A Particle Swarm Optimization Algorithm for Agent-Based Artificial Markets

Tong Zhang

Research Institute of Economics & Management
Southwestern University of Finance & Economics

B. Wade Brorsen

Agricultural Economics Department
Oklahoma State University

2009
Agent-Based Model: *Bottom-up Method*

- Carry out the experiments with programmed agents
- Interactive agents with simple rules

Motivations

Initial condition

Start

Agents

- Have simple rules

Choose *new strategies* with *learning algorithm*

Agents *trade* in the market

Received Profit

Report

Economy Develops over time

Observed Market Equilibrium
Motivations

Agent-Based Model
- Potential to study auctions and market mechanism designs, industrial organization topics.
- Complex problems
- Alternative to experiments & Analytical method

Algorithm complexity and robustness
- Genetic Algorithm (Arifovic 1994)
- Reinforcement Learning (Erev and Roth 1998)
Essay I: A Particle Swarm Optimization Algorithm

Particle Swarm Optimization (PSO) Algorithm

- Barnhart and Kennedy (1995)
Objectives

- Adapt particle swarm optimization (PSO) to dynamic markets
- Compare PSO & GA in Cournot market
Essay I: A Particle Swarm Optimization Algorithm

Particle Swarm Optimization (PSO) Algorithm

Select New strategy

Simultaneously

Select New strategy
Updated Strategy

\[x_{i,k}(t+1) = x_{i,k}(t) + v_{i,k}(t) \]

\[v_{i,k}(t+1) = w(t)v_{i,k}(t) + c_1u_1(p^l_{i,k}(t) - x_{i,k}(t)) + c_2u_2(p^g_{i,k}(t) - x_{i,k}(t)) \]

- \(w \) is an inertia weight factor
- \(c_1 \) self confidence factor
- \(c_2 \) swarm confidence factor respectively
- \(p^l_{i,k} \) local best
- \(p^g_{i,k} \) global best
Genetic Algorithm (GA)
Genetic Algorithm

- A String \(\langle a_1, a_2, \ldots, a_l \rangle \) here \(a_k \in \{0, 1\} \)
- Decode \(d_i = \sum_{k=1}^{l} a_k \cdot 2^{i-k} q_i \)

- \(\varepsilon \) elitism rate
- \(\chi \) crossover rate
- \(\mu \) mutation rate
Market Structure

Oligopsony: $M << N$

Essay I: A Particle Swarm Optimization Algorithm
Design & Method
Results

Table I–1. PSO & GA Simulation Results with *Changing* Algorithm Parameters

<table>
<thead>
<tr>
<th>Set</th>
<th>Parameters</th>
<th>Market Price</th>
<th>Capacity Ratio</th>
<th>Machine Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Buyer 1</td>
<td>Buyer 2</td>
</tr>
<tr>
<td>PSO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.98 2.5</td>
<td>Mean</td>
<td>80.01</td>
<td>19.99%</td>
</tr>
<tr>
<td>12</td>
<td>0.98 0.5</td>
<td>Mean</td>
<td>80.00</td>
<td>19.99%</td>
</tr>
<tr>
<td>13</td>
<td>0.5 1</td>
<td>Mean</td>
<td>80.00</td>
<td>20.00%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD</td>
<td>0.00</td>
<td>0.02%</td>
</tr>
<tr>
<td>14</td>
<td>0.2 1</td>
<td>Mean</td>
<td>80.02</td>
<td>20.32%</td>
</tr>
<tr>
<td>GA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>10% 86% 0.33%</td>
<td>Mean</td>
<td>81.29</td>
<td>18.95%</td>
</tr>
<tr>
<td>16</td>
<td>20% 66% 1.00%</td>
<td>Mean</td>
<td>80.18</td>
<td>20.01%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD</td>
<td>0.83</td>
<td>2.18%</td>
</tr>
<tr>
<td>17</td>
<td>40% 76% 1.00%</td>
<td>Mean</td>
<td>79.95</td>
<td>19.25%</td>
</tr>
<tr>
<td>18</td>
<td>40% 66% 0.33%</td>
<td>Mean</td>
<td>80.07</td>
<td>20.33%</td>
</tr>
</tbody>
</table>

Theoretical Results: *Market Price = $80; Quantity Ratio of each buyer =20%*
Results

Table I–2. Results under Different Algorithm Structure for PSO and GA

<table>
<thead>
<tr>
<th>Set</th>
<th>P</th>
<th>L</th>
<th>Market Price</th>
<th>Capacity Ratio</th>
<th>Machine Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Buyer 1</td>
<td>Buyer 2</td>
</tr>
<tr>
<td>PSO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>10</td>
<td>79.99</td>
<td>20.00%</td>
<td>19.99%</td>
</tr>
<tr>
<td>20</td>
<td>10</td>
<td>3</td>
<td>79.99</td>
<td>19.97%</td>
<td>19.97%</td>
</tr>
<tr>
<td>21</td>
<td>3</td>
<td>3</td>
<td>79.77</td>
<td>20.24%</td>
<td>20.22%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>100</td>
<td>100</td>
<td>79.70</td>
<td>20.30%</td>
<td>20.32%</td>
</tr>
<tr>
<td>23</td>
<td>40</td>
<td>40</td>
<td>78.93</td>
<td>21.09%</td>
<td>20.31%</td>
</tr>
<tr>
<td>24</td>
<td>20</td>
<td>40</td>
<td>78.01</td>
<td>21.32%</td>
<td>12.49%</td>
</tr>
</tbody>
</table>
Results

Market Price of PSO & GA

Quantity Strategy of GA & PSO

(a) GA
(b) PSO
Conclusions

Agent-Based Artificial Market
- New method in AgEcon industrial organization problems

Adapt PSO to dynamic markets

PSO>GA
Thank You!