Fiscal Policy and Lending Relationships*

Giovanni Melina†
University of Surrey
United Kingdom

Stefania Villa‡
Katholieke Universiteit Leuven
Belgium

14th May 2012

Abstract
This paper studies how fiscal policy affects loan market conditions. First, it conducts a Structural Vector-Autoregression analysis showing that the bank spread responds negatively to an expansionary government spending shock, while lending increases. Second, it illustrates that these results are mimicked by a Real Business Cycle model where the bank spread is endogenized via the inclusion of a banking sector exploiting lending relationships. Third, it shows that lending relationships represent a friction that generates a financial accelerator effect in the transmission of the fiscal shock.

Keywords: Fiscal policy, deep habits, bank spread, lending relationships.

JEL Codes: E44, E62

*We are grateful to Yunus Alsay for giving us the input of modeling the banking sector as lending relationships. The paper has benefited from extensive comments by Fabio Canova and econometric suggestions by Ron Smith. We are also grateful to John Driffill, Matteo Iacoviello, Paul Levine, Andrew Mountford, Francesco Nucci, Peter Sinclair, Frank Smets, Timo Trimborn, Stephen Wright, conference participants at the 2012 Annual Meeting of the American Economic Association, the Royal Economic Society 2011 Annual Conference, the 16th Spring Meeting of Young Economists, the 52nd Annual Conference of the Italian Economic Association as well as seminar participants at Aarhus University, Birkbeck College, the Bank of England, the Bank of Spain, the Reserve Bank of New Zealand, the University of Bath, the University of Glasgow and University of Surrey for useful comments and suggestions. Giovanni Melina acknowledges financial support from ESRC project RES-062-23-2451. The usual disclaimer applies.

†University of Surrey, Guildford, Surrey, UK. Tel: +44 (0) 1483689924; Fax: +44 (0) 1483689548; E-mail: g.melina@surrey.ac.uk.

‡Katholieke Universiteit Leuven, Naamsestraat 69, 3000 Leuven, Belgium. Tel: +32 (0) 16326645; Fax: +32 (0) 16326796; E-mail: stefania.villa@econ.kuleuven.be.
1 Introduction

During the Great Moderation the mainstream business cycle literature argued that any policy instrument other than the monetary policy rate played only a minor role in stabilizing the economy, this being the main reason why the focus on discretionary fiscal policy as a countercyclical tool was very limited (see e.g. Blanchard et al., 2010). As the recent crisis began, it was clear that fiscal policy was at least a dimension along which governments could do more, having soon realized that the crisis was taking a global and profound dimension, it was expected to be long-lasting, and the monetary policy interest rate, in many cases, had almost reached the zero lower bound.

Modern macroeconomics agrees on the fact that credit market conditions significantly affect business cycle dynamics and the underlying growth path (see e.g. Bean, 2010). It is a well-established fact in the empirical literature that credit spreads widen during downturns (see Gertler and Lown, 1999; Aliaga-Díaz and Olivero, 2010, 2011; Villa and Yang, 2011, among many others) and the Dynamic Stochastic General Equilibrium (DSGE) literature offers a variety of explanations (see Bernanke et al., 1999; Christiano et al., 2010; Gerali et al., 2010; Gertler and Kiyotaki, 2010; Gertler and Karadi, 2011, among others). As far as the bank spread is concerned, i.e. the difference between the loan rate and the deposit rate, an appealing but less studied determinant is offered by lending relationships. Aliaga-Díaz and Olivero (2010) provide empirical evidence of lending relationships in which banks hold up borrowers because the former gain an information monopoly over customers' creditworthiness and the latter find it costly to switch to a new funding source. This piece of evidence agrees with the analysis of Santos and Winton (2008), who empirically show that during recessions banks raise the bank spread more for bank-dependent borrowers than for those with access to public bond markets. According to Santos and Winton, the increase in the bank spread due to the informational hold up effect reaches 95 basis points in US data. Petersen and Rajan (1994) estimate that in the US loan market the average duration of lending relationships is 11 years. The hold-up problem in the loan market, however, is not a phenomenon involving only the US. The European Commission (2007) reports increasing switching costs also in the EU loan market, and there exists a substantial body of microeconometric evidence of lending relationships in a number of European countries, such as Italy, Belgium, and Norway, where average lending relationship durations are in the order of 10 years (see Angelini et al., 1998; De Gryse and Van Cayseele, 2000; Kim et al., 2003, among others).

Given the empirical relevance of lending relationships and the renewed interest in fiscal policy, a natural question is then: what are the typical effects of a government spending expansion on lending and the bank spread? Although in the literature there are papers investigating the stabilization properties of fiscal policy in DSGE models with credit frictions (see e.g. Carrillo and Poilly, 2010; Fernández-Villaverde, 2010; Canzoneri et al., 2011), these studies do not focus specifically on how a fiscal stimulus affects loan market conditions. This paper fills in this gap on one hand by estimating the response of lending and the bank spread to a government spending expansion in a Structural Vector-Autoregressive (SVAR) model of the US economy. On the other hand, it develops a Real Business Cycle (RBC) model with lending relationships able (i) to match to a significant extent the
empirical findings, and (ii) to provide a theoretical framework that allows one to study how the fiscal stimulus is transmitted via a banking sector characterized by the presence of lending relationships. The contribution is twofold. First, the estimated impulse responses from the SVAR provide evidence that the bank spread significantly falls in response to a government spending expansion, while lending increases. Second, the paper shows that, in the RBC model, a fiscal stimulus becomes more effective if increasingly stronger lending relationships are present in the loan market. In fact, the government spending expansion, by curbing the bank spread and boosting lending, fosters better credit market conditions, which in turn enact second-round expansionary effects on economic activity. In other words, there exists a financial accelerator effect in the transmission of the fiscal shock.

Lending relationships have already been explored in the DSGE arena. Aliaga-Díaz and Olivero (2010) introduce them into an otherwise standard RBC model where countercyclical bank spreads play a financial accelerator role in the propagation mechanism of technology shocks. In the New Keynesian literature, Aksoy et al. (2012) show that lending relationships are a feature of financial intermediation relevant for monetary policy making in a model with staggered prices and cost channels. The paper follows these studies in incorporating lending relationships via the modeling device that firms form deep habits in their borrowing decisions, following the strategy used by Ravn et al. (2006) to model consumption decisions. Deep habits in lending represents a very effective, though tractable, tool to incorporate the borrower’s hold-up problem without having to explicitly formalize an asymmetric information problem. In fact, Aksoy et al. (2012, Appendix) formulate an adverse selection problem for the banking sector based on Akerlof (1970) and show that, in the symmetric equilibrium, the bank’s profit margin is equivalent to the profit margin under deep habits in lending. In this paper, the demand side of the model departs from more standard business cycle models in that households feature external deep habit formation, and public goods enter households’ utility with a certain degree of complementarity with private goods. While the former feature allows to match the sign of a number of impulse responses to government spending shocks with respect to SVAR results, the latter proves to be a powerful source of amplification in the transmission of such shocks.

The remainder of the paper is structured as follows. Section 2 presents the SVAR estimates. Section 3 illustrates the RBC model. Section 4 describes functional forms. Section 5 presents the choice of parameter values. Section 6 discusses the results in the RBC model. Section 7 disentangles the effects of some model features. Finally, Section 8 concludes.

2 Empirics

As anticipated, the empirical literature provides evidence of counter-cyclical credit spreads, but does not cover the more specific issue of how bank spreads and lending react to a government spending shock. This section fills in this gap by estimating a SVAR model of the US economy employing quarterly US data over the period 1954q1-2007q4. The starting date avoids the years from 1945 to the Korean war, considered to be turbulent from a fiscal point of view (see Perotti, 2008, for a
discussion), while the end date falls before the start of the Great Recession.

The baseline specification is an adaptation of Monacelli et al. (2010) whereby the vector of endogenous variables contains the log of real per-capita government consumption expenditures, the log of real per-capita output, the average marginal tax rate computed by Barro and Redlick (2011), the log of real per-capita private lending and the bank spread. The bank spread is computed as the difference between the three-month bank prime loan rate (BPLR) and the quarterly Treasury bill rate. To this five-variable specification further variables of interest are added one at a time. In particular, the following variables are analyzed: the log of real per-capita private consumption, the log real per-capita private domestic investment, the log of per-capita hours of work, the log of the real hourly wage, and the price mark-up.\(^1\) Following Monacelli et al. (2010), the specification includes, as exogenous variables, a constant, a linear trend, and lags zero to four of the Ramey-Shapiro (RS) dummy variables, which take value one in those quarters in which large military build-ups took place in the US (1965q1, escalation of the Vietnam war; 1980q1, Carter-Regan military build-up upon the Soviet invasion of Afghanistan; 2001q3, 9/11 attack). The inclusion of the RS episodes addresses at least partially the issue of anticipation of government expenditure shocks. These in fact are identified by using the assumption firstly proposed by Blanchard and Perotti (2002) – and extensively adopted since then in the empirical literature – that government spending is unable to react to output and other unexpected shocks within a quarter due to implementation and decision lags typical of the budgeting process. If identification is achieved via a Choleski decomposition, this assumption simply translates into ordering government spending first (see e.g. Monacelli et al., 2010). In recent years the empirical literature has debated a great deal on which identification schemes should be used to analyze the macroeconomic effects of fiscal policy. Among others, Ramey (2011) criticizes the Blanchard-Perotti (BP) approach on the grounds that it fails to take into account anticipation effects, and advocate the use of the narrative approach, which instead uses dummy variables to isolate episodes of discretionary fiscal policy, such as military build-ups. In particular, the point made is that VAR shocks alone miss the timing of the news as the narrative approach shocks Granger-cause the VAR shocks. Mertens and Ravn (2012) on one hand show that in theory anticipation effects may invalidate SVAR estimates of impulse responses; on the other hand they also show that anticipation effects generally do not overturn the existing findings from the fiscal SVAR literature, largely employing the BP approach.

After estimating the reduced form of the SVAR, including four lags of the endogenous variables,\(^1\) GDP, the GDP deflator, the interest rates used to compute the bank spread, private consumption, investment and lending were extracted from the ALFRED database of the Federal Reserve Bank of St. Louis. Government consumption expenditures were extracted from the NIPA tables of the Bureau of Economic Analysis. Per-capita hours of work is the series constructed by Francis and Ramey (2009) and available on Valerie Ramey’s webpage. The real hourly wage is the average hourly wage of production workers in manufacturing produced by the US Bureau of Labor Statistics. As in Christiano et al. (2010), private lending is the sum of total credit market instruments from the liabilities side of the balance sheet of nonfarm nonfinancial corporate business and total credit market instruments from the liabilities side of the balance sheet of nonfarm noncorporate business. The price mark-up is computed as the log of the ratio between national income without capital consumption adjustment in manufacturing and wage and salary disbursements in manufacturing as in Monacelli and Perotti (2008) and the required variables were extracted from the NIPA tables. Where appropriate, the series were transformed in real per-capita terms by dividing their nominal values by the GDP deflator and the civilian population. All series are seasonally adjusted by the source.
its structural representation and correspondent identification of the structural shocks is obtained via a Choleski triangularization, as already discussed. Figure 1 plots SVAR impulse responses to a positive shock to government consumption expenditure of size 1% of real output over a twenty-quarter horizon. All variables react in an hump-shaped fashion. Real output increases significantly reaching a peak multiplier of about 1.75 after two years and a half. Lending shows a statistically significant boost with a peak of almost 5 percent after three years, while the bank spread significantly declines by around 50 basis points on impact and reaches a negative peak of 70 basis points after two years. Private consumption is significantly crowded in by government consumption.

\[\text{\footnotesize 2To achieve this, the variables are ordered as follows: (i) government spending; (ii) output; (iii) the average marginal tax rate; (iv) private lending; the (v) bank spread. As a robustness check, many alternative variable orderings were used in the Choleski decomposition, obtaining only negligible differences with respect to the impulse responses reported as long as government spending was ordered first.}\]
reaching its peak after two years, while private investment falls on impact and eventually experiences a significant crowding-in effect peaking after two years and a half. The responses of hours worked and the real wage are positive (apart from the insignificant negative response of hours worked in the second quarter), and gain statistical significance after a few quarters (more quickly in the case of the real wage). Finally, the price mark-up reacts negatively to the fiscal stimulus, the drop being significant at longer horizons.\(^3\)

3 Model

This section presents the DSGE model. The economy is populated by: (i) households; (ii) the government; (iii) entrepreneurs; (iv) final good firms; and (v) banks. Households consume, save by choosing deposits, and supply labor. The government allocates government purchases over the varieties of consumption goods and raises lump sum taxes. Private and government consumption exhibit habits at the level of each variety of goods, i.e deep habits, as in Ravn et al. (2006). Entrepreneurs borrow from banks to produce a homogeneous wholesale output sold in a perfectly competitive market. They minimize their borrowing costs by choosing their demand for loans and exhibit deep habits in lending. This feature is present both in the RBC model by Aliaga-Diaz and Olivero (2010) and in the NK model by Aksoy et al. (2012) and represents a reduced form way to incorporate the effects of informational asymmetries on borrowers’ creditworthiness into a DSGE model. In fact, as explained by Aliaga-Diaz and Olivero (2010) banks can be thought of accumulating this information by repeatedly lending to their customers and earning an informational monopoly that creates a borrower’s hold-up effect. In other words, it becomes costly for borrowers to switch lenders as they should start the signaling process again. The deep habits framework is not a formal setup of asymmetric information, but it produces the same effects, as shown by Aksoy et al. (2012, Appendix). In addition, entrepreneurs maximize the flow of discounted profits by choosing the quantity of factors for production. Final goods firms buy the wholesale good from entrepreneurs, differentiate it and sell it in a monopolistically competitive market. Banks maximize the expected discounted value of lifetime profits by choosing deposits and the loan rate. Their balance sheet features loans on the assets side and deposits on the liabilities side.

\(^3\)Recent empirical contributions in the fiscal literature provide support for the fact that a government spending expansion causes a crowding-in effect on private consumption, an increase in hours worked, a boost in the real wage and a drop in the price mark-up (Blanchard and Perotti, 2002; Gali et al., 2007; Caldara and Kamps, 2008; Monacelli and Perotti, 2008; Pappa, 2009; Monacelli et al., 2010; Canova and Pappa, 2011; Fragetta and Melina, 2011). The US evidence on the effect of fiscal shocks, however, partially differs from the evidence in other countries (see Perotti, 2005).
3.1 Households

The economy is populated by a continuum of households indexed by \(j \in (0, 1) \). Each household’s preferences are represented by the following intertemporal utility function:

\[
U_0^j = E_0 \sum_{t=0}^{\infty} \beta^t \left[U \left(X_t^j, 1 - H_t^j \right) \right],
\]

where \(\beta \in (0, 1) \) is the discount factor and \(H_t^j \) is labor supply in terms of hours worked. Total time available to households is normalized to unity, thus \(1 - H_t^j \) represents leisure time. Following Ravn et al. (2006), preferences feature habit formation at the level of individual goods (see also Jacob, 2010; Di Pace and Faccini, 2012; Zubairy, 2012). Let \((X_t)^j = X \left((X_t^c)^j, X_t^d \right) \) be a composite of habit-adjusted differentiated private and public consumption goods (see e.g. Pappa, 2009; Cantore et al., 2012). Let the private component of \((X_t^c)^j\) be in turn a composite of differentiated goods indexed by \(i \in (0, 1)\),

\[
(X_t^c)^j = \int_0^1 \left(C_{it}^j - \theta S_{it-1}^c \right)^{1-\eta} di,
\]

where \(\eta \) is the elasticity of substitution across varieties, \(\theta \) is the degree of deep habits in consumption, \(C_{it}^j \) is the real consumption expenditure at time \(t \), and \(S_{it-1}^c \) denotes the stock of external habits, which evolves as

\[
S_{it}^c = \phi S_{it-1}^c + (1 - \phi) C_{it},
\]

and \(\phi \) measures the habit persistence. Such a form of consumption externality is also known as “catching up with the Joneses good by good”.

Household \(j \) solves a two-stage optimization problem. First, they minimize total expenditure, \(\int_0^1 P_t C_{it}^j di \), subject to equation (2). The optimal level of consumption for each variety for a given composite is then given by

\[
C_{it}^j = \left(\frac{P_{it}}{P_t} \right)^{-\eta} (X_t^c)^j + \theta S_{it-1}^c,
\]

where \(P_t = \int_0^1 P_{it}^{1-\eta} di \) is the nominal price index. At the optimum, using equation (4) and the definition of nominal price index, the nominal value of the habit-adjusted consumption composite can be written as

\[
P_t (X_t^c)^j = \int_0^1 P_{it} \left(C_{it}^j - \theta S_{it-1}^c \right) di.
\]

The second stage of households’ optimization problem consists in the maximization of utility subject to the budget constraint. Household \(j’ \)’s actual consumption expenditure at time \(t \), \(C_t^j \), is obtained by rearranging equation (5)

\[
C_t^j = (X_t^c)^j + \theta \int_0^1 P_{it} S_{it-1}^c di.
\]

\[\equiv \eta_t^j\]
The representative household enters period t with D_t^j units of real deposits in the bank. During period t, the household chooses to consume C_t^j; supplies H_t^j hours of work; and allocates savings in deposits at the bank, D_{t+1}, that pay the net interest rate R_t^{P} between t and $t+1$.

Each period the representative household gains an hourly wage, W_t^j; dividend payments, $\int_0^1 \Pi_d dt$, from final goods firms and $\int_0^1 \Pi_b db$ from banks. In addition, the government imposes real lump-sum taxes, T_t. The household’s intertemporal budget constraint can thus be expressed as:

$$\left(X_t^c\right)^j + \Omega_t^j + D_{t+1}^j \leq W_t H_t^j + (1 + R_t^P) D_t^j + \int_0^1 \Pi_d dt + \int_0^1 \Pi_b db - T_t,$$

where inequality (7) uses equation (6), i.e. that $\Omega_t^j = \theta \int_0^1 \frac{P_t}{P_t} S_{t-1}^q dt$ and $C_t^j = (X_t^c)^j + \Omega_t^j$.

Maximization yields the following first-order conditions with respect to $(X_t^c)^j$, D_{t+1} and H_t^j:

$$U^j_{X_t} = \lambda_t^j,$$ \hspace{1cm} (8)

$$E_t[A^j_{t+1}(1 + R_t^{P})] = 1,$$ \hspace{1cm} (9)

$$-U^j_{H_t} = \lambda_t^j W_t,$$ \hspace{1cm} (10)

where λ_t^j is the Lagrange multiplier associated to the budget constraint and $A_{t,t+1} = \beta E_t \left[\frac{\lambda_{t+1}^j}{\lambda_t^j} \right]$ is the stochastic discount factor.

3.2 Government

Following Ravn et al. (2006) deep habits are present also in government consumption. This can be justified by assuming that households form habits also on consumption of government-provided goods. Alternatively, as in Leith et al. (2012) and Ravn et al. (2012), one can also argue that public goods are local in nature and households care about the provision of individual public goods in their constituency relative to other constituencies. Ravn et al. (2012) also propose the idea of procurement relationships that create a tendency for the government to favour transactions with sellers that supplied public goods in the past.

In each period t, the government allocates spending, $P_t G_t$, over differentiated goods sold by retailers in a monopolistic market to maximize the quantity of a habit-adjusted composite good

$$X_t^p = \left[\int_0^1 (G_{it} - \theta S_{it-1}^q)^{1-\frac{1}{\gamma}} dt \right]^{\frac{1}{1-\frac{1}{\gamma}}},$$

subject to the budget constraint $\int_0^1 P_t G_{it} \leq P_t G_t$, where S_{it-1}^q denotes the stock of habits for government expenditures, which evolves as

$$S_{it}^q = g S_{it-1}^q + (1 - g) G_{it}.$$
At the optimum,

\[G_{it} = \left(\frac{P_{it}}{P_t} \right)^{-\eta} X_t^g + \theta S_{it-1}^g. \]

(13)

Aggregate real government consumption \(G_t \) evolves as an autoregressive process:

\[\log \left(\frac{G_t}{G} \right) = \rho_G \log \left(\frac{G_{t-1}}{G} \right) + \epsilon_t^g, \]

(14)

where \(\bar{G} \) is the steady-state level of government spending, \(\rho_G \) is an autoregressive parameter, and \(\epsilon_t^g \) is a mean zero, i.i.d. random shock with standard deviation \(\sigma^G \). The government runs a balanced budget, i.e. government spending is simply set equal to lump-sum taxes.

3.3 Entrepreneurs

Entrepreneurs are distributed over a unit interval and indexed by \(e \in (0, 1) \). They borrow from banks to produce a homogeneous wholesale output that they sell in a perfectly competitive market. Entrepreneurs solve two optimization problems: an intratemporal problem, giving rise to lending relationships, in which they decide the composition of their loan demand; and an intertemporal problem in which they maximize the flow of discounted profits by choosing the quantity of factors for production.

The intratemporal problem can be thought of being solved by the financial department of each firm \(e \), which decides how much to borrow from each bank \(b \) given its overall loan demand. Lending relationships arise due to the presence of deep habits in lending. From a technical point of view, the problem is analogous to the intratemporal problem solved by households when they feature deep habits in consumption. The optimization problem consists in the following:

\[\min_{L^e_{bt}} \int_0^1 (1 + R^L_{bt}) L^e_{bt} db, \]

(15)

s.t. \[\left[\int_0^1 \left(L^e_{bt} - \theta^L S^L_{bt-1} \right)^{1 - \frac{1}{\eta^L}} db \right]^{1/(1 - \frac{1}{\eta^L})} = (X_t^L)^e, \]

(16)

\[S^L_{bt} = q^L S^L_{bt-1} + (1 - q^L) L^e_{bt}, \]

(17)

where \(R^L_{bt} \) is the net lending rate, \(L^e_{bt} \) is the demand by firm \(e \) for loans issued by bank \(b \), \(\theta^L \) is the degree of habit in lending, \(S^L_{bt} \) is the stock of (external) habit in lending, \(\eta^L \) is the elasticity of substitution across varieties of loans, \((X_t^L)^e \) is the demand for loans by firm \(e \) augmented by lending relationships and \(q^L \) is the persistence of lending relationships. Equation (15) represents overall lending expenditure, equation (16) imposes deep habits in lending, and (17) imposes persistence in the stock of habit.

The solution to the above problem yields firm \(e \)’s demand for loans from bank \(b \),

\[L^e_{bt} = \left(\frac{1 + R^L_{bt}}{1 + R^L_t} \right)^{-\eta^L} (X_t^L)^e + \theta^L S^L_{bt-1}. \]

(18)
where \((1 + R_{L}^{t})\) is the price index for the loan composite and corresponds to the Lagrange multiplier attached to constraint (16) as standard with the Dixit-Stiglitz aggregator.

Entrepreneur \(e\) faces also an intertemporal problem by solving which she chooses employment \(H_{t}^{e}\), capital \(K_{t+1}^{e}\) and investment \(I_{t}^{e}\) to maximize the expected discounted value of its lifetime profits. Recalling that in this economy firms are owned by households, the stochastic discount factor of the former, \(\Lambda_{t,t+1}\), is given by the intertemporal marginal rate of substitution of the latter. The intertemporals optimization problem is summarized by the following:

\[
\max_{H_{t}^{e}, K_{t+1}^{e}, I_{t}^{e}} \sum_{s=0}^{\infty} \Phi_{t+s} \left\{ \frac{\Phi_{t+s} F(K_{t+s}^{e}, H_{t+s}^{e}) - W_{t+s} H_{t+s}^{e} - I_{t+s}^{e}}{1 - S \left(\frac{I_{t+s}^{e}}{I_{t-1}^{e}} \right)} + \int_{0}^{1} (1 + R_{bt,s-1}^{L}) L_{bt,s-1}^{e} db + \Xi_{t+s}^{e} \right\},
\]

\[
s.t. K_{t+1}^{e} = I_{t}^{e} \left[1 - S \left(\frac{I_{t}^{e}}{I_{t-1}^{e}} \right) \right] + (1 - \delta) K_{t}^{e},
\]

\[
\int_{0}^{1} L_{bt}^{e} db \geq I_{t}^{e} + W_{t} H_{t}^{e}.
\]

Equation (19) is the sum of discounted profits expressed in terms of net cash flows. \(F(K_{t}^{e}, h_{t}^{e})\) is an increasing and concave production function in capital and labor, \(\Phi_{t}\) is the competitive real price at which the wholesale output is sold, \(W_{t} H_{t}^{e}\) is the wage bill, \(I_{t}^{e}\) is the expenditure in investment goods, \(\Xi_{t}^{e} \equiv \theta L \int_{0}^{1} \frac{1 + R_{bt}^{L}}{1 + R_{bt}^{L}} S_{bt-1}^{L} db\) such that \((X_{t}^{L})^{e} + \Xi_{t}^{e} = \int_{0}^{1} L_{bt}^{e} db = L_{t}^{e}\), i.e. the amount of loans that flow into the entrepreneur’s balance sheet, while \(\int_{0}^{1} (1 + R_{bt}^{L}) L_{bt}^{e} db\) represents what they repay to banks. Equation (20) is a standard law of motion of capital, which depreciates at rate \(\delta\), and investment is subject to adjustment costs as in Smets and Wouters (2007), where \(S(1) = S'(1) = 0\) and \(S''(1) > 0\). Constraint (21) makes it necessary for firms to borrow from banks in order to finance investment expenditure and the wage bill, i.e. it represents a financing constraint needed for external credit to play a role in the model. Without the imposition of this constraint, firms would always find it optimal to satisfy their financing needs via internal funds. Thus (21) holds with equality in equilibrium.Investment \(I_{t}^{e}\) is also a composite of differentiated goods but it is not subject to deep habit formation: \(I_{t}^{e} = \left[\int_{0}^{1} (I_{it}^{e})^{1 - 1/\eta} \, dt \right]^{\eta/\eta} \). Expenditure minimisation leads to the optimal level of demand of investment goods for each variety \(i\),

\[
I_{it}^{e} = \left(\frac{P_{it}}{P_{t}} \right)^{-\eta} I_{t}^{e}.
\]

Substituting for equations (20) and (21) into (19) and taking the first-order conditions with respect to \(H_{t}^{e}, K_{t+1}^{e}\) and \(I_{t}^{e}\) lead to the following:

\[
\Phi_{t} F_{H,t} = W_{t} E_{t} \left[\Lambda_{t,t+1}(1 + R_{Lt}^{L}) \right],
\]

\[
Q_{t} = E_{t} \Lambda_{t,t+1} \left[\Phi_{t+1} F_{K,t+1} + Q_{t+1}(1 - \delta) \right],
\]
\[E_t \left[\Lambda_{t+1} (1 + R_t^L) \right] = Q_t \left[1 - S \left(\frac{I_t}{I_{t-1}} \right) - S' \left(\frac{I_t}{I_{t-1}} \right) \frac{I_t}{I_{t-1}} \right] \\
+ E_t \Lambda_{t+1} \left[Q_{t+1} S' \left(\frac{I_{t+1}}{I_t} \right) \left(\frac{I_{t+1}}{I_t} \right)^2 \right]. \tag{25} \]

Condition (23) equates the real value of the marginal product of labor to the cost of the marginal hour of work, which in turn depends on the real wage and the lending rate. Condition (24) equates the cost of one unit of capital, \(Q_t \), to its expected benefit at the margin. The latter, in turn, incorporates (i) the expected real value of the marginal product of capital, and (ii) the expected marginal saving deriving from not having to borrow fraction \((1 - \delta)\) of capital one period ahead. The real price \(\Phi_t \) represents the shadow value of output. Lastly, equation (25) equates the marginal borrowing cost for investment purposes to the marginal benefit, which is net of investment adjustment costs.

3.4 Final good firms

A continuum of final good firms \(i \in (0, 1) \) buy the wholesale good from entrepreneurs at the real price \(\Phi_t \), differentiate it and sell it in a monopolistically competitive market at price \(P_{it} \). The real price \(\Phi_t \) charged by entrepreneurs in the wholesale competitive market represents also the real marginal cost common to all final good firms, i.e. \(MC_t = \Phi_t \). Final good firm \(i \) chooses \(C_{it+s}, S_{it+s}^c, G_{it+s}, S_{it+s}^g \) and \(p_{it+s} = P_{it+s}/P_{t+s} \) to maximize the following flow of discounted profits

\[
E_t \sum_{s=0}^\infty \Lambda_{t+s} \left\{ \left(\frac{P_{it+s}}{P_{t+s}} - MC_{t+s} \right) \left(C_{it+s} + I_{it+s} + G_{it+s} \right) \right\}, \tag{26} \]

subject to the demand for good \(i \) in the form of private consumption \(C_{it}, \) (6), investment \(I_{it}, \) (22), and government consumption \(G_{it}, \) (13), and the laws of motion of the stocks of habits for households, (3), and the government, (12). This leads to the following first-order conditions:

\[
\frac{P_{it}}{P_t} - MC_t + (1 - \theta)X_t^c = \nu_t^c, \tag{27} \]

\[
E_t \Lambda_{t+1} (\theta \nu_{i+1}^c + \rho \lambda_{i+1}^c) = \lambda_t^c, \tag{28} \]

\[
\frac{P_{it}}{P_t} - MC_t + (1 - \phi)X_t^g = \nu_t^g, \tag{29} \]

\[
E_t \Lambda_{t+1} (\theta \nu_{i+1}^g + \rho \lambda_{i+1}^g) = \lambda_t^g, \tag{30} \]

\[
\frac{P_{it}}{P_t} \left(C_{it} + G_{it} \right) + (1 - \eta) \left(\frac{P_{it}}{P_t} \right)^{1-\eta} I_t \\
+ \eta MC_t \left(\frac{P_{it}}{P_t} \right)^{-\eta} I_t - \eta \nu_t^c \left(\frac{P_{it}}{P_t} \right)^{-\eta} X_t^c - \eta \nu_t^g \left(\frac{P_{it}}{P_t} \right)^{-\eta} X_t^g = 0, \tag{31} \]

where \(\nu_t^c, \nu_t^g, \lambda_t^c \) and \(\lambda_t^g \) are the Lagrange multipliers on constraints (6), (13), (3) and (12), respectively.
Let MC_t^n denote the nominal marginal cost. The gross mark-up charged by final good firm i can be defined as $p_{it} \equiv P_{it}/MC_t^m = p_{it}/MC_t$. In the symmetric equilibrium all final good firms charge the same price, $P_{it} = P_t$, hence the relative price is unity, $p_{it} = 1$. It follows that, in the symmetric equilibrium, the mark-up is simply the inverse of the marginal cost.

3.5 Banking sector

Each bank b chooses its demand for deposits, D_{bt+1}, and the loan rate, R_{bt+1}^L, to maximize the expected discounted value of its lifetime profits. Banks are owned by households as well; therefore, their stochastic discount factor, $A_{t,t+1}$, is given by the intertemporal marginal rate of substitution of the households. The optimization problem is summarized by the following:

$$\max_{D_{bt}, R_{bt}^L} \sum_{s=0}^{\infty} A_{t,t+s} \left\{ D_{bt+s+1} - L_{bt+s+1} + (1 + R_{bt+s})L_{bt+s} - (1 + R_{t+s}^D)D_{bt+s} \right\},$$ \hspace{2cm} (32)

subject to

$$L_{bt} = D_{bt},$$ \hspace{2cm} (33)

$$L_{bt} = \left(\frac{1 + R_{bt}^L}{1 + R_t^L} \right)^{-\eta^L} X_t^L + \theta^L S_{bt-1}^L.$$ \hspace{2cm} (34)

Equation (32) represents the cash flow of the bank in each period, given by the difference between deposits and loans and the difference by earnings on assets, priced at the net rate R_{bt}^L, and interest payments on liabilities. Equation (33) represents the bank’s balance sheet, where loans on the asset side are equal to deposits on the liabilities side. Equation (34) represents the bank-specific demand for loans.

Taking the first-order conditions with respect to L_{bt+1} and R_{bt+1}^L yields:

$$\nu_{bt} = E_t A_{t,t+s} \left[(R_{bt+s+1}^L - R_{t+1}^D) + \nu_{bt+1} \theta^L (1 - \theta^L) \right],$$ \hspace{2cm} (35)

$$E_t [A_{t,t+s} L_{bt+1}] = \nu_{bt} \eta^L E_t \left[X_{t+1}^L \right],$$ \hspace{2cm} (36)

respectively, where ν_{bt} is the Lagrange multiplier associated with this maximization problem. Equation (35) states that the shadow value of lending an extra unit in period t is equal to the benefit from the spread earned on this transaction plus the benefit of expected future profits arising from a share θ^L of lending being held-up at time $t + 1$. According to equation (36), the marginal benefit of increasing the loan rate should be equal to its marginal cost given by the reduced demand for loans evaluated at ν_{bt}.

3.6 Equilibrium

In the symmetric equilibrium, goods markets, the labor market, the credit market, and bond markets clear. The symmetric equilibrium consists of an allocation and a sequence of prices and co-state variables that satisfy the optimality conditions of households, the government, entrepreneurs, final goods firms and banks; and the stochastic processes.
The resource constraint completes the model:

$$Y_t = C_t + I_t + G_t.$$ \hfill (37)

Taking a log-linear approximation of the equilibrium system around steady-state values, and using the Blanchard-Kahn procedure, yields the following state-space solution

$$\hat{s}_{t+1} = \Phi_1 \hat{s}_t + \Phi_2 \epsilon_{t+1},$$ \hfill (38)

$$\hat{d}_t = \Phi_3 \hat{s}_t,$$ \hfill (39)

where vector \hat{s}_t includes predetermined and exogenous variables; vector \hat{d}_t contains the control variables; vector ϵ_t includes all random disturbances; and matrices Φ_1, Φ_2 and Φ_3 contain elements that depend on the structural parameters of the model.

4 Functional forms

To simulate the model the utility function specializes as $U(X_t, 1 - H_t) = \frac{[X_t^\sigma (1-H_t)^{1-\omega}]^{1-\sigma}}{1-\sigma}$, where $\sigma > 0$ is the coefficient of relative risk aversion, and ω is a preference parameter that determine the relative weight of leisure and the consumption composite in utility. The consumption composite is a CES aggregate of private and public deep-habit-adjusted consumption, $X_t = \left\{ \frac{1}{\nu_x} \left(X_t^{\sigma_x} \right)^{\frac{\sigma_x - 1}{\sigma_x}} + (1 - \nu_x) \left(X_t^{\rho} \right)^{\frac{\rho - 1}{\rho}} \right\}^{\frac{\rho}{\rho - 1}}$, with ν_x representing the share of the private component in the aggregator and σ_x being the elasticity of substitution between the private and the public component.

Investment adjustment costs are quadratic: $S \left(\frac{I_t}{I_{t-1}} \right) = \frac{1}{2} \left(\frac{I_t}{I_{t-1}} - 1 \right)^2$, $\gamma > 0$, while the production function is Cobb-Douglas: $F (H_t, K_t) = H_t^\alpha K_t^{1-\alpha}$, where α represents the labor share of income.

5 Choice of parameters

A number of parameter values are chosen to match some stylized facts for the US economy in the post-WWII era while others are set in accordance with available US empirical estimates. The time period in the model corresponds to one quarter in the data. Table 1 summarizes the parameter choice.

As standard in the business cycle literature, the subjective discount factor, β, is equal to 0.99 and the capital depreciation rate, δ, to 0.025. The parameters in the utility functions are as follows: the coefficient of relative risk aversion, σ, is equal to 1.38 as in Smets and Wouters (2007); and the preference parameter, ω, is set to match steady-state hours of work equal to 0.44, as in Kydland and Prescott (1991); the elasticity of substitution between the private and the public component of the deep-habit-adjusted consumption composite, σ_x, is equal to 0.5, a value in the range proposed by Pappa (2009) that implies mild complementarity; while the share of the private component in the composite, ν_x, is set to match a government share of output of 20%. The production function
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discount factor</td>
<td>β 0.99</td>
</tr>
<tr>
<td>Capital depreciation rate</td>
<td>δ 0.025</td>
</tr>
<tr>
<td>Risk aversion</td>
<td>σ 1.38</td>
</tr>
<tr>
<td>Elast. of subst. in consumption composite</td>
<td>σ_x 0.5</td>
</tr>
<tr>
<td>Production function parameter</td>
<td>α 0.6</td>
</tr>
<tr>
<td>Deep habits in consumption</td>
<td>θ 0.86</td>
</tr>
<tr>
<td>Consumption habit persistence</td>
<td>θ^L 0.72</td>
</tr>
<tr>
<td>Deep habits in lending</td>
<td>ϱ^L 0.85</td>
</tr>
<tr>
<td>Pers. of lending relationships</td>
<td>ρ_G 0.97</td>
</tr>
<tr>
<td>Persistence of government spending</td>
<td>γ 5.74</td>
</tr>
<tr>
<td>Elasticity of investment adjustment costs</td>
<td>ν_x set to target $\frac{G}{Y} = 0.20$</td>
</tr>
<tr>
<td>Preference parameter</td>
<td>ω set to target $\tilde{H} = 0.44$</td>
</tr>
<tr>
<td>Elasticity of substitution</td>
<td>η set to target $\mu = 1.20$</td>
</tr>
<tr>
<td>Elast. of subst. in banking</td>
<td>η^L set to target $R^L - R^D = 0.0075$</td>
</tr>
</tbody>
</table>

Table 1: Parameter choice

The consumption deep habits parameters, θ and ϱ, are equal to 0.86 and 0.85, respectively, following the estimates used by Ravn et al. (2006). The parameters representing deep habits in lending relationships, θ^L and ϱ^L, are set equal to 0.72, and 0.85, respectively, relying on the estimates provided by Aliaga-Díaz and Olivero (2010). The persistence parameter of government spending shocks ρ_G, set to 0.97, and the parameter in the adjustment cost function γ, equal to 5.74, follow the estimated values of Smets and Wouters (2007).

Following Christensen and Dib (2008), the elasticity of substitution across different varieties, η, is set in order to target a steady state gross mark-up equal to 1.20, while the elasticity of substitution in the banking sector, η^L, is set in order to match a bank spread of 0.0075 (300 basis points per year). In addition to the explicitly-targeted steady-state values, the above calibration implies a consumption-output ratio of around 60% and a private investment-output ratio of around 20%. The implications of the choice of key parameter values are shown in Section 7.

6 Results

This section first analyzes the effects of an expansionary government spending shock in the model presented in Section 3. It then disentangles the role of financial frictions in the transmission mechanism of the fiscal shock.

Figure 2 shows that when the economy is hit by an expansionary government spending shock, a negative wealth effect, caused by the absorption of resources by the government, makes consumption and leisure less affordable and stimulates labor supply. At the same time, however, the presence of deep habits in private and government consumption causes a fall in the price mark-up as explained by Ravn et al. (2006). This translates into a rise in labor demand stronger than the rise in labor.
supply and into an increase in the demand for investment. The presence of investment adjustment costs makes it optimal to postpone the investment peak for few quarters. The resulting increase in the real wage triggers a strong substitution effect away from leisure and into consumption, hence the crowding-in of the latter. Both the increase in the real wage and the consumption crowding-in are consistent with the empirical evidence reported in Section 2. As the government spending shock is normalized to 1% of output, the response of output itself can be read as a fiscal multiplier, at impact equal to around 1.8, a value close to the empirical peak response reported in Figure 1. Given the presence of the financing constraint, the rise in the demands for labor and investment translates into an outward shift of the demand for loans made by firms, which is mirrored into a rise in the demand for deposits made by banks. The supply of deposits also experiences an outward shift, given the increased economic activity and the intertemporal consumption/saving choice of forward-looking agents. The relative size of the shift of demand and supply in the markets for deposits and loans determines the sign of the responses of the deposit and the loan rates. In particular, the presence of investment adjustment costs – the effects of which are disentangled in Section 7 – makes the supply
The financial accelerator effect (impact responses to a government spending expansion of 1% of output).

...effect prevail and both rates fall. The change in the bank spread is determined by how the two rates change with respect to each other. At this point lending relationships come into play. In fact, in the market for loans, banks incorporate the information of high future returns and hence their prospective ability of making high future profits due to the output expansion. Therefore, they are willing to give up some of the current profits in order to expand their customer base by locking in new customers into lending relationships. As a result, the loan rate falls in a more-than-proportional fashion compared to the fall in the deposit rate. Hence, the bank spread decreases and equilibrium lending rises. In particular, the model predicts a fall in the bank spread of around 35 basis points – less than the peak observed in the data – and a surge in lending of around 4%, which instead is in line with VAR estimates. The model does not reproduce the pronounced hump shape of the VAR impulse responses, but overall depicts similar effects, at least as far as the sign, and, to a certain extent, the amplitude of the impulse responses to a government spending shock are concerned.

6.1 Financial accelerator effect

Figure 3 disentangles the financial accelerator effect in the transmission of the government spending expansion. In particular, it shows the impact responses of the endogenous variables to different degrees of deep habits in lending, θ^L. If $\theta^L = 0$ the model is not able to capture the borrower’s hold up effect and the bank spread becomes constant by construction. In other words, financial frictions modeled in the form of lending relationships are removed. When $\theta^L > 0$ the model exhibits a financial accelerator effect. The higher the degree of deep habits in lending the more, in response to a fiscal stimulus, banks are willing to supply loans, exerting an increasingly downward pressure on the loan rate. This further stimulates lending and results into an increasingly stronger fall in
the endogenous bank spread. For instance, an increase in θ^L from the baseline value of 0.72 to 0.82 brings the impact fall of the bank spread from 35 basis points to almost 70. As firms have more funds to finance their capital acquisition and the wage bill, investment and hours worked increase by more, which in turn allows a greater expansion in output. These results suggest that, in the presence of lending relationships, fiscal policy becomes more effective because it leads to an improvement of credit market conditions and hence to a further boost in economic activity.

7 Effects of some model features

This section disentangles the contribution of some key model features in determining the results outlined in Section 6.

First, Figure 4a shows how the baseline model responds to a government expenditure shock vis-à-vis a restricted model in which deep habit formation in private and government consumption has been switched off. The latter model is straightforwardly obtained by setting $\theta = \rho = 0$. Without deep habits the price mark-up remains constant as in standard RBC models with imperfect competition. As a result, the transmission mechanism of a government spending expansion is dominated by the negative wealth effect that fosters a drop in consumption, investment and the real wage. Real output consequently rises in a less-than-proportional fashion with respect to government expenditures. These effects do not mirror the empirical impulse responses reported in Section 2. In addition, in the absence of deep habits, because of the prevailing negative wealth effect, the shift in the supply of deposits and, as a consequence, of loans is weaker. At the same time, the demand for loans (which translates into the demand for deposits) increases as firms have to borrow in order to pay the increased wage bill and the fall in investment is gradual, given the presence of investment adjustment costs. Such dynamics foster an increase in the deposit and in the lending rate. The bank spread still falls as the presence of lending relationships makes it optimal for banks to raise the loan rate less than proportionally to the rise in the deposit rate. While the responses of lending and the bank spread are in line with empirics as far as their sign is concerned, they feature a much smaller amplification that, on the contrary, is at odds with the data.

Next, Figure 4b depicts a similar exercise consisting in removing investment adjustment costs, i.e. in setting $\gamma = 0$. As it is well known in the DSGE literature, such costs make it optimal for firms to change investment gradually. As a result, investment becomes hump-shaped and for most variables only the amplification is affected. Interestingly, in the absence of investment adjustment costs the loan rate and the deposit rate increase instead of falling. This is determined by fact that the outward shift of the loan demand, following a government spending expansion, dominates the outward shift of the loan supply. On the contrary, when investment adjustment costs are in place, the supply-side effect prevails on the demand-side because firms are better off delaying the change in investment. In either case, however, the lending relationship mechanism ensures that the relative movements of the two interest rates are such that the bank spread falls in line with the evidence provided in Section 2.
Figure 4: Effects of some model features (impulse responses to a government spending expansion of 1% of output)
Finally, Figure 4c highlights the implications of complementarity between public and private consumption in households’ utility function. As it is well known in microeconomic theory, when $\sigma_x \to 0$ the aggregator function of the two components of consumption tends to Leontief, and private and public consumption become perfect complements. Instead, when $\sigma_x \to 1$ the aggregator function tends to Cobb-Douglas and the two goods are imperfect substitutes. It follows that the smaller is σ_x the more private consumption is crowded in by a fiscal stimulus as public goods have to be consumed together with private goods. Such a mechanism affects the magnitude of changes in all macroeconomic variables, while preserving their signs, and turns out to be a powerful amplification mechanism.

8 Conclusion

This paper analyzes the effects of a government spending expansion on loan market conditions and the implications of lending relationships for the effectiveness of a fiscal stimulus. A SVAR analysis conducted on US post-WWII data suggests that the bank spread responds negatively to a fiscal expansion, while lending increases. A RBC model where the bank spread is endogenized via the inclusion of a banking sector exploiting lending relationships mimics such findings. The model exhibits a financial accelerator effect in the fiscal policy transmission, as lending relationships determine an amplification mechanism of fiscal shocks. From a policy perspective such a feature is relevant in normal times but becomes even more relevant in a period of tight credit market conditions characterized by a shortage of lending and high borrowing costs. In fact, a fiscal stimulus makes lending more available to firms and this acts as a reinforcing mechanism in the expansion in real economic activity.

These results open several avenues for future research. First, it would be interesting to perform a Bayesian estimation of the DSGE model that allows, on one hand, to carry out a likelihood-race validation of key model features and, on the other hand, to provide a DSGE-based estimate of the lending relationships parameters that, in the literature, have so far been estimated using single equation methods. Second, a new-Keynesian extension of the DSGE model would allow to analyze the effects of fiscal-monetary policy interaction on loan market conditions. Third, the analysis could be interestingly extended to other advanced economies, such as the euro area, Japan, and the UK, in order to disentangle potential country-specific effects.

References

Mertens, K. and Ravn, M. (2012). Empirical evidence on the aggregate effects of anticipated and

Papers, 14584.*

Monetary Economics, 57*(5):531–553.

Federal Reserve Bank of San Francisco.*

Dynamics. Forthcoming.*