The Macroeconomics of Universal Health Insurance Vouchers

Juergen Jung
Towson University

Chung Tran
University of New South Wales

Jul-Aug 2009
Dysfunctional U.S. Health Care System

- **Issues:**
 1. Low Coverage: 47 million in 2006 (15%)
 2. High Cost: 16% of GDP in 2006 and close to 20% by 2015

- **Causes:**
 1. Market failure
 2. Wrong government intervention

- **Market Based Reform:** Universal Health Insurance Vouchers (UHIV)
 1. Increase the number of insured individuals
 2. Control total health expenditure
What are Health Insurance Vouchers?

1. Government
 - issues medical vouchers to all individuals
 - vouchers are calculated individually based on the amount of the expected health expenditures for next year
 - keeps individual health records (like in Medicare)
 - fixes annual budget for vouchers as percentage of GDP

2. Individuals
 - purchase health insurance from private insurance companies using the voucher

3. Participating insurance companies
 - have to accept vouchers
 - contracts must provide a 'base insurance'
 - can offer additional insurance
 - compete and monitor to keep premiums and prices for health care services low
Objectives of the Paper

- Develop an analytical framework to study the implications of a health insurance voucher program

Our key contributions

1. A macro model with endogenous health production and health insurance choice

2. Quantify the short-run and long-run effects of introducing the voucher program
The Model: Key Features

- **Standard stochastic overlapping generations model**
 - Sectors: household, firm and government
 - Endowments: random lifetime and ability to work
 - Markets: consumption, labor and capital

- **New features**
 - Health: a consumption and investment good
 - Health: fixable, risky, and insurable
 - Private health insurance market
The Model: Preferences and Capital Accumulation

- Preferences:
 \[u(c_j, s_j) \]

- Health capital:
 1. **service flow from health capital**
 \[s_j = s(h_j) \]
 2. **health production**
 \[h_j = h(m_j, h_{j-1}, \varepsilon_j) \]
 3. **health shocks**
 \[P_j(\varepsilon_j, \varepsilon_{j-1}) = \text{Pr}(\varepsilon_j|\varepsilon_{j-1}, j) \]

- Human capital:
 1. **accumulation**
 \[e_j = e(j, h, \varepsilon_j) \text{ for } j = \{1, ..., J_1\} \]
 2. **productivity shocks**
 \[\Pi_j(\varepsilon_j, \varepsilon_{j-1}) = \text{Pr}(\varepsilon_j|\varepsilon_{j-1}, j) \]
The Model: Health Insurance and Expenditures

- Insurance plans: individual and group insurance

- Group insurance offers provided by employers: no rating and lower price

\[\Omega_{income}(i_{GI,j}, i_{GI,j-1}) = \Pr(i_{GI,j}|i_{GI,j-1}, income) \]

- Health insurance choice: endogenous

- Health insurance states:
 - \(in_j = 1 \): no insurance
 - \(in_j = 2 \): individual health insurance
 - \(in_j = 3 \): group health insurance

- Health expenditures depend on individuals’ health insurance state
The Model: Worker’s Program

- Agent state vector \(x_j = \{ a_j, h_{j-1}, in_j, \varepsilon_j, \epsilon_j, i_{GI,j} \} \)
- Agents receive income (wage, interest income, accidental bequests, and social insurance)
- Pay taxes (payroll and progressive income tax)
- Agents simultaneously choose:
 1. Consumption \(c_j \) and asset holdings \(a_j \)
 2. Health expenditures \(m_j \)
 3. Insurance state for next period \(in_j = \{1, 2, 3\} \)
 4. If \(i_{GI,j} = 1 \) then agents can either buy individual insurance \(in_j = 2 \) or group insurance \(in_j = 3 \)
 5. If \(i_{GI,j} = 0 \) then agents can only buy individual insurance \(in_j = 2 \)
\[V_j(x_j) = \max_{\{c_j, m_j, a_{j+1}, i_{n+1}\}} \left\{ u(c_j, h_j) + \beta \pi_j E_{\epsilon_{j+1}, \epsilon_{j+1}, i_{G_{l}, j+1} | \epsilon_{j}, \epsilon_{j}, i_{G_{l}, j}} [V(x_{j+1})] \right\} \]

s.t.

\[\left(1 + \tau^c \right) c_j + (1 + g) a_{j+1} + \omega (m_j) + \tilde{p} = \tilde{w}_j + R \left(a_j + T_{Beq} \right) - Tax_j + T_{j}^{SI} + v_j \]

\[\tilde{p}_j < \tilde{w}_j + R \left(a_j + T_{j}^{Beq} \right) - \omega (m_j) - Tax_j \]

\[0 \leq a_j \]
The Model: Retiree’s Program

- Agent state vector $x_j = \{a_j, h_{j-1}, \varepsilon_j\}$
- Agents receive income (pension, interest income, accidental bequests, and social insurance)
- Pay taxes (progressive income tax)
- Forced into Medicare \rightarrow pay p_j^{Med}

Agents simultaneously choose:
1. Consumption c_j and asset holdings a_j
2. Health expenditures m_j
The Model: Retiree’s Dynamic Programming Formulation

\[V_j(x_j) = \max_{\{c_j, m_j, a_j+1\}} \left\{ u(c_j, h_j) + \beta \pi_j E_{\varepsilon_{j+1}|\varepsilon_j} [V_{j+1}(x_{j+1})] \right\} \]

s.t.

\[c_j + a_j + o^R(m_j) + p_j^\text{Med} \]

\[= R \left(a_{j-1} + T^{\text{Beq}} \right) + R^m a_{j-1}^m + T_j^{\text{Soc}} + T_j^{\text{Sl}} - T_{ax_j} \]

\[0 \leq a_j \]
The Model: Firms and Insurance Companies

- **Firms:**

 \[
 \max_{\{K, L\}} \{ F(K, L) - qK - wL \}, \ \text{given} \ (q, w)
 \]

- **Insurance Companies:**

 \[
 (1 + \omega) \sum_{j=2}^{J_1+1} \mu_j \int \left[1_{\{in_j(x_j) = 2\}} (1 - \rho) \max(0, p_{m,ins}m_j(x_j) - \gamma) \right] d\Lambda(x_j)
 \]

 \[
 = (1 + r) \sum_{j=1}^{J_1} \mu \int \left(1_{\{in_j(x_j) = 2\}} p(j, h) \right) d\Lambda(x_j)
 \]

 \[
 (1 + \omega) \sum_{j=2}^{J_1+1} \mu_j \int \left[1_{\{in_j(x_j) = 3\}} (1 - \rho) \max(0, p_{m,ins}m_j(x_j) - \gamma) \right] d\Lambda(x_j)
 \]

 \[
 = (1 + r) \sum_{j=1}^{J_1} \mu \int \left(1_{\{in_j(x_j) = 3\}} p \right) d\Lambda(x_j)
 \]
The Model: Government I

- Bequests:
 \[
 \sum_{j=1}^{J} \mu_j \int T_{j}^{Beq}(x) \, d\Lambda_j(x) = \sum_{j=1}^{J} \tilde{\mu}_j \int a_j(x) \, d\Lambda_j(x)
 \]

- Social Security:
 \[
 \sum_{j=J_1+1}^{J} \mu_j \int T_{j}^{Soc}(x) \, d\Lambda_j(x) \\
 = \sum_{j=1}^{J_1} \mu_j \int \tau^{Soc} \left(we(j, h_j, \epsilon) - 1_{\{in_{j+1}=3\}} p \right) \, d\Lambda_j(x)
 \]
The Model: Government II

- Medicare:
 \[
 \sum_{j=J_1+1}^{J} \mu_j \int (1 - \rho^{Med}) \max (0, m_j (x) - \gamma^{Med}) \, d\Lambda_j (x)
 \]
 \[
 = \sum_{j=1}^{J_1} \mu_j \int \tau^{Med} \left(we (j, h_j, \epsilon) - 1_{\{in_{j+1} = 3\}} p \right) \, d\Lambda_j (x)
 \]
 \[
 + \sum_{j=J_1+1}^{J} \mu_j \int p_j^{Med} \, d\Lambda_j (x)
 \]

- Government budget is balanced:
 \[
 G + \sum_{j=1}^{J} \mu_j \int T_j^{SI} (x_j) \, d\Lambda (x_j) + \sum_{j=1}^{J} \mu_j \int v (h_j (x_j)) \, d\Lambda (x_j)
 \]
 \[
 = \sum_{j=1}^{J} \mu_j \int T_j^{x} (x_j) \, d\Lambda (x_j) + \sum_{j=1}^{J} \mu_j \int \tau^{C} c (x_j) \, d\Lambda (x_j).
 \]
Calibration

- Preferences:
 \[u(c_j, h_j) = \left(\frac{c_j^{\eta}s_j^{1-\eta}}{1-\sigma} \right) \]

- Health services:
 \[s_j = h_j \]

- Health Production:
 \[h_j = \phi m_j^\xi + (1 - \delta(h_j)) h_{j-1} + \varepsilon_j \]

- Markov switching probabilities between income shocks and group insurance offer states are estimated from MEPS 2004-2005 data.

- Human Capital:
 \[e_j = e(\varepsilon_j)^\chi (h_{j-1}^{\theta})^{1-\chi} \text{ for } j = \{1, \ldots, J_1\}, \]
 where \(e(\varepsilon_j) \) are estimated efficiency profiles from MEPS 2004-2005 for 3 separate income quantiles

- \(\beta_0, \beta_2 < 0, \beta_1 > 0, \chi \in (0, 1) \) and \(\theta = 0 \) in benchmark version.
Baseline Parameters

<table>
<thead>
<tr>
<th>Demographics:</th>
<th>Health Production:</th>
<th>Insurance:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$J_1 = 9$</td>
<td>$\phi = 1$</td>
<td>$\gamma = 26%$ of spending</td>
</tr>
<tr>
<td>$J_2 = 5$</td>
<td>$\xi = 0.35$</td>
<td>$\rho = 33%$</td>
</tr>
<tr>
<td>$n = 1.2%$</td>
<td>$\delta_h = [3%, \ldots, 90%]$</td>
<td>$\gamma^{Med} = 90%$ of private deductible</td>
</tr>
</tbody>
</table>

Preferences:
- $\sigma = 2.5$
- $\beta = 0.99$

Health Productivity:
- $\theta =$?

Technology:
- $\alpha = 0.33$
- $\delta = 10\%$
- $g = 1.5\%$

Exogenous premium growth depending on age and health
Steady States vs. Data (NO Human Capital Effect)

Insurance Coverage in %

Medical Spending in % of Income

% Insured Spending Below Deductible

Average Savings

Average Consumption

Average Health

Jung and Tran (TU and UNSW)

Health Vouchers

2009 17 / 28
Experiment 1: NO Human Capital Effect

<table>
<thead>
<tr>
<th></th>
<th>Benchmark 1</th>
<th>Vouchers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output: Y</td>
<td>100.000</td>
<td>101.578</td>
</tr>
<tr>
<td>Capital: K</td>
<td>100.000</td>
<td>104.445</td>
</tr>
<tr>
<td>Human capital: H</td>
<td>100.000</td>
<td>100.000</td>
</tr>
<tr>
<td>Med. spending: $pm \cdot M/Y$</td>
<td>12.9%</td>
<td>12.6%</td>
</tr>
<tr>
<td>Vouchers in % of GDP</td>
<td>0.0%</td>
<td>3.5%</td>
</tr>
<tr>
<td>Interest rate: R</td>
<td>6.0%</td>
<td>5.4%</td>
</tr>
<tr>
<td>Wages: w</td>
<td>100.000</td>
<td>101.578</td>
</tr>
<tr>
<td>Consumption tax: τ_C</td>
<td>0.050</td>
<td>0.085</td>
</tr>
<tr>
<td>Soc. sec. tax: τ_{SS}</td>
<td>0.109</td>
<td>0.103</td>
</tr>
<tr>
<td>Medicare tax: τ_{Med}</td>
<td>0.039</td>
<td>0.000</td>
</tr>
<tr>
<td>Income tax in % of GDP:</td>
<td>0.179</td>
<td>0.194</td>
</tr>
<tr>
<td>K/Y</td>
<td>2.656</td>
<td>2.731</td>
</tr>
<tr>
<td>C/Y</td>
<td>0.408</td>
<td>0.453</td>
</tr>
</tbody>
</table>
Replacing Medicare by Vouchers results in income and substitution effects.

- Removing insurance premium increases income (income effect)
- ↓ payroll tax increases income (income effect) while ↑ consumption tax increases price of consumption (substitution effect).

↑ savings and ↑ physical capital K

- affects wage and interest rates
- increases household income (G.E. income effect)

These increase the demand for health care services

Net result: ↑ total health care expenditure increases, but as fraction of GDP health expenditure decreases
Steady States vs. Data (WITH Human Capital Effect)

- **Insurance Coverage in %**
 - Model: \(\circ\)
 - Voucher: \(\times\)
 - Data: \(\cdot\)

- **Medical Spending in % of Income**

- **% Insured Spending Below Deductible**

- **Average Savings**

- **Average Consumption**

- **Average Health**
Experiment 2: WITH Human Capital Effect

<table>
<thead>
<tr>
<th></th>
<th>No Human Capital Effect</th>
<th>Human Capital Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Benchmark 1</td>
<td>Vouchers</td>
</tr>
<tr>
<td>Output: (Y)</td>
<td>100.000</td>
<td>101.578</td>
</tr>
<tr>
<td>Capital: (K)</td>
<td>100.000</td>
<td>104.445</td>
</tr>
<tr>
<td>Human capital: (H)</td>
<td>100.000</td>
<td>100.000</td>
</tr>
<tr>
<td>Med. spending: (pm \times M/Y)</td>
<td>12.9%</td>
<td>12.6%</td>
</tr>
<tr>
<td>Vouchers in % of GDP</td>
<td>0.0%</td>
<td>3.5%</td>
</tr>
<tr>
<td>Interest rate: (R)</td>
<td>6.0%</td>
<td>5.4%</td>
</tr>
<tr>
<td>Wages: (w)</td>
<td>100.000</td>
<td>101.578</td>
</tr>
<tr>
<td>Consumption tax: (\tau_C)</td>
<td>0.050</td>
<td>0.085</td>
</tr>
<tr>
<td>Soc. sec. tax: (\tau_{SS})</td>
<td>0.109</td>
<td>0.103</td>
</tr>
<tr>
<td>Medicare tax: (\tau_{Med})</td>
<td>0.039</td>
<td>0.000</td>
</tr>
<tr>
<td>Income tax in % of GDP:</td>
<td>0.179</td>
<td>0.194</td>
</tr>
<tr>
<td>(K/Y)</td>
<td>2.656</td>
<td>2.731</td>
</tr>
<tr>
<td>(C/Y)</td>
<td>0.408</td>
<td>0.453</td>
</tr>
</tbody>
</table>
Key Mechanism: Human Capital Effects

- Savings effect

- Human capital effect
 - Vouchers induce households to spend more on health (moral hazard).
 - \downarrow health and therefore \downarrow human capital depending on whether health is productive
 - Increases wage and interest rates, household income and again the demand for health care services

- Result: \uparrow the demand for health care, but as fraction of GDP health expenditure decreases
Transitions WITH human capital effect

- Output
- Capital
- Consumption
- Medical Expenditure
- Human Capital
- Interest
- Wages
- Consumption Tax
Welfare Analysis: WITH Human Capital Effect

Compensating Consumption per Lifetime Consumption (in %)

Compensating Consumption per GDP (in %)

Old Regime Agents

New Regime Agents

Winners

Losers

Jung and Tran (TU and UNSW) Health Vouchers 2009 26 / 28
Conclusion

- Health vouchers seem promising in being able to sustainably finance health care expenditures while providing full health insurance coverage to the entire U.S. population.

- The decrease in health care expenditure as fraction of GDP is primarily due to a general equilibrium savings effect.

- The human capital effect is potentially important.

- Welfare gain.
Extensions

- **Empirical**
 - structurally estimate health production parameters $\phi, \xi, \delta(h)$ and health shock process

- **Modelling**
 - the supply of health care services m and prices p_m
 - insurance firm competition and its effect on price of health care services and insurance premiums

- **Issues**
 - privatization of public health insurance programs
 - financing health costs in an aging economy