
1

Pseudo-Analytical Solutions for Stochastic Options
Pricing Models using Monte Carlo Simulations and

Neural Networks
Samuel Palmer, Denise Gorse

Abstract—A combination of Monte-Carlo simulations and
neural network learning is used to provide pseudo-analytical solu-
tions for stochastic options pricing models. The neural network is
trained to learn the option pricing formula using training samples
generated via latin-hyper-cube sampling of Monte-Carlo pricing
over the parameter space. Once trained the neural network
model has effectively learnt an approximate analytical solution
to the problem over the given parameter space. The approximate
solution means that unlike other numerical methods it alleviates
the need to re-run simulations for different model parameter
settings. With extremely large speed and efficiency advantages
the neural network models are also shown to produce prices with
errors statistically comparable to the Monte-Carlo pricing results
presented here. The neural network models were trained to price
European call options and Asian call options with arithmetic or
geometric averaging.

I. INTRODUCTION

We use artificial neural networks to represent a pseudo-
analytical solution of stochastic options pricing models. Us-
ing latice-hypercube-sampling (LHS) we sample the option
parameter space, for which the sample options are then priced
using Monte-Carlo methods. The Monte-Carlo option pricing
samples are then used to train an artificial neural network
model to approximate the solution of the original stochastic
model.

For many cases there does not exist a closed form solution
for the stochastic model of financial products such as exotic
options, or when using models with more complex model
dynamics. One method in these cases is to use simulations
of the model using Monte-Carlo (MC) methods [1] to provide
the solution. The downfall of MC methods is that for only
one parameter set for one stochastic model many thousands
of simulation runs may be required. This means that for any
change in the parameter values a whole new set of simulations
must be ran. This is a common problem for many numerical
methods as they do not approximate a complete solution to
the model but only provide numerical results for the specific
case provided.

As such we propose to use neural networks combined
with numerical methods to produce an approximate pseudo-
analytical solution for stochastic options pricing models. In
essence this methodology uses numerous numerical simula-
tions sampled over the parameter space to train a neural
network which then operates as a function approximator over
the whole parameter space. Similar techniques have been used
in other engineering domains, for example in [2] the authors

use neural networks to learn the effect of design parameters
over simulated bridge designs.

The training procedure of this method may be in the short-
term relatively computationally intensive compared to solving
a single parameter setting of a given stochastic model, but
in the long term this method can be seen to be extremely
efficient as it produces a single neural network model that can
be used for all parameter settings over the given parameter
space. The solution can be provide in O(1) complexity re-
quiring one simple forward pass through the neural network,
which is considerably less computationally expensive than the
thousands of simulation runs required for one Monte-Carlo
pricing result.

Previous work has used neural networks to learn and predict
options prices based on training from actual market data [3] [4]
[5]. This may not work for illiquid exotic derivatives/options
where there is not enough data. Models trained on market
data are also black box solutions with no knowledge of
the underlying market models and dynamics, whereas this
approach uses well defined stochastic models. In other do-
mains neural networks have been used as approximators to
solve differential equations, partial differential equations and
stochastic differential equation [6]. Such methods have been
used in the finance literature, under the name of meshless
methods, to solve models such as the Black-Scholes equation,
but this requires the problem to be well defined [7] [8] [9]
[10]. As such we look to provide a more flexible novel hybrid
numerical method for solving stochastic models.

A. Neural Networks

Artificial neural networks (ANNs) are known as a class of
universal approximators inspired by the connectivity of the
brain. ANNs consist of simple computing units, known as
the ’neurons’, connected in a layered structure via numeric
weights. Here we use a feed forward multi-layer-perceptron
(MLP) network. Traditionally an MLP consists of an input
layer, hidden layer/s, and an output layer. Mathematically the
output of a individual neurone in a feed forward MLP can be
given by

yli = f(
∑
i

∑
j

wl
i,jy

l−1
j ) (1)

where yli is the output of neuron i in the layer l, when l =
L this represents the network output layer and when l = 0
this represents the network inputs. Each neurone also has an



2

additional input, i = 0, which is known as the bias, this input
stays constants for all neurones in all layers and is equal to
one. f(x) is known as the activation function of the neuron,
the activation function then defines the mapping of the neuron
inputs to the neuron output. We use the softplus activation
function which is given by

fsoftplus(x) = log(1 + exp(x)) (2)

; which is commonly used in deep learning applications and
was found to be the most effective of the activation functions
considered for the given problem.

B. Options Pricing

The most well known model used for pricing option con-
tracts is the geometric brownian motion (GBM) model. In the
GMB model the asset price, S, follows a diffusion governed
by the following dynamics

dSt = µSt dt+ σSt dWt (3)

where µ is the mean, σ is the volatility and dWt is brownian
motion.

The defining feature of option contracts is the payoff func-
tion, which determines the value of the contract at maturity.
European options are the simplest with the payoff given by:

P call
Euro = max(0,K − ST ) (4)

where K is the strike price and ST is the asset price at time of
maturity. The analytical price of European options using the
brownian motion model is given by the famous Black-Scholes
equation [11]. This will be used for comparing the respective
errors of the Monte-Carlo prices and neural network model
prices.

Other more complex payoff functions can be defined; these
are then classed as exotic options. Asian options are popular
examples, for Asian options the payoff function, equation 5, is
the average of the path values over the option’s lifetime, either
the geometric average, equation 6, or arithmetic average, equa-
tion 7 are used. The closed-form approximation of these two
Asian options are given by the Kemna-Vorst approximation
[12] and Levy approximation [13] respectively.

P call
Asian = max (A(T )−K, 0) (5)

Ageometric(T ) = exp

(
1

T

∫ T

0

ln(S(t))dt

)
(6)

Aarithmetic(T ) =
1

T

∫ T

0

S(t)dt (7)

C. Latin Hypercube Sampling

The crux of the proposed methodology relies upon effi-
ciently sampling over the stochastic model parameter space.
The issue faced by naive sampling methods, such as grid
sampling is that they suffer from the curse of dimensionality
and do not scale well with increasing dimensions in the pa-
rameter space; as such a random sampling method is required.
Latin hypercube sampling [14] is a stratified random sampling
method which gives a better distributed representation of the
parameter space than just naive random sampling. In LHS each
parameter is divided up into equally probable intervals, there
is then equal probability that the sample will be chosen from
within each interval.

II. METHODOLOGY

The proposed pricing method consists of three main stages:
1) generate the options pricing training and validation data
via Monte-Carlo (MC) simulations over a range of parameter
values; 2) train the neural network to learn the option pricing
model from the training data; 3) input desired parameters into
the network to obtain price approximations from the neural
network model. This is repeated for K number of independent
neural network models. We can combine the outputs of each
independent neural network model to produce an aggregated
neural network model, it was found that using the median
output produced the most robust method.

The numerical training data is generated using Monte-Carlo
simulations; this method is extremely flexible and can be easily
used to price exotic derivatives, but the methodology presented
here is not limited to MC and other suitable numerical
methods may be used. The MC pricing data has been produced
using the Monte-Carlo Longstaff-Schwarz model built into the
MatLab Finance toolbox [15], for each pricing run 1000 simu-
lations and 500 periods are used; the corresponding analytical
solutions/approximations are also calculated. We sample over
the 4D parameter space: interest rate, r; volatility, σ; strike
price, k, and asset price, S; these parameters are then used as
the inputs to the neural network. The time to maturity is set
to a year as this in practice can be changed via the annualised
interest rate and volatility in the GBM model.

For each contract type, here we look at European call
options and Asian arithmetic and geometric call options, three
independent sets of sample data are generated, one for training,
one for validation and one for out of sample testing. For
each option we generate 2000 samples for training, and 1000
samples for both validation and test data sets. The range of
the parameter space used is: r ∈ [0.01, 0.1]; σ ∈ [0.1, 0.5];
S ∈ [0, 100]; and K ∈ [0, 100].

The errors of the numerical approximations x are compared
to the and target data y using the mean absolute error (MAE)
and the mean relative error (MRE) given by

EMAE(x,y) =

∑N
i=1 abs(xi − yi)

N
(8)

EMRE(x,y) =

∑N
i=1

abs(xi−yi)
yi

N
(9)



3

...

...
...

...
y01

y02

y0n

y11

y1n

yL1

yL1

y00 y00

y01

y0n

Network 1 Network 2

Fig. 1: The architecture of the multi-stage network architec-
ture. This architecture consists of two networks with the output
of the first connected as an input to the second, the second
network also takes in the original inputs used in network one,
the second network then acts as a corrector on the output of
the first.

A. Network Architecture

The neural network architecture used is a two step multi-
stage network. In this network architecture two smaller net-
works are connected, where the output/s of the first network
and original inputs are both passed in as inputs into the second
network. This second network then acts as an additional
corrector for errors generated by the first network; a similar
network construction was used for example in the successful
PSIPRED protein structure predictor [16]. The implemented
architecture uses two networks both with two hidden layers of
ten neurones.

B. Data Transformations

To aid a network’s learning it is often desired to transform
the data. Here we apply transforms to both the input parame-
ters and the training target values. Neural network training can
be aided by ensuring that the inputs are all of roughly equal
magnitude [], the asset price and strike price input parameters
are multiplied by 0.01 so they are similar to the magnitudes
of the interest rate and volatility. The training target values
have a more complex transform applied. The issue with the
training data when untransformed is the vast continuous range
of magnitudes for prices less than one. Firstly, to reduce the
range we apply a minimum resolution by adding a small
constant, res, to all the training values. This limits the network
to distinguishing values no smaller than res, with this constant
small enough it is an appropriate transformation to make.
In practice here we test three values of res: 10−4, 10−6

and 10−8. The second transform aids the networks learning
by transforming the target training values to approximately
similar magnitudes, this is done via a log10 type transform

Tsp10(x) = log10(10
x − 1) , x 6= 0 (10)

T−1
sp10(z) = log10(10

z + 1)z 6= 0 (11)

this is dubbed a softplus-base10 (sp10) transform due to
its similarity to the softplus function. The softplus-base10
transform essentially transform all values x < 1 using a
log10 transform, mapping the x values to negatives values,
but remains close to linearity for values x > 1. This function
is bijective given that for all x > 0, and hence is applicable
in the case of options pricing which does not involve negative
numbers.

The network learns to output the transformed prices; to
recover the final price the inverse transform, equation 11, is
then applied to the network output.

C. Training Method
The neural networks are trained using the Breeding Particle

Swarm Optimisation (BrPSO) algorithm [17]. BrPSO was
observed to produce superior neural network training results
compared to standard PSO and also gave the best results
compared to other algorithms considered in this application.
Particle swarm optimisation [18] is a heuristic search method
and is based upon the flocking of birds. The algorithm consists
of a swarm of particles, for which the position of each particle
represents a vector in the search space; in this case the search
space is the neural network weights, W. The quality of the
position for each particle is evaluated to give a fitness value,
for every iteration the particles then move throughout the
search space to find the optimum vector.

In this application the fitness value is calculated as a sum of
the mean absolute error of the neural network approximations
for the transformed option prices and the mean relative error
of the inverse transform of the network output compared to the
raw training values of the option price, this is given in equation
12. The two component fitness values are used because it
was observed when using just the transformed option price
small errors in the compressed log transform values resulted in
significantly larger errors when the inverse transform was then
applied to obtain the final price approximation. When using
no transform or training with the inverse transform applied
to the network output results were poor. This combination of
component allows the network to efficiently output a wide
magnitude of prices via the transform but also minimise the
respective errors that occur during the inverse transform to the
final price. The fitness for each particle in this optimisation can
be given by

fit(Wi) = EMAE(N(Wi,Y
0), Tsp10(V)) (12)

+ EMRE(T
−1
sp10(N(Wi,Y

0)),V)

where Wi is the matrix of neural network weights represented
by particle i, Y0 is the vector of training input parameters
sets i.e. Y0 = {{y0

1,y
0
2...y

0
n}1, ...{y0

1,y
0
2...y

0
n}J}, V is the

corresponding vector of target prices for input parameter sets,
and N(W,Y0) is the vector of neural network approximation
outputs for each input parameter set given in Y0 .



4

III. RESULTS AND DISCUSSION

Results are presented for the neural network price approxi-
mations for Europan call options, and Asian arithmetic and
geometric call options. The methodology discussed in the
preceding section is repeated for each of the options contracts,
with 30 neural networks being trained for each contract.

For European options it is seen that the aggregated neural
network model, using the median output of the trained neural
networks, produces far superior results to an individual net-
work, as well as being a more robust and reliable solution. As
such only the results for the aggregated neural network model
will be presented for the Asian options. It should be noted that
only one aggregated neural network model is created for each
contract using the individually trained neural networks.

A. European Options

The error results for the independent neural network models
are given in table I, and for the aggregated neural network
model in table II. When using the independent neural networks
for res = 10−8 only 28 networks were analysed, this is
because two networks presented infinite results for two option
prices; this is due to overfitting in the network training, valida-
tion was used to reduce the effects of overfitting but as seen it
is not always successful. As such this shows that using a single
independent neural network may not lead to reliable solution.
Even for res = 10−4 and 10−6 where there were no errors
in the neural network results the errors are still significantly
larger than using the aggregated neural network models. Even
though some independent neural network models may produce
errors lower than the aggregated model the variance makes
selecting a model not as reliable as supposed to using an
aggregated model. It can be observed that the aggregated
model, as expected, provides more consistent results than using
a single neural network model

In all cases the MAE for the aggregated neural network
models are significantly better than the Monte-Carlo results,
being up to two times smaller. On the other hand the MREs are
slightly larger; from this combined with the lower MAE it can
be inferred that the aggregated neural network is more accurate
for estimating the price of options with prices of a larger
magnitude, i.e. in-the-money options. Although the lower
MRE then suggests that for prices of a lower magnitude, i.e.
out-of-the-money options, the neural network may be slightly
less accurate, and this an area further development of the
methodology can improve. The reason for the MRE for lower
magnitude values is due to the logarithmic type data transform
applied to these values during training; the compression of
the range of target values using the log transform means that
during training small training errors can result in larger errors
once the inverse transform is applied. Even though precautions
were taken to minimise this effect by using a two component
fitness function involving the inverse-transform MRE the effect
is still observable.

In addition we have looked at the probability of the relative
error being less than 10%, PRE(< 10%). For all of the cases it
can be seen that the aggregated neural network has a similar
probability in these examples with only a maximum of 2%

lower probability; in fact for res = 10−6 the probability for
the aggregated neural network model is slightly higher. Figures
2, 3 and 4 show the distribution of the magnitudes of the
relative errors, it can actually be seen that in all cases the
neural network model has a higher proportion of errors with
magnitude of negative two or lower, which corresponds to
percentage error of < 1%. For both res = 10−6 and 10−8

there are no relative errors greater than 100% whilst the Monte
Carlo results have a small proportion for all resolution values.

For Monte-Carlo we see a steady decreases in PRE(< 10%)
as the resolution constant decreases, but for the neural network
we see that there is an increases for when res = 10−6. This
inconsistancy may suggest that the current aggregated neural
network results have not converged to a stable distributions and
have further room for improvement. The results presented here
only used an aggregation of 30 independent neural networks
and it is hoped that results can be further improved by using
more.

It can be seen that overall the numerical results presented
suggest that a suitable pseudo-analylitical solution using neural
networks can be obatined for pricing European options. The
errors of the aggregated neural network model are comparable
and in some cases better than the Monte-Carlo results for
pricing European options; but also with the advantage that the
neural network model price approximations can be generated
innumerably faster and efficiently. This methodology is then
tested on the more complex case of Asian option contracts.

Fig. 2: Histogram showing the distribution of the magnitudes
of mean relative errors for European call options, with res =
10−4.

B. Asian Options

The error results for the Asian geometric and arthiemtic
aggregated neural network models are presented in tables
III and IV. Both Asian options actually seem to be easier
to approximate than European options, with the MREs and
PRE(< 10%) values being lower, this is also true for the MC
simulations.

This can be seen with a larger difference between the
PRE(< 10%) values for the MC and neural network price
estimations, the neural network approximations are seen to
have a 4 − 5% lower probability, whilst this is only 1 − 2%



5

MAE Mean MAE StDev MRE Mean MRE StDev PRE(< 10%) Mean PRE(< 10%) StDev
res = 10−4 0.206 0.034 0.173 0.014 0.750 0.017
res = 10−6 0.245 0.080 0.203 0.033 0.724 0.036
res = 10−8 0.277 0.074 0.244 0.037 0.687 0.036

TABLE I: The mean absolute error (MAE), mean relative error (MRE) and probability of relative error being less than 10%
(PRE(< 10%)) for European call options test set. The mean and standard deviation values of the error measures of the
independent neural network models.

MAE MAE StDev MedAE MRE MRE StDev MedRE PRE(< 10%)
res = 10−4

MC 0.295 0.446 0.130 0.128 0.616 0.017 0.793
Ag-NNM 0.131 0.140 0.095 0.161 0.325 0.008 0.776
res = 10−6

MC 1.00E-08 0.295 0.446 0.130 0.185 0.731 0.023 0.742
Ag-NNM 0.165 0.197 0.110 0.232 0.385 0.016 0.722
res = 10−8

MC 0.295 0.446 0.130 0.159 0.717 0.019 0.765
Ag-NNM 0.137 0.165 0.089 0.181 0.345 0.011 0.772

TABLE II: The mean absolute error (MAE), median absolute error (MedAE), mean relative error (MRE), median relative error
(MedRE) and the probability of relative error being less than 10% (PRE(< 10%)) for the European call options test data
set. Results are for both the aggregated neural network model (Ag-NNM) and Monte-Carlo (MC) price approximations for
European options.

MAE MAE StDev MedAE MRE MRE StDev MedRE PRE(< 10%)

res = 10−4

MC 0.053 0.088 0.015 0.153 1.409 0.002 0.832
Ag-NNM 0.091 0.133 0.046 0.151 0.304 0.003 0.780
res = 10−6

MC 0.053 0.088 0.015 0.262 3.285 0.002 0.806
Ag-NNM 0.101 0.163 0.043 0.210 0.377 0.004 0.754
res = 10−8

MC 0.053 0.088 0.015 0.284 3.332 0.003 0.788
Ag-NNM 0.099 0.164 0.052 0.223 0.390 0.006 0.740

TABLE III: The mean absolute error (MAE), median absolute error (MedAE), mean relative error (MRE), median relative
error (MedRE) and the probability of relative error being less than 10% (PRE(< 10%)) for the Asian geometric average
call options test data set. Results are for both the aggregated neural network model (Ag-NNM) and Monte-Carlo (MC) price
approximations for Asian geometric options.

Fig. 3: Histogram showing the distribution of the magnitudes
of mean relative errors for European call options, with res =
10−6.

Fig. 4: Histogram showing the distribution of the magnitudes
of mean relative errors for European call options, with res =
10−8.



6

MAE MAE StDev MedAE MRE MRE StDev MedRE PRE(< 10%)

res = 10−4

MC 1.00E-04 0.063 0.107 0.017 0.277 3.106 0.002 0.837
Ag-NNM 0.087 0.128 0.039 0.146 0.316 0.003 0.786
res = 10−6

MC 1.00E-06 0.063 0.107 0.017 0.262 3.285 0.002 0.811
Ag-NNM 0.101 0.163 0.043 0.191 0.361 0.004 0.770
res = 10−8

MC 0.063 0.107 0.017 0.435 5.542 0.003 0.794
Ag-NNM 0.090 0.139 0.043 0.211 0.381 0.005 0.744

TABLE IV: The mean absolute error (MAE), median absolute error (MedAE), mean relative error (MRE), median relative
error (MedRE) and the probability of relative error being less than 10% (PRE(< 10%)) for the Asian arithmetic average
call options test data set. Results are for both the aggregated neural network model (Ag-NNM) and Monte-Carlo (MC) price
approximations for Asian arithmetic options.

for European options. Figures ?? and ?? give the histograms
of the relative errors for the Asian geometric and arithmetic
options respectively. It can be seen that whilst the neural
networks have a higher proportion of errors between 0.1%
- 10%, MC does produce a higher proportion of results below
0.1%. Unfortunately the neural network model does have a
significantly higher proportion of results between 10% - 100%,
this is due to the network underestimating options prices.When
underestimating the option price the relative error is bounded
by one (100%), and during optimisation this is desirable to
minimise the MRE, as such this may skew training away from
focusing on better learning option prices which fall into this
criteria. Though it can be seen that again the MC does produce
approximations with relative errors larger than 100% where the
price has been overestimated, whilst the neural network model
does not produce any overestimations.

Overall the neural network approximations are still very
close to the accuracy of Monte-Carlo with a high probability
of low relative errors. This accuracy combined with the
incredibly large speed up makes this method advantageous to
use compared to Monte-Carlo used here.

Fig. 5: Histogram showing the distribution of the magnitudes
of mean relative errors for Asian geometric average call
options, with res = 10−8.

IV. CONCLUSION

We present a novel hybrid methodology using traditional
numerical methods and neural networks to produce a pseudo-

Fig. 6: Histogram showing the distribution of the magnitudes
of mean relative errors for Asian arithmetic average call
options, with res = 10−8.

analytical solution for stochastic options pricing models. The
results presented here show that when compared to the ana-
lytical solutions/approximations the aggregated neural network
model produces prices that have errors similar to the Monte-
Carlo method used. The advantage of this method is that unlike
Monte-Carlo or other numerical methods the neural network
represents an analytical approximation of the solution over the
whole parameter space. This means that neural network model
only needs to be trained once, and once trained can evaluate
option prices extremely fast over the parameter space.

We have tested this methodology on simple European
options and the more complex case of Asian options, but
only using simple stochastic models. It will be interesting to
see how this methodology fairs with more complex stochastic
models, for example pricing options using the Heston model
[19] which incorporates stochastic volatility, or further using
the Heston-Hull-White model [20] which has both stochastic
volatility and interest rates. Apart from using the networks
to calculate price approximations the models could be further
investigated by analysing the greek sensitivity values of the
options using the neural network models. It will also be
interesting to see how sensitive the neural network training
is to the accuracy of the underlying numerical training data; it
could be suggested that more simulations are required for the



7

Monte-Carlo results here.
There are some limitations to the current method, mainly

being the pricing results for out-of-the-money options for
which the prices are respectively many magnitudes smaller
than in-the-money options. The problem due to the wide range
of magnitudes of price outputs was partially resolved by using
the softplus-base10 transform, equation 10 suggested in this
work; however further work will be needed to improve the
relative errors in these instances.

Overall this work presents a successful exploratory study
into using neural networks as a method of representing pseudo-
analytical approximations for stochastic option pricing models.
The method produces results with good accuracy and has
the advantage of extremely efficient price evaluations when
compared to more traditional numerical methods. With further
work there is scope to further increase the accuracy and
efficiency of this methodology.

REFERENCES

[1] P. Glasserman, Monte Carlo methods in financial engineering, vol. 53.
Springer Science & Business Media, 2003.

[2] D. Lehký and M. Šomodı́ková, Engineering Applications of Neural
Networks: 16th International Conference, EANN 2015, Rhodes, Greece,
September 25-28 2015.Proceedings, ch. Reliability Analysis of Post-
Tensioned Bridge Using Artificial Neural Network-Based Surrogate
Model, pp. 35–44. Cham: Springer International Publishing, 2015.

[3] J. Bennell and C. Sutcliffe, “Black–scholes versus artificial neural
networks in pricing ftse 100 options,” Intelligent Systems in Accounting,
Finance and Management, vol. 12, no. 4, pp. 243–260, 2004.

[4] B. K. Wong and Y. Selvi, “Neural network applications in finance: A
review and analysis of literature (1990–1996),” Information & Manage-
ment, vol. 34, no. 3, pp. 129–139, 1998.

[5] U. Anders, O. Korn, and C. Schmitt, “Improving the pricing of options:
A neural network approach,” tech. rep., ZEW Discussion Papers, 1996.

[6] N. Yadav, A. Yadav, and M. Kumar, An Introduction to Neural Network
Methods for Differential Equations. Springer, 2015.

[7] Y. Goto, Z. Fei, S. Kan, and E. Kita, “Options valuation by using radial
basis function approximation,” Engineering Analysis with Boundary
Elements, vol. 31, no. 10, pp. 836–843, 2007.

[8] A. Golbabai, D. Ahmadian, and M. Milev, “Radial basis functions
with application to finance: American put option under jump diffusion,”
Mathematical and Computer Modelling, vol. 55, no. 3, pp. 1354–1362,
2012.

[9] O. González-Gaxiola and P. P. González-Pérez, “Nonlinear black-scholes
equation through radial basis functions,” Journal of Applied Mathematics
and Bioinformatics, vol. 4, no. 3, p. 75, 2014.

[10] Y.-C. Hon and X.-Z. Mao, “A radial basis function method for solving
options pricing models,” Journal of Financial Engineering, vol. 8,
pp. 31–50, 1999.

[11] J. B. Cohen, F. Black, and M. Scholes, “The valuation of option contracts
and a test of market efficiency,” The Journal of Finance, vol. 27, no. 2,
pp. 399–417, 1972.

[12] A. G. Kemna and A. Vorst, “A pricing method for options based on
average asset values,” Journal of Banking & Finance, vol. 14, no. 1,
pp. 113–129, 1990.

[13] E. Levy, “Pricing european average rate currency options,” Journal of
International Money and Finance, vol. 11, no. 5, pp. 474–491, 1992.

[14] M. D. McKay, R. J. Beckman, and W. J. Conover, “A comparison of
three methods for selecting values of input variables in the analysis of
output from a computer code,” Technometrics, vol. 42, no. 1, pp. 55–61,
2000.

[15] “Matlab and finance toolbox release 2014b, the mathworks, inc, natick,
massachusetts, united states.,”

[16] L. J. McGuffin, K. Bryson, and D. T. Jones, “The psipred protein
structure prediction server,” Bioinformatics, vol. 16, no. 4, pp. 404–405,
2000.

[17] S. Palmer, D. Gorse, and E. Muk-Pavic, “Neural networks and particle
swarm optimization for function approximation in tri-swach hull design,”
in Proceedings of the 16th International Conference on Engineering
Applications of Neural Networks (INNS), p. 8, ACM, 2015.

[18] R. C. Eberhart, J. Kennedy, et al., “A new optimizer using particle swarm
theory,” in Proceedings of the sixth international symposium on micro
machine and human science, vol. 1, pp. 39–43, New York, NY, 1995.

[19] S. L. Heston, “A closed-form solution for options with stochastic
volatility with applications to bond and currency options,” Review of
financial studies, vol. 6, no. 2, pp. 327–343, 1993.

[20] L. A. Grzelak, C. W. Oosterlee, and S. Van Weeren, “Extension of
stochastic volatility equity models with the hull–white interest rate
process,” Quantitative Finance, vol. 12, no. 1, pp. 89–105, 2012.


