Heterogeneous Expectations in Monetary DSGE Models

Cars Hommes Domenico Massaro

CeNDEF, Faculty of Economics and Business
University of Amsterdam

15th International Conference on Computing in Economics and Finance
Sydney, Australia
15 July 2009
Overview

- Benchmark for monetary policy analysis: New Keynesian model with a representative rational agent (RE)

- Learning as alternative to RE

- Evidence for heterogeneous expectations (HE)
 - Survey data: Carrol (2003), Branch (2004), Pfajfar and Santoro (2006)
Contribution of the paper

- Derivation of a general New Keynesian framework consistent with heterogeneous expectations
 - Explicit solution of the microfoundations underpinning the model
 - RE benchmark as a special case
- Estimation of the “degree of rationality” in the economy
 - Relevant for the conduct of a sound monetary policy
Households

- Intertemporal optimization problem

\[
\max \quad \tilde{E}_{i,t} \sum_{s=t}^{\infty} \beta^{s-t} \left(\frac{c_{s}^{1-\sigma}}{1-\sigma} - \chi \frac{h_{s}^{1+\gamma}}{1+\gamma} \right)
\]

s.t. \quad c_{s} + b_{s} \leq w_{s} h_{s} + R_{s-1} \pi_{s}^{-1} b_{s-1} + d_{s}

- First order conditions in log-linear terms

\[
\tilde{E}_{i,t} \hat{c}_{i,s} = \tilde{E}_{i,t} \left[\hat{c}_{i,s+1} - \sigma^{-1} \left(\hat{R}_{s} - \hat{\pi}_{s+1} \right) \right]
\]

\[
\tilde{E}_{i,t} \hat{h}_{i,s} = \frac{1}{\gamma} \tilde{E}_{i,t} \left(\hat{w}_{s} - \sigma \hat{c}_{i,s} \right)
\]
Individually consumption rule

- Iterate the flow budget constraint and impose the No Ponzi constraint to get the perceived lifetime budget constraint

- Iterating forward the Euler equation and substituting it in the intertemporal budget constraint together with the labor supply equation we finally get the individual consumption rule for agent i

\[
\hat{c}_{i,t} = \zeta_b \hat{b}_{i,t-1} + \hat{E}_{i,t} \sum_{s=t}^{\infty} \beta^{s-t} \left[(\zeta_w \hat{w}_s + \zeta_d \hat{d}_s) - \frac{\beta}{\sigma} (\hat{R}_s - \hat{\pi}_{s+1}) \right]
\]
Firms

- Profit maximization

\[
\max \tilde{E}_{j,t} \sum_{s=t}^{\infty} \omega^{s-t} Q_s \left(\frac{P_{j,t}}{P_s} - \frac{W_s}{P_s} \right) \left(\frac{P_{j,t}}{P_s} \right)^{-\eta} c_s
\]

- First order condition

\[
\tilde{E}_{j,t} \sum_{s=t}^{\infty} \omega^{s-t} Q_s \left[(1 - \eta) \frac{1}{P_s} + \eta \frac{1}{P_{j,t}} w_s \right] \left(\frac{P_{j,t}}{P_s} \right)^{-\eta} c_s = 0
\]
Individual pricing rule

- Log-linearizing firms’ first order condition we get the individual pricing rule

\[\hat{p}_{j,t} = (1 - \omega \beta) \hat{E}_{j,t} \sum_{s=t}^{\infty} (\omega \beta)^{s-t} \hat{w}_s + \omega \beta \hat{E}_{j,t} \sum_{s=t}^{\infty} (\omega \beta)^{s-t} \hat{\pi}_{s+1} \]
Aggregate equations

- Aggregating individual decision rules and using equilibrium conditions we get the aggregate relations

heterogeneous expectations-IS

\[
\hat{y}_t = (1 - \beta) \tilde{E}_t \sum_{s=t}^{\infty} \beta^{s-t} \hat{y}_s - \frac{\beta}{\sigma} \tilde{E}_t \sum_{s=t}^{\infty} \beta^{s-t} \left(\hat{R}_s - \hat{\pi}_{s+1} \right)
\]

heterogeneous expectations-NKPC

\[
\hat{\pi}_t = k \tilde{E}_t \sum_{s=t}^{\infty} (\omega/\beta)^{s-t} \hat{y}_s + (1 - \omega) \beta \tilde{E}_t \sum_{s=t}^{\infty} (\omega/\beta)^{s-t} \hat{\pi}_{s+1}
\]

where \(\tilde{E}_t = \int_0^1 \tilde{E}_{i,t} f(i) \, di = \sum_{h=1}^{H} n_{h,t} \tilde{E}_{h,t} \)
Introduction The HE model Dynamic feedback system Bayesian estimation

Specification of expectations

- Agents face **cognitive problems** in understanding and processing information (e.g., Kahneman and Thaler (2006) and Della Vigna (2007)). Therefore they eventually make **mistakes in forecasting** macroeconomic variables.

- Some agents, by paying some **information gathering and processing costs** $C \geq 0$ per period, have **rational expectations**.
Perfectly rational and boundedly rational agents

- Aggregate equations of the economy populated by perfectly rational and boundedly rational agents:

\[
\hat{y}_t = n_{1,t} E_t \sum_{s=t}^{\infty} \beta^{s-t} \left((1 - \beta) \hat{y}_s - \frac{\beta}{\sigma} (\hat{R}_s - \hat{\pi}_{s+1}) \right) \\
+ \int_{n_{1,t}}^{1} \tilde{E}_{i,t} \sum_{s=t}^{\infty} \beta^{s-t} \left((1 - \beta) \hat{y}_s - \frac{\beta}{\sigma} (\hat{R}_s - \hat{\pi}_{s+1}) \right) f(i) di
\]

\[
\hat{\pi}_t = n_{1,t} E_t \sum_{s=t}^{\infty} (\omega \beta)^{s-t} \left(k \hat{y}_s + (1 - \omega) \beta \hat{\pi}_{s+1} \right) \\
+ \int_{n_{1,t}}^{1} \tilde{E}_{i,t} \sum_{s=t}^{\infty} (\omega \beta)^{s-t} \left(k \hat{y}_s + (1 - \omega) \beta \hat{\pi}_{s+1} \right) f(i) di
\]
Dynamic feedback system (I)

- The **beliefs parameters** $\theta_{i,t}$ are random variables distributed according to $\psi_t(\theta)$.
- The distribution of beliefs evolves over time as a function of past performance according to the *continuous choice model* (Diks and van der Weide (2005)):

$$\psi_t(\theta) = \frac{e^{\delta U_{t-1}(\theta)}}{Z_{t-1}}$$

where $Z_{t-1} = \int_{\Theta} e^{\delta U_{t-1}(\vartheta)} d\vartheta$ is a normalization factor.
Dynamic feedback system (II)

Assuming that the performance measure is given by past squared forecast errors

\[U_{t-1}(\theta) = - (\theta - x_{t-1})^2 \]

it can be shown that \(\psi_t(\theta) \) follows a normal distribution, whose evolution is characterized by

\[\mu_t = x_{t-1} \]
\[\sigma_t^2 = \frac{1}{2\delta} \]
To be or not to be (rational)?

- **Discrete choice model** (Brock and Hommes (1997))

\[n_{h,t} = \frac{e^{\delta U_{h,t-1}}}{\sum_{h=1}^{H} e^{\delta U_{h,t-1}}} \]

- \(n_{h,t} \) fraction of agents using predictor \(h \)

- Agents compare cost \(C \) for rationality with the heuristics’ average past forecast error

- Fraction of rational agents constant over time:

\[n_1 = \frac{e^{-\delta d C}}{e^{-\delta d C} + e^{-\delta d \frac{3}{2\delta c}}} \]
Monetary policy rule

- Close the model by specifying a forward-looking interest rate rule of the form
 \[
 \hat{R}_t = \rho_R \hat{R}_{t-1} + (1 - \rho_R)(\phi_\pi E_t \hat{\pi}_{t+1} + \phi_y E_t \hat{y}_{t+1}) + \varepsilon_{mp}^t
 \]

- Assuming a demand and a supply shock we can write the HE model in the canonical form
 \[
 \Gamma_0 s_t = \Gamma_1 s_{t-1} + \Psi \varepsilon_t + \Pi \eta_t
 \]
Basic mechanics of Bayesian estimation

- Let ξ be the vector that collects the **structural parameters** of the model and denote with Y_T **historical data** on output, inflation and interest rate (sample 1982:04-2008:03)

- All the information about the parameters is summarized by the **posterior distribution**

$$p(\xi|Y_T) = \frac{p(Y_T|\xi)p(\xi)}{p(Y_T)}$$

- Use the **Metropolis-Hastings algorithm** to generate draws from the posterior and the **Kalman filter** to recursively evaluate the likelihood
Posterior moments

<table>
<thead>
<tr>
<th>Name</th>
<th>Mean</th>
<th>Confidence interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_1</td>
<td>0.7794</td>
<td>[0.7515, 0.8075]</td>
</tr>
<tr>
<td>σ</td>
<td>0.2275</td>
<td>[0.2239, 0.2321]</td>
</tr>
<tr>
<td>γ</td>
<td>0.8460</td>
<td>[0.4858, 1.1911]</td>
</tr>
<tr>
<td>Ω</td>
<td>0.2588</td>
<td>[0.1316, 0.3842]</td>
</tr>
<tr>
<td>ϕ_π</td>
<td>2.0280</td>
<td>[1.8776, 2.1914]</td>
</tr>
<tr>
<td>ϕ_y</td>
<td>0.2289</td>
<td>[0.1714, 0.2850]</td>
</tr>
<tr>
<td>π^*</td>
<td>1.9690</td>
<td>[0.4650, 3.4233]</td>
</tr>
<tr>
<td>ρ_g</td>
<td>0.5934</td>
<td>[0.5487, 0.6403]</td>
</tr>
<tr>
<td>ρ_u</td>
<td>0.9152</td>
<td>[0.8733, 0.9577]</td>
</tr>
<tr>
<td>ρ_R</td>
<td>0.0481</td>
<td>[0.0062, 0.0887]</td>
</tr>
<tr>
<td>σ_g</td>
<td>0.2548</td>
<td>[0.2261, 0.2814]</td>
</tr>
<tr>
<td>σ_u</td>
<td>1.1740</td>
<td>[0.4977, 1.8731]</td>
</tr>
<tr>
<td>σ_R</td>
<td>0.2459</td>
<td>[0.2261, 0.2669]</td>
</tr>
</tbody>
</table>
Robustness check and model comparison (I)

- Estimation under a more diffuse prior for \(n_1 \), namely a prior uniform distribution in the interval \([0, 1]\). The posterior mean slightly increases from 0.7794 to 0.7934 with other parameter estimates being almost unchanged.

- Model comparison via posterior odds ratio

\[
\frac{p(HE|Y_T)}{p(RE|Y_T)} = \frac{p(HE) p(Y_T|HE)}{p(RE) p(Y_T|RE)}
\]
Robustness check and model comparison (II)

- Marginal data densities $p(Y_T|\mathcal{M})$ where $\mathcal{M} = HE, RE$ computed using a modified harmonic mean approximation (Geweke (1999))

| Model | $\ln p(Y_T|\mathcal{M})$ | Bayes factor versus HE |
|-------|--------------------------|------------------------|
| HE | -945.3 | 1 |
| RE | -1264.2 | $\exp(318.9)$ |

- According to Jeffreys (1961), the value of the Bayes factor $\exp(318.9)$ represents decisive evidence of the HE model versus the RE benchmark

Domenico Massaro
CeNDEF, University of Amsterdam
Heterogeneous Expectations in Monetary DSGE Models
Findings and future lines of research

- Decisive empirical evidence in support of the HE model versus the representative agent RE benchmark

- Findings comparable with the results of Gali and Gertler (1999) who found a proportion of forward looking firms between 0.6 and 0.8 by estimating a reduced form NKPC with GMM

- Investigation of the implications of heterogeneous boundedly rational expectations in the context of optimal monetary policy design