Learning Benevolent Leadership in a Heterogenous Agents Economy

Jasmina Arifovic Herbert Dawid Christophe Deissenberg
Olena Kostyshyna

June 29, 2009
Main research questions

- What is the potential policy value of cheap-talk inflation announcements when
 - no binding commitment is possible
 - the policy-maker has an incentive to deviate ex post from its announcements?
- What is the impact of the policy-maker’s futurity, of the speed of learning of the agents, of the costs of learning?
- What is the impact of noise and of heterogeneity among the agents?
Ingredients

- Kydland-Prescott-type framework with heterogenous boundedly rational agents
- Policy-maker (central bank): individual evolutionary learning a la Arifovic-Ledyard
- Private agents: error correction learning
- INTERTEMPORAL TRADEOFF: A deviation between announced and implemented policy provides short-term gains, but reduces the ability of the policy-maker to influence the private agents in the future.
The one-shot game (Dawid and Deissenberg, JEBO 2005)

- **Actors:**
 - Policy-maker (central bank) G
 - Private agents P^i, $i \in [0, 1]$

- **Instruments and game sequence:**
 - G announces an inflation rate y^a
 - Each P^i independently makes an inflation forecast x^i
 - G observes the x^i and chooses an inflation rate y
The private agents P^i can choose between two strategies:

- **BELIEVE:**
 \[x^B = y^a \]

- **BUILD PERFECT ANTICIPATIONS:**
 \[x^{NB} = y \]

Thus the population consists of π believers B and $(1 - \pi)$ nonbelievers NB.

π is common knowledge.
The one-shot game

- **Economy:**
 - Expectations-augmented Philips curve:
 \[u^i = u^* - \theta \left(y - x^i \right), \quad u^* > 0, \quad \theta > 0 \]

- **Payoffs:**
 \[
 J^{Pi} = \frac{-1}{2} \left[(y - x^i)^2 + y^2 \right] \quad \rightarrow \quad \max_{x^i} \\
 J^G = \frac{-1}{2} \left(\pi \left(u^B \right)^2 + \left(1 - \pi \left(u^{NB} \right)^2 \right) + y^2 \right) \quad \rightarrow \quad \max_{y^a, y}
 \]
The one-shot game - and its bad property

At the Nash equilibrium:

- y^* and y^a decrease with π
- J^G, J^B, and J^{NB} increase with π
- But for all $\pi \in (0, 1)$ \(J^{NB} > J^B \)
- Thus, $\pi = 0$ is the only (symmetric) equilibrium – but a bad one.
A dynamic agent-based extension

- Discrete time \(t = 1, 2, .. \)
- Finite number of private agents
A dynamic agent-based extension - private agents

- In each t the Bs forecast is as before:
 \[x_t^B = y_t^a \]

- The NBs forecasts are given by their optimal reaction function for the static game plus an (individual or common) error correction term d_t^i:
 \[x_t^{NB,i} = \theta^2 \pi_t y_t^a + \theta u^* + \frac{\theta^2 \pi_t}{1 + \theta^2 \pi_t} + d_t^i \]

- Making a NB forecast costs $c > 0$

- The error correction terms are updated according to
 \[d_{t+1}^i = d_t^i + \gamma (y_t - x_t^{NB,i}), \quad \gamma > 0 \]
A dynamic agent-based extension - private agents

- All period payoffs are as before – with u_t^{NB} replaced where relevant by \bar{u}_t^{NB}
- At the end of each period, agents can switch strategy (B or NB) according to a word-of-mouth process:
 - a fraction β of agents is chosen randomly
 - the chosen agents meet pairwise randomly
 - they observe the strategy B or NB followed by the partner
 - they imperfectly observe the partner’s payoff
if \(J_{obs}^k > J^i \),

then agent \(i \) adopts the strategy of agent \(k \)

As a consequence

\[
\Delta \pi_t = \pi_{t+1} - \pi_t = \beta \pi_t (1 - \pi_t) \arctan(J_t^B - J_t^{NB}),
\]

After a strategy switch, a new \(NB \) \textbf{either} observes the common \(d_t \) \textbf{or} starts its learning process with \(d_t^i = 0 \)
A dynamic agent-based extension - policy-maker

- At each time t, G has a collection of N rules $\{y^a, y\}$.
- For each rule, it computes the hypothetical payoff

$$J^G_j = -\frac{1}{2}[\pi_t(u^B_{hyp,j})^2 + (1 - \pi_t)(u^{NB}_{hyp,j})^2 + y_j^2] + \Omega \Delta \pi^{exp}_j$$

- It selects a rule randomly with probability

$$P(\text{rule}_j) = \frac{J^G_j}{\sum_{i=1}^N J^G_i}$$

- Each element of the rule is changed with probability 0.2 according to (experimentation)

$$\text{new value} = \text{old value} + \varepsilon,$$

- Rules are also subjected to mutation and to tournament selection replication
Simulations: The basic setting

- $\beta = 0.05$, $u^* = 5.5$, $\theta = 1$, $c = 0.1$, $\gamma = 0.1$
- G has $N = 100$ rules.
- Simulations are run for 300 periods.
- All data presented = averages over 100 runs.
- All results are statistically significant
- Nash equilibrium: $\pi = 0$, $J^P = -30.25$
Simulation: Emergence of policy announcements and evolution of credibility

Jasmina Arifovic, Herbert Dawid, Christophe Deissenberg, Olena Kostyshyna

Learning Benevolent Leadership

June 29, 2009 14 / 25
Homogeneous, cost=1, γ=0.1. (a) stock of believers

(b) \(J^G \)

(c) actual and announced inflation

(d) payoffs
Simulation: Impact of omega

but there exists for all $0 < \rho < 1$ an unique value of Ω that maximizes

$$J^{G, disc} = \sum_{t=0}^{T} \rho^t J^G_t$$
Simulation: Impact of c, gamma

For sufficiently small variations from the base scenario

\[c \uparrow \text{ or } \gamma \downarrow \implies J^{G,\text{disc}} \uparrow \]

but the two cases are not qualitatively equivalent!

1. \(c \uparrow \implies \pi \uparrow, \ y^a - y \downarrow, \ u^B \uparrow, \ u^{NB} \uparrow, \) but \(u^B < u^{NB} \) and \(\pi \uparrow \) partially offsets this, and \(y \downarrow \).
Thus \(J^{G,\text{disc}} \uparrow, \ J^B \uparrow, \ J^{NB} \uparrow \).

LOW INFLATION SCENARIO

2. \(\gamma \downarrow \implies y^a - y \uparrow, \ y^a \downarrow, \ y \uparrow, \ \pi \downarrow \).
Thus \(J^{G,\text{disc}} \uparrow, \ J^B \downarrow, \ J^{NB} \downarrow \).

LOW UNEMPLOYMENT SCENARIO
THERE EXISTS A (PARETO)-OPTIMAL LEVEL OF c, γ
Heterogeneity: Basic impact

Fluctuations and inefficiency increase

- Initially, π grows faster in the heterogenous case – but declines faster afterwards:
- It is easy to build up a stock of Bs since the option NB is not very attractive ($d = 0$ after a switch!).
- But this creates a strong incentive for G to exploit this stock later!
Heterogeneity and variations of c, γ

- For the basis parameter values, for sufficiently small increases of c, we no longer have lowered inflation but decreased unemployment.
- When γ decreases, y and y^a decrease but $y^a - y$ increases.

The unemployment of Bs therefore increases. But the unemployment of NBs also increases since their adaptation speed is lower.

- The impact of sufficiently small changes of γ remains unchanged.
- But this reflects just a shit in the domains where (say) an increase of c is beneficial. There are still optimal values of c, γ.

Comparison (1st arrow = homo, second arrow = hetero)

<table>
<thead>
<tr>
<th>J^G_{disc}</th>
<th>π</th>
<th>y</th>
<th>u^B</th>
<th>u^{NB}</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ</td>
<td>↓</td>
<td>↑</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td>c</td>
<td>↑</td>
<td>↑</td>
<td>↓</td>
<td>↑</td>
</tr>
</tbody>
</table>

Jasmina Arifovic, Herbert Dawid, Christophe Deissenberg, Olena Kostyshyna (Learning Benevolent Leadership June 29, 2009 19 / 25)
\begin{itemize}
 \item G is able to learn a Pareto-superior outcome by making inflation announcements that are not respected.
 \item For this, it is necessary that:
 \begin{itemize}
 \item G is sufficiently patient (Ω must be sufficiently large)
 \item the private agents learn sufficiently fast and sufficiently accurately at sufficiently low costs: this prevents G from exploiting the believers too much.
 \end{itemize}
 \item The economy exhibits recurrent fluctuations in announced and actual inflation as policy-maker repeatedly builds up and exploits the proportion of believers.
\end{itemize}
Conclusions

- Changes in different parameter values lead to different policy responses.
- In the heterogeneous case the variance of nonbelievers’ expectations makes policy-making less efficient.
Conclusions

- Large forecast errors of nonbelievers can come from slow speed of adjustment of the error correction term and/or from heterogenous expectations.
- It is in the interest of the policy-maker to facilitate the information flow among nonbelievers so that an agent who switches to nonbelieving can build on the experience of the other nonbelievers.
- Making too much data publicly available may however reduce the costs c of being a nonbeliever, which is not desirable for the policy-maker.
EXPLICIT CONSIDERATION OF HETEROGENEITY IS NEEDED IN POLICY-MAKING ANALYSIS!

THE POLICY-MAKER HAS A NON-TRIVIAL TASK:

- TO REDUCE LARGE EXPECTATION ERRORS AMONG THE NBs
- BUT, AT THE SAME TIME, TO KEEP THE INCENTIVES FOR TAKING POLICY-ANNOUNCEMENTS AT FACE VALUE AS STRONG AS POSSIBLE!
Final words

- The full paper is R&R at JEDC
- It is available as a GREQAM WP

(or ask me, christophe.deisslenberg@univmed.fr)
THANKS FOR YOUR ATTENTION

THANKS TO GUIOMAR AND ALL THE ORGANIZERS FOR A MOST LOVELY MEETING AT A DELIGHTFUL PLACE!