{w_n : n \geq 1\}$. The same proof holds for any subsequence $\{w_n : n \geq 1\}$.

Proof of Theorem 22.1. Let

$$Z_h = \begin{pmatrix} Z_{h1} \\ Z_{h2} \end{pmatrix} := \begin{pmatrix} h_{3,q}^{-1/2}g_h \\ h_{3,k-q}^{-1/2}g_h \end{pmatrix} = h_{3,q}^{-1/2}g_h \sim N(0^k, I_k),$$

(22.3)

where $Z_{h1} \in R^q$ and $Z_{h2} \in R^{k-q}$ and the distributional result holds because $g_h \sim N(0^k, D_{5,q})$ (by (10.21)) and $h_{3,q}h_{3,q} = C_nC_n = I_k.$ Note that Z_h and $(\overline{D}_h, \overline{\Sigma}_h)$ are independent because g_h and $(\overline{D}_h, \overline{\Sigma}_h)$ are independent (by Lemma 10.3(c)).

By Theorem 10.5,

$$QLR_n \rightarrow d \overline{g}_h^{-1/2}g_h - \lambda_{\min}((\overline{\Sigma}_{h,p-q}, h_{3,k-q}^{-1/2}g_h)(\overline{\Delta}_{h,p-q}, h_{3,k-q}^{-1/2}g_h))$$

$$= Z_h Z_h - \lambda_{\min}((h_{3,k-q}^{-1}\overline{\Sigma}_{h,p-q}, Z_{h2})'(h_{3,k-q}^{-1}\overline{\Sigma}_{h,p-q}, Z_{h2})) =: QLR_h,$$

(22.4)

where the equality uses $h_{3,q}h_{3,q} = I_k.$ When $q = p,$ the term $\overline{\Sigma}_{h,p-q}$ does not appear and $QLR_h := Z_h Z_h - Z_{h2}'Z_{h2} = Z_{h1}'Z_{h1}.$

Let $\{\tilde{\tau}_j : j \leq \min\{k, p\}\}$ denote the min$\{k, p\}$ singular values of $n^{1/2}\hat{W}_n\hat{D}_n\hat{U}_n$ in nonincreasing order. They equal the vector of square roots of the first min$\{k, p\}$ eigenvalues of $n\hat{U}_n\hat{D}_n\hat{W}_n\hat{D}_n\hat{U}_n$ in nonincreasing order. Define

$$\tilde{\tau}_n = (\tilde{\tau}_{[1]}^n, \tilde{\tau}_{[2]}^n)' \in R^{\min\{k, p\}}$$

$$\tilde{\tau}_{[1]}^n = (\tilde{\tau}_{1n}, ..., \tilde{\tau}_{qn})' \in R^q$$

and $$\tilde{\tau}_{[2]}^n = (\tilde{\tau}_{(q+1)n}, ..., \tilde{\tau}_{\min\{k, p\}n})' \in R^{\min\{k, p\}-q}.$$

(22.5)

By Proposition 10.4(a) and (b), $\tilde{\tau}_j \rightarrow_p \infty$ for $j \leq q$ (or, equivalently $\text{Diag}^{-1}\{\tilde{\tau}_{[1]}^n\} \rightarrow_p 0^{q \times q}$) and

$$\tilde{\tau}_{[2]}^n \rightarrow_d \tilde{\tau}_{[2]}^h,$$

(22.6)

where $\tilde{\tau}_{j} = \tau_{j}^{1/2}$ for $j \leq q$ and $\tau_{[2]}^h$ is the vector of square roots of the first $\min\{k, p\} - q$ eigenvalues of $\overline{\Sigma}_{h,p-q}h_{3,k-q}^{-1}h_{3,k-q}^{-1}\overline{\Sigma}_{h,p-q} \in R^{q-q \times (p-q)}$ in nonincreasing order. (When $q = \min\{k, p\},$ no vector $\tau_{[2]}^h$ appears.) By an almost sure representation argument, e.g., see Pollard (1990, Thm. 9.4, p. 45), there exists a probability space, say $(\Omega^0, \mathcal{F}^0, P^0),$ and random variables $(QLR_n^0, \tilde{\tau}_{[1]}^0, QLR_h^0, \tilde{\tau}_{[2]}^0)'$ defined on it such that $(QLR_n^0, \tilde{\tau}_{[1]}^n)'$ has the same distribution as $(QLR_n^0, \tilde{\tau}_{[1]}^0)'$ for all $n \geq 1,$ $(QLR_h^0, \tilde{\tau}_{[2]}^0)'$ has the same distribution as $(QLR_h^0, \tilde{\tau}_{[2]}^0)'$, and

$$\begin{pmatrix} QLR_n^0 \\ \text{Diag}^{-1}\{\tilde{\tau}_{[1]}^0\} \\ \tilde{\tau}_{[2]}^0 \end{pmatrix} \rightarrow \begin{pmatrix} QLR_h^0 \\ 0^{q \times q} \\ \tilde{\tau}_{[2]}^0 \end{pmatrix} \text{ a.s.},$$

(22.7)
where \(\tau^0_{[2]h} \in R^{\min\{k,p\} - q} \). Let

\[
\tilde{\Gamma}_n^0 := \left(\begin{array}{c} \text{Diag}(\tau^0_{[2]h}) \\ 0^{(k-p) \times p} \end{array} \right) \in R^{k \times p} \quad \text{and} \quad \tilde{\gamma}_n^0 := \left(\begin{array}{c} \text{Diag}(\tilde{\tau}_n) \\ 0^{(k-p) \times p} \end{array} \right) \in R^{k \times p} \quad \text{if} \quad k \geq p \quad \text{and} \quad \tilde{\gamma}_n := \left(\begin{array}{c} \text{Diag}(\tilde{\tau}_n) \\ 0^{(p-k) \times p} \end{array} \right) \in R^{k \times p} \quad \text{if} \quad k < p.
\]

The distributions of \(\tilde{\gamma}_n^0 \) and \(\tilde{\gamma}_n \) are the same. The matrix \(\tilde{\gamma}_n^0 \) has singular values given by the vector \(\tilde{\tau}_n^0 = (\tilde{\tau}_{[1]n}, \ldots, \tilde{\tau}_{[k,n]}^0)^\top \) whose first \(q \) elements all diverge to infinity a.s. and whose last \(\min\{k,p\} - q \) elements written as the subvector \(\tilde{\tau}_{[2]n}^0 \) converge to \(\tilde{\tau}_{[2]h}^0 \) a.s. Hence, for some set \(C \in \mathcal{F}^0 \) with \(P^0(\omega \in C) = 1 \), we have \(\tilde{\tau}_{[j,n]}^0(\omega) \to \infty \) for \(j \leq q \) and \(\tilde{\tau}_{[2]n}(\omega) \to \tilde{\tau}_{[2]h}^0(\omega) \), where \(\tilde{\tau}_{[j,n]}(\omega), \tilde{\tau}_{[2]n}(\omega), \) and \(\tilde{\gamma}_n^0(\omega) \) denote the realizations of the random quantities \(\tilde{\tau}_{[j,n]}, \tilde{\tau}_{[2]n}, \tilde{\tau}_{[2]h}^0, \) and \(\tilde{\gamma}_n^0(\omega) \), respectively, when \(\omega \) occurs. Thus, using Lemma 22.2 with \(D^0_n = \tilde{\gamma}_n^0(\omega) \) and \(\tau^0_{[2]h} = \tilde{\gamma}_n^0(\omega) \), we have

\[
c_{k,p}(\tilde{\gamma}_n^0(\omega), 1 - \alpha) \to c_{k,p,q}(\tilde{\gamma}_{[2]h}^0, 1 - \alpha) \quad \text{for all} \quad \omega \in C \quad \text{with} \quad P^0(\omega \in C) = 1,
\]

(22.9)

where \(c_{k,p,q}(\cdot, 1 - \alpha) \) is defined in Lemma 22.2. When \(q = \min\{k,p\} \), no vector \(\tilde{\tau}_{[2]h}^0(\omega) \) appears and by Comments (ii) and (iii) to Lemma 22.2, \(c_{k,p,q}(\tilde{\tau}_{[2]h}^0(\omega), 1 - \alpha) \) equals the \(1 - \alpha \) quantile of the \(\chi^2_{\min\{k,p\}} \) distribution.

Almost sure convergence implies convergence in distribution, so (22.7) and (22.9) also hold (jointly) with convergence in distribution in place of convergence a.s. These convergence in distribution results, coupled with the equality of the distributions of \((QLR_n, \tilde{\gamma}_n^0) \) and \((QLR_n, \tilde{\gamma}_n) \) for all \(n \geq 1 \) and of \((QLR_n, \tilde{\tau}_{[2]h}^0, \tilde{\gamma}_n^0)' \) and \((QLR_n, \tilde{\gamma}_n, \tilde{\gamma}_n^0)' \), yield the following convergence result:

\[
\left(\begin{array}{c} QLR_n \\ c_{k,p}(n^{1/2}\tilde{W}_n, \tilde{D}_n, \tilde{U}_n, 1 - \alpha) \end{array} \right) \to_d \left(\begin{array}{c} QLR_h \\ c_{k,p}(\tilde{\gamma}_n, 1 - \alpha) \end{array} \right), \tag{22.10}
\]

where the first equality holds using Lemma 6.1.

Equation (22.10) and the continuous mapping theorem give

\[
P(QLR_n > c_{k,p}(n^{1/2}\tilde{W}_n, \tilde{D}_n, \tilde{U}_n, 1 - \alpha)) \to P(QLR_h > c_{k,p,q}(\tilde{\gamma}_{[2]h}, 1 - \alpha)) \tag{22.11}
\]

provided \(P(QLR_h = c_{k,p,q}(\tilde{\gamma}_{[2]h}, 1 - \alpha)) = 0 \). The latter holds because \(P(QLR_h = c_{k,p,q}(\tilde{\gamma}_{[2]h}, 1 - \alpha)| \tilde{D}_h) = 0 \) a.s. In turn, the latter holds because, conditional on \(\tilde{D}_h \), the df of \(QLR_h \) is continuous at its \(1 - \alpha \) quantile (by Lemma 22.3) where \(QLR_h \) conditional on \(\tilde{D}_h \) and \(ACLR_{k,p,q}(\tilde{\gamma}_{[\infty]}^0) \), which
appears in Lemma 22.3, have the same structure with the former being based on \(h'_{3,k-q} \overline{\Sigma}_{h,p-q} \), which is nonrandom conditional on \(\overline{D}_h \), and the latter being based on \(\Upsilon(\tau^c) \), which is nonrandom, and the former only depends on \(h'_{3,k-q} \overline{\Sigma}_{h,p-q} \) through its singular values, see (19.3) and \(c_{k,p,q}(\tau^c, 1 - \alpha) \) is a constant (because \(\tau^c \) is random only through \(\overline{D}_h \)).

By the same argument as in the proof of Lemma 6.1,

\[
 c_{k,p,q}(\tau^c, 1 - \alpha) = c_{k,p,q}(h'_{3,k-q} \overline{\Sigma}_{h,p-q}, 1 - \alpha),
\]

where (with some abuse of notation) \(c_{k,p,q}(h'_{3,k-q} \overline{\Sigma}_{h,p-q}, 1 - \alpha) \) denotes the \(1 - \alpha \) quantile of \(Z'Z - \lambda_{\min}(h'_{3,k-q} \overline{\Sigma}_{h,p-q}, Z_2) \) for \(Z \) as in Lemma 22.2 because \(\tau^c \) are the singular values of \(h'_{3,k-q} \overline{\Sigma}_{h,p-q} \in R^{p-q} \) and \(\Upsilon(\tau^c) \) (which appears in ACLR \(k,p,q, \tau^c \)) is the \((k - q) \times (p - q) \) matrix with \(\tau^c \) on the main diagonal and zeros elsewhere.

Thus, we have

\[
P(QLR_h > c_{k,p,q}(\tau^c, 1 - \alpha)) = P(QLR_h > c_{k,p,q}(h'_{3,k-q} \overline{\Sigma}_{h,p-q}, 1 - \alpha)) = EP(QLR_h > c_{k,p,q}(h'_{3,k-q} \overline{\Sigma}_{h,p-q}, 1 - \alpha)|\overline{\Sigma}_{h,p-q}) = E\alpha = \alpha,
\]

where the second equality holds by the law of iterated expectations and the third equality holds because, conditional on \(\overline{\Sigma}_{h,p-q} \), \(c_{k,p,q}(h'_{3,k-q} \overline{\Sigma}_{h,p-q}, 1 - \alpha) \) is the \(1 - \alpha \) quantile of \(QLR_h \) (by the definitions of \(c_{k,p,q}(. , 1 - \alpha) \) in Lemma 22.2 and \(QLR_h \) in (22.4)) and the df of \(QLR_h \) is continuous at its \(1 - \alpha \) quantile (see the explanation following (22.11)).

22.3 Proof of Lemma 22.2

Lemma 22.2 is stated in Section 22.1.

The proof of Lemma 22.2 uses the following two lemmas. Let \(\{\tau^c_j : j \leq \min\{k, p\}\} \) be the singular values of \(D_n^c \), as in Lemma 22.2. Define

\[
\Upsilon_n^c := \begin{pmatrix}
\text{Diag}\{\tau^c_{1n}, \ldots, \tau^c_{pn}\} \\
0_{(k-p)\times p}
\end{pmatrix} \in R^{k\times p} \text{ if } k \geq p \text{ and }
\Upsilon_n^c := \begin{pmatrix}
\text{Diag}\{\tau^c_{1n}, \ldots, \tau^c_{kn}\} \\
0_{k\times (p-k)}
\end{pmatrix} \in R^{k\times p} \text{ if } k < p.
\]

(22.14)
Lemma 22.5 Suppose the scalar constants \(\{ \tau_{jn}^c \geq 0 : j \leq \min\{k, p\} \} \) for \(n \geq 1 \) satisfy (i) \(\{ \tau_{jn}^c \geq 0 : j \leq \min\{k, p\} \} \) are nonincreasing in \(j \) for \(n \geq 1 \), (ii) \(\tau_{jn}^c \to \infty \) for \(j \leq q \) for some \(1 \leq q \leq \min\{k, p\} \), (iii) \(\tau_{jn}^c \to \tau_{j\infty}^c < \infty \) for \(j = q+1, \ldots, \min\{k, p\} \), and (iv) when \(p \geq 2 \), \(\tau_{(j+1)n}^c / \tau_{jn}^c \to h_{0,j}^c \) for some \(h_{0,j}^c \in [0, 1] \) for all \(j \leq \min\{k, p\} - 1 \). Let \(\Upsilon_n^c \) be defined as in (22.14). Let \(\{ \kappa_{jn}^Z : j \leq p + 1 \} \) denote the \(p + 1 \) eigenvalues of \((\Upsilon_n^c, Z)(\Upsilon_n^c, Z) \), ordered to be nonincreasing in \(j \), where

\[Z \sim N(0^k, I_k) \]. Then,

(a) \(\kappa_{jn}^Z \to \infty \) for all realizations of \(Z \) and

(b) \(\kappa_{jn}^Z = o((\tau_{jn}^c)^2) \) for all \(j \) and \(\forall j = q + 1, \ldots, p + 1 \) for all realizations of \(Z \).

Comment: Lemma 22.5 only applies when \(q \geq 1 \), whereas Lemma 22.2 applies when \(q \geq 0 \).

Lemma 22.6 Let \(\{ F_n^*(x) : n \geq 1 \} \) and \(F^*(x) \) be df’s on \(R \) and let \(\alpha \in (0, 1) \) be given. Suppose (i) \(F_n^*(x) \to F^*(x) \) for all continuity points \(x \) of \(F^*(x) \) and (ii) \(F^*(q_\infty + \varepsilon) > 1 - \alpha \) for all \(\varepsilon > 0 \), where \(q_\infty := \inf\{x : F^*(x) \geq 1 - \alpha\} \) is the \(1 - \alpha \) quantile of \(F^*(x) \). Then, the \(1 - \alpha \) quantile of \(F_n^*(x) \), viz., \(q_n := \inf\{x : F_n^*(x) \geq 1 - \alpha\} \), satisfies \(q_n \to q_\infty \).

Comment: Condition (ii) of Lemma 22.6 requires that \(F^*(x) \) is increasing at its \(1 - \alpha \) quantile.

Proof of Lemma 22.2. By Lemma 6.1, \(c_{k,p}(D_n^c, 1 - \alpha) = c_{k,p}(\Upsilon_n^c, 1 - \alpha) \), where \(\Upsilon_n^c \) is defined in (22.14). Hence, it suffices to show that \(c_{k,p}(\Upsilon_n^c, 1 - \alpha) \to c_{k,p,q}(\tau_{\infty}^c, 1 - \alpha) \). To prove the latter, it suffices to show that for any subsequence \(\{ w_n \} \) of \(\{ n \} \) there exists a subsubsequence \(\{ u_n \} \) such that \(c_{k,p}(\Upsilon_{w_n}^c, 1 - \alpha) \to c_{k,p,q}(\tau_{\infty}^c, 1 - \alpha) \). When \(p \geq 2 \), given \(\{ w_n \} \), we select a subsequence \(\{ u_n \} \) for which \(\tau_{(j+1)n}^c / \tau_{jn}^c \to h_{0,j}^c \) for some constant \(h_{0,j}^c \in [0, 1] \) for all \(j = 1, \ldots, \min\{k, p\} - 1 \). We can select a subsequence with this property because every sequence of numbers in \([0, 1] \) has a convergent subsequence by the compactness of \([0, 1] \).

For notational simplicity, when \(p \geq 2 \), we prove the full sequence result that \(c_{k,p}(\Upsilon_n^c, 1 - \alpha) \to c_{k,p,q}(\tau_{\infty}^c, 1 - \alpha) \) under the assumption that

\[\tau_{(j+1)n}^c / \tau_{jn}^c \to h_{0,j}^c \] \(\text{for all } j \leq \min\{k, p\} - 1 \) \(\text{(22.15)} \)

(as well as the other assumptions on the singular values stated in the theorem). The same argument holds with \(n \) replaced by \(u_n \) below, which is the result that is needed to complete the proof. When \(p = 1 \), we prove the full sequence result that \(c_{k,p}(\Upsilon_n^c, 1 - \alpha) \to c_{k,p,q}(\tau_{\infty}^c, 1 - \alpha) \) without the condition in (22.15) (which is meaningless in this case because there is only one value \(\tau_{jn}^c \), namely \(\tau_{jn}^c \), for each \(n \)). In this case too, the same argument holds with \(n \) replaced by \(u_n \)

\(^{80}\) The condition in (22.15) is required by Lemma 22.5, which is used in the proof of Lemma 22.2 below.
below, which is the result that is needed to complete the proof. We treat the cases $p \geq 2$ and $p = 1$ simultaneously from here on.

First, we show that

$$CLR_{k,p}(\mathcal{T}_n^c) := Z'Z - \lambda_{\min}((\mathcal{T}_n^c, Z)', (\mathcal{T}_n^c, Z))$$

$$\rightarrow Z'Z - \lambda_{\min}((\mathcal{T}(\tau_\infty^n), Z_2)', (\mathcal{T}(\tau_\infty^n), Z_2)) := ACLR_{k,p,q}(\tau_\infty^n)$$

(22.16)

for all realizations of Z. If $q = 0$, then (22.16) holds because $\mathcal{T}_n^c \rightarrow \mathcal{T}(\tau_\infty^n)$ (by the definition of \mathcal{T}_n^c in (22.14), the definition of $\mathcal{T}(\tau_\infty^n)$ in the statement of the Lemma 22.2, and assumption (iii) of Lemma 22.2) and the minimum eigenvalue of a matrix is a continuous function of the matrix (by Elsner’s Theorem, see Stewart (2001, Thm. 3.1, pp. 37–38)).

Now, we establish (22.16) when $q \geq 1$. The (ordered) eigenvalues $\{\nu_{jn}^Z : j \leq p + 1\}$ of $(\mathcal{T}_n^c, Z)'(\mathcal{T}_n^c, Z)$ are solutions to

$$|((\mathcal{T}_n^c, Z)'(\mathcal{T}_n^c, Z) - \kappa I_{p+1})| = 0 \text{ or}$$

$$|Q_n^c(\kappa)| = 0,$$

where $Q_n^c(\kappa) := S_n^c(\mathcal{T}_n^c, Z)'(\mathcal{T}_n^c, Z)S_n^c - \kappa(S_n^c)^2$ and

$$S_n^c := \text{Diag}\{(\tau_{1n}^c)^{-1}, \ldots, (\tau_{qn}^c)^{-1}, 1, \ldots, 1\} \in R^{(p+1)\times(p+1)}.$$

(22.17)

Define

$$S_{n,q}^c := \text{Diag}\{(\tau_{1n}^c)^{-1}, \ldots, (\tau_{qn}^c)^{-1}\} \in R^{q\times q}.$$

(22.18)

We have

$$(\mathcal{T}_n^c, Z)S_n^c = \begin{pmatrix} \mathcal{T}_n^c, Z & I_q & 0_{q\times(p+1-q)} & 0_{q\times(p+1-q)} \\ 0_{(p+1-q)\times q} & S_{n,q}^c(\mathcal{T}_n^c, Z) & I_{p+1-q} \end{pmatrix}$$

$$= (I_{k,q}, \mathcal{T}_{n,p-q}, Z) \in R^{k\times(p+1)},$$

where

$$I_{k,q} := \begin{pmatrix} I_q & \mathbb{0}_{(p-q)\times q} \\ \mathbb{0}_{(k-q)\times q} & \mathbb{0}_{(p-q)\times q} \end{pmatrix} \in R^{k\times(p+1)},$$

(22.19)

$$\mathcal{T}_{n,p-q}^c := \begin{pmatrix} \text{Diag}\{\tau_{(q+1)n}^c, \ldots, \tau_{pn}^c\} & \mathbb{0}_{q\times(p-q)} \\ \mathbb{0}_{(k-p)\times(p-q)} & \mathbb{0}_{(p-q)\times(p-k)} \end{pmatrix} \in R^{k\times(p-q)}$$

if $k \geq p$, and

$$\mathcal{T}_{n,p-q}^c := \begin{pmatrix} \text{Diag}\{\tau_{(q+1)n}^c, \ldots, \tau_{kn}^c\} & \mathbb{0}_{q\times(p-k)} \\ \mathbb{0}_{(k-q)\times(p-k)} & \mathbb{0}_{(p-q)\times(p-k)} \end{pmatrix} \in R^{k\times(p-q)}$$

if $k < p$. 48
By (22.17) and (22.19), we have
\[
Q_n^c(\kappa) = \begin{bmatrix}
I_q & I_{k,q}'(\Upsilon_{n,p-q}^c, Z) \\
(\Upsilon_{n,p-q}^c, Z)' & I_{p+1-q}
\end{bmatrix} - \kappa \begin{bmatrix}
(S_{n,q}^c)^2 & 0^{p+1-q} \\
0^{p+1-q} & I_{p+1-q}
\end{bmatrix}. \quad (22.20)
\]

By the formula for the determinant of a partitioned inverse (see the footnote above),
\[
|Q_n^c(\kappa)| = |Q_{n,1}^c(\kappa)| \cdot |Q_{n,2}^c(\kappa)|,
\]
where
\[
Q_{n,1}^c(\kappa) := I_q - \kappa(S_{n,q}^c)^2 \in R^{q \times q}
\]
and
\[
Q_{n,2}^c(\kappa) := (\Upsilon_{n,p-q}^c, Z)'(\Upsilon_{n,p-q}^c, Z) - \kappa I_{p+1-q}
- (\Upsilon_{n,p-q}^c, Z)'I_{k,q}(I_q - \kappa(S_{n,q}^c)^2)^{-1}I_{k,q}'(\Upsilon_{n,p-q}^c, Z) \in R^{(p+1-q) \times (p+1-q)}. \quad (22.21)
\]

For \(j = q + 1, \ldots, p + 1 \), we have
\[
Q_{n,1}^c(\kappa_{j,n}^Z) = I_q - \kappa_{j,n}^Z(S_{n,q}^c)^2 = I_q - Diag\{\kappa_{j,n}^Z(\tau_{1,n}^c)^{-2}, \ldots, \kappa_{j,n}^Z(\tau_{n,n}^c)^{-2}\} = I_q + o(1) \quad (22.22)
\]
for all realizations of \(Z \), where the last equality holds by Lemma 22.5 (which applies for \(q \geq 1 \)).

This implies that \(|Q_{n,1}^c(\kappa_{j,n}^Z)| \neq 0 \) for \(j = q + 1, \ldots, p + 1 \) for \(n \) large. Hence, for \(n \) large,
\[
|Q_{n,2}^c(\kappa_{j,n}^Z)| = 0 \text{ for } j = q + 1, \ldots, p + 1. \quad (22.23)
\]

We write
\[
I_k = (I_{k,q}, I_{k,k-q}), \text{ where } I_{k,k-q} := \begin{pmatrix} 0^{q \times (k-q)} \\ I_{k-q} \end{pmatrix} \in R^{k \times (k-q)} \quad (22.24)
\]
and \(I_{k,q} \) is defined in (22.19)\(^{81}\)

For \(j = q + 1, \ldots, p + 1 \), we have
\[
Q_{n,2}^c(\kappa_{j,n}^Z) = (\Upsilon_{n,p-q}^c, Z)'(\Upsilon_{n,p-q}^c, Z) - \kappa_{j,n}^Z I_{p+1-q} - (\Upsilon_{n,p-q}^c, Z)'I_{k,q}(I_q + o(1))I_{k,q}'(\Upsilon_{n,p-q}^c, Z)
= (\Upsilon_{n,p-q}^c, Z)'I_{k-q}I_{k-k-q}(\Upsilon_{n,p-q}^c, Z) + o(1) - \kappa_{j,n}^Z I_{p+1-q}
:= M_{n,p+1-q}^c - \kappa_{j,n}^Z I_{p+1-q}, \quad (22.25)
\]

where the first equality holds by (22.22) and the definition of \(Q_{n,2}^c(\kappa) \) in (22.21) and the second equality holds because \(I_k = (I_{k,q}, I_{k,k-q})(I_{k,q}, I_{k,k-q})' = I_{k,q}I_{k,q}' + I_{k,k-q}I_{k,k-q}' \) and \(\Upsilon_{n,p-q}^c = O(1) \) by its definition in (22.19) and the condition (iii) of Lemma 22.2 on \(\{\tau_{j,n}^c: j = q + 1, \ldots, \min\{k,p\}\} \)

\(^{81}\)There is some abuse of notation here because \(I_{k,q} \) does not equal \(I_{k,k-q} \) even if \(q \) equals \(k - q \).
for \(n \geq 1 \).

Equations (22.23) and (22.25) imply that \(\kappa^n_{j_n} : j = q + 1, \ldots, p + 1 \) are the \(p + 1 - q \) eigenvalues of the matrix \(M_{n,p+1-q}^c \). By the definition of \(\Upsilon^n_{p,q} \) in (22.19) and the conditions of the theorem on \(\{\tau^n_{j_n} : j = q + 1, \ldots, \min\{k,p\}\} \) for \(n \geq 1 \), we have

\[
M_{n,p+1-q}^c \rightarrow \begin{pmatrix} \left(\frac{\partial^{y}(p-q)}{\partial y} \right)_{\Upsilon^n_{\infty}} \end{pmatrix}, Z \\
\begin{pmatrix} \left(\frac{\partial^{y}(p-q)}{\partial y} \right)_{\Upsilon^n_{\infty}} \end{pmatrix}, Z
\end{pmatrix} = \left(\Upsilon^n_{\infty}, Z \right)' \left(\Upsilon^n_{\infty}, Z \right)
\]

(22.26)

for all realizations of \(Z \), where the equality uses the definitions of \(\Upsilon^n_{\infty} \) and \(Z_2 \) in the statement of the theorem.

The vector of (ordered) eigenvalues of a matrix is a continuous function of the matrix (by Elsner’s Theorem, see Stewart (2001, Thm. 3.1, pp. 37–38)). Hence, by (22.26), the eigenvalues \(\{\kappa^n_{j_n} : j = q + 1, \ldots, p + 1\} \) of \(M_{n,p+1-q}^c \) converge (for all realizations of \(Z \)) to the vector of eigenvalues of \(\left(\Upsilon^n_{\infty}, Z_2 \right)' \left(\Upsilon^n_{\infty}, Z_2 \right) \). In consequence, the smallest eigenvalue \(\kappa^Z_{(p+1)n} \) (of both \(M_{n,p+1-q}^c \) and \(\left(\Upsilon^n_{p+1}, Z_2 \right)' \left(\Upsilon^n_{p+1}, Z_2 \right) \)) satisfies

\[
\lambda_{\min}(\left(\Upsilon^n_{n}, Z \right)' \left(\Upsilon^n_{n}, Z \right)) = \kappa^Z_{(p+1)n} \rightarrow \lambda_{\min}(\left(\Upsilon^n_{\infty}, Z_2 \right)' \left(\Upsilon^n_{\infty}, Z_2 \right)),
\]

(22.27)

where the equality holds by the definition of \(\kappa^Z_{(p+1)n} \) in (22.17). This establishes (22.16).

Now we use (22.16) to establish that \(c_{k,p}(\Upsilon^n_{n}, 1 - \alpha) \rightarrow c_{k,p}(\tau^n_{\infty}, 1 - \alpha) \), which proves the theorem. Let

\[
F_{k,p,q,\tau^n_{\infty}}(x) = P(ACLR_{k,p,q}(\tau^n_{\infty}) \leq x).
\]

(22.28)

By (22.16), for any \(x \in R \) that is a continuity point of \(F_{k,p,q,\tau^n_{\infty}}(x) \), we have

\[
1(ACLR_{k,p}(\Upsilon^n_{n}) \leq x) \rightarrow 1(ACLR_{k,p,q}(\tau^n_{\infty}) \leq x) \text{ a.s.}
\]

(22.29)

Equation (22.29) and the bounded convergence theorem give

\[
P(ACLR_{k,p}(\Upsilon^n_{n}) \leq x) \rightarrow P(ACLR_{k,p,q}(\tau^n_{\infty}) \leq x) = F_{k,p,q,\tau^n_{\infty}}(x).
\]

(22.30)

Now Lemma 22.6 gives the desired result, because (22.30) verifies assumption (i) of Lemma 22.6 and the df of \(ACLR_{k,p,q}(\tau^n_{\infty}) \) is strictly increasing at its \(1 - \alpha \) quantile (by Lemma 22.3), which verifies assumption (ii) of Lemma 22.6 \(\square \)

Proof of Lemma 22.5. The proof is similar to the proof of Lemma 16.1 given in Section 16 in
the SM of AG1. But there are enough differences that we provide a proof.

By the definition of $q \geq 1$ in the statement of Lemma 22.5, $h_{6,q}^c = 0$ if $q \leq \min\{k, p\}$. If $q = \min\{k, p\}$, then $h_{6,q}^c$ is not defined in the statement of Lemma 22.5 and we define it here to equal zero. If $h_{6,j}^c > 0$, then $\{\tau_{jn}^c : n \geq 1\}$ and $\{\tau_{(j+1)n}^c : n \geq 1\}$ are of the same order of magnitude, i.e., $0 < \lim_{n \to \infty} \tau_{jn}^c / \tau_{jn}^c \leq 1$. We group the first q values of τ_{jn}^c into groups that have the same order of magnitude within each group. Let $G (\in \{1, \ldots, q\})$ denote the number of groups. Note that G equals the number of values in $\{h_{6,1}^c, \ldots, h_{6,q}^c\}$ that equal zero. Let r_g and r^c_g denote the indices of the first and last values in the gth group, respectively, for $g = 1, \ldots, G$. Thus, $r_1 = 1$, $r^c_1 = r_{g+1} - 1$, where by definition $r_{G+1} = q + 1$ and $r^c_G = q$. By definition, the τ_{jn}^c values in the gth group, which have the gth largest order of magnitude, are $\{\tau_{rn}^c : n \geq 1\}, \ldots, \{\tau_{r^c_g n}^c : n \geq 1\}$. By construction, $h_{6,j}^c > 0$ for all $j \in \{r_g, \ldots, r^c_g - 1\}$ for $g = 1, \ldots, G$. (The reason is: if $h_{6,j}^c$ is equal to zero for some $j \leq r^c_g - 1$, then $\{\tau_{rn}^c : n \geq 1\}$ is of smaller order of magnitude than $\{\tau_{r^c_g n}^c : n \geq 1\}$, which contradicts the definition of r^c_g.) Also by construction, $\lim_{n \to \infty} \tau_{jn}^c / \tau_{jn}^c = 0$ for any (j, j') in groups (g, g'), respectively, with $g < g'$.

The (ordered) eigenvalues $\{\kappa_{jn}^Z : j \leq p + 1\}$ of $(\mathcal{Y}_n^c, Z)'(\mathcal{Y}_n^c, Z)$ are solutions to the determinantal equation $|((\mathcal{Y}_n^c, Z)'(\mathcal{Y}_n^c, Z) - \kappa I_{p+1}| = 0$. Equivalently, they are solutions to

$$
|((\tau_{rn}^c)^{-2}(\mathcal{Y}_n^c, Z)'(\mathcal{Y}_n^c, Z) - (\tau_{rn}^c)^{-2}\kappa I_{p+1}| = 0. \tag{22.31}
$$

Thus, $\{(\tau_{rn}^c)^{-2}\kappa_{jn}^Z : j \leq p + 1\}$ solve

$$
|((\tau_{rn}^c)^{-2}(\mathcal{Y}_n^c, Z)'(\mathcal{Y}_n^c, Z) - \kappa I_{p+1}| = 0. \tag{22.32}
$$

Let

$$
h_{6, r_1}^{c_1} := \text{Diag}\{1, h_{6,1}^c, h_{6,2}^c, \ldots, \prod_{\ell=1}^{r_1-1} h_{6, \ell}^c\} \in R^{r_1^c \times r_1^c}. \tag{22.33}
$$

When $k \geq p$, we have

$$
(\tau_{rn}^c)^{-1}(\mathcal{Y}_n^c, Z) = \begin{bmatrix}
\begin{array}{cccc}
 h_{6, r_1}^{c_1} & + a(1) & 0^{r_1 \times (q-r_1^c)} & 0^{r_1 \times (p-q)} & O(1/\tau_{rn}^c)^{r_1^{c_1} \times 1} \\
0^{(q-r_1^c) \times r_1^c} & O(\tau_{rn}^c)^{(c_1^c) \times (q-r_1^c)} & 0^{(q-r_1^c) \times (p-q)} & O(1/\tau_{rn}^c)^{(q-r_1^c) \times 1} \\
0^{(p-q) \times r_1^c} & 0^{(p-q) \times (q-r_1^c)} & O(1/\tau_{rn}^c)^{(p-q) \times (p-q)} & O(1/\tau_{rn}^c)^{(p-q) \times 1} \\
0^{(k-p) \times r_1^c} & 0^{(k-p) \times (q-r_1^c)} & 0^{(k-p) \times (p-q)} & O(1/\tau_{rn}^c)^{(k-p) \times 1}
\end{array}
\end{bmatrix}, \tag{22.34}
$$

51
where $O(d_n)^{s \times s}$ denotes a diagonal $s \times s$ matrix whose elements are $O(d_n)$ for some scalar constants $\{d_n : n \geq 1\}$, $O(d_n)^{s \times 1}$ denotes an s vector whose elements are $O(d_n)$, the equality uses $\tau_{jn}^c / \tau_{r1n}^c = \prod_{\ell=1}^{j-1} (\tau_{(\ell+1)n}^c / \tau_{\ell n}^c) = \prod_{\ell=1}^{j-1} h_{6,\ell}^c + o(1)$ for $j = 2, \ldots, r_1^c$ (which holds by the definition of $h_{6,\ell}^c$) and $\tau_{jn}^c / \tau_{r1n}^c = O(\tau_{r2n}^c / \tau_{r1n}^c)$ for $j = r_2, \ldots, q$ (because $\{\tau_{jn}^c : j \leq q\}$ are nonincreasing in j), and the convergence uses $\tau_{r1n}^c \to \infty$ (by assumption (ii) of the lemma since $r_1 \leq q$) and $\tau_{r2n}^c / \tau_{r1n}^c \to 0$ (by the definition of r_2).

When $k < p$, Equation (22.34) holds but with the rows dimensions of the submatrices in the second line changed by replacing $p - q$ by $k - q$ and $k - p$ by $p - k$ four times each.

Equation (22.34) yields

$$(\tau_{r1n}^c)^{-2}(\mathbf{Y}_n^c, Z)'(\mathbf{Y}_n^c, Z) \rightarrow \begin{bmatrix} (h_{6,0}^c)^2 & 0_{r_1^c \times (p+1-r_1^c)} \\ 0_{(p+1-r_1^c) \times r_1^c} & 0_{(p+1-r_1^c) \times (p+1-r_1^c)} \end{bmatrix}.$$ (22.35)

The vector of eigenvalues of a matrix is a continuous function of the matrix (by Elsner’s Theorem, see Stewart (2001, Thm. 3.1, pp. 37–38)). Hence, by (22.32) and (22.35), the first r_1^c eigenvalues of $(\tau_{r1n}^c)^{-2}(\mathbf{Y}_n^c, Z)'(\mathbf{Y}_n^c, Z)$, i.e., $\{(\tau_{r1n}^c)^{-2} \kappa_{j1n}^Z : j \leq r_1^c\}$, satisfy

$$(\tau_{r1n}^c)^{-2} \kappa_{11n}^Z, \ldots, (\tau_{r1n}^c)^{-2} \kappa_{r_1^c 1n}^Z \rightarrow_p (1, h_{6,1}^c, h_{6,2}^c, \ldots, \prod_{\ell=1}^{r_1^c-1} h_{6,\ell}^c) \text{ and so}$$

$$\kappa_{11n}^Z \rightarrow \infty \quad \forall j = 1, \ldots, r_1^c$$

(22.36)

because $\tau_{r1n}^c \to \infty$ (since $r_1 \leq q$) and $h_{6,\ell}^c > 0$ for all $\ell \in \{1, \ldots, r_1^c - 1\}$ (as noted above). By the same argument, the last $p + 1 - r_1^c$ eigenvalues of $(\tau_{r1n}^c)^{-2}(\mathbf{Y}_n^c, Z)'(\mathbf{Y}_n^c, Z)$, i.e., $\{(\tau_{r1n}^c)^{-2} \kappa_{jn}^Z : j = r_1^c + 1, \ldots, p + 1\}$, satisfy

$$(\tau_{r1n}^c)^{-2} \kappa_{jn}^Z \to 0 \quad \forall j = r_1^c + 1, \ldots, p + 1.$$ (22.37)

Next, the equality in (22.34) gives

$$(\tau_{r1n}^c)^{-2}(\mathbf{Y}_n^c, Z)'(\mathbf{Y}_n^c, Z) \rightarrow \begin{bmatrix} (h_{6,0}^c)^2 + o(1) & 0_{r_1^c \times (q-r_1^c)} & 0_{r_1^c \times (p-q)} & O(1/\tau_{r1n}^c)_{r_1^c 1} \\ 0_{(q-r_1^c) \times r_1^c} & O((\tau_{r2n}^c / \tau_{r1n}^c)^2(q-r_1^c)(q-r_1^c)) & 0_{(q-r_1^c) \times (p-q)} & O(\tau_{r2n}^c / \tau_{r1n}^c)^2(q-r_1^c)_{1 1} \\ 0_{(p-q) \times r_1^c} & 0_{(p-q) \times (q-r_1^c)} & O(1/(\tau_{r1n}^c)^2(p-q)(p-q)) & O(1/(\tau_{r1n}^c)^2)_{1 1} \\ O(1/\tau_{r1n}^c)^{1 \times r_1^c} & O((\tau_{r2n}^c / \tau_{r1n}^c)^2)^{1 \times (q-r_1^c)} & O(1/(\tau_{r1n}^c)^2)^{1 \times (p-q)} & O(1/(\tau_{r1n}^c)^2)^{1 \times 1} \end{bmatrix}.$$ (22.38)

Equation (22.38) holds when $k \geq p$ and $k < p$ (because the column dimensions of the submatrices in the second line of (22.34) are the same when $k \geq p$ and $k < p$).
Define \(I_{j_1,j_2} \) to be the \((p+1) \times (j_2 - j_1)\) matrix that consists of the \(j_1 + 1, \ldots, j_2\) columns of \(I_{p+1}\) for \(0 \leq j_1 < j_2 \leq p+1\). We can write
\[
I_{p+1} = (I_{0,r_1^c}, I_{r_1^c,p+1}), \quad \text{where} \quad I_{0,r_1^c} := \begin{pmatrix} I_{r_1^c} \cr 0_{(p+1-r_1^c) \times r_1^c} \end{pmatrix} \in R^{(p+1) \times r_1^c} \quad \text{and} \quad I_{r_1^c,p+1} := \begin{pmatrix} 0_{r_1^c \times (p+1-r_1^c)} \\
I_{p+1-r_1^c} \end{pmatrix} \in R^{(p+1) \times (p+1-r_1^c)}.
\] (22.39)

In consequence, we have
\[
(Y_n^c, Z) = ((Y_n^c, Z) I_{0,r_1^c}, (Y_n^c, Z) I_{r_1^c,p+1}) \quad \text{and} \quad \varphi_n^c := (\tau_{r_1 n}^c)^{-2} I_{0,r_1^c} (Y_n^c, Z)' (Y_n^c, Z) I_{r_1^c,p+1} = o(\tau_{r_2 n}^c / \tau_{r_1 n}^c),
\] (22.40)

where the last equality uses the first row of the matrix on the rhs of (22.38) and \(O(1/\tau_{r_1 n}^c) = o(\tau_{r_2 n}^c / \tau_{r_1 n}^c)\) (because \(\tau_{r_2 n}^c \rightarrow \infty\)).

As in (22.32), \(\{(\tau_{r_1 n}^c)^{-2} \kappa_{jn}^Z : j \leq p+1\}\) solve
\[
0 = |(\tau_{r_1 n}^c)^{-2} (Y_n^c, Z)' (Y_n^c, Z) - \kappa I_{p+1}| = \left| \begin{array}{c}
(\tau_{r_1 n}^c)^{-2} I_{0,r_1^c} (Y_n^c, Z)' (Y_n^c, Z) I_{0,r_1^c} - \kappa I_{r_1^c} \\
(\tau_{r_1 n}^c)^{-2} I_{r_1^c,p+1} (Y_n^c, Z)' (Y_n^c, Z) I_{r_1^c,p+1} - \kappa I_{p+1-r_1^c} \\
(\tau_{r_1 n}^c)^{-2} I_{0,r_1^c} (Y_n^c, Z)' (Y_n^c, Z) I_{r_1^c,p+1} \\
(\tau_{r_1 n}^c)^{-2} I_{r_1^c,p+1} (Y_n^c, Z)' (Y_n^c, Z) I_{0,r_1^c} - \kappa I_{p+1-r_1^c} \\
(\tau_{r_1 n}^c)^{-2} I_{r_1^c,p+1} (Y_n^c, Z)' (Y_n^c, Z) I_{r_1^c,p+1} - \kappa I_{p+1-r_1^c} \\
\varphi_n^c ((\tau_{r_1 n}^c)^{-2} I_{0,r_1^c} (Y_n^c, Z)' (Y_n^c, Z) I_{0,r_1^c} - \kappa I_{r_1^c})^{-1} \varphi_n^c |
\right|
\] (22.41)

where the third equality uses the standard formula for the determinant of a partitioned matrix, the definition of \(\varphi_n^c\) in (22.40), and the result given in (22.42) below that the matrix which is inverted appears in the last line of (22.41) is nonsingular for \(\kappa\) equal to any solution \((\tau_{r_1 n}^c)^{-2} \kappa_{jn}^Z\) to the first equality in (22.41) for \(j = r_1^c + 1, \ldots, p+1\).

Now we show that, for \(j = r_1^c + 1, \ldots, p+1\), \((\tau_{r_1 n}^c)^{-2} \kappa_{jn}^Z\) cannot solve the determinantal equation
\[
|(\tau_{r_1 n}^c)^{-2} I_{0,r_1^c} (Y_n^c, Z)' (Y_n^c, Z) I_{0,r_1^c} - \kappa I_{r_1^c}| = 0,
\]
where this determinant is the first multiplicand on the rhs of (22.41). Hence, \(\{(\tau_{r_1 n}^c)^{-2} \kappa_{jn}^Z : j = r_1^c + 1, \ldots, p+1\}\) must solve the determinantal equation.
Based on the second multiplicand on the rhs of (22.41). For \(j = r_1^c + 1, \ldots, p + 1 \), we have

\[
(\tau_{r_1n}^c)^{-2}I_{0,r_1^c}^Z(T_n^c, Z)'(T_n^c, Z)I_{0,r_1^c} - (\tau_{r_1n}^c)^{-2}\kappa_{j,n}^Z I_{r_1^c} = (h_{6,r_1^c}^c)^2 + o(1), \tag{22.42}
\]

where the equality holds by (22.35) and (22.37). Equation (22.42) and \(\lambda_{\min}(h_{6,r_1^c}^c)^2 > 0 \) (which follows from the definition of \(h_{6,r_1}^c \) in (22.33) and the fact that \(h_{6,j}^c > 0 \) for all \(j \in \{1, \ldots, r_1^c - 1\} \)) establish the desired result.

For \(j = r_1^c + 1, \ldots, p + 1 \), plugging \((\tau_{r_1n}^c)^{-2}\kappa_{j,n}^Z \) into the second multiplicand on the rhs of (22.41) and using (22.40) and (22.42) gives

\[
0 = |(\tau_{r_1n}^c)^{-2}I_{r_1^c,p+1}(T_n^c, Z)'(T_n^c, Z)I_{r_1^c,p+1} + o((\tau_{r_2n}^c/\tau_{r_1n}^c)^2) - (\tau_{r_1n}^c)^{-2}\kappa_{j,n}^Z I_{p+1-r_1^c}|. \tag{22.43}
\]

Thus, \(\{(\tau_{r_1n}^c)^{-2}\kappa_{j,n}^Z : j = r_1^c + 1, \ldots, p + 1\} \) solve

\[
0 = |(\tau_{r_2n}^c)^{-2}I_{r_1^c,p+1}(T_n^c, Z)'(T_n^c, Z)I_{r_1^c,p+1} + o((\tau_{r_2n}^c/\tau_{r_1n}^c)^2) - \kappa I_{p+1-r_1^c}|. \tag{22.44}
\]

Or equivalently, multiplying through by \((\tau_{r_2n}^c/\tau_{r_1n}^c)^{-2} \), \(\{(\tau_{r_2n}^c)^{-2}\kappa_{j,n}^Z : j = r_1^c + 1, \ldots, p + 1\} \) solve

\[
0 = |(\tau_{r_2n}^c)^{-2}I_{r_2^c,p+1}(T_n^c, Z)'(T_n^c, Z)I_{r_2^c,p+1} + o(1) - \kappa I_{p+1-r_1^c}| \tag{22.45}
\]

by the same argument as in (22.31) and (22.32).

Now, we repeat the argument from (22.32) to (22.45) with the expression in (22.45) replacing that in (22.32) and with \(I_{p+1-r_1^c}, \tau_{r_2n}, (\tau_{r_2n}^c)^{-2}, r_2^c - r_1^c, p + 1 - r_2^c, \) and \(h_{6,r_2^c}^c = \text{Diag}(1, h_{6,r_1^c+1}^c, h_{6,r_1^c+1}^c h_{6,r_1^c+2}^c \cdots \prod_{\ell = r_1^c+1}^n h_{6,\ell}^c) \in R^{(r_2^c-r_1^c) \times (r_2^c-r_1^c)} \) in place of \(I_{p+1}, \tau_{r_1n}, \tau_{r_2n}^c, r_1^c, p + 1 - r_1^c, \) and \(h_{6,r_1^c}^c \), respectively. In addition, \(I_{0,r_1^c} \) and \(I_{r_1^c,p+1} \) in (22.41) are replaced by the matrices \(I_{r_1^c,r_2^c} \) and \(I_{r_2^c,p+1} \).

This argument gives

\[
\kappa_{j,n}^Z \to \infty \ \forall j = r_2, \ldots, r_2^c \text{ and } (\tau_{r_2n}^c)^{-2}\kappa_{j,n}^Z = o(1) \ \forall j = r_2^c + 1, \ldots, p + 1. \tag{22.46}
\]

Repeating the argument \(G - 2 \) more times yields

\[
\kappa_{j,n}^Z \to \infty \ \forall j = 1, \ldots, r_G^c \text{ and } (\tau_{r_Gn}^c)^{-2}\kappa_{j,n}^Z = o(1) \ \forall j = r_G^c + 1, \ldots, p + 1, \forall g = 1, \ldots, G. \tag{22.47}
\]

Note that “repeating the argument \(G - 2 \) more times” is justified by an induction argument that is analogous to that given in the proof of Lemma 16.1 given in Section 16 in the SM of AG1.

Because \(r_j^c = q \), the first result in (22.47) proves part (a) of the lemma.

54
The second result in (22.47) with \(g = G \) implies: for all \(j = q + 1, \ldots, p + 1 \),

\[
(\tau^c_{r_Gn})^{-2}k^Z_{j,n} = o(1)
\]

(22.48)

because \(r_{-G}^c = q \). Either \(r_{-G} = r_{-G}^c = q \) or \(r_{-G} < r_{-G}^c = q \). In the former case, \((\tau^c_{q,n})^{-2}k^Z_{j,n} = o(1) \) for \(j = q + 1, \ldots, p + 1 \) by (22.47). In the latter case, we have

\[
\lim \frac{\tau^c_{q,n}}{\tau^c_{r_Gn}} = \lim \frac{\tau^c_{r_Gn}}{\tau^c_{r_Gn}} = \prod_{j=r_G}^{r_{-G} - 1} h^c_{o,j} > 0,
\]

(22.49)

where the inequality holds because \(h^c_{o,j} > 0 \) for all \(j \in \{r_G, \ldots, r_{-G} - 1\} \), as noted at the beginning of the proof. Hence, in this case too, \((\tau^c_{q,n})^{-2}k^Z_{j,n} = o(1) \) for \(j = q + 1, \ldots, p + 1 \) by (22.48) and (22.49). Because \(\tau^c_{j,n} \geq \tau^c_{q,n} \) for all \(j \leq q \), this establishes part (b) of the lemma. \(\square \)

Proof of Lemma 22.6. For \(\varepsilon > 0 \) such that \(q_\infty \pm \varepsilon \) are continuity points of \(F^*(x) \), we have

\[
F^*_n(q_\infty - \varepsilon) \to F^*(q_\infty - \varepsilon) < 1 - \alpha \quad \text{and} \quad F^*_n(q_\infty + \varepsilon) \to F^*(q_\infty + \varepsilon) > 1 - \alpha
\]

(22.50)

by assumptions (i) and (ii) of the lemma and \(F^*(q_\infty - \varepsilon) < 1 - \alpha \) by the definition of \(q_\infty \). The first line of (22.50) implies that \(q_n \geq q_\infty - \varepsilon \) for all \(n \) large. (If not, there exists an infinite subsequence \(\{w_n\} \) of \(\{n\} \) for which \(q_{w_n} < q_\infty - \varepsilon \) for all \(n \geq 1 \) and \(1 - \alpha \leq F^*_w(q_{w_n}) \leq F^*_w(q_\infty - \varepsilon) \to F^*(q_\infty - \varepsilon) < 1 - \alpha \), which is a contradiction). The second line of (22.50) implies that \(q_n \leq q_\infty + \varepsilon \) for all \(n \) large. There exists a sequence \(\{\varepsilon_k > 0 : k \geq 1\} \) for which \(\varepsilon_k \to 0 \) and \(q_\infty \pm \varepsilon_k \) are continuity points of \(F^*(x) \) for all \(k \geq 1 \). Hence, \(q_n \to q_\infty \). \(\square \)

22.4 Proof of Lemma 22.3

Lemma 22.3 is stated in Section 22.1.

Proof of Lemma 22.3. We prove the lemma by proving it separately for four cases: (i) \(q \geq 1 \), (ii) \(k \leq p \), (iii) \(\tau^c_{\min(k,p)} = 0 \), where \(\tau^c_{\min(k,p)} \) denotes the \(\min(k,p) \)th (and, hence, last and smallest) element of \(\tau^c \), and (iv) \(q = 0, k > p \), and \(\tau^c_{\infty} > 0 \). First, suppose \(q \geq 1 \). Then,

\[
ACLR_{k,p,q}(\tau^c_{\infty}) := Z'Z - \lambda_{\min}((\Upsilon(\tau^c_{\infty}), Z_2)'(\Upsilon(\tau^c_{\infty}), Z_2)) = Z_1'Z_1 + Z_2'Z_2 - \lambda_{\min}((\Upsilon(\tau^c_{\infty}), Z_2)'(\Upsilon(\tau^c_{\infty}), Z_2))
\]

(22.51)

and \(ACLR_{k,p,q}(\tau^c_{\infty}) \) is the convolution of a \(\chi^2_q \) distribution (since \(Z'_1Z_1 \sim \chi^2_q \) and another dis-
distribution. Consider the distribution of $X + Y$, where X is a random variable with an absolutely continuous distribution and X and Y are independent. Let B be a (measurable) subset of R with Lebesgue measure zero. Then,

$$P(X + Y \in B) = \int P(X + y \in B|Y = y)dP_Y(y) = \int P(X \in B - y)dP_Y(y) = 0,$$

where P_Y denotes the distribution of Y, the first equality holds by the law of iterated expectations, the second equality holds by the independence of X and Y, and the last equality holds because X is absolutely continuous and the Lebesgue measure of $B - y$ equals zero. Applying (22.52) to (22.51) with $X = Z_1'Z_1$, we conclude that $ACLR_{k,p,q}(\tau^c_{\infty})$ is absolutely continuous and, hence, its df is continuous at its $1 - \alpha$ quantile for all $\alpha \in (0, 1)$.

Next, we consider the df of $X + Y$, where X has support R_+ and X and Y are independent. Let c denote the $1 - \alpha$ quantile of $X + Y$ for $\alpha \in (0, 1)$, and let cy denote the $1 - \alpha$ quantile of Y. Since $X \geq 0$ a.s., $cy \leq c$. Hence, for all $\varepsilon > 0$,

$$P(Y < c + \varepsilon) \geq P(Y < cy + \varepsilon) \geq 1 - \alpha > 0.$$

For $\varepsilon > 0$, we have

$$P(X + Y \in [c, c + \varepsilon]) = \int P(X + y \in [c, c + \varepsilon]|Y = y)dP_Y(y)$$

$$= \int P(X \in [c - y, c - y + \varepsilon])dP_Y(y) > 0,$$

where the first equality holds by the law of iterated expectations, the second equality holds by the independence of X and Y, and the inequality holds because $P(X \in [c - y, c - y + \varepsilon]) > 0$ for all $y < c + \varepsilon$ (because the support of X is R_+) and $P(Y < c + \varepsilon) > 0$ by (22.53). Equation (22.54) implies that the df of $X + Y$ is strictly increasing at its $1 - \alpha$ quantile.

For the case when $q \geq 1$, we apply the result of the previous paragraph with $ACLR_{k,p,q}(\tau^c_{\infty}) = X + Y$ and $Z_1'Z_1 = X$. This implies that the df of $ACLR_{k,p,q}(\tau^c_{\infty})$ is strictly increasing at its $1 - \alpha$ quantile when $q \geq 1$.

Second, suppose $k \leq p$. Then, $(\Upsilon(\tau^c_{\infty}), Z_2)'(\Upsilon(\tau^c_{\infty}), Z_2) \in R^{(p - q + 1)(p - q + 1)}$ is singular because $(\Upsilon(\tau^c_{\infty}), Z_2) \in R^{(k - q)(p - q + 1)}$ and $k - q < p - q + 1$. Hence, $\lambda_{\min}((\Upsilon(\tau^c_{\infty}), Z_2)'(\Upsilon(\tau^c_{\infty}), Z_2)) = 0$, $ACLR_{k,p,q}(\tau^c_{\infty}) = Z'Z \sim \chi^2_k$, $ACLR_{k,p,q}(\tau^c_{\infty})$ is absolutely continuous, and the df of $ACLR_{k,p,q}(\tau^c_{\infty})$ is continuous and strictly increasing at its $1 - \alpha$ quantile for all $\alpha \in (0, 1)$.

Third, suppose $\tau^c_{\min[k,p]} = 0$. Then, $\lambda_{\min}((\Upsilon(\tau^c_{\infty}), Z_2)'(\Upsilon(\tau^c_{\infty}), Z_2)) = 0$, $ACLR_{k,p,q}(\tau^c_{\infty}) = Z'Z \sim \chi^2_k$, $ACLR_{k,p,q}(\tau^c_{\infty})$ is absolutely continuous, and the df of $ACLR_{k,p,q}(\tau^c_{\infty})$ is continuous
and strictly increasing at its $1 - \alpha$ quantile for all $\alpha \in (0, 1)$.

Fourth, suppose $q = 0$, $k > p$, and $\tau^c_{p\infty} > 0$. In this case, $Z_2 = Z$ (because $q = 0$) and $Y(\tau^c) = (D, 0^{p \times (k-p)})'$, where $D := \text{Diag}\{\tau^c\}$ is a pd diagonal $p \times p$ matrix (because $\tau^c_{p\infty} > 0$).

We write $Z = (Z'_a, Z'_b)'$ ($\sim N(0^k, I_k)$), where $Z_a \in R^p$ and $Z_b \in R^{k-p}$ and Z_b has a positive number of elements (because $k > p$). Let $ACLR$ abbreviate $ACLR_{k,p,q}(\tau^c)$. In the present case, we have

$$ACLR = Z'Z - \lambda_{\min} \left(\begin{pmatrix} D & Z_a \\ 0^{(k-p) \times p} & Z_b \end{pmatrix} \right)' \left(\begin{pmatrix} D & Z_a \\ 0^{(k-p) \times p} & Z_b \end{pmatrix} \right)$$

$$= Z'Z - \inf_{\xi=(\xi_1, \xi_2) : \|\xi\|=1} \left(\begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} \right)' \left(\begin{pmatrix} D^2 & DZ_a \\ Z'_a D & Z'Z \end{pmatrix} \right) \left(\begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} \right) \quad (22.55)$$

$$= \sup_{\xi=(\xi_1, \xi_2) : \|\xi\|=1} \left[(1 - \xi_2^2)(Z'_b Z_b + Z'_a Z_a) - \xi_1^2 D^2 \xi_1 - 2\xi_2 z'_a D \xi_1 \right],$$

where $\xi_1 \in R^p$, $\xi_2 \in R$, and $\xi'_1 \xi_1 + \xi'_2 = 1$.

We define the following non-stochastic function

$$ACLR(z_a, \omega) := \sup_{\xi=(\xi'_1, \xi'_2) : \|\xi\|=1} \left[(1 - \xi'_2^2)(\omega + z'_a z_a) - \xi'_1 D^2 \xi_1 - 2\xi_2 z'_a D \xi_1 \right] \quad (22.56)$$

for $z_a \in R^p$ and $\omega \in R_+$. Note that $ACLR = ACLR(Z_a, Z'_b Z_b)$.

We show below that the function $ACLR(z_a, \omega)$ is (i) nonnegative, (ii) strictly increasing in ω on $R_+ \forall z_a \neq 0^p$, and (iii) continuous in (z_a, ω) on $R^p \times R_+$, and $ACLR(z_a, \omega)$ satisfies (iv) $\lim_{\omega \to \infty} ACLR(z_a, \omega) = \infty$. In consequence, $\forall z_a \neq 0^p$, $ACLR(z_a, \omega)$ has a continuous, strictly-increasing inverse function in its second argument with domain $[ACLR(z_a, 0), \infty) \subset R_+$, which we denote by $ACLR^{-1}(z_a, x)$.

Using this, we have: for all $x \geq ACLR(z_a, 0)$ and $z_a \neq 0^p$,

$$ACLR(z_a, \omega) \leq x \iff \omega \leq ACLR^{-1}(z_a, x), \quad (22.57)$$

where the condition $x \geq ACLR(z_a, 0)$ ensures that x is in the domain of $ACLR^{-1}(z_a, \cdot)$.

Now, we show that for all $x_0 \in R$ and $z_a \neq 0^p$,

$$\lim_{x \to x_0} P(ACLR(z_a, Z'_b Z_b) \leq x) = P(ACLR(z_a, Z'_b Z_b) \leq x_0). \quad (22.58)$$

\footnote{Properties (i), (iii), and (iv) determine the domain of $ACLR^{-1}(z_a, x)$ for its second argument.}
To prove (22.58), first consider the case $x_0 > ACLR(z_a, 0) \geq 0$ and $z_a \neq 0^p$. In this case, we have

$$
\lim_{x \to x_0} P(ACLR(z_a, Z'_b Z_b) \leq x) = \lim_{x \to x_0} P(Z'_b Z_b \leq ACLR^{-1}(z_a, x)) = P(Z'_b Z_b \leq ACLR^{-1}(z_a, x_0)),
$$

(22.59)

where the first equality holds by (22.57) and the second equality holds by the continuity of the df of the χ^2_{k-p} random variable $Z'_b Z_b$ and the continuity of $ACLR^{-1}(z_a, x)$ at x_0. Hence, (22.58) holds when $x_0 > ACLR(z_a, 0)$.

Next, consider the case $x_0 < ACLR(z_a, 0)$ and $z_a \neq 0^p$. We have

$$
P(ACLR(z_a, Z'_b Z_b) \leq x_0) \leq P(ACLR(z_a, Z'_b Z_b) < ACLR(z_a, 0)) = 0,
$$

(22.60)

where the equality holds because $ACLR(z_a, x)$ is increasing on by property (ii) and $Z'_b Z_b \geq 0$ a.s. For x sufficiently close to x_0, $x < ACLR(z_a, 0)$ and by the same argument as in (22.60), we obtain $P(ACLR(z_a, Z'_b Z_b) \leq x) = 0$. Thus, (22.58) holds for $x_0 < ACLR(z_a, 0)$.

Finally, consider the case $x_0 =ACL R(z_a, 0)$ and $z_a \neq 0^p$. In this case, (22.58) holds for sequences of values x that strictly decline to x_0 by the same argument as for the first case where $x_0 > ACLR(z_a, 0)$. Next, consider a sequence that strictly increases to x_0. We have $P(ACLR(z_a, Z'_b Z_b) \leq x) = 0 \forall x < x_0$ by the same argument as given for the second case where $x_0 < ACLR(z_a, 0)$. In addition, we have

$$
P(ACLR(z_a, Z'_b Z_b) \leq x_0) = P(ACLR(z_a, Z'_b Z_b) \leq ACLR(z_a, 0)) \leq P(Z'_b Z_b \leq 0) = 0,
$$

(22.61)

where the inequality holds because $ACLR(z_a, x)$ is strictly increasing on for $z_a \neq 0^p$ by property (ii). This completes the proof of (22.58).

Using (22.58), we establish the continuity of the df of $ACLR$ on R. For any $x_0 \in R$, we have

$$
\lim_{x \to x_0} P(ACLR \leq x) = \lim_{x \to x_0} P(ACLR(Z_a, Z'_b Z_b) \leq x)
= \lim_{x \to x_0} \int P(ACLR(z_a, Z'_b Z_b) \leq x) dF_{Z_a}(z_a)
= \int P(ACLR(z_a, Z'_b Z_b) \leq x_0) dF_{Z_a}(z_a)
= P(ACLR \leq x_0),
$$

(22.62)

where $F_{Z_a}(\cdot)$ denotes the df of Z_a, the first and last equalities hold because $ACLR = ACLR(Z_a, Z'_b Z_b)$, the second equality uses the independence of Z_a and Z_b, and the third equality holds by the
bounded convergence theorem using (22.58) and \(P(Z_\alpha \neq 0^p) = 1 \). Equation (22.62) shows that the df of \(ACLR \) is continuous on \(R \).

Next, we show that the df of \(ACLR \) is strictly increasing at all \(x > 0 \). Because the df of \(ACLR \) is continuous on \(R \) and equals 0 for \(x \leq 0 \) (because \(ACLR \geq 0 \) by property (i)), the \(1 - \alpha \) quantile of \(ACLR \) is positive. Hence, the former property implies that the df of \(ACLR \) is increasing at its \(1 - \alpha \) quantile, as stated in the Lemma.

For \(x \geq ACLR(z_\alpha, 0), \delta > 0, \) and \(z_\alpha \neq 0^p \), we have

\[
P(ACLR(z_\alpha, Z_b^tZ_b) \in [x, x + \delta]) = P(Z_b^tZ_b \in [ACLR^{-1}(z_\alpha, x), ACLR^{-1}(z_\alpha, x + \delta)]) > 0, \tag{22.63}
\]

where the equality holds by (22.57) and the inequality holds because \(ACLR^{-1}(z_\alpha, x) \) is strictly increasing in \(x \) for \(x \) in \([ACLR(z_\alpha, 0), \infty)\) when \(z_\alpha \neq 0^p \) and \(Z_b^tZ_b \) has a \(\chi^2_{b-p} \) distribution, which is absolutely continuous.

The function \(ACLR(z_\alpha, 0) \) is continuous at all \(z_\alpha \in R^p \) (by property (iii)) and \(ACLR(0^p, 0) = 0 \) (by a simple calculation using (22.56)). In consequence, for any \(x > 0 \), there exists a vector \(z_\alpha^* \in R^p \) and a constant \(\varepsilon > 0 \) such that \(ACLR(z_\alpha, 0) < x \) for all \(z_\alpha \in B(z_\alpha^*, \varepsilon) \), where \(B(z_\alpha^*, \varepsilon) \) denotes a ball centered at \(z_\alpha^* \) with radius \(\varepsilon > 0 \). Using this, we have: for any \(x > 0 \) and \(\delta > 0 \),

\[
P(ACLR \in [x, x + \delta]) = \int P(ACLR(z_\alpha, Z_b^tZ_b) \in [x, x + \delta])dF_{Z_a}(z_\alpha) \\
\geq \int_{B(z_\alpha^*, \varepsilon)} P(ACLR(z_\alpha, Z_b^tZ_b) \in [x, x + \delta])dF_{Z_a}(z_\alpha) > 0, \tag{22.64}
\]

where the equality uses the independence of \(Z_a \) and \(Z_b \), the first inequality holds because \(B(z_\alpha^*, \varepsilon) \subset R \) and the integrand is nonnegative, and the second inequality holds because \(P(Z_\alpha \in B(z_\alpha^*, \varepsilon)) > 0 \) (since \(Z_\alpha \sim N(0^p, I_p) \) and \(B(z_\alpha^*, \varepsilon) \) is a ball with positive radius) and the integrand is positive for \(z_\alpha \in B(z_\alpha^*, \varepsilon) \) by (22.63) using the fact that \(x > ACLR(z_\alpha, 0) \) for all \(z_\alpha \in B(z_\alpha^*, \varepsilon) \) by the definition of \(B(z_\alpha^*, \varepsilon) \). Equation (22.64) shows that the df of \(ACLR \) is strictly increasing at all \(x > 0 \) and, hence, at its \(1 - \alpha \) quantile which is positive.

It remains to verify properties (i)-(iv) of the function \(ACLR(z_\alpha, \omega) \), which are stated above. The function \(ACLR(z_\alpha, \omega) \) is seen to be nonnegative by replacing the supremum in (22.56) by \(\xi = (0^p, 1)^t \). Hence, property (i) holds. The function \(ACLR(z_\alpha, \omega) \) can be written as

\[
ACLR(z_\alpha, \omega) = \omega + z_\alpha^t z_\alpha - \lambda_{\min} \begin{pmatrix} D^2 & Dz_\alpha \\ z_\alpha^t D & z_\alpha^t z_\alpha + \omega \end{pmatrix} \tag{22.65}
\]

by analogous calculations to those in (22.55). The minimum eigenvalue is a continuous function.
of a matrix is a continuous function of its elements by Elsner’s Theorem, see Stewart (2001, Thm. 3.1, pp. 37–38). Hence, ACLR(z_a, ω) is continuous in $(z_a, \omega) \in R^p \times R_+$ and property (iii) holds.

For any $\xi^2_2 \in [0,1)$ and $\xi_1 \in R^p$ such that $\xi'_1 \xi_1 = 1 - \xi^2_2$, we have

$$ACLR(z_a, \omega) \geq (1 - \xi^2_2)(\omega + z'_a z_a) - \xi'_1 D^2 \xi_1 - 2\xi_2 z'_a D\xi_1 \rightarrow \infty \text{ as } \omega \rightarrow \infty,$$ \hspace{1cm} (22.66)

where the inequality holds by replacing the supremum over ξ in (22.56) by the same expression evaluated at $\xi = (\xi'_1, \xi_2)'$ and the divergence to infinity uses $1 - \xi^2_2 > 0$. Hence, property (iv) holds.

It remains to verify property (ii), which states that ACLR(z_a, ω) is strictly increasing in ω on $R_+ \forall z_a \neq 0^p$. For $\omega \in R_+$, let $\xi_\omega = (\xi'_1, \xi_2)'$ (for $\xi_\omega \in R^p$ and $\xi_\omega \in R$) be such that $||\xi_\omega|| = 1$ and

$$ACLR(z_a, \omega) = (1 - \xi^2_\omega)(\omega + z'_a z_a) - \xi'_1 D^2 \xi_1 - 2\xi_\omega z'_a D\xi_1.$$

(22.67)

Such a vector ξ_ω exists because the supremum in (22.56) is the supremum of a continuous function over a compact set and, hence, the supremum is attained at some vector ξ_ω. (Note that ξ_ω typically depends on z_a as well as ω.) Using (22.67), we obtain: for all $\delta > 0$, if $\xi^2_\omega < 1$,

$$ACLR(z_a, \omega) < (1 - \xi^2_\omega)(\omega + \delta + z'_a z_a) - \xi'_1 D^2 \xi_1 - 2\xi_\omega z'_a D\xi_1$$

$$\leq \sup_{\xi = (\xi'_1, \xi_2)'; ||\xi|| = 1} \left[(1 - \xi^2_\omega)(\omega + \delta + z'_a z_a) - \xi'_1 D^2 \xi_1 - 2\xi_\omega z'_a D\xi_1\right]$$

$$= ACLR(z_a, \omega + \delta).$$ \hspace{1cm} (22.68)

Equation (22.68) shows that ACLR(z_a, ω) is strictly increasing at ω provided $\xi^2_\omega < 1$.

Next, we show that $\xi^2_\omega = 1$ only if $z_a = 0^p$. By (22.56) and (22.67), ξ_ω maximizes the rhs expression in (22.56) over $\xi \in R^{p+1}$ subject to $\xi'_1 + \xi^2_2 = 1$. The Lagrangian for the optimization problem is

$$(1 - \xi^2_\omega)(\omega + z'_a z_a) - \xi'_1 D^2 \xi_1 - 2\xi_\omega z'_a D\xi_1 + \gamma(1 - \xi^2_\omega - \xi'_1 \xi_1),$$

(22.69)

where $\gamma \in R$ is the Lagrange multiplier. The first-order conditions of the Lagrangian with respect to ξ, evaluated at the solution $(\xi'_1, \xi_\omega)'$ and the corresponding Lagrange multiplier, say γ_ω, are

$$-2D^2\xi_1 - 2\xi_\omega Dz_a - 2\gamma_\omega \xi_\omega = 0^p.$$ \hspace{1cm} (22.70)

The solution is $\xi_\omega = 0^p$ (which is an interior point of the set $\{\xi_1 : ||\xi_1|| \leq 1\}$) only if $\xi_\omega = 0$ or $z_a = 0^p$ (because D is a pd diagonal matrix). Thus, $\xi^2_\omega = 1 - \xi'_1 \xi_1 = 1$ only if $z_a = 0^p$. This concludes the proof of property (iv). \Box
22.5 Proof of Lemma 22.4

Lemma 22.4 is stated in Section 22.1.

For notational simplicity, the following proof is for the sequence \(\{n\} \), rather than a subsequence \(\{w_n : n \geq 1\} \). The same proof holds for any subsequence \(\{w_n : n \geq 1\} \).

Proof of Lemma 22.4. We prove part (a)(i) first. We have

\[
\hat{W}_{2n} = n^{-1} \sum_{i=1}^{n} (g_i g_i' - E_{F_n} g_i g_i') + E_{F_n} g_i g_i' \overset{p}{\to} h_{5,g},
\]

(22.71)

where the convergence holds by the WLLN (using the moment conditions in \(F_2 \)) and \(\lambda_{T,F_n} = W_{2F_n} = \Omega_{F_n} := E_{F_n} g_i g_i' \to h_{5,g} \) (by the definition of the sequence \(\{\lambda_{n,h} : n \geq 1\} \)). Hence, Assumption WU(a) holds for the parameter space \(\Lambda_1 \) with \(h_7 = h_{5,g} \).

Next, we verify Assumption WU(b) for the parameter space \(\Lambda_1 \) for \(\hat{U}_{2n} = (\hat{\Omega}_n, \hat{R}_n) \). Using the definition of \(\hat{V}_n = (\hat{V}_n(\theta_0)) \) in [6.3], we have

\[
\hat{V}_n = n^{-1} \sum_{i=1}^{n} (u_i u_i' \otimes Z_i Z_i') - n^{-1} \sum_{i=1}^{n} (\hat{\alpha}_{in} u_i' \otimes Z_i Z_i') - n^{-1} \sum_{i=1}^{n} (u_i \hat{\alpha}_{in}' \otimes Z_i Z_i')
\]

(22.72)

\[+n^{-1} \sum_{i=1}^{n} (\hat{\alpha}_{in} \hat{\alpha}_{in}' \otimes Z_i Z_i').\]

We have

\[
n^{-1} \sum_{i=1}^{n} (u_i u_i' \otimes Z_i Z_i') = E_{F_n} f_i f_i' + o_p(1),
\]

\[
\hat{\alpha}_{in} = (n^{-1} Z_{in} Z_{in}')^{-1} n^{-1} Z_{in} Z_{in}' U^* = (E_{F_n} Z_{in} Z_{in}')^{-1} E_{F_n} Z_{in} Z_{in}' + o_p(1)
\]

(22.73)

\[= (E_{F_n} Z_{in} Z_{in}')^{-1} E_{F_n} (g_i, G_i) + o_p(1) =: \Xi_{F_n} + o_p(1),
\]

\[n^{-1} \sum_{i=1}^{n} (\hat{\alpha}_{in} u_i' \otimes Z_i Z_i') = n^{-1} \sum_{i=1}^{n} (\hat{\Xi}_{in} Z_i Z_i' \otimes Z_i Z_i') = E_{F_n} (\Xi_{F_n} Z_i Z_i' \otimes Z_i Z_i') + o_p(1), \]

and

\[n^{-1} \sum_{i=1}^{n} (\hat{\alpha}_{in} \hat{\alpha}_{in}' \otimes Z_i Z_i') = n^{-1} \sum_{i=1}^{n} (\hat{\Xi}_{in} Z_i Z_i' \hat{\Xi}_{in} \otimes Z_i Z_i') = E_{F_n} (\Xi_{F_n} Z_i Z_i' \hat{\Xi}_{in} \otimes Z_i Z_i') + o_p(1),
\]

where the first line holds by the WLLN’s (since \(u_i u_i' \otimes Z_i Z_i' = f_i f_i' \) for \(f_i \) defined in [10.7] and using the moment conditions in \(F_2 \)), the second line holds by the WLLN’s (using the conditions in \(F_1 \) and \(F_2 \)), Slutsky’s Theorem, and \(Z_i u_i' = (g_i, G_i) \), the fourth line holds by the WLLN’s (using \(E_F(||(g_i, G_i)|| \cdot ||Z_i||^2)^{1+\gamma/4} \leq (E_F||Z_i||^2)^{1+\gamma/2} E_F||Z_i||^{4+\gamma})^{1/2} < \infty \) for \(\gamma > 0 \) by the Cauchy-Bunyakovsky-Schwarz inequality and the moment conditions in \(F_1 \) and \(F_2 \) and the result of the second and third lines, and the fifth line holds by the WLLN’s (using the moment conditions in \(F_1 \)
and \(\mathcal{F}_2 \) and the result of the second and third lines.

Equations \([10.7]\) (which defines \(V_F \)), \([22.72]\), and \([22.73]\) combine to give

\[
\hat{V}_n - V_{Fn} \rightarrow_p 0. \tag{22.74}
\]

Using the definitions of \(\hat{R}_n \) and \(R_F \) (in \([6.3]\) and \([10.7]\)), \([22.71]\), \([22.74]\), and \(h_7 := \lim W_{2Fn} = \lim \Omega_{Fn} \) yield

\[
(\hat{\Omega}_n, \hat{R}_n) \rightarrow_p \lim (\Omega_{Fn}, R_{Fn}) =: h_8. \tag{22.75}
\]

This establishes Assumption WU(b) for the parameter space \(\Lambda_1 \) for part (a) of the lemma.

Now we establish Assumption WU(c) for the parameter space \(\Lambda_1 \) for part (a) of the lemma. We take \(\mathcal{W}_2 \) (which appears in the statement of Assumption WU(c)) to be the space of psd \(k \times k \) matrices and \(\mathcal{U}_2 \) (which also appears in Assumption WU(c)) to be the space of non-zero psd matrices \((\Omega, R) \) for \(\Omega \in R^{k \times k} \) and \(R \in R^{(p+1)k \times (p+1)k} \). By the definition of \(\hat{W}_{2n}, \hat{W}_{2n} \in \mathcal{W}_2 \) a.s. We have \(W_{2F} \in \mathcal{W}_2 \) \(\forall F \in \mathcal{F}_{WU} \) because \(W_{2F} = E_F g_i g_i' \) is psd. We have \(U_{2F} \in \mathcal{U}_2 \) \(\forall F \in \mathcal{F}_{WU} \) because \(U_{2F} = (\Omega_F, R_F) \), \(\Omega_F := E_F g_i g_i' \) is psd and non-zero (by the last condition in \(\mathcal{F}_2 \), even if that condition is weaken to \(\lambda_{\text{max}}(E_F g_i g_i') \geq \delta \)) and \(R_F := (B' \otimes I_k) V_F (B \otimes I_k) \) is psd and non-zero because \(B \) (defined in \([6.3]\)) is nonsingular and \(V_F \) (defined in \([10.7]\)) is non-zero by the argument given in the paragraph following \([22.78]\) below. By their definitions, \(\hat{\Omega}_n \) and \(\hat{R}_n \) are psd. In addition, they are non-zero \(\text{wp} \rightarrow 1 \) by \([22.75]\) and the result just established that the two matrices that comprise \(h_8 \) are non-zero. Hence, \((\hat{\Omega}_n, \hat{R}_n) \in \mathcal{U}_2 \) \(\text{wp} \rightarrow 1 \).

The function \(W_1(W_2) = W_2^{-1/2} \) is continuous at \(W_2 = h_7 \) on \(\mathcal{W}_2 \) because \(\lambda_{\text{min}}(h_7) > 0 \) (given that \(h_7 = \lim E_F g_i g_i' \) and \(\lambda_{\text{min}}(E_F g_i g_i') \geq \delta \) by the last condition in \(\mathcal{F}_2 \)).

The function \(U_1(\cdot) \) defined in \([10.8]\) is well-defined in a neighborhood of \(h_8 \) and continuous at \(h_8 \) provided all psd matrices \(\Omega \in R^{k \times k} \) and \(R \in R^{(p+1)k \times (p+1)k} \) with \((\Omega, R) \) in a neighborhood of \(h_8 := \lim (\Omega_{Fn}, R_{Fn}) \) are such that \(\Sigma^c(\Omega, R) \) is nonsingular, where \(\Sigma(\Omega, R) \) is defined in the paragraph containing \([10.8]\) with \((\Omega, R) \) in place of \((\Omega_F, R_F) \) and \(\Sigma^c(\Omega, R) \) is defined given \(\Sigma(\Omega, R) \) by \([6.6]\). Lemma \([17.1]\) (b) shows that \(\Sigma^c(\Omega, R) \) is nonsingular provided \(\lambda_{\text{max}}(\Sigma(\Omega, R)) > 0 \). We have

\[
\lambda_{\text{max}}(\Sigma(\Omega, R)) \geq \max_{j \leq p+1} \Sigma_{jj}(\Omega, R) = \max_{j \leq p+1} \text{tr}(\Omega^{-1/2} R_{jj} \Omega_{jj}^{-1/2})/k
\]

\[
\geq \max_{j \leq p+1} \lambda_{\text{max}}(\Omega^{-1/2} R_{jj} \Omega_{jj}^{-1/2})/k = \max_{j \leq p+1} \sup_{\lambda \geq \lambda_0} \frac{\lambda' \Omega^{-1/2} R_{jj} \Omega_{jj}^{-1/2} \lambda}{\langle \Omega^{-1/2} \lambda \rangle} \cdot \langle \Omega^{-1/2} \lambda \rangle^2 / k
\]

\[
\geq \max_{j \leq p+1} \lambda_{\text{max}}(R_{jj}) \lambda_{\text{min}}(\Omega_{jj}^{-1})/k > 0, \tag{22.76}
\]

where \(\Sigma_{jj}(\Omega, R) \) denotes the \((j, j)\) element of \(\Sigma(\Omega, R) \), \(R_{jj} \) denotes the \((j, j)\) \(k \times k \) submatrix of
We show that the last condition in \mathcal{F}_2 implies $\inf_{F \in \mathcal{F}_2} \lambda_{\text{max}}(E_F g_i g_i') > 0$ holds provided $\inf_{F \in \mathcal{F}_2} \lambda_{\text{max}}(E_F g_i g_i') > 0$.

Let $x^* \in R^{(p+1)k}$ be such that $||x^*|| = 1$ and $\lambda_{\text{max}}(V_F) = x^* V_F x^*$. Let $x^\dagger = (B \otimes I_k)^{-1} x^*$. Then, we have

$$
\lambda_{\text{max}}(R_F) := \lambda_{\text{max}}(((B' \otimes I_k)V_F(B \otimes I_k)) = \sup_{x \in R^{(p+1)k} ||x|| = 1} x'(B' \otimes I_k)V_F(B \otimes I_k)x
\geq x^\dagger'(B' \otimes I_k)V_F(B \otimes I_k)x^\dagger \cdot ||x^\dagger||^{-2} = x^* V_F x^* / (x^* (B \otimes I_k)^{-1} V_F x^*)
\geq \lambda_{\text{max}}(V_F) / \lambda_{\text{max}}((B \otimes I_k)^{-1} (B \otimes I_k)^{-1}) \geq K \lambda_{\text{max}}(V_F),
$$

where $K := 1 / \lambda_{\text{max}}((B \otimes I_k)^{-1} (B \otimes I_k)^{-1})$ is positive and does not depend on F (because B and $B \otimes I_k$ are nonsingular and do not depend on F for $F = B(\theta_0)$ defined in (6.3)).

Next, $\inf_{F \in \mathcal{F}_2} \lambda_{\text{max}}(V_F) \geq \inf_{F \in \mathcal{F}_2} \lambda_{\text{max}}(E_F g_i g_i')$ because V_F can be written as $E_F(u_i^* - E_F Z_i)(u_i^* - E'_F Z_i)' \otimes Z_i Z_i'$, the first element of Z_i is zero (because $E_F := (E_F Z_i, Z_i')^{-1} E_F(g_i, G_i)$, see (10.7), and $E_F g_i = 0^k$), the first element of $u_i^* - E_F Z_i = u_i$ (because $u_i^* = (u_i, u_i'^*)'$), the upper left $k \times k$ submatrix of V_F equals $E_F u_i^2 Z_i Z_i' = E_F g_i g_i'$, and so, $\lambda_{\text{max}}(V_F) \geq \lambda_{\text{max}}(E_F g_i g_i')$. This result and (22.77) imply that (22.77) holds provided $\inf_{F \in \mathcal{F}_2} \lambda_{\text{max}}(E_F g_i g_i') > 0$. As noted above, the latter is implied by the last condition in \mathcal{F}_2. This completes the verification (22.77) and the verification of Assumption WU(c) in part (a) of the lemma.

Now, we prove part (a)(ii) of the lemma. We need to show that the four conditions in the
definition of \mathcal{F}_{WU} in (10.12) hold.

(I) We show that $\inf_{F \in \mathcal{F}_1} \lambda_{\min}(W_F) > 0$, where $W_F := W_1(W_2) := \Omega_F^{-1/2} := (E_F g_l g'_l)^{-1/2}$ (by (10.5) and the paragraph containing (10.6)). The inequality $E_F ||g'||^{2+\gamma} \leq M$ in \mathcal{F}_2 implies $\lambda_{\min}(W_F) \geq \delta_1$ for δ_1 sufficiently small (because the latter holds if $\lambda_{\max}(W_F^{-2}) \leq \delta_1^2$ and $W_F^{-2} = \Omega_F = E_F g_l g'_l$.

(II) We show that $\sup_{F \in \mathcal{F}_2} ||W_F|| < \infty$, where $W_F := W_1(W_2) := \Omega_F^{-1/2} := (E_F g_l g'_l)^{-1/2}$ (by (10.5) and the paragraph containing (10.11)). We have $\inf_{F \in \mathcal{F}_2} \lambda_{\min}(\Omega_F) > 0$ (by the last condition in \mathcal{F}_2).

(III) We show that $\inf_{F \in \mathcal{F}_1} \lambda_{\min}(U_F) > 0$, where in the present case $U_F := U_1(U_2) := ((\theta_0, I_p)(\Sigma^e(\Omega_F, R_F)')^{-1}(\theta_0, I_p'))^{1/2}$ and $\Sigma(\Omega_F, R_F)$ has (j, ℓ) element equal to $tr(R'_j \Omega_F^{-1})/k$ (by (10.8)). The inequalities $E_F ||Z_l||^{4+\gamma} \leq M$, $E_F ||(g'_l, vec(G_i))'||^{2+\gamma} \leq M$, and $\lambda_{\min}(E_F Z_l Z'_l) \geq \delta$ imply that $\sup_{F \in \mathcal{F}_1} ||Z_F|| < \infty$, $\sup_{F \in \mathcal{F}_1} ||R_F|| < \infty$, $\sup_{F \in \mathcal{F}_1} ||\Sigma_F|| < \infty$, $\sup_{F \in \mathcal{F}_1} ||\Sigma^e_F|| < \infty$, and $\lambda_{\min}(L_F) \geq \delta_2$ for some $\delta_2 > 0$, where V_F and R_F are defined in (10.7), $\Sigma_F := \Sigma(\Omega_F, R_F)$, $L_F := (\theta_0, I_p)(\Sigma^e_F)^{-1}(\theta_0, I_p')$ and $(\Sigma^e_F)^{-1}$ exists by (IV) below (and $\lambda_{\min}(L_F) \geq \delta_2$ holds because $A := (\theta_0, I_p) \in R^{p \times (p+1)}$ has full row rank p, and $\lambda_{\min}(L_F) = \inf_{\lambda \in R^p:||\lambda|| = 1} \lambda^t A(\Sigma^e_F)^{-1}A' \lambda \geq \inf_{\lambda \in R^p:||\lambda|| = 1} (A' \lambda)^t(\Sigma^e_F)^{-1}(A' \lambda)/||A' \lambda||^2 \times \inf_{\lambda \in R^p:||\lambda|| = 1} ||A' \lambda||^2 = \lambda_{\min}(\Sigma^e_F)^{-1}) \lambda_{\min}(A A') \geq \delta_2$ for some $\delta_2 > 0$ that does not depend on F). Finally, $\lambda_{\min}(L_F) \geq \delta_2$ implies the desired result that $\lambda_{\min}(U_F) \geq \delta_1$ for some $\delta_1 > 0$ (because $U_F := L_F^{1/2}$).

(IV) We show that $\sup_{F \in \mathcal{F}_1} ||U_F|| < \infty$, where U_F is as in (III) immediately above. By the same calculations as in (22.76) (which use (22.77)) with Σ_F and (Ω_F, R_F) in place of (Σ, R) and (Ω, R), respectively, we have $\inf_{F \in \mathcal{F}_1} \lambda_{\max}(\Sigma_F) > 0$. The latter implies $\inf_{F \in \mathcal{F}_1} \lambda_{\min}(\Sigma^e_F) > 0$ by Lemma 17.1(b). In turn, the latter implies the desired result $\sup_{F \in \mathcal{F}_1} ||U_F|| = \sup_{F \in \mathcal{F}_1} ||(\theta_0, I_p)(\Sigma^e_F)^{-1} \times (\theta_0, I_p')||^{1/2} < \infty$.

Results (I)-(IV) establish the result of part (a)(ii).

Now, we prove part (b)(i) of the lemma. Assumption WU(a) holds for the parameter space Λ_2 with $h_\gamma = h_{5, \beta}$ by the same argument as for part (a)(i). Next, we establish Assumption WU(b) for the parameter space Λ_2. Using the definition of $\tilde{V}_n (= \tilde{V}_n(\theta_0))$ in (7.1), we have

$$\tilde{V}_n = n^{-1} \sum_{i=1}^{n} (f_i f'_i - \tilde{f}_i \tilde{f}''_i) = E_{F_n} f_i f'_i - (E_{F_n} f_i)(E_{F_n} f'_i) + o_p(1)$$ \hspace{1cm} (22.79)
by the WLLN's (using the moment conditions in F_2). In consequence, we have

$$\tilde{R}_n = (B' \otimes I_k)(E_{F,n} f_i f_i' - (E_{F,n} f_i)(E_{F,n} f_i'))(B \otimes I_k) + o_p(1)$$

$$\rightarrow_p \tilde{R}_h := (B' \otimes I_k) [h_5 - vec((0^k, h_4))vec((0^k, h_4))'] (B \otimes I_k),$$

(22.80)

where $B = B(\theta)$ is defined in (6.3), the convergence is implied by the definitions of $\lambda_{4,F}$ and $\lambda_{5,F}$ in (10.16), and the definition of $\{\lambda_{n,h} : n \geq 1\}$ in (10.18).

This yields

$$\tilde{U}_{2n} = (\Omega_n, \tilde{R}_n) \rightarrow_p (h_{5,g}, \tilde{R}_h) = h_8,$$

(22.81)

which verifies Assumption WU(b) for the parameter space Λ_2 for part (b) of the lemma.

Assumption WU(c) holds for the parameter space Λ_2, with W_2 and U_2 defined as above, by the argument given above to verify Assumption WU(c) in part (a) of the lemma plus the inequality $\lambda_{\max}(\tilde{R}_h) > 0$, which is established as follows. The inequality $\lambda_{\max}(\tilde{R}_h) > 0$ is implied by $\inf_{F \in F_2} \lambda_{\max}(\tilde{R}_F) > 0$. The latter holds by the same argument as used above to show $\inf_{F \in F_2} \lambda_{\max}(R_F) > 0$ (which is given in the paragraph containing (22.78) and the paragraph following it), but with (i) \tilde{R}_F in place of R_F and (ii) $\inf_{F \in F_2} \lambda_{\max}(\tilde{V}_F) > 0$, rather than $\inf_{F \in F_2} \lambda_{\max}(V_F) > 0$, holding because $E_F g_i g_i'$ is the upper left $p \times p$ submatrix of \tilde{V}_F, which implies that $\lambda_{\max}(\tilde{V}_F) \geq \lambda_{\max}(E_F g_i g_i')$, and $\lambda_{\max}(E_F g_i g_i') \geq \delta$ by the last condition in F_2.

Now we prove part (b)(ii). It suffices to show that $F_2 \subset F_{WU}$ for δ_1 sufficiently small and M_1 sufficiently large because $F_{WU} \subset F_2$ by the definition of F_{WU}. We need to show that the four conditions in the definition of F_{WU} in (10.12) hold.

(I) & (II) We have $\inf_{F \in F_2} \lambda_{\min}(W_F) > 0$ and $\sup_{F \in F_2} \|W_F\| < \infty$ by the proofs of (I) and (II) for part (a)(ii) of the lemma.

(III) We show that $\inf_{F \in F_2} \lambda_{\min}(\tilde{U}_F) > 0$, where in the present case $U_F := U_1(U_{2F}) := ((\theta_0, I_p)(\Sigma_F)^{-1}(\theta_0, I_p)')^{1/2}$ and $\Sigma_F := \Sigma(\Omega_F, \tilde{R}_F)$ has (j, ℓ) element equal to $tr(\tilde{R}_F^j \Omega_F^{-1})/k$ (by the paragraph containing (10.11)). We have $\sup_{F \in F_2} \|\tilde{R}_F\| = \sup_{F \in F_2} \|B' \otimes I_k \times Var_F(f_i) (B \otimes I_k)\| < \infty$ (where the inequality uses the condition $E_F(||g_i' vec(G_i)'||^{2+\gamma} \leq M$ in F_2). In addition, $\inf_{F \in F_2} \lambda_{\min}(\Sigma_F) > 0$ (by the last condition in F_2). The latter results imply that $\sup_{F \in F_2} ||\Sigma_F|| < \infty$ (because Σ_F minimizes $||I_{p+1} \otimes \Omega_F^{-1/2})\Sigma \otimes \Omega_F - \tilde{R}_F(I_{p+1} \otimes \Omega_F^{-1/2})||$, see the paragraph containing (10.11)). This implies that $\sup_{F \in F_2} ||\tilde{R}_F|| < \infty$. In addition, Σ_F is nonsingular $\forall F \in F_2$ (because $\inf_{F \in F_2} \lambda_{\min}(\Sigma_F) > 0$ by the proof of result (IV) below). The last two results imply the desired result $\inf_{F \in F_2} \lambda_{\min}(U_F) = \inf_{F \in F_2} \lambda_{\min}((\theta_0, I_p)(\Sigma_F)^{-1}(\theta_0, I_p)')^{1/2}) > 0$ (because $(\theta_0, I_p) \in R^{p \times (p+1)}$ has full row rank p).

(IV) We show that $\sup_{F \in F_2} ||U_F|| < \infty$, where U_F is defined in (III) immediately above. The
proof is the same as the proof of (IV) for part (a) of the lemma given above, but with \(\bar{R}_F \) in place of \(R_F \) and with the verification that \(\inf_{F \in \mathcal{F}_2} \lambda_{\text{max}}(\bar{R}_F) > 0 \) given in the the verification of Assumption WU(c)) above.

This completes the proof of part (b)(ii). \(\square \)

22.6 Proof of Theorem 10.1 for the Anderson-Rubin Test and CS

Theorem 10.1 is stated in Section 8 of AG2 and, for convenience, is restated at the beginning of this section, i.e., Section 22.

Proof of Theorem 10.1 for AR Test and CS. We prove the AR test results of Theorem 10.1 by applying Proposition 10.2 with

\[
\lambda = \lambda_F := E_F g_i g_i', \ h_n(\lambda) := \lambda, \ \text{and} \ \Lambda := \{\lambda : \lambda = \lambda_F \ \text{for some} \ F \in \mathcal{F}_{AR}\}. \quad (22.82)
\]

We define the parameter space \(H \) as in (10.2). For notational simplicity, we verify Assumption B* used in Proposition 10.2 for a sequence \(\{\lambda_n \in \Lambda : n \geq 1\} \) for which \(h_n(\lambda_n) \rightarrow h \in H \), rather than a subsequence \(\{\lambda_{n_n} \in \Lambda : n \geq 1\} \) for some subsequence \(\{n_n\} \) of \(\{n\} \). The same argument as given below applies with a subsequence \(\{\lambda_{n_n} : n \geq 1\} \). For the sequence \(\{\lambda_n \in \Lambda : n \geq 1\} \), we have

\[
\lambda_{F_n} \xrightarrow{\text{h}} h := \lim E_{F_n} g_i g_i'. \quad (22.83)
\]

The \(k \times k \) matrix \(h \) is pd because \(\lambda_{\text{min}}(E_{F_n} g_i g_i') \geq \delta > 0 \) for all \(n \geq 1 \) (by the last condition in \(\mathcal{F}_{AR} \)) and \(\lim \lambda_{\text{min}}(E_{F_n} g_i g_i') = \lambda_{\text{min}}(h) \) (because the minimum eigenvalue of a matrix is a continuous function of the matrix).

By the multivariate central limit theorem for triangular arrays of row-wise i.i.d. random vectors with mean \(0^k \), variance \(\lambda_{F_n} \) that satisfies \(\lambda_{F_n} \rightarrow h \), and uniformly bounded \(2 + \gamma \) moments, we have

\[
n^{1/2} \bar{\gamma}_n \xrightarrow{d} h^{1/2} Z, \ \text{where} \ Z \sim N(0^k, I_k). \quad (22.84)
\]

We have

\[
\hat{\Omega}_n = n^{-1} \sum_{i=1}^{n} (g_i g_i' - E_{F_n} g_i g_i') - \bar{\gamma}_n \bar{\gamma}_n' + E_{F_n} g_i g_i' \rightarrow_p h \ \text{and} \ \hat{\Omega}_n^{-1} \rightarrow_p h^{-1}, \quad (22.85)
\]

where the equality holds by definition of \(\hat{\Omega}_n \) in (5.1), the first convergence result uses (22.83), (22.84), and the WLLN’s for triangular arrays of row-wise i.i.d. random vectors with expectation that converges to \(h \), and uniformly bounded \(1 + \gamma/2 \) moments, and the second convergence result
holds by Slutsky’s Theorem because \(h \) is pd.

Equations (22.84) and (22.85) give

\[
AR_n := n\tilde{g}_n^\prime \tilde{\Omega}_n^{-1/2} \tilde{g}_n \to_d Z' h^{1/2} h^{-1/2} Z = Z' Z \sim \chi_k^2.
\]

(22.86)

In turn, (22.86) gives

\[
P_Fn(AR_n > \chi_{k,1-\alpha}^2) \to P(Z' Z > \chi_{k,1-\alpha}^2) = \alpha.
\]

(22.87)

where the equality holds because \(\chi_{k,1-\alpha}^2 \) is the \(1 - \alpha \) quantile of \(Z' Z \). Equation (22.87) verifies Assumption B* and the proof of the AR test results of Theorem 10.1 is complete.

The proof of the AR CS results of Theorem 10.1 is analogous to those for the tests, see the Comment to Proposition 10.2.

23 Proof of Theorem 9.1

Theorem 9.1 of AG2. Suppose \(k \geq p \). For any sequence \(\{\lambda^{*}_{n,h} : n \geq 1\} \) that exhibits strong or semi-strong identification and for which \(\lambda^{*}_{n,h} \in \Lambda^*_1 \forall n \geq 1 \) for the SR-CQLR\(_1\) test statistic and critical value and \(\lambda^{*}_{n,h} \in \Lambda^*_2 \forall n \geq 1 \) for the SR-CQLR\(_2\) test statistic and critical value, we have

(a) \(SR-QLR_{jn} = QLR_{jn} + o_p(1) = LM_n + o_p(1) = LM_n^{GMM} + o_p(1) \) for \(j = 1, 2 \),

(b) \(c_k.p(n^{1/2} \hat{D}^*_n, 1 - \alpha) \to_p \chi^2_{p,1-\alpha} \), and

(c) \(c_k.p(n^{1/2} \hat{D}^*_n, 1 - \alpha) \to_p \chi^2_{p,1-\alpha} \).

The proof of Theorem 9.1 uses the following Lemma that concerns the QLR\(_n\) statistic, which is based on general weight matrices \(\hat{W}_n \) and \(\hat{U}_n \), see (10.3), and considers sequences of distributions \(F \) in \(\mathcal{F}_1 \) or \(\mathcal{F}_2 \), rather than sequences in \(\mathcal{F}_1^{SR} \) or \(\mathcal{F}_2^{SR} \). Given the result of this Lemma, we obtain the results of Theorem 9.1 using an argument that is similar to that employed in Section 10.2, combined with the verification of Assumption WU for the parameter spaces \(\Lambda_1 \) and \(\Lambda_2 \) for the CQLR\(_1\) and CQLR\(_2\) tests, respectively, that is given in Lemma 22.4 in Section 22.

For the weight matrix \(\hat{W}_n \in \mathbb{R}^{k \times k} \), Kleibergen’s LM statistic and the standard GMM LM statistic are defined by

\[
LM_n(\hat{W}_n) := n\tilde{g}_n^\prime \hat{\tilde{\Omega}}_n^{-1/2} P_{\hat{W}_n, \tilde{g}_n} \hat{\tilde{\Omega}}_n^{-1/2} \tilde{g}_n \quad \text{and} \quad LM_n^{GMM}(\hat{W}_n) := n\tilde{g}_n^\prime \hat{\tilde{\Omega}}_n^{-1/2} P_{\hat{W}_n, \tilde{g}_n} \hat{\tilde{\Omega}}_n^{-1/2} \tilde{g}_n,
\]

(23.1)

respectively, where \(\hat{G}_n \) is the sample Jacobian defined in (5.1) with \(\theta = \theta_0 \). In Lemma 23.1 we show that when \(n^{1/2} \tau_P \to \infty \), the QLR\(_n\) statistic is asymptotically equivalent to the \(LM_n(\hat{W}_n) \) and \(LM_n^{GMM}(\hat{W}_n) \) statistics.

67
The condition \(n^{1/2} \tau_{pF_n} \to \infty \) corresponds to strong or semi-strong identification in the present context. This holds because, for \(F \in \mathcal{F}_{WU} \), the smallest and largest singular values of \(W_F(E_FG_i)U_F \) (i.e., \(\tau_{\min(k,p)}F \) and \(\tau_{1F} \)) are related to those of \(\Omega_F^{-1/2}E_FG_i \), denoted (as in the Introduction) by \(s_{\min(k,p)}F \) and \(s_{1F} \), via \(c_1s_{jF} \leq \tau_{jF} \leq c_2s_{jF} \) for \(j = \min(k,p) \) and \(j = 1 \) for some constants \(0 < c_1 < c_2 < \infty \). This result uses the condition \(\lambda_{\min}(\Omega_F) \geq \delta > 0 \) in \(\mathcal{F}_{WU} \). (See Section 8.3 in the Appendix of AG1 for the argument used to prove this result.) In consequence, when \(k \geq p \), the standard weak or nonstandard weak, semi-strong, and strong identification categories defined in the Introduction are unchanged if \(sj_{F_n} \) is replaced by \(\tau_{jF_n} \) in their definitions for \(j = 1, p \).

Lemma 23.1 Suppose \(k \geq p \) and Assumption WU holds for some non-empty parameter space \(\Lambda_1 \subset \Lambda_2 \). Under all sequences \(\{\lambda_{n,h} : n \geq 1\} \) with \(\lambda_{n,h} \in \Lambda_1 \) for which \(n^{1/2} \tau_{pF_n} \to \infty \), we have

\[
(a) \quad QLR_n = LM_n(\hat{W}_n) + o_p(1) = LM_n^{GMM}(\hat{W}_n) + o_p(1) \quad \text{and}
\]

\[
(b) \quad c_{k,p}(n^{1/2}\hat{W}_n\hat{D}_n\hat{U}_n, 1 - \alpha) \to_p \chi^2_{p,1-\alpha}.
\]

Comment: The choice of the weight matrix \(\hat{U}_n \) that appears in the definition of the QLR\(_n\) statistic, defined in (10.3), does not affect the asymptotic distribution of QLR\(_n\) statistic under strong or semi-strong identification. This holds because QLR\(_n\) is within \(o_p(1) \) of LM statistics that project onto the matrices \(\hat{W}_n\hat{D}_n\hat{U}_n \) and \(\hat{W}_n\hat{G}_n\hat{U}_n \), but such statistics do not depend on \(\hat{U}_n \) because

\[
P_{\hat{W}_n\hat{D}_n\hat{U}_n} = P_{\hat{W}_n\hat{D}_n} \quad \text{and} \quad P_{\hat{W}_n\hat{G}_n\hat{U}_n} = P_{\hat{W}_n\hat{G}_n} \quad \text{when} \quad \hat{U}_n \quad \text{is a nonsingular} \quad p \times p \quad \text{matrix}.
\]

In consequence, the LM statistics that appear in Lemma 23.1 (and are defined in (23.1)) do not depend on \(\hat{U}_n \).

Proof of Theorem 9.1 of AG2. By the last paragraph of Section 6.2 for \(j = 1 \), SR-QLR\(_{jn}(\theta_0) = QLR\(_{jn}(\theta_0) \) \(\xrightarrow{wp} 1 \) under any sequence \(\{F_n \in \mathcal{F}_{2R}^n : n \geq 1\} \) with \(r_{F_n}(\theta_0) = k \) for \(n \) large. By the same argument as given there, the same result holds for \(j = 2 \). This establishes the first equality in part (a) of Theorem 9.1 because by assumption \(\lambda_{\min}(E_{Fi}g_i g_i') > 0 \) for all \(n \geq 1 \) (see the paragraph preceding Theorem 9.1).

Assumption WU for the parameter spaces \(\Lambda_1 \) and \(\Lambda_2 \) is verified in Lemma 22.4 in Section 22 for the CQLR\(_1\) and CQLR\(_2\) tests, respectively. Hence, Lemma 23.1 implies that under sequences \(\{\lambda_{n,h} : n \geq 1\} \) we have QLR\(_{jn} = LM_n(\hat{\Omega}_n^{-1/2}) + o_p(1) = LM_n^{GMM}(\hat{\Omega}_n^{-1/2}) + o_p(1) \) for \(j = 1, 2 \), where QLR\(_{1n}\) and QLR\(_{2n}\) are defined in (6.7) and in the paragraph containing (7.3), respectively, and \(LM_n(\hat{\Omega}_n^{-1/2}) \) and \(LM_n^{GMM}(\hat{\Omega}_n^{-1/2}) \) are defined in (23.1) with \(\hat{\Omega}_n = \Omega_n^{-1/2} \). In addition, Lemma 23.1 implies that \(c_{k,p}(n^{1/2}\hat{D}_n^*, 1 - \alpha) \to_p \chi^2_{p,1-\alpha} \) and \(c_{k,p}(n^{1/2}\hat{D}_n^*, 1 - \alpha) \to_p \chi^2_{p,1-\alpha} \). Note that all of these results are for sequences of distributions \(F \) in \(\mathcal{F}_1 \) or \(\mathcal{F}_2 \), not \(\mathcal{F}_1^{SR} \) or \(\mathcal{F}_2^{SR} \).

Next, we employ a similar argument to that in (10.30)-(10.32) of Section 10.2. Specifically, we apply the version of Lemma 23.1 described in the previous paragraph with \(g_i' := \Pi_{1F}^{-1/2} A_F g_i \).
and $G_{Fi}^* := \Pi_{1F}^{-1/2}A_F^tG_i$ in place of g_i and G_i to the QLR_{2n} test statistics and their corresponding critical values for $j = 1, 2$. We have $n^{1/2}s_{pF_n}^* \to \infty$ iff $n^{1/2}\tau_{pF_n}^* \to \infty$, where s_{pF}^* denotes the smallest singular value of $E_FG_{Fi}^*$ and τ_{pF}^* is defined to be the smallest singular value of $(E_Fg_{Fi}^*g_{Fi}^{*t})^{-1/2}(E_FG_{Fi}^*)U_F = \Pi_{1F}^{-1/2}A_F^t\Omega_F\Pi_{1F}^{-1/2}(E_FG_{Fi}^*)U_F = (E_FG_{Fi}^*)U_F$. In consequence, the condition $n^{1/2}\tau_{pF_n} \to \infty$ of Lemma 23.1 holds for the transformed variables g_{Fi}^* and G_{Fi}^*, i.e., $n^{1/2}\tau_{pF_n}^* \to \infty$. In the present case, $\{\Pi_{1F}^{-1/2}A_F^tG_i : n \geq 1\}$ are nonsingular $k \times k$ matrices by the assumption that $\lambda_{\min}(E_F,g_{Fi}^*) > 0$ for all $n \geq 1$ (as specified in the paragraph preceding Theorem 9.1). In consequence, by Lemma 6.2 (and a footnote in Section 7 which extends the results of Lemma 6.2 to the QLR_{2n} statistic and its critical value), the QLR_{1n} and QLR_{2n} test statistics and their corresponding critical values are exactly the same when based on g_{Fi}^* and G_{Fi}^* as when based on g_i and G_i. By the definitions of \mathcal{F}_1^{SR} and \mathcal{F}_2^{SR}, the transformed variables g_{Fi}^* and G_{Fi}^* satisfy the conditions in \mathcal{F}_1 and \mathcal{F}_2, see (10.31) and (10.32). In particular, $E_Fg_{Fi}^*,g_{Fi}^{*t} = I_k$ and $\lambda_{\min}(E_FZ_{Fi}^*Z_{Fi}^{*t}) \geq 1/(2c) > 0$, where $Z_{Fi}^* := \Pi_{1F}^{-1/2}A_F^tZ_i$ and c is as in the definition of \mathcal{F}_1^{SR} in (4.9). In addition, the LM_n and LM_n^{GMM} statistics are exactly the same when based on g_{Fi}^* and G_{Fi}^* as when based on g_i and G_i. (This holds because, for any $k \times k$ nonsingular matrix M, such as $M = \Pi_{1F}^{-1/2}A_F^t$, we have $LM_n := n\sigma_n^2\hat{\Omega}^{-1}_n\hat{D}_n(\hat{D}_n^t\hat{\Omega}^{-1}_n\hat{D}_n)^{-1}\hat{D}_n^t\hat{\Omega}^{-1}_n\hat{g}_n = n\sigma_n^2M'(\hat{\Omega}^{-1}_nM')^{-1}M\hat{D}_n[\hat{D}_n^tM'(\hat{\Omega}^{-1}_nM')^{-1}M\hat{D}_n]^t\hat{g}_n$ and likewise for LM_n^{GMM}.) Using these results, the version of Lemma 23.1 described in the previous paragraph applied to the transformed variables g_{Fi}^* and G_{Fi}^* establishes the second and third equalities of part (a) and parts (b) and (c) of Theorem 9.1. \qed

Proof of Lemma 23.1. We start by proving the first result of part (a) of the lemma. We have $n^{1/2}\tau_{pF_n} \to \infty$ iff $q = p$ (by the definition of q in (10.22)). Hence, by assumption, $q = p$. Given this, $Q_{2n}^+(\kappa)$ (defined in (21.11) in the proof of Theorem 10.5) is a scalar. In consequence, (21.13) and (21.16) with $j = p + 1$ give

\[
0 = |Q_{2n}^+(\widehat{r}_{(p+1)n}^+)| = |M_{n,p+1-q}^+ - \widehat{r}_{(p+1)n}^+(1 + o_p(1))| \text{ and, hence, }
\]

\[
\widehat{r}_{(p+1)n}^+ = M_{n,p+1-q}^+(1 + o_p(1)) = (n^{1/2}B_{n,p+1-q}^{-1}U_{n}^{-1}D_n^tW_n^t)h_{3,k-q}h_{3,k-q}(n^{1/2}W_nD_n^tU_{n}^{-1}B_{n,p+1-q}^{-1})(1 + o_p(1)) + o_p(1) = (n^{1/2}g_{n}^{-1/2}\hat{\Omega}_n^{-1/2}W_n^t)h_{3,k-q}h_{3,k-q}(n^{1/2}W_n\hat{\Omega}_n^{-1/2}\hat{g}_n)(1 + o_p(1)) + o_p(1) = n\sigma_n^2\hat{\Omega}_n^{-1/2}h_{3,k-q}h_{3,k-q}\hat{\Omega}_n^{-1/2}\hat{g}_n + o_p(1), \tag{23.2}
\]

where $\widehat{r}_{(p+1)n}^+$ is defined in (21.2), the equality on the third line holds by the definition of $M_{n,p+1-q}^+$ in (21.16), the equality on the fourth line holds by lines two and three of (21.7) because when $q = p$.

69
the third line of (21.7) becomes $n^{1/2}W_n\bar{\Omega}_n^{-1/2}g_n$, i.e., $n^{1/2}W_n\bar{D}_nU_nB_{n,p-q}$ drops out, as noted near the end of the proof of Theorem [10.5] and the last equality holds because $W_n\bar{\Omega}_n^{-1} = I_k + o_p(1)$ by Assumption WU and $n^{1/2}\bar{\Omega}_n^{-1/2}g_n = O_p(1)$.

Next, we have

$$QLR_n := AR_n - \lambda_{\min}(n\bar{Q}_{WU,n})$$
$$= AR_n - \hat{\kappa}_{(p+1)n}^+$$
$$= n\hat{g}_n^T\bar{\Omega}_n^{-1/2}(I_k - h_{3,k-q}h_{3,k-q}')\bar{\Omega}_n^{-1/2}g_n + o_p(1)$$
$$= n\hat{g}_n^T\bar{\Omega}_n^{-1/2}h_{3,q}h_{3,q}'\bar{\Omega}_n^{-1/2}g_n + o_p(1), \quad (23.3)$$

where the first equality holds by the definition of QLR_n in (10.3), the second equality holds by the definition of $\hat{\kappa}_{(p+1)n}$ in (21.2), the third equality holds by (23.2) and the definition $AR_n := n\hat{g}_n^T\bar{\Omega}_n^{-1}g_n$ in (5.2), and the last equality holds because $h_3 = (h_{3,q}, h_{3,k-q})$ is a $k \times k$ orthogonal matrix.

When $q = p$, by Lemma [10.3] we have

$$n^{1/2}W_n\bar{D}_nU_nT_n \to_d \bar{\Delta}_h = h_{3,q} \text{ and so}$$
$$n^{1/2}W_n\bar{D}_nU_nT_n \to_p h_{3,q}, \quad (23.4)$$

where the equality holds by the definition of $\bar{\Delta}_h$ in (10.24) when $q = p$ and the second convergence uses $W_n\bar{\Omega}_n^{-1} = I_k + o_p(1)$ by Assumption WU. In consequence,

$$P_{\bar{\omega}_n,\delta_n} = P_{n^{1/2}W_n\bar{D}_nU_nT_n} = P_{h_{3,q}} + o_p(1) = h_{3,q}h_{3,q}' + o_p(1) \text{ and}$$
$$QLR_n = LM_n(\bar{\Delta}_n) + o_p(1), \quad (23.5)$$

where the first equality holds because $n^{1/2}U_nT_n$ is nonsingular wp→1 by Assumption WU and post-multiplication by a nonsingular matrix does not affect the resulting projection matrix, the second equality holds by (23.4), the third equality holds because $h_{3,q}'h_{3,q} = I_q$ (since $h_3 = (h_{3,q}, h_{3,k-q})$ is an orthogonal matrix), and the second line holds by the first line, (23.3), $n^{1/2}\bar{\Omega}_n^{-1/2}g_n = O_p(1)$, and the definition of $LM_n(\bar{\Delta}_n)$ in (23.1).

As in (20.5) in Section 20 with \bar{G}_n in place of \bar{D}_n, we have

$$W_n\bar{G}_nU_nB_{n,q}^{\top}n_{n,q}^{-1} = W_nD_nU_nB_{n,q}^{\top}n_{n,q}^{-1} + W_nn^{1/2}(\bar{G}_n - D_n)U_nB_{n,q}(n^{1/2}n_{n,q}^{-1})^{-1}$$
$$= C_{n,q} + o_p(1) \to_p h_{3,q}, \quad (23.6)$$

where $D_n := E_{F_n}G_i$, the second equality uses (among other things) $n^{1/2}T_jF_n \to \infty$ for all $j \leq q$.

70
(by the definition of \(q \) in (10.22)). The convergence in (23.6) holds by (10.19), (10.24), and (20.1).

Using (23.6) in place of the first line of (23.4), the proof of \(QLR_n = LM_n^{GMM}(\widehat{W}_n) + o_p(1) \) is the same as that given for \(QLR_n = LM_n(\widehat{W}_n) + o_p(1) \). This completes the proof of part (a) of Lemma 23.1.

By (22.10) in the proof of Theorem 22.1, we have

\[
ck,p(n^{1/2}\widehat{W}_n D_n \widehat{U}_n, 1 - \alpha) \rightarrow_d ck,p,q(\tau_{[2]h}, 1 - \alpha) \quad \text{and} \quad ck,p,q(\tau_{[2]h}, 1 - \alpha) = \chi_{p,1-\alpha}^2 \quad \text{when} \quad q = p,
\]

where the second line of (23.7) holds by the sentence following (22.9). This proves part (b) of Lemma 23.1 because convergence in distribution to a constant is equivalent to convergence in probability to the same constant. \(\square \)

24 Proofs of Lemmas 14.1, 14.2, and 14.3

24.1 Proof of Lemma 14.1

In this section, we suppress the dependence of various quantities on \(\theta_0 \) for notational simplicity. Thus, \(g_i := g_i(\theta_0) \), \(G_i := G_i(\theta_0) = (G_{i1}, ..., G_{ip}) \in \mathbb{R}^{k \times p} \), and similarly for \(\widehat{g}_n, \widehat{G}_n, f_i, B, \widehat{R}_n, \widehat{D}_n^*, \widehat{D}_n, \widehat{\Omega}_n, \widehat{\Omega}_n \), \(\widehat{\Omega}_n \).

The proof of Lemma 14.1 uses the following lemmas. Define

\[
A_0^* := \Sigma V B \begin{pmatrix} b_0' \Sigma V c_0, ..., b_0' \Sigma V p+1 c_0 \\ I_p \end{pmatrix} \in \mathbb{R}^{(p+1) \times p}, \quad B := \begin{pmatrix} 1 & 0_p' \\ -\theta_0 & -I_p \end{pmatrix} \in \mathbb{R}^{(p+1) \times (p+1)},
\]

\[
c_0 := (b_0' \Sigma V b_0)^{-1}, b_0 := (1, -\theta_0)' \quad \text{and} \quad (\Sigma V_1, ..., \Sigma V_{p+1}) := \Sigma V \in \mathbb{R}^{(p+1) \times (p+1)}, \quad \text{and}
\]

\[
L_{V_0} := (\theta_0, I_p) \Sigma V^{-1}(\theta_0, I_p)' \in \mathbb{R}^{p \times p}.
\]

As defined in (3.4), \(A_0 := (\theta_0, I_p)' \in \mathbb{R}^{(p+1) \times p}. \)

Lemma 24.1 \(A_0^* L V_0 = -A_0 \).

Comment: Some calculations show that the columns of \(A_0^* \) and \(A_0 \) are all orthogonal to \(b_0 \). Also, \(A_0^* \) and \(A_0 \) both have full column rank \(p \). Hence, the columns of \(A_0^* \) and \(A_0 \) span the same space in \(\mathbb{R}^{p+1} \). It is for this reason that there exists a \(p \times p \) positive definite matrix \(L = L_{V_0} \) that solves \(A_0^* L = -A_0 \).
Lemma 24.2 Suppose Assumption HLIV holds. Under H_0, we have (a) $n^{1/2} \hat{\gamma}_n \rightarrow_d N(0^k, b_0' \Sigma_V b_0 \cdot K_Z)$, (b) $n^{-1} \sum_{i=1}^n (G'_{ij} g'_i - E G'_{ij} g'_i) = o_p(1)$ for all $j \leq p$, (c) $\hat{G}_n = O_p(1)$, (d) $n^{-1} \sum_{i=1}^n (g'_i g'_j - E g'_i g'_j) = o_p(1)$, and (e) $\hat{G}_n - n^{-1} \sum_{i=1}^n E G_i = O_p(n^{-1/2})$.

Proof of Lemma 14.1 To prove part (a), we determine the probability limit of \hat{V}_n defined in (6.3). By (6.3) and (3.1)-(3.3), in the linear IV regression model with reduced-form parameter π_n, we have

$$u_i := u_i(\theta_0) = y_{t_i} - Y_{2i}' \theta_0, \quad E u_i = 0, \quad u_{\theta i} = -Y_{2i} = -\pi_n' Z_i - V_{2i}, \quad E u_{\theta i} = -\pi_n' Z_i,$$

$$u^*_i := \begin{pmatrix} u_i \\ u_{\theta i} \end{pmatrix} = \begin{pmatrix} u_i \\ -Y_{2i} \end{pmatrix} = \Xi_n' Z_i + \begin{pmatrix} u_i \\ -V_{2i} \end{pmatrix}, \text{ where } \Xi_n = (0^k, -\pi_n) \in R^{k \times (p+1)},$$

$$E u^*_i = \Xi_n' Z_i, \quad u^*_i - E u^*_i = \begin{pmatrix} u_i \\ -V_{2i} \end{pmatrix} = B' V_i, \quad \hat{u}^*_i - E u^*_i = (\hat{\Xi}_n - \Xi_n)' Z_i, \text{ and}$$

$$U^* := (u^*_1, ..., u^*_n)' = Z_{n \times k} \hat{\Xi}_n + V B, \text{ where } V := (V_1, ..., V_n)' \in R^{n \times (p+1)}$$

and $B := B(\theta_0)$ is defined in (6.3).

Next, we have

$$\hat{\Xi}_n - \Xi_n = (Z'_{n \times k} Z_{n \times k})^{-1} Z'_{n \times k} U^* - \Xi_n = (n^{-1} Z'_{n \times k} Z_{n \times k})^{-1} n^{-1} Z'_{n \times k} V B = O_p(n^{-1/2}),$$

where the first equality holds by the definition of $\hat{\Xi}_n$ in (6.3), the second equality uses the last line of (24.2), and the third equality holds by Assumption HLIV(c) (specifically, $n^{-1} Z'_{n \times k} Z_{n \times k} \rightarrow K_Z$ and K_Z is pd) and by $n^{-1/2} Z'_{n \times k} V = O_p(1)$ (which holds because $EZ'_{n \times k} V = 0$ and the variance of the (j, ℓ) element of $n^{-1/2} Z'_{n \times k} V$ is $n^{-1} \sum_{i=1}^n Z_{i j}^2 E V_{i \ell}^2 < \infty$ using Assumption HLIV(c), where $K_{Z j}$ denotes the (j, ℓ) element of K_Z, for all $j \leq k, \ell \leq p + 1$).

By the definition of \hat{V}_n in (6.3) and simple algebra, we have

$$\hat{V}_n := n^{-1} \sum_{i=1}^n \left[(u^*_i - \hat{u}^*_i)^T (u^*_i - \hat{u}^*_i) \otimes Z_i Z_i^T \right]$$

$$= n^{-1} \sum_{i=1}^n \left[(u^*_i - E u^*_i)^T (u^*_i - E u^*_i) \otimes Z_i Z_i^T \right] - n^{-1} \sum_{i=1}^n \left[(\hat{u}^*_i - E u^*_i)^T (\hat{u}^*_i - E u^*_i) \otimes Z_i Z_i^T \right]$$

$$-n^{-1} \sum_{i=1}^n \left[(u^*_i - E u^*_i)^T (\hat{u}^*_i - E u^*_i) \otimes Z_i Z_i^T \right] + n^{-1} \sum_{i=1}^n \left[(\hat{u}^*_i - E u^*_i)^T (\hat{u}^*_i - E u^*_i) \otimes Z_i Z_i^T \right].$$

72
Using the third line of (24.2), the fourth summand on the rhs of (24.4) equals

\[n^{-1} \sum_{i=1}^{n} \left[(\hat{\Xi}_n - \Xi_n)' Z'_i (\hat{\Xi}_n - \Xi_n) \otimes Z'_i \right]. \tag{24.5} \]

The elements of the fourth summand on the rhs of (24.4) are each \(o_p(1) \) because each is bounded by \(O_p(n^{-1}) n^{-1} \sum_{i=1}^{n} ||Z_i||^4 \) using (24.3) and \(n^{-1} \sum_{i=1}^{n} ||Z_i||^4 \leq n^{-1} \sum_{i=1}^{n} ||Z_i||^4 1(||Z_i|| > 1) + 1 \leq n^{-1} \sum_{i=1}^{n} ||Z_i||^6 + 1 = o(n) \) by Assumption HLIV(c).

Using the third line of (24.2), the second summand on the rhs of (24.4) (excluding the minus sign) equals

\[n^{-1} \sum_{i=1}^{n} \left[(\hat{\Xi}_n - \Xi_n)' Z'_i B \otimes Z'_i \right]. \tag{24.6} \]

The elements of the second summand on the rhs of (24.4) are each \(o_p(1) \) because its mean is zero and its variance is \(EV^2_i n^{-1} \sum_{i=1}^{n} Z^2_{ij} Z^2_{i\ell} Z^2_{ij3} = o(n) \) by Assumption HLIV(c). By the same argument, the elements of the third summand on the rhs of (24.4) are each \(o_p(1) \).

In consequence, we have

\[\hat{V}_n = n^{-1} \sum_{i=1}^{n} \left[(B'V_i V'_i B - B'\Sigma_V B) \otimes Z'_i \right] + o_p(1) \]

\[= n^{-1} \sum_{i=1}^{n} \left[(B'V_i V'_i B - B'\Sigma_V B) \otimes Z'_i \right] + B'\Sigma_V B \otimes n^{-1} \sum_{i=1}^{n} Z_i Z'_i + o_p(1) \]

\[\rightarrow_p B'\Sigma_V B \otimes K_Z, \tag{24.7} \]

where the first equality holds using (24.4), the argument in the two paragraphs following (24.4), and the third line of (24.2), the second equality holds by adding and subtracting the same quantity, and the convergence holds by Assumption HLIV(c) (specifically, \(n^{-1} \sum_{i=1}^{n} Z_i Z'_i \rightarrow K_Z \)) and because the first summand on the second line is \(o_p(1) \) (which holds because it has mean zero and each of its elements has variance that is bounded by \(O(n^{-2} \sum_{i=1}^{n} ||Z_i||^4) = o(1) \), where the latter equality holds by the calculations following (24.5)).

Equation (24.7) gives

\[\hat{R}_n := (B' \otimes I_k) \hat{V}_n (B \otimes I_k) \rightarrow_p \Sigma_V \otimes K_Z \tag{24.8} \]

because \(B'B' = BB = I_{p+1} \). Hence, part (a) holds.
To prove part (b), we have

\[\hat{\Omega}_n := n^{-1} \sum_{i=1}^{n} g_i g_i' - \hat{g}_n \hat{g}_n' = n^{-1} \sum_{i=1}^{n} E g_i g_i' + n^{-1} \sum_{i=1}^{n} (g_i g_i' - E g_i g_i') + O_p(n^{-1}) \]

\[= n^{-1} \sum_{i=1}^{n} Z_i Z_i' E u_i^2 + o_p(1) \rightarrow_p (b_0' \Sigma_V b_0) K_Z, \]

where the first equality holds by the definition in (5.1), second equality uses \(n^{1/2} \hat{g}_n = O_p(1) \) by Lemma 24.2(a), the third equality holds by Lemma 24.2(d), and the convergence holds by Assumption HLIV(c) and because \(E u_i^2 = E(V_i' b_0)^2 = b_0' \Sigma_V b_0 \) by Assumption HLIV(b).

Part (c) holds because

\[\hat{\Omega}_n := \frac{\text{tr}(\hat{R}_{\ell n} \hat{\Omega}_n^{-1})}{k} \rightarrow_p \frac{\text{tr}(\Sigma_{V,\ell} K_Z (b_0' \Sigma_V b_0)^{-1} K_Z^{-1})}{k} = \Sigma_{V,\ell} (b_0' \Sigma_V b_0)^{-1}, \]

where \(\hat{\Omega}_n \) and \(\Sigma_{V,\ell} \) denote the \((j, \ell) \) elements of \(\hat{\Omega}_n \) and \(\Sigma_V \), respectively, \(\hat{R}_{\ell n} \) denotes the \((j, \ell) \) submatrix of \(\hat{R}_n \) of dimension \(k \times k \), and the convergence holds because \(\hat{R}_{\ell n} \rightarrow_p \Sigma_{V,\ell} K_Z \) for \(j, \ell = 1, \ldots, p + 1 \) and \(\hat{\Omega}_n \rightarrow_p (b_0' \Sigma_V b_0) K_Z \) by parts (a) and (b) of the lemma.

Part (d) holds because \(\hat{\Sigma}_\xi \rightarrow_p ((b_0' \Sigma_V b_0)^{-1} \Sigma_\xi)' \) by part (c) of the lemma and Lemma 17.1(e), \(((b_0' \Sigma_V b_0)^{-1} \Sigma_\xi)' = (b_0' \Sigma_V b_0)^{-1} \Sigma_\xi \) by Lemma 17.1(d), and \(\Sigma_\xi = \Sigma_V \) by Assumption HLIV(e) and Comment (ii) to Lemma 17.1.

We prove part (f) next. We have

\[n^{-1} Z'_{n \times k} Y = \left(n^{-1} \sum_{i=1}^{n} Z_i (y_{1i} - Y_{2i}' \theta_0) + n^{-1} \sum_{i=1}^{n} Z_i Y_{2i}' \theta_0, n^{-1} \sum_{i=1}^{n} Z_i Y_{2i} \right) \]

\[= (\hat{g}_n - \hat{G}_n \theta_0, -\hat{G}_n) = (\hat{g}_n, \hat{G}_n) \left(\begin{array}{cc} 1 & 0'_{p} \\ -\theta_0 & -I_p \end{array} \right) = (\hat{g}_n, \hat{G}_n) B, \]

where the expressions for \(\hat{g}_n \) and \(\hat{G}_n \) use (3.3). Using (24.11) and the definition of \(L_{V,0} \) in (24.1), the statistic \(T_n \) defined in (3.4) can be written as

\[T_n := (Z'_{n \times k} Z_{n \times k})^{-1/2} Z'_{n \times k} Y \Sigma_V^{-1} A_0 (A_0' \Sigma_V^{-1} A_0)^{-1/2} \]

\[= n^{1/2} (n^{-1} Z'_{n \times k} Z_{n \times k})^{-1/2} (\hat{g}_n, \hat{G}_n) B \Sigma_V^{-1} A_0 L_{V,0}^{-1/2}. \]

Note that, using the definitions of \(B \) and \(L_{V,0} \) in (24.1) and \(A_0 \) in (3.4), the rhs expression for \(T_n \) equals the expression in (3.4).

Now we simplify the statistic \(\hat{D}_n := (\hat{D}_{1n}, \ldots, \hat{D}_{pn}) \), where \(\hat{D}_{jn} := \hat{G}_{jn} - \hat{\Gamma}_{jn} \hat{\Omega}_n^{-1} \hat{g}_n \) for \(j = 1, \ldots, p \), by replacing \(\hat{\Gamma}_{jn} \) and \(\hat{\Omega}_n \) by their probability limits plus \(o_p(1) \) terms. Let \(\pi_n := (\pi_{1n}, \ldots, \pi_{pn}) \in \)
\[R^{k \times p}. \text{ For } j = 1, \ldots, p, \text{ we have} \]
\[
\hat{\Gamma}_{jn} := n^{-1} \sum_{i=1}^{n} (G_{ij} - \hat{G}_{jn})g'_i = n^{-1} \sum_{i=1}^{n} EG_{ij}g'_i + n^{-1} \sum_{i=1}^{n} (G_{ij}g'_i - EG_{ij}g'_i) - \hat{G}_{jn}g'_n \\
= n^{-1} \sum_{i=1}^{n} EG_{ij}g'_i + o_p(1) = -n^{-1} \sum_{i=1}^{n} EZ_i Y_{2ij}^t Z'_i u_i + o_p(1) \\
= -n^{-1} \sum_{i=1}^{n} Z_i Z'_i EV_{2ij} V'_i b_0 + n^{-1} \sum_{i=1}^{n} Z_i Z'_i (Z'_i \pi_{jn}) E u_i + o_p(1) \\
= -n^{-1} \sum_{i=1}^{n} Z_i Z'_i \Sigma'_{i+j+1} b_0 + o_p(1), \tag{24.13}
\]

where \(g_i = Z_i (y_{1i} - Y'_2 \theta_0) = Z_i u_i \) by (3.3), the third equality holds by Lemma 24.2(a)-(c), the fourth equality holds by (3.3) with \(\theta = \theta_0 \), the fifth equality uses \(Y_{2ij} = Z'_i \pi_{jn} + V_{2ij} \) and \(u_i = V'_i b_0 \), and the sixth equality holds because \(EV_i = 0 \) by Assumption HLIV(b), \(u_i = V'_i b_0 \), and \(\Sigma_V := (\Sigma_{V1}, \ldots, \Sigma_{Vp+1}) := EV_i V'_i \).

Equations (24.9) and (24.13) give

\[
D_{jn} := \tilde{G}_{jn} - \hat{\Gamma}_{jn} \hat{\Omega}_n^{-1} \hat{g}_n = \tilde{G}_{jn} + \Sigma'_{V+j+1} b_0 (b'_0 \Sigma_V b_0)^{-1} \hat{g}_n + o_p(n^{-1/2}) \text{ and} \\
\hat{D}_n := (\hat{D}_{1n}, \ldots, \hat{D}_{pn}) = (\hat{g}_n, \tilde{G}_n) \left(\begin{array}{c} \Sigma'_{V2} b_0 c_0, \ldots, \Sigma'_{Vp+1} b_0 c_0 \\ I_p \end{array} \right) + o_p(n^{-1/2}) \\
= (\hat{g}_n, \tilde{G}_n) B \Sigma_V^{-1} \left(\begin{array}{c} \Sigma'_{V2} b_0 c_0, \ldots, \Sigma'_{Vp+1} b_0 c_0 \\ I_p \end{array} \right) + o_p(n^{-1/2}), \tag{24.14}
\]

where the second equality on the first line uses \(\hat{g}_n = O_p(n^{-1/2}) \) by Lemma 24.2(a), the second line uses \(c_0 = (b'_0 \Sigma_V b_0)^{-1} \), the second last equality holds because \(B^{-1} = B \), and the last equality holds by the definition of \(A_0^* \) in (24.1).

Now, we have

\[
n^{1/2} \hat{D}^*_n := n^{1/2} \tilde{\Omega}_n^{-1/2} \hat{\Gamma}_n^{-1/2} \\
= (b'_0 \Sigma_V b_0)^{-1/2} (I_k + o_p(1)) (n^{-1/2} Z'_{n \times k} Z_{n \times k})^{-1/2} n^{1/2} (\hat{g}_n, \tilde{G}_n) B \Sigma_V^{-1} A_0^* \\
\times (b'_0 \Sigma_V b_0)^{1/2} L_{V_0}^{1/2} (I_p + o_p(1)) + o_p(1) \\
= -(I_k + o_p(1)) (n^{-1/2} Z'_{n \times k} Z_{n \times k})^{-1/2} n^{1/2} (\hat{g}_n, \tilde{G}_n) B \Sigma_V^{-1} A_0 L_{V_0}^{-1/2} (I_p + o_p(1)) + o_p(1) \\
= -(I_k + o_p(1)) \hat{T}_n (I_p + o_p(1)) + o_p(1), \tag{24.15}
\]

where the first equality holds by the definition of \(\hat{D}^*_n \) in (6.7), the second equality holds by (24.14),
\(\tilde{\Omega}_n \rightarrow_p (b'_{0\Sigma V} b_0) K_Z \) (which holds by part (b) of the lemma), and \(\tilde{L}_n := (\theta_0, I_p)(\tilde{\Sigma}_n^{e})^{-1}(\theta_0, I_p)' \rightarrow_p (b'_{0\Sigma V} b_0)L_{V0} \) (which holds because \(\tilde{\Sigma}_n \rightarrow_p (b'_{0\Sigma V} b_0)^{-1} \Sigma_V \) by part (d) of the lemma), for \(L_{V0} := (\theta_0, I_p)\Sigma_V^{-1}(\theta_0, I_p)' \) defined in (24.1), the third equality holds by Lemma 24.1 and the last equality holds by (24.12). This completes the proof of part (f).

Lastly, we prove part (e). The statistic \(\bar{S}_n \) satisfies

\[
\bar{S}_n := (Z'_{n \times k} Z_{n \times k})^{-1/2} Z'_{n \times k} Y \tilde{b}_0 (b'_{0\Sigma V} b_0)^{-1/2}
\]

\[
= n^{1/2} (n^{-1} \sum_{i=1}^{n} Z_i Z'_i)^{-1/2} \tilde{\gamma}_n (b'_{0\Sigma V} b_0)^{-1/2}
\]

\[
= n^{1/2} \tilde{\Omega}_n^{-1/2} \tilde{\gamma}_n + o_p(1),
\]

(24.16)

where the first equality holds by the definition of \(\bar{S}_n \) in (3.4), the second equality holds because \(Y_i b_0 = u_i \), and the third equality holds by (24.9) and \(n^{1/2} \tilde{\gamma}_n = O_p(1) \) by Lemma 24.2(a). This proves part (e). \(\square \)

Proof of Lemma 24.1 By pre-multiplying by \(B\Sigma_V^{-1} \), the equation \(A_0^* L_{V0} = -A_0 \) is seen to be equivalent to

\[
\begin{pmatrix}
 b'_{0\Sigma V} c_0, \ldots, b'_{0\Sigma V} c_{p+1}c_0 \\
 I_p
\end{pmatrix} L_{V0} = -B\Sigma_V^{-1} \begin{pmatrix}
 \theta'_0 \\
 I_p
\end{pmatrix} = \begin{pmatrix}
 -1 & 0^{p'} \\
 \theta_0 & I_p
\end{pmatrix} \Sigma_V^{-1} \begin{pmatrix}
 \theta'_0 \\
 I_p
\end{pmatrix}.
\]

(24.17)

The last \(p \) rows of these \(p + 1 \) equations are

\[
L_{V0} = (\theta_0, I_p)\Sigma_V^{-1}(\theta_0, I_p)',
\]

(24.18)

which hold by the definition of \(L_{V0} \) in (24.1).

Substituting in the definition of \(L_{V0} \), the first row of the equations in (24.17) is

\[
(b'_{0\Sigma V} c_0, \ldots, b'_{0\Sigma V} c_{p+1}c_0) (\theta_0, I_p)\Sigma_V^{-1}(\theta_0, I_p)' = (-1, 0^{p'}) \Sigma_V^{-1}(\theta_0, I_p)'.
\]

(24.19)

Equation (24.19) holds by the following argument. Write \(\Sigma_V := (\Sigma_{V1}, \Sigma_{V2}) \) for \(\Sigma_{V2} \in R^{(p+1) \times p} \). Then, \(b'_{0\Sigma V} \theta_0 = -b'_{0\Sigma V} b_0 + b'_{0\Sigma V1} \), since \(b_0 = (1, -\theta'_0)' \). The left-hand side of (24.19) equals

\[
(b'_{0\Sigma V} \theta_0 c_0, b'_{0\Sigma V} c_0, \ldots, b'_{0\Sigma V} c_{p+1}c_0) \Sigma_V^{-1}(\theta_0, I_p)'
\]

\[
= ((-b'_{0\Sigma V} b_0 + b'_{0\Sigma V1})c_0, b'_{0\Sigma V} c_0, \ldots, b'_{0\Sigma V} c_{p+1}c_0) \Sigma_V^{-1}(\theta_0, I_p)'
\]

\[
= (-1 + b'_{0\Sigma V} c_0, b'_{0\Sigma V} c_0, \ldots, b'_{0\Sigma V} c_{p+1}c_0) \Sigma_V^{-1}(\theta_0, I_p)',
\]

(24.20)
where the second equality uses the definition of \(c_0 \) in (24.1).

Hence, the difference between the left-hand side (lhs) and the rhs of (24.19) equals

\[
(b_0 \Sigma_{V1} c_0, \ldots, b_0 \Sigma_{Vp+1} c_0) \Sigma_V^{-1}(\theta_0, I_p)' = c_0 b'_0 \Sigma_V \Sigma_V^{-1}
\]

\[
\left(\theta'_0 \right) \left(I_p \right)
\]

\[
= 0'_p
\]

(24.21)

using \(b'_0 := (1, -\theta'_0) \). Thus, (24.19) holds, which completes the proof. \(\square \)

Proof of Lemma 24.2 Part (a) holds by the CLT of Eicker (1963, Thm. 3) and the Cramér-Wold device under Assumptions HLIV(a)-(c) because \(n^{1/2} \hat{g}_n = n^{-1} \sum_{i=1}^n Z_i u_i \) is an average of i.i.d. mean-zero finite-variance random variables \(u_i \) with nonrandom weights \(Z_i \).

To show part (b), we write

\[
n^{-1} \sum_{i=1}^n (G_{ij} g'_i - EG_{ij} g'_i) = -n^{-1} \sum_{i=1}^n Z_i Z'_i (Y_{2ij} u_i - EY_{2ij} u_i)
\]

\[
= -n^{-1} \sum_{i=1}^n Z_i Z'_i (Z'_i \pi_{jn}) u_i - n^{-1} \sum_{i=1}^n Z_i Z'_i (V_{2ij} u_i - \Sigma_{Vj+1} b_0),
\]

(24.22)

where the first equality holds because \(g_i = Z_i u_i \) and \(G_{ij} = -Z_i Y_{2ij} \), the second equality holds because \(Y_{2ij} = Z'_i \pi_{jn} + V_{2ij} \) and \(EY_{2ij} u_i = EV_{2ij} V'_i b_0 = \Sigma_{Vj+1} b_0 \). Both summands on the rhs have mean zero. The \((\ell_1, \ell_2)\) element of the first summand has variance equal to \(n^{-2} \sum_{i=1}^n (Z_{it_1} Z_{it_2} Z'_i \pi_{jn})^2 \times Var(u_i) \), which converges to zero for all \(\ell_1, \ell_2 \leq k \) because \(n^{-1} \sum_{i=1}^n ||Z_i||^6 = o(n) \), \(Var(u_i) = b'_0 \Sigma_V b_0 < \infty \), and \(sup_{j \leq p, n \geq 1} ||\pi_{jn}|| < \infty \) by Assumption HLIV(b)-(d). The \((\ell_1, \ell_2)\) element of the second summand has variance equal to \(n^{-2} \sum_{i=1}^n Z_{it_1}^2 Z_{it_2}^2 Var(V_{2ij} u_i) \), which converges to zero for all \(\ell_1, \ell_2 \leq k \) because \(n^{-1} \sum_{i=1}^n ||Z_i||^6 = o(n) \) and \(Var(V_{2ij} u_i) \leq E(V_{2ij} V'_i b_0)^2 \leq b'_0 b_0 E||V_i||^4 < \infty \) by Assumptions HLIV(b)-(c). This establishes part (b).

For part (c), we have

\[
\hat{G}_n = -n^{-1} \sum_{i=1}^n Z_i V'_{2i} = -n^{-1} \sum_{i=1}^n Z_i Z'_i \pi_n - n^{-1} \sum_{i=1}^n Z_i V'_{2i}.
\]

(24.23)

The first term on the rhs is \(O_p(1) \) by Assumption HLIV(c)-(d). The second term on the rhs is \(O_p(n^{-1/2}) = o_p(1) \) because it has mean zero and its \((\ell, j)\) element for \(\ell \leq k \) and \(j \leq p \) has variance \(n^{-2} \sum_{i=1}^n Z_{it}^2 \Sigma V_{j*} \Sigma_{j*} \), where \(\Sigma V_{j*} < \infty \) is the \((j*, j*)\) element of \(\Sigma_V \) and \(j* = j + 1 \), and \(n^{-1} \sum_{i=1}^n Z_{it}^2 \Sigma V_{j*} \Sigma_{j*} \rightarrow K_{Zt} \Sigma V_{j*} \Sigma_{j*} \), where \(K_{Zt} < \infty \) is the \((\ell, \ell)\) element of \(K_Z \). Hence, the rhs is \(O_p(1) \), which establishes part (c).
To prove part (d), we have

$$n^{-1} \sum_{i=1}^{n} (g_i g'_i - Eg_i g'_i) = n^{-1} \sum_{i=1}^{n} Z_i Z'_i (u_i^2 - Eu_i^2) \to_p 0, \quad (24.24)$$

where the convergence holds because the rhs of the equality has mean zero and its \((\ell_1, \ell_2)\) element has variance equal to \(n^{-1} \sum_{i=1}^{n} \text{Var}(Z_i)^2 |b_0|^4 < \infty\) by Assumption HLIV(b)-(c) for all \(\ell_1, \ell_2 \leq k\). This proves part (d).

Part (e) holds by the following argument:

$$\hat{G}_n - n^{-1} \sum_{i=1}^{n} EG_i = -n^{-1} \sum_{i=1}^{n} Z_i (Y_{2i} - EY_{2i})' = -n^{-1} \sum_{i=1}^{n} Z_i V_{2i} = O_p(n^{-1/2}), \quad (24.25)$$

where the last equality holds by the argument following (24.23).

24.2 Proof of Lemma 14.2

Proof of Lemma 14.2. To prove part (a), we determine the probability limit of \(\tilde{V}_n\) defined in (7.1), where \(f_i = (Z'_i u_i, -\text{vec}(Z_i Y_{2i})')'\) by (3.1) and (3.3). For \(\zeta_n(\pi)\) defined in (14.1), we can write

$$\zeta_n(\pi_n) = n^{-1} \sum_{i=1}^{n} Z'_i Z_n^{*} \pi_n, \quad (24.26)$$

where

$$Z'_n := \text{vec} \left(Z_i Z'_i \pi_n - n^{-1} \sum_{\ell=1}^{n} Z_i Z'_i \pi_n \right) = (\pi_n' \otimes Z_i) Z_i - n^{-1} \sum_{\ell=1}^{n} (\pi'_n \otimes Z_i) Z_i \in R^{kp}$$

and the second equality in the second line follows from \(\text{vec}(ABC) = (C' \otimes A) \text{vec}(B)\).
We have

\[\tilde{V}_n := n^{-1} \sum_{i=1}^{n} \left(f_i - n^{-1} \sum_{\ell=1}^{n} E f_\ell \right) \left(f_i - n^{-1} \sum_{\ell=1}^{n} E f_\ell \right) ' - \left(\hat{f}_n - n^{-1} \sum_{\ell=1}^{n} E f_\ell \right) \left(\hat{f}_n - n^{-1} \sum_{\ell=1}^{n} E f_\ell \right) ' \]

\[= n^{-1} \sum_{i=1}^{n} \left(Z_i u_i - vec(Z_i V_{2i}') - Z_{ni}^* \right) \left(Z_i u_i - vec(Z_i V_{2i}') - Z_{ni}^* \right) ' + o_p(1) \]

\[= n^{-1} \sum_{i=1}^{n} \left(\begin{array}{cc} Z_i u_i & 0 \\ -V_{2i} & Z_i^* \end{array} \right) \left(\begin{array}{cc} Z_i u_i & 0 \\ -V_{2i} & Z_i^* \end{array} \right) ' + n^{-1} \sum_{i=1}^{n} \left(\begin{array}{cc} 0_{k \times k} & 0_{k \times kp} \\ 0_{kp \times k} & \zeta_n(\pi_n) \end{array} \right) + o_p(1) \]

\[= \left(\begin{array}{cc} 1 & -\theta_0' \\ 0^p & -I_p \end{array} \right) \Sigma_V \left(\begin{array}{cc} 1 & -\theta_0' \\ 0^p & -I_p \end{array} \right)' \otimes \left(n^{-1} \sum_{i=1}^{n} Z_i Z_i^t \right) + \left(\begin{array}{cc} 0_{k \times k} & 0_{k \times kp} \\ 0_{kp \times k} & \zeta(\pi_\ast) \end{array} \right) + o_p(1), \]

(24.27)

where the second equality holds using \(E u_i = 0, EV_{2i} = 0^p, Y_{2i} = \pi_n' Z_i + V_{2i}, vec(Z_i Y_{2i}' = n^{-1} \sum_{\ell=1}^{n} E Z_i Y_{2i}') = vec(Z_i V_{2i}^t) + Z_{ni}^*, \) and Lemma 24.2(a) and (e) because \(\hat{f}_n - n^{-1} \sum_{\ell=1}^{n} E f_\ell = (\bar{g}_n, vec(\bar{G}_n - n^{-1} \sum_{\ell=1}^{n} E G_{\ell})')', \) the third equality holds by (24.26) and simple rearrangement, the fourth equality holds because (i) the first summand on the rhs of the fourth equality is the mean of the first summand on the lhs of the fourth equality using \(u_i = (1, -\theta_0') V_i, \) (ii) the variance of each element of the lhs matrix is \(o(1) \) because \(E||V_i||^4 < \infty \) and \(n^{-1} \sum_{i=1}^{n} ||Z_i||^4 = o(n) \) by Assumption HLIV(b) -(c) (because \(n^{-1} \sum_{i=1}^{n} ||Z_i||^4 \leq n^{-1} \sum_{i=1}^{n} ||Z_i||^4 ||\pi_i||^2 ||\pi_i|| > 1 \) + \(1 \) \(\leq n^{-1} \sum_{i=1}^{n} ||Z_i||^6 + 1 = o(n) \) using Assumption HLIV(c)), (iii) \(\zeta_n(\pi_n) \rightarrow \zeta(\pi_\ast) \) by Assumption HLIV2(a)-(b), and (iv) the third and fourth summands on the rhs of the fourth equality have zero means and the variance of each element of these summands is \(o(1) \) (because each variance is bounded by \(n^{-2} \sum_{i=1}^{n} ||Z_{ni}^*||^2 ||Z_i||^2 \leq ||\pi_n||^2 (n^{-2} \sum_{i=1}^{n} ||Z_i||^6) + 2n^{-2} \sum_{i=1}^{n} ||Z_i||^4 \sum_{\ell=1}^{p} ||Z_\ell||^2 + n^{-2} \sum_{i=1}^{n} ||Z_i||^2 (n^{-1} \sum_{\ell=1}^{n} ||Z_\ell||^2)^2 \) = \(o(1) \), using \(||Z_{ni}^*|| \leq ||\pi_n|| ||Z_i||^2 + n^{-1} \sum_{\ell=1}^{n} ||Z_\ell||^2) \), sup_{\pi \in \Pi} ||\pi_n|| < \infty, and \(E||V_i||^2 < \infty \) by Assumption HLIV(b)-(d), and the fifth equality holds by the definition of \(B \) in (6.3).

Using the definitions of \(\tilde{R}_n \) in (7.1) and \(R(\pi_\ast) \) in (14.2), part (a) of the lemma follows from (24.27).

Next we prove part (b). We have

\[\tilde{\Sigma}_{j\ell n} = tr(\tilde{R}_{j\ell n} \tilde{\Omega}_n^{-1})/k \rightarrow_p tr(R_{j\ell}(\pi_\ast)'(b_0' \Sigma_V b_0)^{-1} K_{\pi_\ast}^{-1})/k =: (b_0' \Sigma_V b_0)^{-1} \Sigma_{V,j\ell}, \]

(24.28)
where $\tilde{\Sigma}_{j\ell n}$ and $\Sigma_{V^*j\ell}$ denote the (j, ℓ) elements of $\tilde{\Sigma}_n$ and Σ_{V^*}, respectively, $R_{j\ell n}^0$ and $R_{j\ell}(\pi_*)$ denote the (j, ℓ) submatrices of dimension $k \times k$ of \tilde{R}_n^0 and $R(\pi_*)$, respectively, the convergence holds by part (a) of the lemma and Lemma 14.1(b), and the last equality holds by the definition of $\Sigma_{V^*j\ell}$ in (24.3). Equation (24.28) establishes part (b).

Part (c) holds because part (b) of the lemma and Lemma 17.1(e) imply that $\tilde{\Sigma}_n^\varepsilon \to_p ((b_0'\Sigma_V b_0)^{-1}\Sigma_{V^*})^\varepsilon$, Lemma 17.1(d) implies that $((b_0'\Sigma_V b_0)^{-1}\Sigma_{V^*})^\varepsilon = (b_0'\Sigma_V b_0)^{-1}\Sigma_{V^*}$, and Assumption HLIV2(c) implies that $\Sigma_{V^*}^\varepsilon = \Sigma_{V^*}$.

To prove part (d), we have

\[
\begin{align*}
n^{1/2}\tilde{D}_n^* &= n^{1/2}\tilde{\Omega}_n^{-1/2}\tilde{D}_n L_n^{-1/2} \\
&= ((b_0'\Sigma_V b_0)K_Z)^{-1/2}K_Z^{1/2} + o_p(1))(n^{-1}Z_{n\times k}Z_{n\times k})^{-1/2}n^{1/2}(\tilde{g}_n, \tilde{G}_n)B\Sigma_V^{-1}A_0L_0^{1/2} \\
&\quad \times (L_0^{-1/2}(b_0'\Sigma_V b_0)L_0 + o_p(1)) + o_p(1) \\
&= -(I_k + o_p(1))(n^{-1}Z_{n\times k}Z_{n\times k})^{-1/2}n^{1/2}(\tilde{g}_n, \tilde{G}_n)B\Sigma_V^{-1}A_0L_0^{-1/2}(L_0^{-1/2}L_0 + o_p(1)) + o_p(1) \\
&= -(I_k + o_p(1))T_n(L_0^{-1/2}L_0^{1/2} + o_p(1)) + o_p(1),
\end{align*}
\]

(24.29)

where the first equality holds by the definition of \tilde{D}_n^* in (7.2), the second equality holds by (i) (24.14), (ii) the result of part (c) of the lemma that $\tilde{\Sigma}_n^\varepsilon \to_p (b_0'\Sigma_V b_0)^{-1}\Sigma_{V^*}$, (iii) the result of Lemma 14.1(b) that $\tilde{\Omega}_n \to_p (b_0'\Sigma_V b_0)K_Z$, (iv) $n^{-1}Z_{n\times k}Z_{n\times k} \to K_Z$ by Assumption HLIV2(c), (v) $\tilde{L}_n := (\theta_0, I_p)(\tilde{\Sigma}_n)^{-1}(\theta_0, I_p)'$ as defined in (7.2) with $\theta = \theta_0$, and (vi) $\tilde{L}_n \to_p b_0'\Sigma_V b_0 L_{\pi}$ for L_{π} defined in part (d) of the lemma, the third equality holds by Lemma 24.1 and the last equality holds by (24.12). This completes the proof of part (d). \(\square\)

24.3 Proof of Lemma 14.3

When $p = 1$, we write

\[
\Sigma_V := EV_i V_i' := (\Sigma_{V1}, \Sigma_{V2}) := \begin{pmatrix}
\sigma_1^2 & \rho\sigma_1\sigma_2 \\
\rho\sigma_1\sigma_2 & \sigma_2^2
\end{pmatrix} \in R^{2\times 2}
\]

(24.30)

for $\Sigma_{V1}, \Sigma_{V2} \in R^2$, using the definition in (3.2).

The proof of Lemma 14.3 uses the following lemma.

Lemma 24.3 Under the conditions of Lemma 14.3, (a) $L_{V0} = \sigma_1^2 - 2\theta_0\rho\sigma_1\sigma_2 + \theta_0^2\sigma_2^2 > 0$, (b) $b_0'\Sigma_V b_0 = \sigma_1^2 - 2\theta_0\rho\sigma_1\sigma_2 + \theta_0^2\sigma_2^2$, and (c) $L_{V0}(\sigma_2^2 - (b_0'V^*)^2(b_0'\Sigma_V b_0)^{-1}) = 1$.

80
Proof of Lemma 14.3. We prove part (b) first. By (24.9) and (24.14),
\[
\begin{align*}
n^{1/2}\hat{\Omega}_n^{-1/2}\hat{D}_n &= n^{1/2}(I_k + o_p(1))(n^{-1}Z_{n\times k}Z_{n\times k})^{-1/2}(\hat{g}_n, \hat{G}_n)B\Sigma_V^{-1}A_0^\dagger(b_0^\dagger\Sigma_Vb_0)^{-1/2} + o_p(1) \\
&= -n^{1/2}(I_k + o_p(1))(n^{-1}Z_{n\times k}Z_{n\times k})^{-1/2}(\hat{g}_n, \hat{G}_n)B\Sigma_V^{-1}A_0L_\Sigma^{-1}(b_0^\dagger\Sigma_Vb_0)^{-1/2} + o_p(1) \\
&= -(I_k + o_p(1))T_n(L_\Sigma^{-1}(b_0^\dagger\Sigma_Vb_0)^{-1/2} + o_p(1),
\end{align*}
\]
where the second equality holds by Lemma 24.1 and the third equality holds by (24.12). Because $T_n'(I_k + o_p(1))T_n = T_n'T_n + o_p(1)||T_n||^2$, the result of part (b) follows.

Next, we prove part (a). We have
\[
\begin{align*}
n^{-1}\sum_{i=1}^n (G_i - \hat{G}_n)(G_i - \hat{G}_n)' \\
&= n^{-1}\sum_{i=1}^n \left(G_i - n^{-1}\sum_{\ell=1}^n EG_\ell\right)\left(G_i - n^{-1}\sum_{\ell=1}^n EG_\ell\right)' - \left(\hat{G}_n - n^{-1}\sum_{i=1}^n EG_i\right)\left(\hat{G}_n - n^{-1}\sum_{i=1}^n EG_i\right)' \\
&= n^{-1}\sum_{i=1}^n \left(-Z_iZ_i'\pi_n - Z_iV_{2i} + n^{-1}\sum_{\ell=1}^n Z_\ell Z_\ell'\pi_n\right)\left(-Z_iZ_i'\pi_n - Z_iV_{2i} + n^{-1}\sum_{\ell=1}^n Z_\ell Z_\ell'\pi_n\right)' + o_p(1) \\
&= n^{-1}\sum_{i=1}^n (Z_iV_{2i})'(Z_iV_{2i}) + 2n^{-1}\sum_{i=1}^n (Z_iZ_i'\pi_n)(Z_iV_{2i})' - 2\left(n^{-1}\sum_{\ell=1}^n Z_\ell Z_\ell'\pi_n\right)\left(n^{-1}\sum_{\ell=1}^n Z_\ell V_{2\ell}\right)' \\
&\quad + \zeta_n(\pi_n) + o_p(1) \\
&= n^{-1}Z_{n\times k}Z_{n\times k}\sigma^2 + \zeta_n(\pi_n) + o_p(1),
\end{align*}
\]
where the first equality holds by algebra, the second equality holds by Lemma 24.2(c), $G_i = -Z_iY_{2i}$, $Y_{2i} = Z_i'\pi_n + V_{2i}$, and so $Y_{2i} - EY_{2i} = V_{2i}$, the third equality holds by multiplying out the terms on the lhs of the third equality and using the definition of $\zeta_n(\pi)$ in (14.10), the first summand on the lhs of the fourth equality equals the first summand on the rhs of the fourth equality plus $o_p(1)$ by the same argument as for Lemma 24.2(d) with V_{2i}^2 in place of u_i^2 and $\sigma^2 := EV_{2i}^2$ in place of Eu_i^2, the second summand on the lhs of the fourth equality is $o_p(1)$ because it has mean zero and its elements have variances that are bounded by $4\sigma^2n^{-2}\sum_{i=1}^n ||Z_i||^4 \sup_{\pi \in \Pi} ||\pi||^2$, which is $o(1)$ by Assumption HLIV(c)-(d), and the third summand on the lhs of the fourth equality is $o_p(1)$ because $n^{-1}\sum_{\ell=1}^n Z_\ell Z_\ell'\pi_n = O(1)$ by Assumption HLIV(c) and (d) and $n^{-1}\sum_{\ell=1}^n Z_\ell V_{2\ell} = o_p(1)$ by the argument following (24.23).
Combining (24.13), (24.9), (24.32) and the definition of \tilde{V}_{Dn} in (14.9), we obtain
\[
\tilde{V}_{Dn} = n^{-1} \sum_{i=1}^{n} Z_iZ_i'(\sigma_2^2 - (b_i'\Sigma_V^{-1}b_i)^{-1}) + \zeta_n(\pi_n) + o_p(1)
= K_ZL_{V0}^{-1} + \zeta_n(\pi_n) + o_p(1),
\] (24.33)
where the second equality holds by Lemma 24.3(c) and Assumption HLIV(c).

Next, we have
\[
n^{1/2}(n^{-1}Z_n'Z_n)^{-1/2} \hat{D}_nL_{V0}^{1/2} = n^{1/2}(n^{-1}Z_n'Z_n)^{-1/2}(\hat{g}_n, \hat{G}_n)B\Sigma_V^{-1}A_0L_{V0}^{1/2} + o_p(1)
= -n^{1/2}(n^{-1}Z_n'Z_n)^{-1/2}(\hat{g}_n, \hat{G}_n)B\Sigma_V^{-1}A_0L_{V0}^{-1/2} + o_p(1) = -T_n + o_p(1),
\] (24.34)
where the first equality holds by (24.14), the second equality holds by Lemma 24.1 and the third equality holds by (24.12).

Using (24.33), we obtain
\[
n^{1/2}\tilde{V}_{Dn}^{-1/2} \hat{D}_n = [K_ZL_{V0}^{-1} + \zeta_n(\pi_n) + o_p(1)]^{-1/2}n^{1/2} \hat{D}_n
= -[K_ZL_{V0}^{-1} + \zeta_n(\pi_n) + o_p(1)]^{-1/2}(n^{-1}Z_n'Z_n)^{1/2}T_nL_{V0}^{-1/2} + o_p(1)
= -[K_ZL_{V0}^{-1} + \zeta_n(\pi_n) + o_p(1)]^{-1/2}K_Z^{1/2}T_nL_{V0}^{-1/2}(1 + o_p(1)) + o_p(1),
\] (24.35)
where the second equality holds using (24.34) and Assumption HLIV(c), the third equality holds by Assumption HLIV(c) and some calculations. Using this, we obtain
\[
rk_{1n} := n\tilde{D}_n'\tilde{V}_{Dn}^{-1/2} \hat{D}_n = T_nK_Z^{1/2}[K_ZL_{V0}^{-1} + \zeta_n(\pi_n) + o_p(1)]^{-1/2}K_Z^{1/2}T_nL_{V0}^{-1/2}(1 + o_p(1)) + o_p(1)
= T_n'[I_k + L_{V0}K_Z^{-1/2}\zeta_n(\pi_n)K_Z^{-1/2} + o_p(1)]^{-1}T_n(1 + o_p(1)) + o_p(1),
\] (24.36)
where the last equality holds by some algebra. This proves part (a) of the lemma.

Part (c) of the lemma follows from Lemma 24.3(a) and (b) by substituting in $\sigma_2^2 = c^2\sigma_1^2$. □

Proof of Lemma 24.3 Part (a) holds by the following calculations:
\[
L_{V0} := (\theta_0, 1)
\begin{pmatrix}
\sigma_1^2 & \rho \sigma_1 \sigma_2 \\
\rho \sigma_1 \sigma_2 & \sigma_2^2
\end{pmatrix}^{-1}
\begin{pmatrix}
\theta_0 \\
1
\end{pmatrix}
= \frac{1}{\sigma_1^2 \sigma_2^2(1 - \rho^2)}(\theta_0, 1)
\begin{pmatrix}
\sigma_1^2 & -\rho \sigma_1 \sigma_2 \\
-\rho \sigma_1 \sigma_2 & \sigma_2^2
\end{pmatrix}^{-1}
\begin{pmatrix}
\theta_0 \\
1
\end{pmatrix}
= \frac{\sigma_1^2 - 2\theta_0 \rho \sigma_1 \sigma_2 + \theta_0^2 \sigma_2^2}{\sigma_1^2 \sigma_2^2(1 - \rho^2)}.
\] (24.37)
We have $L_{V_0} > 0$ because Σ_V is pd by Assumption HLIV(b) and $(\theta_0, 1) \neq 0_2$.

Part (b) holds by the first of the following two calculations:

$$b'_0\Sigma_Vb_0 := (1, -\theta_0) \begin{pmatrix} \sigma_1^2 & \rho\sigma_1\sigma_2 \\ \rho\sigma_1\sigma_2 & \sigma_2^2 \end{pmatrix} \begin{pmatrix} 1 \\ -\theta_0 \end{pmatrix} = \sigma_1^2 - 2\theta_0\rho\sigma_1\sigma_2 + \theta_0^2\sigma_2^2$$

and

$$b'_0\Sigma_Vb_0 := (1, -\theta_0)(\rho\sigma_1\sigma_2, \sigma_2^2)' = \rho\sigma_1\sigma_2 - \theta_0\sigma_2^2. \quad (24.38)$$

Using (24.38), we obtain

$$\sigma_2^2 - (b'_0\Sigma_Vb_0)^2(b'_0\Sigma_Vb_0)^{-1} = \sigma_2^2 - \frac{(\rho\sigma_1\sigma_2 - \theta_0\sigma_2^2)^2}{\sigma_1^2 - 2\theta_0\rho\sigma_1\sigma_2 + \theta_0^2\sigma_2^2} \quad (24.39)$$

$$= \frac{\sigma_2^2\sigma_1^2 - 2\theta_0\rho\sigma_1\sigma_2 + \theta_0^2\sigma_2^2 - (\rho\sigma_1\sigma_2 - \theta_0\sigma_2^2)^2}{\sigma_1^2 - 2\theta_0\rho\sigma_1\sigma_2 + \theta_0^2\sigma_2^2} = \frac{\sigma_2^2\sigma_1^2(1 - \rho^2)}{\sigma_1^2 - 2\theta_0\rho\sigma_1\sigma_2 + \theta_0^2\sigma_2^2} = L_{V_0}^{-1},$$

which proves part (c). □

25 Proof of Theorem 12.1

In Section 8, we establish Theorem 8.1 by first establishing Theorem 10.1, which concerns non-SR versions of the AR, CQLR$_1$, and CQLR$_2$ tests and employs the parameter spaces \mathcal{F}_{AR}, \mathcal{F}_1, and \mathcal{F}_2, rather than \mathcal{F}^{SR}_{AR}, \mathcal{F}^{SR}_1, and \mathcal{F}^{SR}_2. We prove Theorem 12.1 here using the same two-step approach.

In the time series context, the non-SR version of the AR statistic is defined as in (5.2) based on $\{f_i - \hat{f}_n : i \leq n\}$, but with $\hat{\Omega}_n$ defined in (12.3) and Assumption Ω below, rather than in (5.1), and the critical value is $\chi^2_{k,1-\alpha}$. The non-SR QLR$_1$ time series test statistic and conditional critical value are defined as in Section 6.1, but with \hat{V}_n and $\hat{\Omega}_n$ defined in (12.3) and Assumption V_1 below based on $\{(u^*_i \otimes \hat{u}^*_m) \otimes Z_i : i \leq n\}$, rather than in (6.3) and (5.1), respectively. The non-SR QLR$_2$ time series test statistic and conditional critical value are defined as in Section 7, but with \hat{V}_n and $\hat{\Omega}_n$ defined in (12.3) and Assumption V below based on $\{f_i - \hat{f}_n : i \leq n\}$, in place of V_n and $\tilde{\Omega}_n$ defined in (7.1) and (5.1), respectively.

For the non-SR AR and non-SR CQLR tests in the time series context, we use the following parameter spaces. We define

$$\mathcal{F}_{TS,AR} := \{F : \{W_i : i = \ldots, 0, 1, \ldots\} \text{ are stationary and strong mixing under } F \text{ with}$$

strong mixing numbers $\{\alpha_F(m) : m \geq 1\}$ that satisfy $\alpha_F(m) \leq Cm^{-d},$

$$E_Fg_i = 0^k, \ E_F||g_i||^{2+\gamma} \leq M, \text{ and } \lambda_{\text{min}}(\Omega_F) \geq \delta\} \quad (25.1)$$
for some $\gamma, \delta > 0$, $d > (2 + \gamma)/\gamma$, and $C, M < \infty$, where Ω_F is defined in (12.4). We define $\mathcal{F}_{TS,2}$ and $\mathcal{F}_{TS,1}$ as \mathcal{F}_2 and \mathcal{F}_1 are defined in (10.1), respectively, but with $\mathcal{F}_{TS,AR}$ in place of \mathcal{F}_{AR}. For CS’s, we use the corresponding parameter spaces $\mathcal{F}_{TS,\Theta,AR} := \{(F, \theta_0) : F \in \mathcal{F}_{TS,AR}(\theta_0), \theta_0 \in \Theta\}$, $\mathcal{F}_{TS,\Theta,2} := \{(F, \theta_0) : F \in \mathcal{F}_{TS,2}(\theta_0), \theta_0 \in \Theta\}$, and $\mathcal{F}_{TS,\Theta,1} := \{(F, \theta_0) : F \in \mathcal{F}_{TS,1}(\theta_0), \theta_0 \in \Theta\}$, where $\mathcal{F}_{TS,AR}(\theta_0), \mathcal{F}_{TS,2}(\theta_0)$, and $\mathcal{F}_{TS,1}(\theta_0)$ denote $\mathcal{F}_{TS,AR}$, $\mathcal{F}_{TS,2}$, and $\mathcal{F}_{TS,1}$, respectively, with their dependence on θ_0 made explicit.

For the (non-SR) CQLR$_2$ test and CS in the time series context, we use the following assumptions.

Assumption \textbf{V}: $\hat{\mathcal{V}}_n(\theta_0) - V_{F_n}(\theta_0) \to_p 0^{(p+1)k \times (p+1)k}$ under $\{F_n : n \geq 1\}$ for any sequence $\{F_n \in \mathcal{F}_{TS,2} : n \geq 1\}$ for which $V_{F_n}(\theta_0) \to V$ for some matrix V whose upper left $k \times k$ submatrix Ω is pd.

Assumption $\textbf{V-CS}$: $\hat{\mathcal{V}}_n(\theta_{0n}) - V_{F_n}(\theta_{0n}) \to_p 0^{(p+1)k \times (p+1)k}$ under $\{(F_n, \theta_{0n}) : n \geq 1\}$ for any sequence $\{(F_n, \theta_{0n}) \in \mathcal{F}_{TS,\Theta,2} : n \geq 1\}$ for which $V_{F_n}(\theta_{0n}) \to V$ for some matrix V whose upper left $k \times k$ submatrix Ω is pd.

For the (non-SR) CQLR$_1$ test and CS, we use Assumptions \textbf{V}_1 and \textbf{V}_1-CS, which are defined to be the same as Assumptions \textbf{V} and \textbf{V}-CS, respectively, but with $\mathcal{F}_{TS,1}$ and $\mathcal{F}_{TS,\Theta,1}$ in place of $\mathcal{F}_{TS,2}$ and $\mathcal{F}_{TS,\Theta,2}$.

For the (non-SR) AR test and CS, we use Assumptions Ω and Ω-CS, which are defined as follows. Assumption Ω: $\hat{\Omega}_n(\theta_0) - \Omega_{F_n,n}(\theta_0) \to_p 0^{k \times k}$ under $\{F_n : n \geq 1\}$ for any sequence $\{F_n \in \mathcal{F}_{TS,AR} : n \geq 1\}$ for which $\Omega_{F_n,n}(\theta_0) \to \Omega$ for some pd matrix Ω and $r_{F_n,n}(\theta_0) = r$ for all n large, for any $r \in \{1, \ldots, k\}$. Assumption Ω-CS is the same as Assumption Ω, but with θ_{0n} and $\mathcal{F}_{TS,\Theta,AR}$ in place of θ_0 and $\mathcal{F}_{TS,AR}$.

For the time series case, the asymptotic size and similarity results for the non-SR tests and CS’s are as follows.

Theorem 25.1 Suppose the AR, CQLR$_1$, and CQLR$_2$ tests are defined as above, the parameter spaces for F are $\mathcal{F}_{TS,AR}$, $\mathcal{F}_{TS,1}$, and $\mathcal{F}_{TS,2}$, respectively (defined in the paragraph containing (25.1)), and the corresponding Assumption Ω, \textbf{V}_1, or \textbf{V} holds for each test. Then, these tests have asymptotic sizes equal to their nominal size $\alpha \in (0, 1)$ and are asymptotically similar (in a uniform sense). Analogous results hold for the AR, CQLR$_1$, and CQLR$_2$ CS’s for the parameter spaces $\mathcal{F}_{TS,\Theta,AR}$, $\mathcal{F}_{TS,\Theta,1}$, and $\mathcal{F}_{TS,\Theta,2}$, respectively, provided the corresponding Assumption Ω-CS, \textbf{V}_1-CS, or \textbf{V}-CS holds for each CS, rather than Assumption Ω, \textbf{V}_1, or \textbf{V}.

The proof of Theorem 12.1 uses Theorem 25.1 and the following lemma.
Lemma 25.2 Suppose \(\{X_i : i = \ldots, 0, 1, \ldots \} \) is a strictly stationary sequence of mean zero, square integrable, strong mixing random variables. Then, \(\text{Var}(\overline{X}_n) = 0 \) for any \(n \geq 1 \) implies that \(X_i = 0 \) a.s., where \(\overline{X}_n := n^{-1} \sum_{i=1}^{n} X_i \).

Proof of Theorem 12.1. The proof of Theorem 12.1 using Theorem 25.1 is essentially the same as the proof (given in Section 10.2) of Theorem 8.1 using Theorem 10.1 and Lemma 10.6. Thus, we need an analogue of Lemma 10.6 to hold in the time series case. The proof of Lemma 10.6 (given in Section 10.2) goes through in the time series case, except for the following:

(i) in the proof of \(\bar{r}_n \leq r (= r_{F_n}) \) a.s. \(\forall n \geq 1 \) we replace the statement “for any constant vector \(\lambda' \Omega_{F_n} \lambda = 0 \), we have \(\lambda' g_i = 0 \) a.s.\([F_n] \) and \(\lambda' \hat{\Omega}_n \lambda = n^{-1} \sum_{i=1}^{n} (\lambda' g_i)^2 - (\lambda' g_n)^2 = 0 \) a.s.\([F_n] \)” by the statement “for any constant vector \(\lambda \in R^k \) for which \(\lambda' \Omega_{F_n} \lambda = 0 \), we have \(\lambda' g_i = 0 \) a.s.\([F_n] \) by Lemma 25.2 (with \(X_i = \lambda' g_i \)) and in consequence \(\lambda' \hat{\Omega}_n \lambda = 0 \) a.s.\([F_n] \) by Assumption SR-V_2(c), SR-V_2-CS(c), SR-V_1(c), SR-V_1-CS(c), SR-\(\Omega \)(c), or SR-\(\Omega \)-CS(c).”

(ii) in the proof of \(\bar{r}_n \geq r \) a.s. \(\forall n \geq 1 \) we have \(\Pi_{1F_n} A_{F_n} \hat{\Omega}_n A_{F_n} \Pi_{1F_n}^{1/2} \rightarrow_p I_r \), with \(\Pi_{1F_n} \) and \(A_{F_n} \) replaced by \(\Pi_{1F_{n,n}} \) and \(A_{F_{n,n}} \), respectively, by Assumption SR-V_2(a) or SR-V_2-CS(a), rather than by the definition of \(\hat{\Omega}_n \) combined with a WLLN for i.i.d. random variables,

(iii) in (10.27), the second implication holds by Lemma 25.2 (with \(X_i = \lambda' g_i \)) and the fourth implication holds by Assumption SR-V_2(b), SR-V_2-CS(b), SR-V_1(b), SR-V_1-CS(b), SR-\(\Omega \)(b), or SR-\(\Omega \)-CS(b), and

(iv) the result of Lemma 6.2, which is used in the proof of Lemma 10.6 holds using the equivariance condition in Assumption SR-V_2(b), SR-V_2-CS(b), SR-V_1(b), SR-V_1-CS(b), SR-\(\Omega \)(b), or SR-\(\Omega \)-CS(b). □

Proof of Theorem 25.1. The proof is essentially the same as the proof of Theorem 10.1 (given in Section 22) and the proofs of Lemma 10.3 and Proposition 10.4 (given in Section 20 above and Section 16 in the SM of AG1, respectively) for the i.i.d. case, but with some modifications. The modifications are the first, second, third, and fifth modifications stated in the proof of Theorem 7.1 in AG1, which is given in Section 19 in the SM to AG1. Briefly, these modifications involve: (i) the definition of \(\lambda_{5,F} \), (ii) justifying the convergence in probability of \(\hat{\Omega}_n \) and the positive definiteness of its limit by Assumption V, V-CS, V_1, V_1-CS, \(\Omega \), or \(\Omega \)-CS, rather than by the WLLN for i.i.d. random variables, (iii) justifying the convergence in probability of \(\hat{\Gamma}_{jn} (= \hat{\Gamma}_{jn}(\theta_0)) \) by Assumption V, V-CS, V_1, or V_1-CS, rather than by the WLLN for i.i.d. random variables, and (iv) using the WLLN and CLT for triangular arrays of strong mixing random vectors given in Lemma 16.1 in the SM of AG1, rather than the WLLN and CLT for i.i.d. random vectors. For more details on the modifications, see Section 19 in the SM to AG1. These modifications affect the proof of Lemma
10.3 No modifications are needed elsewhere. □

Proof of Lemma 25.2 Suppose $\text{Var}(X_n) = 0$. Then, X_n equals a constant a.s. Because $E\bar{X}_n = 0$, the constant equals zero. Thus, $\sum_{i=1}^n X_i = 0$ a.s. By strict stationarity, $\sum_{i=1}^n X_{i+sn} = 0$ a.s. and $\sum_{i=2}^{n+1} X_{i+sn} = 0$ a.s. for all integers $s \geq 0$. Taking differences yields $X_{1+sn} = X_{1+n+sn}$ for all $s \geq 0$. That is, $X_1 = X_{1+sn}$ for all $s \geq 1$.

Let A be any Borel set in R. By the strong mixing property, we have

$$\xi_s := |P(X_1 \in A, X_{1+sn} \in A) - P(X_1 \in A)P(X_{1+sn} \in A)| \leq \alpha_X(sn) \to 0 \text{ as } s \to \infty, \quad (25.2)$$

where $\alpha_X(m)$ denotes the strong mixing number of $\{X_i : i = ..., 0, 1, ...\}$ for time period separations of size $m \geq 1$. We have

$$\xi_s = |P(X_1 \in A) - P(X_1 \in A)^2| = P(X_1 \in A)(1 - P(X_1 \in A)), \quad (25.3)$$

where the first equality holds because $X_1 = X_{1+sn}$ a.s. and by strict stationarity. Because $\xi_s \to 0$ as $s \to \infty$ by (25.2) and ξ_s does not depend on s by (25.3), we have $\xi_s = 0$. That is, $P(X_1 \in A)$ equals zero or one (using (25.3)) for all Borel sets A and, hence, X_i equals a constant a.s. Because $EX_i = 0$, the constant equals zero. □
References

