How to forecast ECB and Fed interest rate

Jean-Charles Bricongne and Jean-Marc Fournier

July 12, 2009

Banque de France, CREST-INSEE and Paris I CREST-INSEE and PSE
Central banks’ policies

Institutional framework and goals
Interest rate is a key instrument
Taylor rules
Understanding the central banks’ communication
Specifications
Central banks’ policies

- Institutional framework and goals
- Interest rate is a key instrument
- Taylor rules
- Understanding the central banks’ communication
- Specifications

Empirical results

- Data used in the computation
- Variable selection
- Central bank reaction’s function
- Central banks’ interest rates simulated in 2009H1
Central banks’ goals

▶ Legal framework (European Treaty, Federal Reserve Act,...).
Central banks’ goals

▶ Legal framework (European Treaty, Federal Reserve Act,...).
▶ Fed: stable prices, moderate long-term interest rates and maximum employment.

Jean-Charles Bricongne and Jean-Marc Fournier
Central banks’ goals

- Legal framework (European Treaty, Federal Reserve Act,...).
- Fed: stable prices, moderate long-term interest rates and maximum employment.
- ECB: Price stability is the main objective, which means is not necessarily the only one.
Central banks’ goals

- Legal framework (European Treaty, Federal Reserve Act,...).
- Fed: stable prices, moderate long-term interest rates and maximum employment.
- ECB: Price stability is the main objective, which means is not necessarily the only one.
- Aversion for deflation (Bernanke, 2002).
Independence of Central banks

- Avoiding political influence.
Independence of Central banks

- Avoiding political influence.
Independence of Central banks

▶ Avoiding political influence.
Transparency of Central banks in practice

- Fed (Greenspan): no quantitative public information about goals, not even such a quantification inside the Fed (Blinder, 2004).
Transparency of Central banks in practice

- Fed (Greenspan): no quantitative public information about goals, not even such a quantification inside the Fed (Blinder, 2004).
Transparency of Central banks in practice

- Fed (Greenspan): no quantitative public information about goals, not even such a quantification inside the Fed (Blinder, 2004).
- Fed (Bernanke): growth between 2.5% and 2.7%, inflation between 1.7% and 2.0% and unemployment between 4.8% and 5.0% in the long-run (FOMC meeting, last January).

ECB: positive inflation below 2% and close to 2%.
Fed minutes and ECB’s chairman speeches: qualitative information about the central bank’s goals, its appreciation of current situation and likely next decisions.

Jean-Charles Bricongne and Jean-Marc Fournier

How to forecast ECB and Fed interest rate
Transparency of Central banks in practice

- Fed (Greenspan): no quantitative public information about goals, not even such a quantification inside the Fed (Blinder, 2004).
- Fed (Bernanke): growth between 2.5% and 2.7%, inflation between 1.7% and 2.0% and unemployment between 4.8% and 5.0% in the long-run (FOMC meeting, last January).
- ECB: positive inflation below 2% and close to 2%.
Transparency of Central banks in practice

- Fed (Greenspan): no quantitative public information about goals, not even such a quantification inside the Fed (Blinder, 2004).
- Fed (Bernanke): growth between 2.5% and 2.7%, inflation between 1.7% and 2.0% and unemployment between 4.8% and 5.0% in the long-run (FOMC meeting, last January).
- ECB: positive inflation below 2% and close to 2%.
- Fed minutes and ECB’s chairman speeches: qualitative information about the central bank’s goals, its appreciation of current situation and likely next decisions.
We focus on target interest rate

- Central banks prefer to adjust interest rate, rather than money supply.
We focus on target interest rate

- Central banks prefer to adjust interest rate, rather than money supply.
- Since Volcker’s policy, the monetary is not used as an instrument.
We focus on target interest rate

- Central banks prefer to adjust interest rate, rather than money supply.
- Since Volcker’s policy, the monetary is not used as an instrument.
- Tinbergen (1952) rule: no more objectives than instruments.
We focus on target interest rate

- Central banks prefer to adjust interest rate, rather than money supply.
- Since Volcker’s policy, the monetary is not used as an instrument.
- Tinbergen (1952) rule: no more objectives than instruments.
- Central banks may have to make a balance between contradictory objectives.
Central banks’ committees

- ECB: 6 members of the Directory and 15 members of national central banks of the eurozone.
Central banks’ committees

- ECB: 6 members of the Directory and 15 members of national central banks of the eurozone.
- Fed: 7 members of the Governing Council and 5 members of Regional Fed.
Central banks’ committees

- ECB: 6 members of the Directory and 15 members of national central banks of the eurozone.
- Fed: 7 members of the Governing Council and 5 members of Regional Fed.
- The decision process entails both macroeconomic data or reports and more informal information.
Central banks’ committees

- ECB: 6 members of the Directory and 15 members of national central banks of the eurozone.
- Fed: 7 members of the Governing Council and 5 members of Regional Fed.
- The decision process entails both macroeconomic data or reports and more informal information.
- Predictability of central banks is also an issue (Perez-Quiros & Sicilia, 2002).
Central banks’ committees

- ECB: 6 members of the Directory and 15 members of national central banks of the eurozone.
- Fed: 7 members of the Governing Council and 5 members of Regional Fed.
- The decision process entails both macroeconomic data or reports and more informal information.
- Predictability of central banks is also an issue (Perez-Quiros & Sicilia, 2002).
- We can propose an approximation of such a process.
Taylor rules

Interest rate depends on inflation and output gap

\[i - i^* = 0.5(\pi - \pi^*) + 0.5(y - y^*) \]

where \(i \) is the nominal short-run interest rate, \(i^* \) the nominal short-run equilibrium interest rate, \(\pi \) and \(\pi^* \) current and target inflation respectively, and \((y - y^*) \) the output gap.
Taylor rules
Interest rate depends on inflation and output gap

\[i - i^* = 0.5(\pi - \pi^*) + 0.5(y - y^*) \] \hspace{1cm} (1)

where \(i \) is the nominal short-run interest rate, \(i^* \) the nominal short-run equilibrium interest rate, \(\pi \) and \(\pi^* \) current and target inflation respectively, and \((y - y^*) \) the output gap.

- Several policy rules may be used by a central bank (Taylor, 1999 or Orphanides, 2007).
Research about agent’s anticipations has taken a great importance (Sargent, 1987).
Research about agent’s anticipations has taken a great importance (Sargent, 1987).

Central banks need to talk to improve the efficiency of their policy (Blinder, 2001 and Blinder & al., 2008).
Research about agent’s anticipations has taken a great importance (Sargent, 1987).

Central banks need to talk to improve the efficiency of their policy (Blinder, 2001 and Blinder & al., 2008).

Grüner (2002) argues that uncertainty of central banks’ decision leads to more wage discipline.
Research about agent’s anticipations has taken a great importance (Sargent, 1987).

Central banks need to talk to improve the efficiency of their policy (Blinder, 2001 and Blinder & al., 2008).

Grüner (2002) argues that uncertainty of central banks’ decision leads to more wage discipline.

All in all, Central banks give no more than partial information.
Taylor rules

Estimated Taylor rule:

\[i_t = \beta_0 + \beta_1 \pi_t + \beta_2 (y_t - y_t^*) + \varepsilon_t \] \hspace{1cm} (2)

where \(\beta_0 \) is a constant (in this specification, \(\beta_0 = i^* - \beta_1 \pi_t^* \))
Taylor rules

Estimated Taylor rule:

\[i_t = \beta_0 + \beta_1 \pi_t + \beta_2 (y_t - y^*_t) + \varepsilon_t \] \hspace{1cm} (2)

where \(\beta_0 \) is a constant (in this specification, \(\beta_0 = i^* - \beta_1 \pi^*_t \))

\[i_t = \beta_0 + \beta_1 E_{t+k}(\pi_t) + \beta_2 (E_{t+k}(y_t) - y^*_t) + \varepsilon_t \] \hspace{1cm} (3)
Taylor rules

Estimated Taylor rule:

\[i_t = \beta_0 + \beta_1 \pi_t + \beta_2 (y_t - y_t^*) + \varepsilon_t \quad (2) \]

where \(\beta_0 \) is a constant (in this specification, \(\beta_0 = i^* - \beta_1 \pi_t^* \))

\[i_t = \beta_0 + \beta_1 \mathbb{E}_{t+k}(\pi_t) + \beta_2 (\mathbb{E}_{t+k}(y_t) - y_t^*) + \varepsilon_t \quad (3) \]

Preference for smooth reaction:

\[i_t = \beta_0 + \rho i_{t-1} + \beta_1 \mathbb{E}_{t+k}(\pi_t) + \beta_2 (\mathbb{E}_{t+k}(y_t) - y_t^*) + \varepsilon_t \quad (4) \]
Taylor rules

Estimated Taylor rule:

\[i_t = \beta_0 + \beta_1 \pi_t + \beta_2 (y_t - y_t^*) + \varepsilon_t \] \hspace{1cm} (2)

where \(\beta_0 \) is a constant (in this specification, \(\beta_0 = i^* - \beta_1 \pi_t^* \))

\[i_t = \beta_0 + \beta_1 \mathbb{E}_{t+k}(\pi_t) + \beta_2 (\mathbb{E}_{t+k}(y_t) - y_t^*) + \varepsilon_t \] \hspace{1cm} (3)

Preference for smooth reaction:

\[i_t = \beta_0 + \rho i_{t-1} + \beta_1 \mathbb{E}_{t+k}(\pi_t) + \beta_2 (\mathbb{E}_{t+k}(y_t) - y_t^*) + \varepsilon_t \] \hspace{1cm} (4)

\[\Delta i_t = \beta_0 + (\rho - 1) i_{t-1} + \beta_1 \mathbb{E}_{t+k}(\pi_t) + \beta_2 (\mathbb{E}_{t+k}(y_t) - y_t^*) + \varepsilon_t \] \hspace{1cm} (5)
Central banks follow a wide array of indicators

- No *a priori* about explanatory variables:

\[
i_t = \beta_0 + \rho i_{t-1} + \beta x_t + \varepsilon_t \quad (6)
\]

\[
\Delta i_t = \beta_0 + (\rho - 1) i_{t-1} + \beta x_t + \varepsilon_t \quad (7)
\]

where \(x_t\) are the most relevant indicators the central bank can observe.
Central banks follow a wide array of indicators

- No a priori about explanatory variables:

\[i_t = \beta_0 + \rho i_{t-1} + \beta x_t + \epsilon_t \]
\[\Delta i_t = \beta_0 + (\rho - 1)i_{t-1} + \beta x_t + \epsilon_t \]

where \(x_t \) are the most relevant indicators the central bank can observe.

- Communication as a measure of the gap between current interest rate and the result of a Taylor rule:

\[c_t = \alpha i_{t-1} + \beta_0 + \beta x_t + \epsilon_t \]

where \(c_t \) is the index of communication stance at date \(t \).
Actual variation of interest rate is discrete

- If we exclude very rare large variation, we observe:

\[\Delta i_t \in \{-1/2, -1/4, 0, 1/4, 1/2\} \]
Actual variation of interest rate is discrete

- If we exclude very rare large variation, we observe:
 \[\Delta i_t \in \{-1/2, -1/4, 0, 1/4, 1/2\} \]

- Ordered logistic regression.
Actual variation of interest rate is discrete

- If we exclude very rare large variation, we observe:
 \[\Delta i_t \in \{-1/2, -1/4, 0, 1/4, 1/2\} \]

- Ordered logistic regression.
- Such an estimation is fragile if a given modality is rare.
Actual variation of interest rate is discrete

If we exclude very rare large variation, we observe:
\[\Delta i_t \in \{-1/2, -1/4, 0, 1/4, 1/2\} \]

- Ordered logistic regression.
- Such an estimation is fragile if a given modality is rare.
- Finally, we consider three modalities: upside, stable and downside.
Interest rates and key historical events

- Mini stock market crash
- Kuweit’s invasion, First Gulf War and US recession
- Bursting of the dot-com bubble
- Russian crisis and LTCM bankruptcy
- September 11, 2001 attacks
- Lehman Brothers bankruptcy
- U.S. subprime mortgage crisis

Jean-Charles Bricongne and Jean-Marc Fournier

How to forecast ECB and Fed interest rate

Federal funds target rate
ECB’s repurchase agreements’ rate
Codification of communication

- ECB: unidimensional codification of Rosa & Verga (2007) with 5 modalities: \{-2, -1, 0, 1, 2\}.
Codification of communication

- ECB: unidimensional codification of Rosa & Verga (2007) with 5 modalities: \{-2, -1, 0, 1, 2\}.
- Fed: unidimensional codification based on Lapp & Pearce (2000) codification with 3 modalities: \{-2, 0, 2\}.
Codification of communication

- ECB: unidimensional codification of Rosa & Verga (2007) with 5 modalities: \{-2, -1, 0, 1, 2\}.
- Fed: unidimensional codification based on Lapp & Pearce (2000) codification with 3 modalities: \{-2, 0, 2\}.
- Positive (respectively negative) value: tightening (respectively softening) communication.
Codification of communication

- ECB: unidimensional codification of Rosa & Verga (2007) with 5 modalities: \{-2, -1, 0, 1, 2\}.
- Fed: unidimensional codification based on Lapp & Pearce (2000) codification with 3 modalities: \{-2, 0, 2\}.
- Positive (respectively negative) value: tightening (respectively softening) communication.
- Codification rules to reduce influence of subjective appreciation.
Codification of communication

- ECB: unidimensional codification of Rosa & Verga (2007) with 5 modalities: \{-2, \ -1, 0, 1, 2\}.

- Fed: unidimensional codification based on Lapp & Pearce (2000) codification with 3 modalities: \{-2, 0, 2\}.

- Positive (respectively negative) value: tightening (respectively softening) communication.

- Codification rules to reduce influence of subjective appreciation.

- Authors’ codification after 1999 (Fed) or 2004 (ECB) with the same codification rules as before.
Variable selection

- We optimize an information criteria (AIC or BIC give similar results) to avoid successive tests.
Variable selection

- We optimize an information criteria (AIC or BIC give similar results) to avoid successive tests.
- We also consider Durbin (1970) test to check that residuals are not autocorrelated in models with lagged interest rates.
Data used in the computation

<table>
<thead>
<tr>
<th>ECB</th>
<th>Fed</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-month interbank spread</td>
<td>3-month interbank spread</td>
</tr>
<tr>
<td>Spread during Asian crisis</td>
<td>Spread during 1987 crisis</td>
</tr>
<tr>
<td>Public securities flows</td>
<td>Spread during Asian crisis</td>
</tr>
<tr>
<td>M3</td>
<td>M3</td>
</tr>
<tr>
<td>Underlying inflation</td>
<td>Underlying inflation</td>
</tr>
<tr>
<td>Headline inflation</td>
<td>Headline inflation</td>
</tr>
<tr>
<td>Stock markets index</td>
<td></td>
</tr>
<tr>
<td>European unemployment</td>
<td></td>
</tr>
<tr>
<td>Real estate prices</td>
<td>US IPI</td>
</tr>
<tr>
<td>US unemployment</td>
<td>US output gap</td>
</tr>
<tr>
<td>US capacity utilization rate</td>
<td>Real estate prices</td>
</tr>
<tr>
<td>US output</td>
<td>European unemployment</td>
</tr>
<tr>
<td>US inflation forecast</td>
<td>European capacity utilization rate</td>
</tr>
<tr>
<td></td>
<td>European output</td>
</tr>
<tr>
<td></td>
<td>European inflation forecast</td>
</tr>
</tbody>
</table>

Jean-Charles Bricongne and Jean-Marc Fournier

How to forecast ECB and Fed interest rate
Explanatory variables (1)

- Real time data when it is available.
Explanatory variables (1)

- Real time data when it is available.
- One-year (Levin, Wieland & Williams, 2003) inflation expectation (Clarida, Galí & Gertler, 1999) rather than headline or core inflation.
Explanatory variables (1)

- Real time data when it is available.
- One-year (Levin, Wieland & Williams, 2003) inflation expectation (Clarida, Galí & Gertler, 1999) rather than headline or core inflation.
- Using forward values of inflation with GMM or ML (Florens, Jondeau & Le Bihan, 2001) requires strong structural assumptions we avoid here.
Explanatory variables (1)

- Real time data when it is available.
- One-year (Levin, Wieland & Williams, 2003) inflation expectation (Clarida, Galí & Gertler, 1999) rather than headline or core inflation.
- Using forward values of inflation with GMM or ML (Florens, Jondeau & Le Bihan, 2001) requires strong structural assumptions we avoid here.
Explanatory variables (1)

- Real time data when it is available.
- One-year (Levin, Wieland & Williams, 2003) inflation expectation (Clarida, Galí & Gertler, 1999) rather than headline or core inflation.
- Using forward values of inflation with GMM or ML (Florens, Jondeau & Le Bihan, 2001) requires strong structural assumptions we avoid here.
- Real time potential output computed without forward values to reduce endogeneity issue (Orphanides, 2007).
Explanatory variables (1)

- Real time data when it is available.
- One-year (Levin, Wieland & Williams, 2003) inflation expectation (Clarida, Galí & Gertler, 1999) rather than headline or core inflation.
- Using forward values of inflation with GMM or ML (Florens, Jondeau & Le Bihan, 2001) requires strong structural assumptions we avoid here.
- Real time potential output computed without forward values to reduce endogeneity issue (Orphanides, 2007).
- GDP growth (Orphanides, 2003a), GDP forecast or output gap?
Unemployment may be regarded both as a goal and as a leading variable for inflation and output gap.
Explanatory variables (2)

- Unemployment may be regarded both as a goal and as a leading variable for inflation and output gap.
- Stock market is a leading indicator according to Estrella & Mishkin (1998) or Gautier (2006). Smoothed indicator: the last month average compared to the last six months average.
Explanatory variables (2)

- Unemployment may be regarded both as a goal and as a leading variable for inflation and output gap.
- Stock market is a leading indicator according to Estrella & Mishkin (1998) or Gautier (2006). Smoothed indicator: the last month average compared to the last six months average.
- Spreads during financial crisis.
Sampling period

- Orphanides (2003b): relevance of Taylor rules in the US since the early 20s.
Sampling period

- Orphanides (2003b): relevance of Taylor rules in the US since the early 20s.
- These rules do not serve as reliable guides for stable monetary policy over time.
Orphanides (2003b): relevance of Taylor rules in the US since the early 20s.

These rules do not serve as reliable guides for stable monetary policy over time.

For the Fed, we restrict our estimation from 1987, August (Greenspan’s nomination) to 2008, December (quantitative easing starts).
Sampling period

- Orphanides (2003b): relevance of Taylor rules in the US since the early 20s.
- These rules do not serve as reliable guides for stable monetary policy over time.
- For the Fed, we restrict our estimation from 1987, August (Greenspan’s nomination) to 2008, December (quantitative easing starts).
- For the ECB: estimation from 1999, January (first decision) to 2009, March.
Orphanides (2003b): relevance of Taylor rules in the US since the early 20s.

These rules do not serve as reliable guides for stable monetary policy over time.

For the Fed, we restrict our estimation from 1987, August (Greenspan’s nomination) to 2008, December (quantitative easing starts).

For the ECB: estimation from 1999, January (first decision) to 2009, March.

We consider as many observations as decision (a decision to keep the rate stable is a decision).
OLS estimations (ECB)

<table>
<thead>
<tr>
<th>dependent variable</th>
<th>i_t</th>
<th>i_{t-1}</th>
<th>i_{t-2}</th>
<th>i_{t-3}</th>
<th>i_{t-4}</th>
<th>i_{t-5}</th>
<th>i_{t-6}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>0.070</td>
<td>0.073</td>
<td>0.074</td>
<td>-2.723</td>
<td>-2.67</td>
<td>-4.42</td>
<td>-4.63</td>
</tr>
<tr>
<td></td>
<td>(1.64)</td>
<td>(1.68)</td>
<td>(1.64)</td>
<td>(-2.36)</td>
<td>(-2.36)</td>
<td>(-4.62)</td>
<td>(-4.87)</td>
</tr>
<tr>
<td>i_{t-1}</td>
<td>0.965</td>
<td>0.963</td>
<td>0.963</td>
<td>0.858</td>
<td>0.896</td>
<td>0.890</td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td>(74.0)</td>
<td>(71.3)</td>
<td>(68.4)</td>
<td>(31.4)</td>
<td>(30.0)</td>
<td>(29.2)</td>
<td>(30.0)</td>
</tr>
<tr>
<td>i_{t-2}</td>
<td>0.073</td>
<td>0.064</td>
<td>0.063</td>
<td>0.041</td>
<td>0.036</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(7.46)</td>
<td>(2.94)</td>
<td>(2.85)</td>
<td>(3.35)</td>
<td>(3.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>i_{t-3}</td>
<td>0.011</td>
<td>0.009</td>
<td>0.009</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.48)</td>
<td>(0.34)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inflation forecast</td>
<td>0.154</td>
<td>0.144</td>
<td>0.172</td>
<td>0.182</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.95)</td>
<td>(1.87)</td>
<td>(2.33)</td>
<td>(2.46)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(y_t - 3 - y_t^*)$</td>
<td>0.050</td>
<td>0.029</td>
<td>0.031</td>
<td>0.032</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3.18)</td>
<td>(1.70)</td>
<td>(1.80)</td>
<td>(1.87)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacity util. rate</td>
<td>0.034</td>
<td>0.033</td>
<td>0.054</td>
<td>0.057</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.30)</td>
<td>(2.26)</td>
<td>(4.30)</td>
<td>(4.56)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subprime crisis</td>
<td>-0.109</td>
<td>-0.113</td>
<td>-0.126</td>
<td>-0.126</td>
<td>-2.84</td>
<td>(-2.84)</td>
<td>(-3.24)</td>
</tr>
<tr>
<td>Fed funds' variation</td>
<td>0.072</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.51)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>156</th>
<th>155</th>
<th>154</th>
<th>156</th>
<th>156</th>
<th>156</th>
<th>156</th>
<th>156</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adj. R^2</td>
<td></td>
<td>0.98</td>
<td>0.98</td>
<td>0.98</td>
<td>0.98</td>
<td>0.98</td>
<td>0.98</td>
<td>0.98</td>
<td>0.98</td>
</tr>
<tr>
<td>RMSE</td>
<td></td>
<td>0.144</td>
<td>0.145</td>
<td>0.146</td>
<td>0.136</td>
<td>0.133</td>
<td>0.136</td>
<td>0.136</td>
<td>0.136</td>
</tr>
<tr>
<td>AIC</td>
<td>-605.2</td>
<td>-598.8</td>
<td>-592.2</td>
<td>-620.4</td>
<td>-626.6</td>
<td>-624.4</td>
<td>-624.1</td>
<td>-624.1</td>
<td>-624.1</td>
</tr>
<tr>
<td>Durbin</td>
<td>-0.19</td>
<td>-0.07</td>
<td>-0.11</td>
<td>-0.10</td>
<td>-1.30</td>
<td>-0.63</td>
<td>-0.31</td>
<td>-0.31</td>
<td>-0.31</td>
</tr>
</tbody>
</table>

Jean-Charles Bricongne and Jean-Marc Fournier
OLS estimations (Fed)

<table>
<thead>
<tr>
<th>dependent variable</th>
<th>Δi_t</th>
<th>Δi_t</th>
<th>Δi_t</th>
<th>Δi_t</th>
<th>Δi_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-0.048</td>
<td>-0.0062</td>
<td>-0.050</td>
<td>-0.051</td>
<td>-2.69</td>
</tr>
<tr>
<td></td>
<td>(-2.22)</td>
<td>(-0.12)</td>
<td>(-2.32)</td>
<td>(-2.35)</td>
<td>(-3.14)</td>
</tr>
<tr>
<td>i_{t-1}</td>
<td>-0.0089</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-0.89)</td>
<td>(2.77)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i_{t-2}</td>
<td></td>
<td></td>
<td>-0.33</td>
<td></td>
<td>(-5.10)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(-5.10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c_{t-1}</td>
<td>0.094</td>
<td>0.096</td>
<td>0.078</td>
<td>0.076</td>
<td>0.035</td>
</tr>
<tr>
<td></td>
<td>(4.69)</td>
<td>(4.75)</td>
<td>(3.34)</td>
<td>(3.16)</td>
<td>(1.68)</td>
</tr>
<tr>
<td>c_{t-2}</td>
<td>0.03</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.28)</td>
<td>(0.96)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c_{t-3}</td>
<td></td>
<td></td>
<td>0.01</td>
<td></td>
<td>(0.56)</td>
</tr>
</tbody>
</table>

- square inflation forecast: 0.027 (3.30)
- Smoothed Stock index: 0.99 (2.87)
- Square unemployment: -0.0084 (-2.50)
- Subprime crisis: -0.27 (-2.06)

<table>
<thead>
<tr>
<th>N</th>
<th>172</th>
<th>172</th>
<th>172</th>
<th>172</th>
<th>173</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adj. R^2</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.39</td>
</tr>
<tr>
<td>RMSE</td>
<td>0.279</td>
<td>0.280</td>
<td>0.279</td>
<td>0.280</td>
<td>0.236</td>
</tr>
</tbody>
</table>
IV regressions

<table>
<thead>
<tr>
<th>dependent variable</th>
<th>i_t OLS ECB</th>
<th>i_t IV ECB</th>
<th>i_t OLS Fed</th>
<th>i_t IV Fed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-6.19 (-5.85)</td>
<td>-5.27 (-4.75)</td>
<td>-3.165 (-3.93)</td>
<td>-2.41 (-2.95)</td>
</tr>
<tr>
<td>i_{t-1}</td>
<td>0.83 (27.3)</td>
<td>0.83 (19.8)</td>
<td>1.20 (15.73)</td>
<td>1.31 (18.72)</td>
</tr>
<tr>
<td>i_{t-2}</td>
<td></td>
<td></td>
<td>-0.34 (-5.18)</td>
<td>-0.43 (-6.62)</td>
</tr>
<tr>
<td>Inflation forecast</td>
<td>0.26 (3.61)</td>
<td>0.28 (2.78)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$y_{t-3} - y_{t-3}^*$</td>
<td>0.049 (2.88)</td>
<td>0.054 (2.26)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>capacity util. rate</td>
<td>0.075 (5.55)</td>
<td>0.064 (4.34)</td>
<td>0.047 (4.35)</td>
<td>0.036 (3.33)</td>
</tr>
<tr>
<td>square inflation forecast</td>
<td>0.032 (3.91)</td>
<td>0.027 (3.08)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smoothed Stock index</td>
<td>1.13 (3.38)</td>
<td>0.93 (2.16)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Square unemployment</td>
<td>-0.0109 (-3.57)</td>
<td>-0.00905 (-2.68)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>subprime crisis</td>
<td>-0.135 (-3.50)</td>
<td>-0.100 (-1.81)</td>
<td>-0.26 (2.04)</td>
<td>-0.38 (-2.97)</td>
</tr>
<tr>
<td>N</td>
<td>155</td>
<td>155</td>
<td>175</td>
<td>175</td>
</tr>
<tr>
<td>R^2</td>
<td>0.98</td>
<td>0.98</td>
<td>0.99</td>
<td>0.99</td>
</tr>
</tbody>
</table>
Synthetical indicator combining communication and interest rate

- Central banks use communication for fine tuning, an indicator of monetary policy should include this information.
Synthetical indicator combining communication and interest rate

- Central banks use communication for fine tuning, an indicator of monetary policy should include this information.
- A synthetical indicator can take the following form:

\[\Delta i_t + \delta c_t \]

\(c_t \) is equivalent to an interest rate variation

\[\delta c_t = \mathbb{E}(\Delta i_{t+1} | i_t, c_t) \]
Synthetical indicator combining communication and interest rate

- Central banks use communication for fine tuning, an indicator of monetary policy should include this information.
- A synthetical indicator can take the following form:

\[\Delta i_t + \delta c_t \]

where \(c_t \) is equivalent to an interest rate variation

\[\delta c_t = \mathbb{E}(\Delta i_{t+1}|i_t, c_t) \]

- We suggest for the ECB: \(\bar{i}_t = \Delta i_t + 0.05 \times c_{t-1} \)
- We suggest for the Fed: \(\bar{i}_t = \Delta i_t + 0.1 \times c_{t-1} \)
Decisions’ simulation

Jean-Charles Bricongne and Jean-Marc Fournier

How to forecast ECB and Fed interest rate
End-of-sample instability test (Andrew, 2003)
tested breakpoint: 2009, march.

- The ECB does not follow the same rule as before.
Conclusion

- Both ECB and Fed follow a Taylor rule, but these are different rules.
Conclusion

- Both ECB and Fed follow a Taylor rule, but these are different rules.
- Communication significantly improve the short-term forecast of interest rates.
Conclusion

- Both ECB and Fed follow a Taylor rule, but these are different rules.
- Communication significantly improve the short-term forecast of interest rates.
- Our main results are robust to specification choices.
Both ECB and Fed follow a Taylor rule, but these are different rules.

Communication significantly improve the short-term forecast of interest rates.

Our main results are robust to specification choices.

Central banks have had a specific reaction to the subprime crisis, beyond the reaction suggested by ordinary determinants.