Asset Return Dynamics under Bad Environment-Good Environment Fundamentals

Geert Bekaert1 Eric Engstrom2

CEF

July 2009

1Columbia University and NBER
2Federal Reserve Board of Governors
The views expressed herein do not necessarily reflect those of the Federal Reserve System, its Board of Governors, or staff.
Motivation: bridge existing literatures

Consumption-based asset pricing literature

- mostly focuses on matching unconditional stock and bond statistics
 - e.g. mean and volatility of equity returns, risk free rate
- most models totally fail to produce realistic options prices
 - but options price data and volatility dynamics are likely very informative about underlying economics in financial markets
Motivation: bridge existing literatures

Option pricing literature

- Chernov and Ghysels (2000), Pan (2002), etc.
- focuses on matching price data and volatility dynamics
 - e.g. the “variance premium”
- but usually takes stock return process as exogenous
 - jumps
 - stochastic volatility
 - stochastic volatility jumps
 - stochastic volatility stochastic volatility
Motivation: bridge existing literatures

We seek to integrate these two literatures

- introduce a new consumption-based asset pricing framework
 - novel non-Gaussian data generating process
 - closed-form asset price solutions
 - fits unconditional asset price statistics
 - fits options price statistics

- related to concurrent work by Drechsler and Yaron (2008), Bollerslev, Tauchen and Zhou (2008)
Our point of departure: consumption shocks are non-Gaussian

- two shocks: one is positively skewed, one is negatively skewed
- both are fat-tailed and have time-varying volatility and skewness
- “BEGE”
 - $BE = \text{bad environment: negative skewness dominates}$
 - $GE = \text{good environment: positive skewness dominates}$
Formally, consumption growth, Δc_t, follows

$$\Delta c_{t+1} = g + \sigma_{cp} \omega_{p,t} - \sigma_{cn} \omega_{n,t}$$

- $\omega_{p,t}$ and $\omega_{n,t}$ are gamma distributed with time-varying parameters
 - n_t determines shape of the negative tail
 - p_t determines shape of the positive tail
Examples of the BEGE density
BEGE densities have simple expressions for higher moments

\[E_t \left[(\Delta c_{t+1} - \bar{g})^2 \right] = \sigma_{cp}^2 p_t + \sigma_{cn}^2 n_t \]

\[E_t \left[(\Delta c_{t+1} - \bar{g})^3 \right] = 2\sigma_{cp}^3 p_t - 2\sigma_{cn}^3 n_t \]
We assume p_t and n_t follow persistent, square-root volatility processes

\[
p_t = \bar{p} + \rho_p (p_t - \bar{p}) + \sigma_{pp} \omega_{p,t}
\]
\[
n_t = \bar{n} + \rho_n (n_t - \bar{n}) + \sigma_{nn} \omega_{n,t}
\]

- p_t and n_t innovations are the same as those for consumption growth
Does consumption data exhibit non-Gaussian behavior?

- yes! (especially if one considers a long sample)

- estimated conditional variance (top) and 3rd moment (bottom)

uses a projection of squared and cubed realized consumption growth onto a vector of lagged instruments
Our preference specification follows Campbell and Cochrane (1999)

- expected utility takes the form

\[E_0 \left[\sum_{t=0}^{\infty} \beta^t \frac{(C_t - H_t)^{1-\gamma} - 1}{1 - \gamma} \right] \]

- \(H_t \) is an exogenous “external habit stock” with \(C_t > H_t \)
- (log) risk aversion, \(q_t \), rises as \(C_t - H_t \) falls
The pricing kernel has two factors

\[m_{t+1} = \ln (\beta) - \gamma \Delta c_{t+1} + \gamma \Delta q_{t+1} \]

We model risk aversion as a persistent latent factor that is also subject to the consumption shocks

\[q_{t+1} = \bar{q} + \rho_q (q_t - \bar{q}) + \sigma_{qp} \omega_{p,t+1} + \sigma_{qn} \omega_{n,t+1} \]

- “habit” requires that bad consumption outcomes raise risk aversion
Under no-arbitrage conditions, the short rate, rrf_t, is given by

$$\exp(rrf_t) = E_t \left[\exp(m_{t+1}) \right]^{-1}$$

The solution for rrf_t is affine in p_t, n_t and q_t

- higher risk aversion, q_t, raises the short rate
 - investors desire to borrow to smooth utility

- higher n_t or higher p_t lowers the short rate
 - higher uncertainty increases precautionary desire to save
 - n_t has a stronger precautionary effect than p_t
Under no-arbitrage conditions, and assuming that dividends equal consumption, the equity price-dividend ratio is

$$\frac{P_t}{D_t} = E_t \left[\sum_{i=1}^{\infty} \exp \left(\sum_{j=1}^{i} (m_{t+j} + \Delta d_{t+j}) \right) \right]$$

- the solution for P_t/D_t is exponential-affine in q_t, n_t and p_t
- higher q_t lowers P_t/D_t
 - → because long-lived risky assets are less desirable
- higher n_t and p_t raise P_t/D_t
 - → this is a term structure effect
We define the physical and risk-neutral equity return variance measures as

\[pvar_t = E_t \left[(\text{return}_{t+1} - E_t [\text{return}_{t+1}])^2 \right] \]

\[qvar_t = E_t^Q \left[(\text{return}_{t+1} - E_t^Q [\text{return}_{t+1}])^2 \right] \]

- both \(pvar_t \) and \(qvar_t \) are affine and increasing \(p_t \) and \(n_t^3 \)

\[\text{under a linear approximation of equity returns} \]
The variance premium, $vprem_t$, is defined as

$$vprem_t = qvar_t - pvar_t$$

- at reasonable parameter values, $vprem_t$ is
 - positive
 - increasing in n_t
 - decreasing in p_t
Formal estimation strategy

We use classical minimum distance estimation to fit reduced-form statistics

- our basic data is monthly from December 1990-March 2009
- we use **means**, **volatilities** and **autocorrelations** of

<table>
<thead>
<tr>
<th>cons grow</th>
<th>cons grow variance</th>
<th>cons grow 3rd moment</th>
</tr>
</thead>
<tbody>
<tr>
<td>short rate</td>
<td>div yld</td>
<td>return</td>
</tr>
<tr>
<td>pvar</td>
<td>vprem</td>
<td></td>
</tr>
</tbody>
</table>

- we also use some unconditional higher order consumption growth stats and some asset price correlations
Model performance: selected statistics

- model-implied moments in “[]”
- sample statistics with standard error in “()”

<table>
<thead>
<tr>
<th></th>
<th>cons</th>
<th>grw</th>
<th>short rate</th>
<th>div yld</th>
<th>return</th>
<th>pvar</th>
<th>vprem</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean</td>
<td>[0.0026]</td>
<td>[0.0009]</td>
<td>[-6.4227]</td>
<td>[0.0042]</td>
<td></td>
<td>[0.0016]</td>
<td>[0.0017]</td>
</tr>
<tr>
<td></td>
<td>0.0025</td>
<td>0.0010</td>
<td>-6.3948</td>
<td>0.0037</td>
<td></td>
<td>0.0021</td>
<td>0.0017</td>
</tr>
<tr>
<td></td>
<td>(0.0002)</td>
<td>(0.0003)</td>
<td>(0.0941)</td>
<td>(0.0042)</td>
<td></td>
<td>(0.0005)</td>
<td>(0.0002)</td>
</tr>
<tr>
<td>std</td>
<td>[0.0028]</td>
<td></td>
<td>0.0013</td>
<td>[0.3594]</td>
<td>[0.0398]</td>
<td></td>
<td>[0.0010]</td>
</tr>
<tr>
<td></td>
<td>0.0028</td>
<td>0.0012</td>
<td>0.3375</td>
<td>0.0433</td>
<td></td>
<td>0.0028</td>
<td>0.0013</td>
</tr>
<tr>
<td></td>
<td>(0.0002)</td>
<td>(0.0001)</td>
<td>(0.0410)</td>
<td>(0.0045)</td>
<td></td>
<td>(0.0008)</td>
<td>(0.0001)</td>
</tr>
<tr>
<td>ac(1)</td>
<td>[0.0000]</td>
<td>0.9726</td>
<td>[0.9944]</td>
<td>[-0.0029]</td>
<td></td>
<td>[0.9954]</td>
<td>[0.6508]</td>
</tr>
<tr>
<td></td>
<td>-0.1947</td>
<td>0.9839</td>
<td>0.9830</td>
<td>0.0612</td>
<td></td>
<td>0.7584</td>
<td>0.6986</td>
</tr>
<tr>
<td></td>
<td>(0.0941)</td>
<td>(0.1666)</td>
<td>(0.2214)</td>
<td>(0.0976)</td>
<td></td>
<td>(0.0869)</td>
<td>(0.1644)</td>
</tr>
<tr>
<td>cons</td>
<td>[0.1254]</td>
<td></td>
<td>cons</td>
<td>[3.9318]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>grow</td>
<td>-0.1101</td>
<td></td>
<td>grow</td>
<td>3.7293</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>skew</td>
<td>(0.1924)</td>
<td></td>
<td>kurt</td>
<td>(0.2964)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The model matches the properties of conditional consumption variance well, but generates too little volatility in the conditional third moment.

<table>
<thead>
<tr>
<th></th>
<th>mean</th>
<th>std</th>
<th>ac(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>cons grow variance(_t)</td>
<td>[0.0774]</td>
<td>[0.0408]</td>
<td>[0.6508]</td>
</tr>
<tr>
<td></td>
<td>0.0784</td>
<td>0.0330</td>
<td>0.7791</td>
</tr>
<tr>
<td></td>
<td>(0.0062)</td>
<td>(0.0063)</td>
<td>(0.0971)</td>
</tr>
<tr>
<td>cons grow third moment(_t)</td>
<td>[0.2704]</td>
<td>[0.5476]</td>
<td>[0.7922]</td>
</tr>
<tr>
<td></td>
<td>-0.1851</td>
<td>3.1936</td>
<td>0.7599</td>
</tr>
<tr>
<td></td>
<td>(0.5420)</td>
<td>(0.6286)</td>
<td>(0.0537)</td>
</tr>
</tbody>
</table>
The model matches the mean level of risk-neutral return variance near-perfectly, but generates too much conditional skewness and kurtosis.

<table>
<thead>
<tr>
<th>means</th>
<th>qvar^{1/2}_t</th>
<th>qskew_t</th>
<th>qkurt_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0.20]</td>
<td>[-6.6]</td>
<td>[78.1]</td>
<td></td>
</tr>
<tr>
<td>0.20</td>
<td>-2.4</td>
<td>20.5</td>
<td></td>
</tr>
</tbody>
</table>

The model matches the strong negative contemporaneous correlation between stock returns and persistent changes in risk-neutral volatility.

<table>
<thead>
<tr>
<th>corr with Δqvar_t</th>
<th>return_t</th>
<th>return_{t-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>[-0.5141]</td>
<td>[0.0027]</td>
<td></td>
</tr>
<tr>
<td>-0.6291</td>
<td>0.0748</td>
<td></td>
</tr>
</tbody>
</table>
Model performance: summary

Overall, the model fit is very good, but there are some key misses

- volatility of return variance too low
- not enough volatility in the conditional third moment of consumption
- too much risk-neutral skewness and kurtosis of returns

This could owe to our sample period

- very benign consumption data, but fairly dramatic asset price data
We calculate some longer monthly consumption data from January 1929, and perform an alternative estimation

- recalculate the consumption statistics over the longer time period
- let model fit the long-run consumption statistics

 → the model misses largely disappear

 → suggests Great Depression may have left lasting imprint on asset prices
Loose ends and future work

Some remaining counterfactual BEGE model implications suggest extensions of the framework

- more realistic term structure dynamics
 - time-variation in the conditional mean of growth
- “flight-to-quality” (stock-bond correlation) effects
 - dividend process that is distinct from consumption

Further applications of the BEGE framework are planned

- term structure
- reduced-form return dynamics