The Impact of Short-Selling Constraints on Financial Market Stability

Mikhail Anufriev Jan Tuinstra

CeNDEF, University of Amsterdam

15th International Conference on Computing in Economics and Finance
University of Technology, Sydney
16 July 2009
Definition

If a mean-variance investor, who demands

\[A_{i,t}(p) = \frac{E_i[t+p_{t+1}+y_{t+1}] - (1+r_f)p}{a_i V_i[t+p_{t+1}+y_{t+1}]} , \]

expects positive return then \(A_{i,t} > 0 \), i.e. investor has “long” position

expects negative return then \(A_{i,t} < 0 \), i.e. investor has “short” position
Price Correction

\[A_{i,t}(p) = \frac{E_{i,t}[p_{t+1} + y_{t+1}] - (1 + r_f)p}{a_i V_{i,t}[p_{t+1} + y_{t+1}]} \]

If price change is not expected

\[A_{i,t} > 0 \quad \text{iff} \quad \bar{y} > pr_f, \text{ i.e., when asset is undervalued} \]

\[A_{i,t} < 0 \quad \text{iff} \quad \bar{y} < pr_f, \text{ i.e., when asset is overvalued} \]

\[A_{i,t} = 0 \quad \text{iff} \quad \bar{y} = pr_f, \text{ i.e., when price is on the fundamental value} \]

Notice that if price responds to the change in demand/supply, then strategy “buy low, sell high” is self-reinforcing and leads to price correction.
Mechanism

1. investor’s broker “locates” stocks
 - stock is borrowed
 - stock is actually not borrowed
2. security is sold and delivered to the buyer
3. investor closes (“covers”) his position, buying shares back
4. investor return the shares

Note: The rebate may be credited in full or part to the short seller. Furthermore, any fee may be passed onto the short seller.
Costs and risks of the short-selling strategy

- profit is limited, but loss are unlimited
- borrowing a stock might be difficult in an absence of a market for it
- a borrowed stock can be recalled at any moment by the lender
- legal restrictions
- hostility from society
Short Selling

- increases liquidity and informational efficiency, and eliminates mis-pricing

Empirics: Jones and Lamont (JFE, 2002), Lamont and Thaler (JPE, 2003), Diether, Lee and Werner (RFS, 2008)

- increases volatility and may lead to market crashes

 ▶ Lecce, Lepone and Segara (WP, 2006), Setzu and Marchesi (WP, 2008)
This Paper

- Take a model with heterogeneous agents (Brock and Hommes, JEDC, 1998)
- Introduce the short-selling constraints $\bar{A} > 0$:
 \[
 A_{i,t}(p) = \max \left(-\bar{A}, \frac{E_{i,t}[p_{t+1}] + \bar{y} - (1 + r_f)p}{a\sigma^2} \right)
 \]
- Analyse stability of the fundamental steady-state and amplitude of oscillations
Dynamical model of financial market

1. **two assets**
 - **riskless**: risk-free interest rate r_f
 - **risky**: price p_t and i.i.d. dividend y_t with mean \bar{y}

 supply per investor \bar{S} fundamental price $p^f = (\bar{y} - a\sigma^2\bar{S})/r_f$

2. **mean-variance demand** for the risky asset

 $$z_{h,t} = E_{h,t} \left[p_{t+1} + y_{t+1} - (1 + r_f) p_t \right] / a \sigma^2$$

3. **heterogeneous expectations** of agents
 - **fundamentalists**: $E_{f,t}[p_{t+1}] = p_f$
 - **trend-followers**: $E_{c,t}[p_{t+1}] = p_f + g (p_{t-1} - p_f), \quad g \geq 1$
Dynamical model of financial market

4. **market clears**, price p_t is determined

\[p_t - p^f = \frac{1}{1 + r_f} \sum_{h=1}^{H} n_{h,t} E_{h,t}[p_{t+1} - p^f] = \frac{g}{1 + r_f} n_{2,t}(p_{t-1} - p^f) \]

5. **performances** are computed

\[A_{h,t-1} r_t = \left(\frac{E_{h,t-1}[x_t] - (1 + r_f)x_{t-1}}{a \sigma^2} + \bar{S} \right) \left(x_t - (1 + r_f)x_{t-1} + a\sigma^2\bar{S} \right) \]
Evolutionary updating of types

6. agents choose a new type for the next period

 ▶ past profits of two types

 \[U_{f,t} = \pi_{f,t} - C \quad U_{c,t} = \pi_{c,t} \]

 ▶ fraction of type \(h \) is computed as

 \[n_{h,t+1} = \frac{\exp[\beta U_{h,t}]}{Z_t}, \text{ with } Z_t = \sum_h \exp[\beta U_{h,t}] \]

 ▶ \(\beta \) is the intensity of choice

 ▶ \(\beta = 0: \) equal distribution \(n_{f,t+1} = n_{c,t+1} = 0.5 \)

 ▶ \(\beta = +\infty: \) all traders use the optimal strategy
Two regimes: stable and volatile

Zero Supply

Positive Supply
Two regimes: stable and volatile

- $\beta < \beta^*$: all agents have 0 assets
- $\beta^* < \beta < \beta^{**}$: “optimistic” type is long, “pessimistic” is short
- $\beta > \beta^{**}$: fluctuations
Two attractors: overvaluation and undervaluation
Short-Sell Constraints

Assume $\bar{A} > 0$ and impose a restriction:

$$A_i,t(p_t) = \max \left\{ -\bar{A}, \frac{E_{i,t}[p_{t+1}] + \bar{y} - (1 + r_f)p_t}{\alpha \sigma^2} \right\}.$$
Short-selling constraints: $\bar{A} = 1$

- primary bifurcation is not affected
- asymmetry between upper and lower attractors emerges
- the mispricing (amplitude of oscillations) increases
Adjusted demand and supply

Mikhail Anufriev, Jan Tuinstra
CeNDEF, University of Amsterdam

The Impact of Short-Selling Constraints on Financial Market Stability
Effect of short-selling constraints on upper trend
Short-selling constraints vs. No constraints

When the short sell constraints are binding:

- Level of price becomes higher
- Smaller liquidity
- Level of return is higher (smaller in absolute value)
- Capital gain
- Fundamentalists’ performance worsens w.r. to chartists’
- \((A_{f,t-1} - A_{c,t-1})r_t \)
- Fraction of fundamentalists is lower
Effect of short-selling constraints on crash

Mikhail Anufriev, Jan Tuinstra
CeNDEF, University of Amsterdam

The Impact of Short-Selling Constraints on Financial Market Stability
Short-sell constraints vs. No constraints

When the crash takes place under short-sell constraints:

- level of price is higher
- return is extremely low
- fractions of fundamentalists is much higher
Recall Lower Attractor vs. Upper Attractor

Mikhail Anufriev, Jan Tuinstra
CeNDEF, University of Amsterdam

The Impact of Short-Selling Constraints on Financial Market Stability
Lower Attractor without and with Crash

Mikhail Anufriev, Jan Tuinstra
CeNDEF, University of Amsterdam

The Impact of Short-Selling Constraints on Financial Market Stability
Summary

Under short-sell constraints

- primary bifurcation (of the fundamental steady-state) is not affected
 (local stability is a local property, and the restrictions at the fundamental steady-state are not binding)

- there is an asymmetry between upper and lower attractors
 (constrained investors are present there in different proportions)

- amplitude of oscillations on the upper attractor increases
 (investors who try to eliminate mis-pricing are short)
Dependence on \bar{A} for zero and positive supply
Fundamentalists vs. Contrarians

The Impact of Short-Selling Constraints on Financial Market Stability

Mikhail Anufriev, Jan Tuinstra
CeNDEF, University of Amsterdam
Fundamentalists vs. Sophisticated Trend Followers
The Impact of Short-Selling Constraints on Financial Market Stability

Mikhail Anufriev, Jan Tuinstra
CeNDEF, University of Amsterdam
Fundamentalists vs. Sophisticated Trend Followers

Mikhail Anufriev, Jan Tuinstra
CeNDEF, University of Amsterdam
The Impact of Short-Selling Constraints on Financial Market Stability
Conclusion

- Short-sell constraints affect the amplitude of cycle and drive price up
 - liquidity effect
 - “composition” of the ecology effect

- Short-sell constraints do not affect the local stability properties of the fundamental steady-state
Fundamentalists vs. Sophisticated Trend Followers

Mikhail Anufriev, Jan Tuinstra
CeNDEF, University of Amsterdam

The Impact of Short-Selling Constraints on Financial Market Stability
Fundamentalists vs. Contrarians

Mikhail Anufriev, Jan Tuinstra
CeNDEF, University of Amsterdam

The Impact of Short-Selling Constraints on Financial Market Stability