Changing central bank mandates and escapes from Nash inflation

Alina Barnett (Bank of England) and Martin Ellison (Oxford University)
Changing central bank mandates and escapes from Nash inflation

- Motivation
- Related Literature
- Model
- Results
"... not until Volcker took office did controlling inflation become the organising focus of monetary policy" - Clarida, Gali, Gertler (2000)
Q1: Why did inflation in the US, UK and other countries decrease in the late 1980s?

Q2: Why has it remained low and stable?
Reasons for which inflation fell and rose after World War II:

- Kydland and Prescott (1977): time consistency problem
- Cogley and Sargent (2003), Sargent and Zha (2004): higher volatility of non-policy shocks during 1960s and 1970s vs 1980
- Clarida, Gali, Gertler (2000): policy mistakes
- Sargent (1999): changes in government beliefs are the driving factors
- Motivation
- Related Literature
- Model
- Results
- Sargent (1999)
- Cho, Williams and Sargent (2002)
- Williams (2004)

○ Motivation

- Time variant inflation aversion
- Adaptive private agents expectations

○ Model

○ Results
- Motivation
- Related Literature
- Model
- Results
Central Bank:
- forms an opinion on the relation $U_t - x_t$
- optimise objective function
- sets intended inflation rate x_t

Private agents:
- make expectations of inflation

The economy

\[
\begin{align*}
U_t \\
\pi_t
\end{align*}
\]
Cho, Williams and Sargent (2002)

Actual law of motion

\[U_t = U^* - \theta(\pi_t - \pi^e_t) + \nu_{1,t} \]

Perceived law of motion

\[U_t = \gamma_0 t + \gamma_1 t \pi_t + \xi_t \]

\[\pi_t = x_t + \nu_{2,t} \]

Natural rate of unemployment
Realised inflation
Expected inflation
Real shock
Beliefs of central bank
Inflation set by central bank
Nominal shock
Beliefs are updated according to:

\[
\begin{pmatrix}
\gamma_{0,t+1} \\
\gamma_{1,t+1}
\end{pmatrix} =
\begin{pmatrix}
\gamma_{0,t} \\
\gamma_{1,t}
\end{pmatrix} + a_g R^{-1} \begin{pmatrix} 1 \\
\pi_t
\end{pmatrix} (U_t - \gamma_{0,t} - \gamma_{1,t} \pi_t)
\]

Gain coefficient

\[
R_{t+1} = R_t + a_g (M_t - R_t)
\]

Measures the precision of current estimates

\[
M_t = \begin{pmatrix} 1 \\
\pi_t
\end{pmatrix} (1 \quad \pi_t)
\]
Central bank solves the Phelps problem:

\[
\Omega = -E \sum_{t=0}^{\infty} (U_t^2 + \beta_t \pi_t^2)
\]

\[st.
U_t = \gamma_0 + \gamma_1 \pi_t + \xi_t
\]

\[\pi_t = x_t + \nu_{2,t}
\]

with \(\gamma_{0,t}, \gamma_{1,t} \) and \(\beta_{0,t} \) given

\[x_t = \frac{\gamma_0 \gamma_1}{\beta_t + \gamma_1^2}
\]
Inflation aversion

\[\beta_t = l + \frac{u - l}{1 + e^{-b(t-s)}} \]

\[\beta_t = 1 + \frac{1 - 1.5}{1 + e^{-10(t-4)}} \]
Private agents:

$$\pi_{t+1}^e = \pi_t^e + \alpha_p (\pi_t - \pi_t^e)$$

private gain coefficient
In Equilibrium

Mean Dynamics

\[
\begin{align*}
\dot{\gamma}_t &= \bar{g}(\gamma_t) \\
\dot{R} &= \bar{M}(\gamma_t) - R \\
\dot{\pi}_t^e &= x_t - \pi_t^e
\end{align*}
\]

= 0

Nash Equilibrium

\[
\begin{align*}
\bar{\gamma}_0 &= U^* (1 + \frac{\theta^2}{\beta_t}) \\
\bar{\gamma}_1 &= -\theta \\
\bar{\pi}^e &= \bar{x} = \frac{\theta U^*}{\beta_t}
\end{align*}
\]
Out of Equilibrium

Escape Dynamics

\[\Psi = \inf_{\dot{v}} \int_0^t \dot{v}(\varphi)' Q(\Pi(\varphi), R(\varphi), \beta_t)^{-1} \dot{v}(\varphi) d(\varphi) \]

\[s.t. \]

\[\dot{\Pi} = \bar{g}(\Pi) + \bar{\dot{v}} \]

\[\dot{R} = \bar{M}(\gamma) - R \]

\[\dot{\beta} = \frac{2.5e^{-b(t-s)}}{(1 + e^{-b(t-s)})^2} \]

Williams (2004)- Dominant escape path:
“least cost path of perturbations that push believes away from Nash Equilibrium”
Motivation

Related Literature

Model

Results
Numerical Results

- Motivation
- Related Literature
- Model
- Numerical Results

![Graph showing numerical results](graph.png)

- Graph 1: Intended inflation (gamma 0) vs. Expected inflation (gamma 1)
- Graph 2: Another numerical result comparison

Legend:
- Blue line: intended inflation
- Red dashed line: expected inflation
- Green dotted line: gamma 0
- Black dotted line: gamma 1
Numerical Results

Motivation

Model

Related Literature

- gamma 0- Rational expectations
- gamma 0- Adaptive expectations
- gamma 1- Adaptive expectations
- gamma 1- Rational expectations
- Expected inflation- Adaptive expectations
- Realised inflation- Adaptive expectations
- Realised inflation- Rational expectations
Starting values for simulation- same as Cho, Williams and Sargent (2002)

\[
\begin{align*}
\pi_0^e &= 5 \\
\pi_0 &= 5 \\
a_p &= 0.0275 = a_g \\
\beta_r &= 1 \\
\gamma_0 &= 10 \\
\gamma_1 &= -1 \\
U^* &= 5 \\
\theta &= 1
\end{align*}
\]
Simulation Results

Motivation

Model

Related Literature

expected inflation - adaptive expectations

intended inflation - rational expectations
Simulation Results

- Motivation
- Related Literature
- Model
- Rational expectations
- Adaptive expectations
Simulation Results

- Motivation
- Related Literature
- Model
- Simulation Results
Simulation Results

Motivation

Related Literature

Model

<table>
<thead>
<tr>
<th>Model/Escape statistics</th>
<th>Number</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rational expectations & $\beta = 1$</td>
<td>15(0.75)</td>
<td>218 (78)</td>
</tr>
<tr>
<td>Rational expectations & $\beta = {1, 1.5}$</td>
<td>15 (0.63)</td>
<td>145 (70)</td>
</tr>
<tr>
<td>Adaptive expectations & $\beta = 1$</td>
<td>7(1.22)</td>
<td>100 (29)</td>
</tr>
<tr>
<td>Adaptive expectations & $\beta = {1, 1.5}$</td>
<td>6 (0.89)</td>
<td>101 (30)</td>
</tr>
</tbody>
</table>

\[
U_t = U^* - \theta(\pi_t - \pi_t^e) + \nu_{1,t}
\]

\[
\pi_t = x_t + \nu_{2,t}
\]

- U_t: Natural rate of unemployment
- π_t: Inflation
- π_t^e: Expected inflation
- $\nu_{1,t}$: Real shock
- $\nu_{2,t}$: Nominal shock
- x_t: Inflation set by central bank
Related Literature

- Sargent (1999)
- Cho, Williams and Sargent (2002)
- Williams (2004)

Model

- Time variant inflation aversion
- Adaptive private agents expectations
Conclusion

- we find that an increase in inflation aversion (β_i) can act as an activation mechanism for an escape route, thus reduce inflation

- simulations indicate that once inflation aversion is higher, average inflation is lower and more stable.
Q1: Why did inflation in the US, UK and other countries decreased in the late 1980s?

A1: Either because of a temporary loss of trust in the Phillips curve or because of a more permanent change in beliefs about the use of inflation for stabilisation purposes.

Q2: Why has it remained low and stable?

A1: A more conservative central bank would be less likely to use inflation for stabilisation purposes.
Changing central bank mandates and escapes from Nash inflation

Alina Barnett (Bank of England) and Martin Ellison (Oxford University)
Simulation Results

- Motivation
- Related Literature
- Model

Graph showing simulation results with labels for gamma0- adaptive expectations, gamma0- rational expectations, gamma1- rational expectations, and gamma1- adaptive expectations.
Simulation Results

Motivation

Model

Related Literature

- gamma0- adaptive expectations
- gamma0- rational expectations
- gamma1- rational expectations
- gamma1- adaptive expectations