Rational Exuberance

Gaetano Gaballo
Columbia University

July 16, 2010
"Clearly, sustained low inflation implies less uncertainty about the future, and lower risk premiums imply higher prices of stocks and other earning assets. We can see that in the inverse relationship exhibited by price/earnings ratios and the rate of inflation in the past. But how do we know when irrational exuberance has unduly escalated asset values, which then become subject to unexpected and prolonged contractions as they have in Japan over the past decade?"

[Alan Greenspan, 5 December 1996]
Sunspot solution: randomization on multiple equilibria with a perfectly correlated signal (Cass and Shell 1983; Woodford 1990)
Sunspot solution: randomization on multiple equilibria with a perfectly correlated signal (Cass and Shell 1983; Woodford 1990)

Some problems:
Rational exuberance: sunspots

- Sunspot solution: randomization on multiple equilibria with a perfectly correlated signal (Cass and Shell 1983; Woodford 1990)
- Some problems:
 - The "sunspot" can be anything out of the forecasting problem of agents
Sunspot solution: randomization on multiple equilibria with a perfectly correlated signal (Cass and Shell 1983; Woodford 1990)

Some problems:

1. The "sunspot" can be anything out of the forecasting problem of agents
2. Exogeneous coordination needed
Rational exuberance: sunspots

- Sunspot solution: randomization on multiple equilibria with a perfectly correlated signal (Cass and Shell 1983; Woodford 1990)

- Some problems:
 1. The "sunspot" can be anything out of the forecasting problem of agents
 2. Exogeneous coordination needed
 3. Stable sunspot exist with endogenous variables overreacting to expectations
Rational exuberance: sunspots

- Sunspot solution: randomization on multiple equilibria with a perfectly correlated signal (Cass and Shell 1983; Woodford 1990)

- Some problems:
 1. The "sunspot" can be anything out of the forecasting problem of agents
 2. Exogenous coordination needed
 3. Stable sunspot exist with endogenous variables overreacting to expectations
 4. They are typically not learnable (they could provided a certain representation is adopted, but anyway never for a positive expectational feedback)
Dispersed information models (Morris and Shin 2002; Angeletos and Werning 2006; Lorenzoni 2009)
Rational exuberance: dispersed information

- Dispersed information models (Morris and Shin 2002; Angeletos and Werning 2006; Lorenzoni 2009)

- Some problems:
Rational exuberance: dispersed information

- Dispersed information models (Morris and Shin 2002; Angeletos and Werning 2006; Lorenzoni 2009)

- Some problems:
 - based on imperfect knowledge of the fundamental (agents miss relevant information)...potentially open to learning
Rational exuberance: dispersed information

- Dispersed information models (Morris and Shin 2002; Angeletos and Werning 2006; Lorenzoni 2009)

- Some problems:
 1. based on imperfect knowledge of the fundamental (agents miss relevant information)...potentially open to learning
 2. very difficult to generate high volatility
Dispersed information models (Morris and Shin 2002; Angeletos and Werning 2006; Lorenzoni 2009)

Some problems:

1. based on imperfect knowledge of the fundamental (agents miss relevant information)...potentially open to learning
2. very difficult to generate high volatility
3. exogenous correlation needed on individual signals
Q: Agents have all the relevant information on the fundamentals, but have noisy signals of others’ expectations. What are the implications?
Q: Agents have all the relevant information on the fundamentals, but have noisy signals of others’ expectations. What are the implications?

A: Sunspot-like equilibria arise (beyond the fundamental REE) as coordination failures, even in models where classical sunspots do not exist
Q: Agents have all the relevant information on the fundamentals, but have noisy signals of others’ expectations. What are the implications?

A: Sunspot-like equilibria arise (beyond the fundamental REE) as coordination failures, even in models where classical sunspots do not exist.

Key: It is optimal for agents to put weight on a noisy signal of others’ expectation if others do the same.
Q: Agents have all the relevant information on the fundamentals, but have noisy signals of others’ expectations. What are the implications?

A: Sunspot-like equilibria arise (beyond the fundamental REE) as coordination failures, even in models where classical sunspots do not exist.

Key: It is optimal for agents to put weight on a noisy signal of others’ expectation if others do the same.

These equilibria provide for disagreement (but agents agree to disagree).
Q: Agents have all the relevant information on the fundamentals, but have noisy signals of others’ expectations. What are the implications?

A: Sunspot-like equilibria arise (beyond the fundamental REE) as coordination failures, even in models where classical sunspots do not exist.

Key: It is optimal for agents to put weight on a noisy signal of others’ expectation if others do the same.

These equilibria provide for disagreement (but agents agree to disagree).

They are learnable.
Consider a Lucas type aggregate supply:

\[y_t = y^n_t + \gamma (\pi_t - E_{t-1} \pi_t) \]
A Laboratory model

- Consider a Lucas type aggregate supply:
 \[y_t = y^h_t + \gamma (\pi_t - E\pi_t^{t-1}) \]

- the course of actual inflation follows the process
 \[\pi_t = \alpha_{t-1} + \beta E\pi_t^{t-1} + \eta_t \]
Consider a Lucas type aggregate supply:

\[y_t = y^n_t + \gamma (\pi_t - E_{t-1} \pi_t) \]

the course of actual inflation follows the process

\[\pi_t = \alpha_{t-1} + \beta E_{t-1} \pi_t + \eta_t \]

where \(\beta < 1 \) and \(\alpha_{t-1} = \pi^*_t / (1 - \beta) \) if the objective of the PM is

\[(\pi_t - \pi^*_t)^2 + \phi (y_t - y^n_t)^2 \]
A Laboratory model

Consider a Lucas type aggregate supply:

\[y_t = y_t^n + \gamma (\pi_t - E_{t-1}\pi_t) \]

the course of actual inflation follows the process

\[\pi_t = \alpha_{t-1} + \beta E_{t-1}\pi_t + \eta_t \]

where \(\beta < 1 \) and \(\alpha_{t-1} = \pi_t^* / (1 - \beta) \) if the objective of the PM is

\[(\pi_t - \pi_t^*)^2 + \phi (y_t - y_t^n)^2 \]

where \(\beta > 1 \) and \(\alpha_{t-1} = -\pi_t^* / (1 - \beta) \) if the objective of the PM is

\[(E_{t-1}\pi_t - \pi_t^*)^2 + \phi (y_t - y_t^n)^2 \]
Two conjectures

- **Intelligent design**: if the target is commonly known, the two specifications yield the same set of rational expectations equilibria.
Two conjectures

- **Intelligent design**: if the target is commonly known, the two specifications yield the same set of rational expectations equilibria.
- **Evolution**: with the second specification every out-of-the-equilibrium path under adaptive learning dynamics is fated to diverge.
Two conjectures

- **Intelligent design**: if the target is commonly known, the two specifications yield the same set of rational expectations equilibria.

- **Evolution**: with the second specification every out-of-the-equilibrium path under adaptive learning dynamics is fated to diverge.

- *The two conjectures are wrong when agents have noisy perceptions of others’ expectations.*
A "sunspot-like" forecasting problem

Suppose the individual information set \(\Omega^i_{t-1} \equiv (\Omega_{t-1}, E_{t-1}y_t + \nu_{i,t-1}) \)
where \(\nu_{i,t-1} = \varepsilon_{t-1} + \eta_{i,t-1} \).
A "sunspot-like" forecasting problem

- Suppose the individual information set $\Omega^i_{t-1} \equiv (\Omega_{t-1}, E_{t-1}y_t + \nu_{i,t-1})$ where $\nu_{i,t-1} = \varepsilon_{t-1} + \eta_{i,t-1}$.

- Agents respond to their incentive to refine their forecasts

$$E^i_{t-1} \Delta \pi_t = b (E_{t-1} \Delta \pi_t + \nu_{i,t-1})$$
A "sunspot-like" forecasting problem

- Suppose the individual information set $\Omega_{t-1}^i \equiv (\Omega_{t-1}, E_{t-1}y_t + v_{i,t-1})$
 where $v_{i,t-1} = \varepsilon_{t-1} + \eta_{i,t-1}$.
- Agents respond to their incentive to refine their forecasts
 \[E_{t-1}^i \Delta \pi_t = b (E_{t-1} \Delta \pi_t + v_{i,t-1}) \]
- Aggregate expectation is
 \[E_{t-1} \Delta \pi_t = \frac{b}{1 - b} \varepsilon_{t-1} \]
A "sunspot-like" forecasting problem

- Suppose the individual information set \(\Omega_{t-1}^i \equiv (\Omega_{t-1}, E_{t-1}y_t + \nu_{i,t-1}) \)
 where \(\nu_{i,t-1} = \varepsilon_{t-1} + \eta_{i,t-1} \).
- Agents respond to their incentive to refine their forecasts
 \[
 E_{t-1}^i \Delta \pi_t = b (E_{t-1} \Delta \pi_t + \nu_{i,t-1})
 \]
- Aggregate expectation is
 \[
 E_{t-1} \Delta \pi_t = \frac{b}{1 - b} \varepsilon_{t-1}
 \]
- Actual law of motion is
 \[
 \Delta \pi_t = \beta \frac{b}{1 - b} \varepsilon_{t-1} + \eta_t
 \]
A "sunspot-like" forecasting problem

- Suppose the individual information set $\Omega^i_{t-1} \equiv (\Omega_{t-1}, E_{t-1}y_t + \nu_{i,t-1})$
 where $\nu_{i,t-1} = \varepsilon_{t-1} + \eta_{i,t-1}$.
- Agents respond to their incentive to refine their forecasts

$$E^i_{t-1} \Delta \pi_t = b (E_{t-1} \Delta \pi_t + \nu_{i,t-1})$$

- Aggregate expectation is

$$E_{t-1} \Delta \pi_t = \frac{b}{1 - \beta} \varepsilon_{t-1}$$

- Actual law of motion is

$$\Delta \pi_t = \beta \frac{b}{1 - b} \varepsilon_{t-1} + \eta_t$$

- A REX exists if $E^i_{t-1} \pi_t = E[\pi_t | \Omega^i_{t-1}]$ and $b \neq 0$.
Two heterogeneous information REX exist in correspondence of

\[b_{\pm} = 1 \pm \sqrt{\frac{\beta - 1}{\delta}} \]

whenever \(\beta > 1 \) with \(\delta = \delta_i / \delta_\varepsilon \) labeling the ratio between the variances of the individual and the common part of the expectational signals.
Figure 2. T-map obtained for different values of β.
Figure: Figure 3. OLS convergence to the fundamental REE and to the high REX with $\alpha_t = 0$, $\beta = 1.1$, $(\delta_\varepsilon + \delta_i) = \delta_\eta = 1$.
• REX are rational expectation equilibria with exogenous noises normally distributed. In other cases they are self confirming equilibria.
REX are rational expectation equilibria with exogenous noises normally distributed. In other cases they are self confirming equilibria.

But **differently** from classical sunspots:
REX are rational expectation equilibria with exogenous noises normally distributed. In other cases they are self confirming equilibria.

But differently from classical sunspots:

1. agents disagree (agree to disagree): everybody has different views on the state of the aggregate expectation (and not on the inflation target!)
Heterogeneous Information REX and Classical Sunspot I

- REX are rational expectation equilibria with exogenous noises normally distributed. In other cases they are self confirming equilibria.

- But **differently** from classical sunspots:
 1. agents disagree (agree to disagree): everybody has different views on the state of the aggregate expectation (and not on the inflation target!)
 2. REX exist without forward expectations
Heterogeneous Information REX and Classical Sunspot I

- REX are rational expectation equilibria with exogenous noises normally distributed. In other cases they are self confirming equilibria.
- But **differently** from classical sunspots:
 1. agents disagree (agree to disagree): everybody has different views on the state of the aggregate expectation (and not on the inflation target!)
 2. REX exist without forward expectations
 3. REX are learneable provided agents know the target
Similarly to classical Sunspot equilibria
Similarly to classical Sunspot equilibria

Correlation across *all* individual signals is exogenously imposed
Similarly to classical Sunspot equilibria

1. Correlation across all individual signals is exogenously imposed
2. REX exist for strong expectational complementarity ($\beta > 1$)
Similarly to classical Sunspot equilibria

1. Correlation across all individual signals is exogenously imposed
2. REX exist for strong expectational complementarity ($\beta > 1$)

The paper shows how to go beyond these two points, obtaining
Similarly to classical Sunspot equilibria:

1. Correlation across all individual signals is exogenously imposed.
2. REX exist for strong expectational complementarity ($\beta > 1$).

The paper shows how to go beyond these two points, obtaining:

1. Endogenous correlation across all individuals as an equilibrium property → informational islands.
Similarly to classical Sunspot equilibria

1. Correlation across all individual signals is exogenously imposed
2. REX exist for strong expectational complementarity ($\beta > 1$)

The paper shows how to go beyond these two points, obtaining

1. endogenous correlation across all individuals as an equilibrium property → informational islands
2. REX may exist also with $\beta < 1$ → target imperfectly announced
Consider agents’ structural forecasting relations

\[
\begin{align*}
E_{t-1}^1 \Delta \pi_t &= b \left(E_{t-1}^2 \Delta \pi_t + \eta_{1,t-1} \right), \\
E_{t-1}^2 \Delta \pi_t &= c \left(E_{t-1}^1 \Delta \pi_t + \eta_{2,t-1} \right).
\end{align*}
\]

where 1 and 2 label two symmetrical informational islands.
Consider agents’ structural forecasting relations

\[E_{t-1}^{1} \Delta \pi_t = b \left(E_{t-1}^{2} \Delta \pi_t + \eta_{1,t-1} \right), \]
\[E_{t-1}^{2} \Delta \pi_t = c \left(E_{t-1}^{1} \Delta \pi_t + \eta_{2,t-1} \right). \]

where 1 and 2 label two symmetrical informational islands.

Covariance between the signals is *endogenous* to agents’ forecasting rule

\[\mathbb{E} \left(E_{t-1}^{2} \Delta \pi_t + \eta_{1,t-1}, E_{t-1}^{1} \Delta \pi_t + \eta_{2,t-1} \right) = \frac{b + c}{(1 - bc)^2} \delta_t \]

where, we assumed \(\mathbb{E} \left(\eta_{l,j,t-1} \eta_{j,l,t-1} \right) = 0. \)
Recursive OLS learning

Figure: Figure 5. OLS convergence to the fundamental REE and to the high REX with $\alpha_t = 0$, $\beta = 1.1$, $\delta_\varepsilon = \delta_\eta = 1$.
Agents forecasting rule is

\[
E_{t-1}^i \pi_t = a(\alpha_{t-1} + \kappa_{t-1}) + b(E_{t-1} \pi_t - a(\alpha_{t-1} + \kappa_{t-1}) + \nu_{i,t-1})
\]

where \(\kappa_{t-1}\) is a noise in the public announcement possibly correlated with \(\varepsilon_{t-1}\).
Imperfect announcements of inflation targets

- Agents forecasting rule is

\[E_{t-1}^i \pi_t = a (\alpha_{t-1} + \kappa_{t-1}) + b (E_{t-1} \pi_t - a (\alpha_{t-1} + \kappa_{t-1}) + \nu_{i,t-1}) \]

where \(\kappa_{t-1} \) is a noise in the public announcement possibly correlated with \(\varepsilon_{t-1} \).

- Given the symmetric nature of the problem, aggregate expectation satisfies

\[E_{t-1} \pi_t = a (\alpha_{t-1} + \kappa_{t-1}) + \frac{b}{1 - b} \varepsilon_{t-1} \]
Imperfect announcements of inflation targets

- Agents forecasting rule is

$$E_{t-1}^i \pi_t = a(\alpha_{t-1} + \kappa_{t-1}) + b(E_{t-1} \pi_t - a(\alpha_{t-1} + \kappa_{t-1}) + \nu_{i,t-1})$$

where κ_{t-1} is a noise in the public announcement possibly correlated with ε_{t-1}.

- Given the symmetric nature of the problem, aggregate expectation satisfies

$$E_{t-1} \pi_t = a(\alpha_{t-1} + \kappa_{t-1}) + \frac{b}{1 - b} \varepsilon_{t-1}$$

- Notice now the fundamental REE cannot be any longer an equilibrium if the noises are correlated.
Figure 7. $T(b)$-map obtained fixing $\delta_\epsilon, \delta_k$ and δ and for different values of β, α and ρ.
Numerical analysis
Recursive OLS learning

a) Convergence to low REX

b) Convergence to high REX
Conclusions

- When agents use noisy perceptions of others’ expectations multiple equilibria arise
Conclusions

- When agents use noisy perceptions of others’ expectations multiple equilibria arise.
- These equilibria provide for disagreement (but agents agree to disagree).
Conclusions

- When agents use noisy perceptions of others’ expectations multiple equilibria arise
- These equilibria provide for disagreement (but agents agree to disagree)
- They are Learneable