Liquidity Constraints and Tax Policy in Small Open Economies

Markus Kirchner

University of Amsterdam and Tinbergen Institute

15th Annual Conference on Computing in Economics and Finance
University of Technology Sydney
15 July – 17 July, 2009
Aim of the Paper

- Study scope of stabilizing tax policy under occasionally binding financial constraints.
 - Small open economy with liquidity constraints on consumers.
 - Limit on aggregate current account deficit.
 - Volatile and procyclical consumption spending.

- Fiscal policy predictions altered by financial frictions.
 - How to manage adverse shocks?
 - Gains from cyclical income tax policy?
 - Do gains from easing financial constraints offset tax distortions?
Previous Work and Contribution

- García-Cicco/Pancrazi/Uribe (07), Arellano/Mendoza (02), Barro (79), Stokey/Lucas (83), Kim/Kim (05), Benigno et al. (09)
 - Business cycles in emerging market economies.
 - Poor performance of neoclassical growth model.
 - Debt constraints harmless, unless always binding.
 - Tax smoothing over time/states in frictionless environment.
 - Gains from cyclical taxes limited, current account as buffer.
 - Tax policy intervention (costless) to support real exchange rate.

- Contribution...
 - Occasionally binding constraint in medium-scale model.
 - Computational issues addressed by penalty function approach.
 - Improvement of model fit through liquidity constraint.
 - Policy intervention not costless per se, distortionary taxes.
Basic Model

- Small open economy RBC model (Mendoza, 91).
 - Capital, labor, total factor productivity shock.
 - Incomplete asset markets, i.e. risk-free debt and constant r.
 - Perfectly competitive firms.

- Two distortions...
 - Flat-rate tax on labor income.
 - Consumer liquidity constraint.
Consumer Liquidity Constraint

- Foreign investors monitor build-up of debt (Valderrama, 02).
 - Finance fraction ω of expenditures, investment, tax and interest payments out of factor income (cash-flow criterion).
 - Limit on current account deficit in equilibrium.

$$d_t - d_{t-1} \leq \frac{1 - \omega}{\omega} (w_t n_t + r^k_t k_{t-1}) \equiv \kappa y_t, \quad \kappa \in (0, \infty).$$

- Past crises at various levels of debt, CA deficit matters.

- Distorted optimality conditions (shadow price of constraint μ_t).

Debt: \[U_c(t) - \mu_t = \beta E_t [(1 + r) U_c(t + 1) - \mu_{t+1}], \]

Labor: \[-U_n(t) = U_c(t)(1 - \tau^n_t) w_t + \mu_t \kappa w_t, \]

Capital: \[U_c(t)[1 + \Phi'(t)] = \beta E_t \{ U_c(t + 1)[1 - \delta + r^k_{t+1} + \Phi'(t + 1)] + \mu_{t+1} \kappa r^k_{t+1} \}. \]
Fiscal Policy

- Focus on stabilization and substitution effects of tax policy, i.e. deviation from tax smoothing advice.
- Exogenous spending and debt policy thus irrelevant.
- Government budget constraint (compensated changes)
 \[\tau_t = \tau^n_t w_t n_t \]
 (lump-sum transfers) \((\text{tax revenues}) \).

- Simple state-contingent policy rule (Kim/Kim, 05)
 \[\tau^n_t = \bar{\tau}^n + \tau^a (a_t - \bar{a}) \]

 ▶ Choose parameter \(\tau^a \in [-1, 1] \) to maximize social welfare.
 ▶ Tax smoothing if \(\tau^a = 0 \).
Numerical Solution

- Second-order perturbation for computational feasibility.
- Penalty function in consumer’s objective.

\[P(d_t, n_t, d_{t-1}, k_{t-1}) = \frac{\eta_1}{\eta_0} \exp[-\eta_0(\kappa(w_t n_t + r_t^k k_{t-1}) - (d_t - d_{t-1}))] \]

\[-\eta_2(d_t - d_{t-1}) + \eta_3 n_t + \eta_4 k_{t-1} - \eta_5, \]

- Infinite penalty if liquidity constraint violated for \(\eta_0 \to \infty \), modified problem then equivalent to original one.
- Derivatives of \(P \) replace shadow prices \(\mu \) in FOCs.
- Terms \(\eta_i, i = 2, 3, 4, 5 \), for non-distorted steady state.

Application to Argentine data 93–07.

- Crisis 99–02: restrictions on current account borrowing.
- Calibrate deep structural parameters, vary limit \(\kappa \).
Impulse Responses Constant Tax, $\kappa \in \{\infty, 20\%, 5\\%\}$

Blue: $\kappa \to \infty$; green: $\kappa = 20\%$; purple: $\kappa = 5\%$.
Impact of Constraint

<table>
<thead>
<tr>
<th></th>
<th>Data</th>
<th>$\kappa \to \infty$</th>
<th>$\kappa = 20%$</th>
<th>$\kappa = 5%$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Std. deviations relative to output</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumption</td>
<td>1.16</td>
<td>0.20</td>
<td>0.30</td>
<td>0.42</td>
</tr>
<tr>
<td>Hours worked</td>
<td>0.40</td>
<td>0.76</td>
<td>0.69</td>
<td>0.61</td>
</tr>
<tr>
<td>Investment</td>
<td>2.78</td>
<td>0.91</td>
<td>2.16</td>
<td>2.86</td>
</tr>
<tr>
<td>Correlations with output</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumption</td>
<td>0.99</td>
<td>0.32</td>
<td>0.49</td>
<td>0.69</td>
</tr>
<tr>
<td>Hours worked</td>
<td>0.80</td>
<td>0.98</td>
<td>0.95</td>
<td>0.91</td>
</tr>
<tr>
<td>Investment</td>
<td>0.99</td>
<td>0.59</td>
<td>0.84</td>
<td>0.90</td>
</tr>
<tr>
<td>Current account / GDP</td>
<td>-0.64</td>
<td>0.92</td>
<td>0.83</td>
<td>0.76</td>
</tr>
<tr>
<td>Trade balance / GDP</td>
<td>-0.70</td>
<td>0.99</td>
<td>0.88</td>
<td>0.65</td>
</tr>
</tbody>
</table>
Impulse Responses State-Contingent Tax, $\kappa = 5\%$

Blue: $\tau^a = 0$; green: $\tau^a = 1$; purple: $\tau^a = -1$.
Welfare under alternative policies/borrowing limits.

\[V_0 \equiv E_0 \sum_{t=0}^{\infty} \beta^t U(c_t, 1 - n_t) \]

2nd-order approximation of \(V_0 \) at point where
- Endogenous state variables take steady state values.
- TFP shock one std. deviation below unconditional mean.

Liquidity constraints relevant due to adverse shock.

Should government cut taxes or keep them fixed?
Optimal Cyclical Policy (2)

Tax feedback coefficient τ^a

Conditional welfare V_0

Counter-cyclical taxes

Pro-cyclical taxes

Tax smoothing

$\kappa \to \infty$

$\kappa = 20\%$

$\kappa = 5\%$
Additional Results and Sensitivity

- Welfare gains in consumption units $\chi = \left(\frac{V_0^S}{V_0^C} \right)^{\frac{1}{\theta(1-\sigma)}} - 1$.
- Policy rule with lagged productivity $\tau^n_t = \bar{\tau}^n + \tau^a (a_{t-1} - \bar{a})$.
- Modified objective $W_O \equiv E_0 \sum_{t=0}^{\infty} \beta^t [U(\cdot) - P(\cdot)]$.
- Size of initial shock $|\varepsilon|/\sigma_\varepsilon \times 100$.
- Effectiveness of penalty function.
- Higher curvature η_0 of penalty function.
- Lower curvature η_0 of penalty function.
Lagged-Productivity Rule

\[W_0 = -22.994 \]

Tax feedback coefficient \(\tau^a \) vs. Conditional welfare \(W_0 \)

- \(\kappa = 5\% \)
- \(\kappa = 20\% \)
- \(\kappa \to \infty \)

Counter-cyclical taxes

Tax smoothing

Pro-cyclical taxes
Modified Objective

The graph illustrates the conditional welfare W_0 as a function of the tax feedback coefficient τ^a. Two cases are considered: $\kappa = 20\%$ and $\kappa = 5\%$. The graph shows how the welfare changes as the tax smoothing coefficient κ approaches infinity for both pro-cyclical and counter-cyclical taxes.

Key points:
- $\kappa \to \infty$
- $\kappa = 20\%$
- $\kappa = 5\%$
- Counter-cyclical taxes
- Tax smoothing
- Pro-cyclical taxes

Markus Kirchner (Univ. of Amsterdam)
Welfare Gains (% Permanent Consumption)

\[\chi(\text{percent}) \]

- Tax feedback coefficient \(\tau \)
- Pro-cyclical taxes
- Counter-cyclical taxes
- Tax smoothing
- Pro-cyclical taxes

\[\kappa = 5\% \]
\[\kappa = 20\% \]
\[\kappa \to \infty \]
Effectiveness of Penalty Function

- $\eta_0 = 10, \kappa \to \infty$
- $\eta_0 = 10, \kappa = 20\%$
- $\eta_0 = 10, \kappa = 5\%$
- $\eta_0 = 50, \kappa \to \infty$
- $\eta_0 = 50, \kappa = 20\%$
- $\eta_0 = 50, \kappa = 5\%$
- $\eta_0 = 100, \kappa \to \infty$
- $\eta_0 = 100, \kappa = 20\%$
- $\eta_0 = 100, \kappa = 5\%$
Badness of Shock

![Graph showing the relationship between Badness of shock in percent of σ_ϵ and Optimal feedback coefficient τ^a. The graph includes points labeled 'Benchmark', 'Normal times', and 'Crisis times'.]
Lower Curvature

Conditional welfare W_0

Tax feedback coefficient τ

Counter-cyclical taxes

Pro-cyclical taxes

Tax smoothing

$\kappa \rightarrow \infty$

$\kappa = 5\%$

$\kappa = 20\%$

Markus Kirchner (Univ. of Amsterdam) Liquidity Constraints and Tax Policy
Higher Curvature

High curvature model

\[\kappa \to \infty \]

\[\kappa = 20\% \]

\[\kappa = 5\% \]

Conditional welfare \(W_0 \)

Tax feedback coefficient \(\tau^a \)

Counter-cyclical taxes

Tax smoothing

Pro-cyclical taxes
Calibration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Benchmark</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ</td>
<td>Coefficient of relative risk aversion</td>
<td>2</td>
</tr>
<tr>
<td>θ</td>
<td>Consumption share parameter</td>
<td>0.26</td>
</tr>
<tr>
<td>α</td>
<td>Share of capital in output</td>
<td>0.32</td>
</tr>
<tr>
<td>r</td>
<td>World real interest rate</td>
<td>0.085</td>
</tr>
<tr>
<td>δ</td>
<td>Depreciation rate</td>
<td>0.125</td>
</tr>
<tr>
<td>ϕ</td>
<td>Adjustment cost parameter</td>
<td>0.42</td>
</tr>
<tr>
<td>σ_ε</td>
<td>Standard deviation of productivity innovations</td>
<td>0.021</td>
</tr>
<tr>
<td>ρ</td>
<td>Persistence of productivity shocks</td>
<td>0.18</td>
</tr>
<tr>
<td>\bar{d}/\bar{y}</td>
<td>Average debt-to-GDP ratio</td>
<td>0.235</td>
</tr>
<tr>
<td>τ^n</td>
<td>Average labor income tax</td>
<td>0.14</td>
</tr>
<tr>
<td>ω</td>
<td>Liquidity requirement</td>
<td>0.95</td>
</tr>
<tr>
<td>κ</td>
<td>Current account borrowing limit</td>
<td>0.05</td>
</tr>
<tr>
<td>η_0</td>
<td>Curvature of penalty function</td>
<td>50</td>
</tr>
<tr>
<td>η_1</td>
<td>Shape of penalty function</td>
<td>0.51</td>
</tr>
</tbody>
</table>
Summary

- Liquidity constraints improve fit of neoclassical model.
- Labor tax smoothing sub-optimal with financial frictions.
- Cyclical tax policy can generate stabilization gains.
 - Gains from cyclical tax policy outweigh tax distortions.
 - Cut taxes in low-productivity states and vice versa.
 - Raises employment, investment, and output in bad states, eases liquidity constraints, smoothens out consumption.