The Long-Term Consequences of Short-Term Incentives*

Alex Edmans
London Business School, CEPR, and ECGI

Vivian W. Fang
Carlson School of Management, University of Minnesota

Allen H. Huang
Hong Kong University of Science and Technology

Current draft: February 20, 2018

Abstract

This paper shows that short-term stock price concerns induce CEOs to take value-reducing actions. Vesting equity, our measure of short-term concerns, is positively associated with the probability of a firm repurchasing shares, the amount of shares repurchased, and the probability of the firm announcing a merger or acquisition (M&A). When vesting equity increases, stock returns are more positive in the two quarters surrounding both repurchases and M&A, but more negative in the two years following repurchases and four years following M&A. We show that a potential driver of the negative long-run returns to M&A is subsequent goodwill impairment. These results are inconsistent with CEOs buying underpriced stock or companies to maximize long-run shareholder value, but consistent with these actions being used to boost the short-term stock price and improve the conditions for CEO equity sales. Overall, by identifying actions that carry clear value implications, this paper documents the long-term negative consequences of short-term incentives.

JEL classifications: G12, G14, G32, G34, G35, M12, M52

Keywords: Repurchases, M&A, Short-Termism, CEO Incentives, Managerial Myopia

* We thank Heitor Almeida, Jack Bao, Ted Christensen, Mathias Kronlund, and conference/seminar participants at HKUST, LBS, dbAccess Global Quant Conference, Shanghai University of Finance and Economics, Tsinghua, UNC/Duke Fall Camp, and Stanford Conference on Theory and Inference in Capital Market Research for comments, Jennifer Estomba of Equilar for answering numerous questions about the data, and Xinyuan Shao for excellent research assistance. Edmans gratefully acknowledges financial support from European Research Council Starting Grant 638666 and London Business School’s Deloitte Institute of Innovation and Entrepreneurship.

Email: aedmans@london.edu, London Business School, Regent’s Park, London NW1 4SA.

Email: fangw@umn.edu, Carlson School of Management, University of Minnesota, Minneapolis, MN 55455.

Email: allen.huang@ust.hk, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
1. Introduction

The short-termism of executive incentives is a major problem alleged by academics, practitioners, and policymakers. A central concern in Bebchuk and Fried’s (2004) influential critique of executive pay is that CEOs are rewarded for short-term increases in the stock price, and so their main proposal for pay reform is to escrow the CEO’s equity until the long-term (Bebchuk and Fried (2010)). The UK Government’s White Paper on Corporate Governance Reform proposes increasing the minimum vesting period of equity from three years to five years.

The concern with short-term incentives is that they lead to the CEO taking myopic actions that boost the short-term stock price at the expense of long-run value. However, critics’ allegations are rarely backed up by systematic evidence. Gathering such evidence is particularly challenging for two main reasons. First, it is difficult to demonstrate a causal effect of short-run horizons since the CEO’s contract is endogenous. Second, even if one found that CEO incentives cause particular actions, it is difficult to show that such actions are myopic, i.e., erode long-term value.

Edmans, Fang, and Lewellen (2017, “EFL”) address the first challenge by introducing a new measure of CEO incentives: the amount of stock and options scheduled to vest in a given quarter. Vesting equity is highly correlated with same-quarter equity sales, and so leads to short-term stock price concerns – analogous to the relevance criterion for a valid instrument. It also depends on the magnitude and vesting schedule of equity grants made several years ago, and so is unlikely driven by current economic conditions – analogous to the exclusion restriction for a valid instrument. EFL find that vesting equity is significantly correlated with reductions in investment growth. They study investment since it is arguably a firm’s most important day-to-day decision. However, since one can only observe the level of investment and not its quality, it is difficult to assess the value implications

1 Vesting equity is also relevant because the vesting schedule is known to the CEO in advance, and so he is able to take actions to boost the short-term stock price in anticipation. In contrast, while unanticipated liquidity shocks might lead to equity sales, they are unlikely to affect corporate actions as they are unplanned.
of the investment cut and thus address the second challenge of investigating whether the cut is myopic.

If the scrapped investments would have been wasteful, the implication of short-term stock price concerns is very different – far from inducing myopia, they encourage the CEO to rein in empire-building or excess expenditure. While EFL conduct cross-sectional tests that are suggestive of the myopia interpretation, they are unable to use long-run stock returns to study the long-term consequences of investment cuts, for three reasons. First, any association is unlikely to be causal, because long-term stock returns are likely affected by many firm decisions other than investment. Second, there is no announcement date for investment cuts, as firms are only required to report investment at a quarterly frequency. Third, their sample period is relatively short (2006-11).

This paper studies two corporate actions whose long-run consequences can be more accurately measured, enabling us to assess the long-term consequences of short-term incentives. The first is stock repurchases. Like investment cuts, repurchases boost the short-term stock price (Ikenberry, Lakonishok, and Vermaelen (1995)) and so CEOs with short-term concerns might have incentives to undertake them. Also like investment cuts, repurchases can either be myopic (if financed by scrapping valuable projects or of overvalued stock) or efficient (if financed by free cash and of undervalued stock). Critically, unlike investment cuts, long-term stock returns can be used to diagnose the value implications of the repurchase even if they were not caused by it. Regardless of whether the long-term stock return is attributable to the repurchase, it measures the return that the firm obtains from the decision to repurchase stock.

The second corporate action is M&A, which has different advantages to repurchases. First, M&A has an announcement date, enabling us to cleanly calculate short- and long-term returns. Second, M&A is a much more significant event than an investment cut (or repurchase) – it is arguably the most transformative corporate decision that a firm can undertake – and so it is likely that at least a significant portion of long-run stock return is attributable to the M&A. Indeed, prior research (e.g.
Agrawal, Jaffe, and Mandelker (1992), Asquith (1983), Franks, Harris, and Titman (1991), and Rau and Vermaelen (1998) uses long-run stock returns to assess the value implications of M&A. Importantly, Agrawal, Jaffe, and Mandelker (1992) find a significantly negative relation between short- and long-term M&A returns, suggesting that there exist certain acquisitions that boost short-term performance at the expense of long-run value. As an example of how vesting equity might induce managers to undertake M&A that boosts the short-term stock price at the expense of long-run value, Bazaarvoice acquired PowerReviews in June 2012, which led to its stock price soaring above $20. Bazaarvoice’s officers and directors then sold $90 million of stock before the U.S. Department of Justice (“DoJ”) commenced an antitrust lawsuit in January 2013, since PowerReviews was Bazaarvoice’s closest competitor. The DoJ lawsuit forced Bazaarvoice to divest PowerReviews and led to its stock price falling below $7. In internal communications, Bazaarvoice executives stated that their motivation for the acquisition was “[e]limination of our primary competitor” to leave them with “literally, no other competitors.” Thus, they likely knew that a DoJ lawsuit would be probable and that the long-term returns would be negative, but the acquisition announcement inflated the stock price in the short-term.\(^2\)

We study the relation between vesting equity and both repurchases and M&A announcements over 2006-2015, a longer sample period than prior literature that allows us to study long-term returns. We find that a one standard deviation increase in vesting equity is associated with a 1.2% increase in a firm’s likelihood of conducting a share repurchase in a given quarter (corresponding to an increase in shares repurchased of $1.5m for an average firm), controlling for other determinants of repurchase activity and year-quarter fixed effects. This increase compares with the unconditional repurchase

\(^2\) Indeed, the market appears to have reacted positively to the strategic value of the merger without foreseeing any antitrust risk. All of the analyst reports after the acquisition announcement were strongly positive, with only Morgan Stanley mentioning risks but only concerning integration rather than antitrust. In the two conference calls after the announcement but before the DoJ investigation, the acquisition was extensively discussed but none of the participants raised an antitrust issue.
probability of 37.5%. When focusing on sizable repurchases, i.e. ones that exceed the sample mean, the increase is 1.04% compared with an unconditional probability of 20%. These results are not driven by repurchases that result from investment cuts – instead, repurchases and investment cuts are independent channels that a CEO pursues to increase the stock price. We find similar results for M&A: a one standard deviation increase in vesting equity is associated with a 0.6% increase in a firm’s likelihood of announcing an M&A in a given quarter, compared with the unconditional probability of 15.8%.

Our main results are the short- and long-term returns to repurchases and M&A. Again, we find a consistent picture across both corporate events: vesting equity increases short-term returns but reduces long-term returns, consistent with it inducing the CEO to take myopic actions with negative long-term consequences. A one standard deviation increase in vesting equity is associated with an annualized 0.61% higher return over the two quarters surrounding a repurchase, but a 1.11% (0.75%) lower return during the first (second) year after the repurchase. The results are similar for M&A although the negative association with long-run returns persists for longer. A one standard deviation increase in vesting equity is associated with an annualized 1.47% higher return over the two quarters surrounding an M&A announcement, but a 0.79%, 0.37% (insignificant), 0.73%, and 0.62% lower return in the first, second, and third, and fourth subsequent years, respectively. We show that one channel through which vesting equity leads to lower long-run M&A returns is that it induces CEOs to overpay for acquisitions, generating goodwill that is subsequently written down. Specifically, vesting equity is significantly associated with future M&A goodwill impairment.

This paper is related to three literatures. The first studies the adverse effects of short-term equity incentives. The theory models of Stein (1988, 1989), Bebchuk and Stole (1993), Bizjak, Brickley,

3 These results are consistent with Graham, Harvey, and Rajgopal (2005). Their survey finds that 78% of executives would sacrifice long-term value to meet earnings targets, although they do not study equity incentives.
and Coles (1993), Goldman and Slezak (2006), and Benmelech, Kandel, and Veronesi (2010), Edmans, Gabaix, Sadzik, and Sannikov (2012), and Marinovic and Varas (2017) predict that short-term equity incentives induce CEOs to boost current returns at the expense of long-run value, but causal evidence has not yet been established for this prediction. Recent empirical studies link CEO short-term incentives to several corporate outcomes, although not long-run value. In addition to EFL, Edmans et al. (2017) show that CEOs reallocate news toward months in which their equity vests and away from adjacent months. Ladika and Sautner (2016) find that the adoption of FAS 123R induced some firms to accelerate option vesting, which in turn led to a fall in investment, Jochem, Ladika, and Sautner (2017) show that accelerated vesting prompted CEO turnover, and Gopalan, Huang, and Maharjan (2016) document that vesting equity leads to CEO departures. Our main contribution is to identify outcome variables (repurchases and M&A) whose long-run effects can be estimated, allowing us to study the long-term effects of short-term equity incentives.

While our main contribution is to study the long-term effects of short-term incentives, rather than to explore the effect of vesting equity on different outcome variables to prior research, the outcome variables chosen are of independent interest as they relate the paper to two separate literatures. One studies the determinants and consequences of stock repurchases. Dittmar (2000) analyzes the effect of various characteristics on repurchases; we show that they are also determined by the CEO’s contract horizon. Fenn and Liang (2001), Kahle (2002), and Bens, Nagar, and Wong (2002) investigate the effect of CEO options, but acknowledge that option holdings are endogenous. Turning to the consequences, Ikenberry, Lakonishok, and Vermaelen (1995, 2000) find positive long-term returns to repurchases, suggesting that the average repurchase creates value. In contrast, Almeida, Fos, and Kronlund (2016) show that repurchases that are motivated by the desire to beat earnings per share (“EPS”) forecasts lead to reductions in employment, investment, and cash holdings (all of which could either be positive or negative for firm value). They show that such repurchases are not
associated with lower shareholder value or subsequent return on assets. Whether a firm is motivated to beat EPS forecasts depends ex post on whether earnings would be below the forecast without the repurchase. We identify a determinant of repurchase activity that is predictable ex ante, and link it to lower long-run firm value.

The third literature examines the determinants and consequences of M&A. Firms are more likely to engage in acquisitions if they have overconfident CEOs (Malmendier and Tate (2008)), young CEOs (Yim (2013)), less debt-based CEO compensation (Phan (2014)), and deviate from their target capital structure (Uysal (2013)). Turning to the consequences, the surveys of Jensen and Ruback (1983) and Andrade, Mitchell, and Stafford (2001) show that acquirers enjoy modestly positive short-term returns and significantly negative long-term returns. Short- and/or long-term returns have been shown to be increasing in recent acquirer performance (Morck, Shleifer, and Vishny (1990)) and corporate governance (Masulis, Wang, and Xie (2007)), and decreasing in CEO overconfidence (Malmendier and Tate (2008)) and CEO debt-based pay (Phan (2014)). We find that CEO short-term incentives affect both the propensity to acquire and the short- and long-run returns to acquisitions.

2. Data and Variable Measurement

2.1 Measuring short-term incentives

Our initial sample contains the entire 48,856 firm-CEO-years for which Equilar collects compensation data from 2006 to 2015. We closely follow the approach of EFL to calculate vesting equity, which is described in more detail in Appendix B. In short, this procedure involves three steps. First, we use annual data from Equilar to infer the number of shares and options that vest, grant-by-grant, in a particular year. Second, we allocate this vesting equity to a particular quarter, since quarterly is the highest frequency available for stock repurchases. This requires the vesting date of equity, which we infer for options using their expiry date and estimate for stock using EFL’s
algorithm. Third, we calculate the effective value of quarterly vesting equity. Doing so requires the
delta of each individual vesting option, which we are able to calculate since the first step yields grant-
by-grant vesting data.4 The resulting measure reflects the dollar change in vesting equity for a 100%
change in price, and we label it \textit{VESTING}. We estimate \textit{VESTING} for a sample of 150,914 firm-
CEO-quarters, representing 6,122 unique firms and 9,623 unique CEOs.

\subsection*{2.2 Measuring stock returns to corporate actions}

As discussed in the introduction, we link equity vesting to share repurchases and M&A, since we
can assess their long-term value implications using long-run stock returns.

We first measure a firm’s actual repurchases in a given quarter. Historically, this task has been
difficult for three reasons. First, firms were not required to disclose actual repurchases in their
periodic filings prior to 2004. Second, while Thomson Reuters’s Securities Data Company (“SDC”)
Platinum database collects repurchase announcements, these announcements are voluntary after a
repurchase program is first established (which could be several years prior). Even when firms do announce their repurchases, they are not obligated to follow through with these announcements – they
can subsequently choose to purchase more shares than announced, fewer shares than announced, or
even none at all (Stephens and Weisbach (1998)). Third, although researchers have used several
databases to approximate actual repurchases, such as SDC Platinum, the Compustat Annual files, and
CRSP, each database has its unique challenges and the resulting proxies are often noisy. Banyi, Dyl,
and Kahle (2008) find significant estimation errors in all of them.

We measure actual repurchases using Compustat Quarterly. This database takes advantage of the
Securities and Exchange Commission’s (SEC) enhanced disclosure requirements, which require
public companies to report the number of common shares repurchased (CSHOPQ in Compustat

4 Prior to 2006, disclosure requirements do not allow us to infer vesting options on a grant-by-grant level.
Quarterly) as well as the average price paid for the shares repurchased (PRCRAQ) in their quarterly filings for periods ending on or after March 15, 2004. We first define a binary variable REP to denote the existence of a share repurchase, which equals one if the firm reports either CSHOPQ or PRCRAQ in a given quarter, and zero otherwise.\(^5\) We also calculate $REP\%$, the value of the shares repurchased ($CSHOPQ \times PRCRAQ$) as a percentage of market capitalization at the end of the prior quarter.

We collect data for all M&A announced between January 2006 and May 2016 from SDC Platinum. We define MA, a binary variable that equals one if a firm announced an M&A as an acquirer in a quarter, and zero otherwise.

To gauge the long-run value implications of share repurchases and M&A, we calculate the buy-and-hold abnormal returns (BHAR) surrounding these events. We calculate BHAR also at the quarterly level, from quarter $q-1$ (the quarter prior to the event quarter q) to quarter $q+16$. We calculate a firm’s quarterly BHAR by first geometrically compounding its three-month raw return and then subtracting the geometrically-compounded return on one of three benchmarks – the CRSP value-weighted index, Fama-French 49 industry portfolio, and Daniel, Grinblatt, Titman, and Wermers (1997, DGTW) characteristic-based portfolio.

For M&A, 95% of announced deals (for which we know the eventual outcome) in our sample are eventually completed\(^6\), and so an M&A announcement has real consequences. We thus also calculate CAR, the cumulative market-adjusted abnormal returns to an M&A announcement, over $[-1, +1], [-2, +2], \text{and} [-3, +3]$ (with day 0 being the announcement date), to capture the initial market reaction. We cannot similarly calculate the returns to share repurchase announcements for several reasons.

\(^5\) In our sample, 1,002 (1.07%) firm-quarters report PRCRAQ but not CSHOPQ because Compustat Quarterly codes CSHOPQ as “Insignificant” if the number of reported shares outstanding is less than 500 shares. Our results are unaffected if we code REP as one only if the firm reports both CSHOPQ and PRCRAQ in a quarter.

\(^6\) In our sample, 72% of M&A deals are completed, 4% are withdrawn, and the remaining 24% are either intended or pending and so the outcome is unknown within our sample period.
First, firms are only required to make an announcement when they first establish a repurchase program; subsequent modifications to the program and actual repurchases do not need to be announced. Second, as Banyi, Dyl, and Kahle (2008) show, even for repurchases that are announced, data quality in SDC Platinum is poor. SDC’s data coverage is incomprehensive and systematically misses announced repurchases for low growth firms; in contrast, it double counts other repurchases. Third, even for repurchase announcements that are accurately recorded, they are often not followed through and so are less relevant events than M&A announcements. It may take several years for the repurchase to be executed; Stephens and Weisbach (1998) study the three-year period after an announcement and find that the average repurchase is not completed. Although we cannot calculate the returns to repurchase announcements, we can do a robustness test linking vesting equity to the frequency of repurchase announcements (rather than actual repurchases), since this frequency is less affected by the inaccurate recording of announcement dates. We do so in Section 5.

2.3 Controls

As standard controls, we include the CEO’s unvested equity holdings (UNVESTED), already-vested equity holdings (VESTED), salary (SALARY), and bonus (BONUS), to isolate the incentives provided by vesting equity rather than other components of a CEO’s contract. We also include the CEO’s age, tenure, and a new CEO indicator (AGE, TENURE, and NEWCEO). NEWCEO is

7 Until 2004, share repurchases are regulated by the Securities Exchange Act of 1934. The 1934 Act requires firms to obtain board approval for establishing repurchase programs, but does not require firms to announce either their establishment or the subsequent actual repurchases. NYSE and NASDAQ require listed companies to disclose when they first establish repurchase programs but not the subsequent actual repurchases. Although the new Exchange Act of 2004 requires firms to disclose the total number of shares actually repurchased, the average price paid per share, the number of shares purchased as part of a publicly announced program, and the maximum number of shares (or approximate dollar value) that may yet be repurchased under the program, it still does not require disclosure of the actual repurchase dates.

8 Repurchase announcements may also be less relevant if companies mechanically announce a repurchase at the start of each year (or when the last repurchase announcement expires) to give themselves the option to repurchase later.
measured for the year to which quarter q belongs, while *UNVESTED, VESTED, SALARY, BONUS, AGE*, and *TENURE* are measured for the year before.

We follow Huang and Thakor (2013) to construct additional controls used in the repurchase analysis. These controls include the natural logarithm of quarterly sales (*SALES*), market-to-book ratio (*MB*), the long-term debt-to-assets ratio (*BKLEV*), the operating and nonoperating return-on-assets ratio (*ROA* and *NROA*), and recent stock returns (*RET*). They measure firm size, leverage, accounting performance (which affects excess capital) and stock performance (which affects undervaluation) – factors previously shown to affect repurchase activity (e.g., Dittmar (2000), Jagannathan, Stephens, and Weisbach (2000), Guay and Harford (2000)). We measure these controls either over quarter $q-1$ or at the end of $q-1$.9

The additional controls used in the M&A analysis are mainly taken from Uysal (2011). We first calculate the trailing one-year average market leverage ratio (*MKLEV*) prior to quarter $q-1$, which, as Uysal (2011) shows, is the primary driver of a firm’s M&A decision. We also include *SALES, MB, ROA*, and *RET* to proxy for firm size and performance; *MALIQ*, the sum of M&A values in the firm’s industry over a year to measure industry M&A liquidity; and *HFI*, the Herfindahl index of the firm’s industry to measure product market concentration.

2.4 Sample and summary statistics

The sample that intersects vesting data with repurchase data and controls consists of 93,537 firm-CEO-quarters, and the sample that intersects vesting data with M&A data and controls consists of 94,362 firm-CEO-quarters. Table 1 reports summary statistics. Comparable to EFL, vesting equity has a mean of $786,877 in our sample. In a given quarter, 37.5% of firms buy back stock and 15.8%

9 Another motivation for repurchases, sometimes proposed, is to undo dilution from executive or employee option exercises. Although Bens, Nagar, Skinner, and Wong (2003) find correlations supportive of such a motive, Gao and Kronlund’s (2017) causal study finds no evidence.
announce at least one M&A. The average percentage of shares repurchased is 0.36% for all firms; this number becomes 0.95% if we limit the sample to firms that conducted repurchases.

3. Share Repurchase

3.1 Equity vesting and share repurchase

We assess whether CEOs with high vesting equity are more likely to engage in a share repurchase by running the following panel regression:

\[
REP_q (REP\%_q) = \alpha + \beta VESTING_q + \gamma \text{CONTROLS}_{1q-1} + \epsilon_q. \tag{1}
\]

The dependent variable is either the repurchase indicator \(REP\) or the repurchase amount \(REP\%\). The independent variables include \(VESTING\) measured for the CEO during quarter \(q\), as well as the controls discussed in Section 2.3. The sample is at the firm-CEO-quarter level, but we omit firm subscripts (and CEO subscripts if there are multiple CEOs for a firm in a quarter) for brevity. In all regressions henceforth, we cluster standard errors at the firm level.\(^{10}\)

Column (1) of Table 2 reports the regression results of estimating equation (1) with \(REP\) as the dependent variable using a probit model, which ensures that the predicted values of \(REP\) are bounded within \([0, 1]\) and allows for heteroscedasticity. We include year-quarter fixed effects to control for time variation in share repurchases induced by common shocks, such as macroeconomic conditions. Vesting equity is positively associated with a firm’s likelihood of conducting a share repurchase in a given quarter at the 1% level. A one standard deviation increase in \(VESTING\) is associated with a 1.2% increase in the firm’s likelihood of conducting repurchase in a quarter, compared with the unconditional probability of 37.5%. The economic significance increases if we focus on sizable repurchases. If we redefine \(REP\) to equal one only when the percentage of shares repurchased exceeds

\(^{10}\) The sample contains 93,537 firm-CEO-quarters, which correspond to 92,873 firm-quarters. Out of the 92,873 firm-quarters, only 652 (0.7%) have multiple CEOs. The results are robust to replacing firm fixed effects with CEO fixed effects and clustering standard errors at the CEO level.
the sample average of 0.36%, a one standard deviation increase in \textit{VESTING} is associated with a 1.04% increase in the firm’s likelihood of undertaking such a repurchase, compared with the unconditional probability of 20%.

Column (2) reestimates equation (1) using a linear probability model (LPM): the coefficient on \textit{REP} is similar in magnitude to that reported in column (1) and remains significantly positive at the 1% level. Compared to a probit model, an LPM assumes a non-normal and homoscedastic error term and potentially gives unbounded predicted values of \textit{REP}, but allows us to include firm fixed effects to control for firm-level heterogeneity in the propensity to repurchase. We do so in column (3) and find that the coefficient on \textit{REP} remains significantly positive at the 1% level, although becomes smaller in magnitude.

Columns (4)-(5) of Table 2 report the ordinary least squares (OLS) regression results of estimating equation (1) with \textit{REP}\% as the dependent variable. We include year-quarter fixed effects in column (4) and add firm fixed effects in column (5). \textit{VESTING} remains significantly positive at the 1% level. Based on the reported coefficient in column (4), a one standard deviation increase in \textit{VESTING} is associated with a 0.03% increase in the amount of shares repurchased as a fraction of market capitalization, compared with the sample mean of 0.36%. Based on the average market capitalization of $5bn, this translates into $1.54m per quarter, or $6.16m annualized. This is a larger magnitude than that reported by EFL, who find that a one standard deviation increase in \textit{VESTING} is associated with an annualized fall in investment of $1.8m. The magnitude is sizable but also plausible: too large a repurchase may prompt the board to step in and block it, if the repurchase is indeed myopic.

Turning to the controls, \textit{UNVESTED} is significantly positive in all five specifications and \textit{VESTED} is significantly negative in three. The coefficients on these two variables are difficult to interpret: the CEO’s voluntary holdings of vested equity are endogenous. His holdings of unvested equity are also endogenous since they depend on recently-granted equity; moreover, unvested equity
might mitigate or exacerbate myopia depending on whether it vests in the short-term or long-term. Repurchases are positively related to CEO salary and negatively related to CEO age. The coefficients on firm characteristics are generally consistent with prior literature – repurchases are more likely for firms that are large, low-value, less leveraged, more profitable, and recent stock market laggards.

The results in Table 2 do not control for investment, because EFL find that vesting equity leads to a reduction in investment. Thus, investment would be a “bad control,” as it is affected by the independent variable of interest. However, it remains important to check whether our results are robust to controlling for investment. If repurchases are financed by investment cuts, the positive correlation between \(VESTING \) and repurchases could be due to repurchases simply proxying for investment cuts. Table 3 thus adds contemporaneous R&D and capital expenditure (both scaled by total assets) as additional controls. While repurchases are indeed strongly negatively correlated with capital expenditure and weakly negatively correlated with R&D, the coefficients on \(VESTING \) are almost unchanged compared to those reported in Table 2.\(^{11}\) These results suggest that investment cuts and share repurchases are independent channels that a CEO pursues to increase stock price when his equity is vesting, rather than repurchases simply being financed by investment cuts.

3.2 **Equity vesting and BHAR surrounding share repurchase**

The prior section showed that vesting equity induces the CEO to increase stock repurchases. These repurchases could be myopic, if they are financed by cuts in value-enhancing investments not included in R&D or capital expenditure (such as organizational development, which is included in Selling, General, and Administrative expenses), or if they are of overvalued stock. Alternatively, they could be efficient, if financed by free cash that might otherwise be wasted, or if of undervalued stock. Under both hypotheses, short-term returns to repurchases should be positive – even if a firm’s

\(^{11}\) The results are also unaffected if we include changes in R&D and capital expenditure from the prior quarter (also scaled by total assets) as additional controls.
stock is overvalued, repurchases may still boost the short-term stock price by (falsely) signaling undervaluation to the market. However, the two hypotheses have opposite predictions for long-run returns: if repurchases are myopic (efficient), long-run returns should be negative (positive). As discussed in the introduction, this prediction does not require the assumption that future stock returns are caused by the repurchases.

We regress the BHAR surrounding repurchases on $VESTING$:

$$BHAR_t = \alpha + \beta VESTING_q + \epsilon_t.$$ \hspace{1cm} (2)

This regression approach follows Chen, Harford, and Li (2007). The dependent variable, BHAR, is calculated at the quarterly level from quarter $q-1$, the quarter prior to the event quarter, to quarter $q+16$, 16 quarters after. We require a firm to be traded at least two years following quarter q to be included in the sample, so that our sample size is relatively stable over time. We measure short-term returns by compounding BHAR over quarters $q-1$ and q for two reasons. First, stock returns in these two quarters will have the most direct effect on the CEO’s payoff from equity sales induced by equity vesting in quarter q. Second, expanding the window into quarter $q-1$ helps capture market reaction if an announcement was made ahead of the actual repurchase. We measure long-run returns by annualizing BHAR over quarters $q+1$ to $q+4$, $q+5$ to $q+8$, $q+9$ to $q+12$, and $q+13$ to $q+16$, respectively.\footnote{We convert quarterly BHARs over the four years following repurchases into four annual BHARs instead of eight semi-annual BHARs for the ease of presentation. The results are consistent if we instead run the long-run stock return analyses using semi-annual BHARs. Separately, the results are also consistent if we include the list of controls from equation (1) when estimating equation (2).} We continue to include year-quarter fixed effects and firm fixed effects.

Columns (1)-(5) of Table 4 report the OLS regression results of estimating equation (2) with BHAR calculated over the short-term window and four long-run windows, respectively. In Panel A, BHAR is calculated relative to the returns on the CRSP value-weighted index. The coefficient on $VESTING$ is significantly positive at the 5% level in column (1), which suggests that repurchases
conducted by CEOs with more vesting equity generate higher short-term returns. A one standard deviation increase in VESTING is associated with a 0.3% increase in BHAR over quarters $q-1$ to q (0.61% annualized). However, the pattern quickly reverses as the coefficients on VESTING turn significantly negative in columns (2) and (3), both at the 1% level. Firms with higher CEO vesting equity experience lower returns over the two years following repurchases. A one standard deviation increase in VESTING is associated with a 1.11% (0.75%) decrease in BHAR during the first (second) year following the repurchase.13 The coefficients become insignificant in the third and fourth years. This result is consistent with vesting equity inducing CEOs to undertake repurchases even if the stock is not undervalued, or even if they need to sacrifice long-run investments to do so.

Panels B and C repeat the analyses in Panel A, but instead calculate BHAR relative to the returns on the Fama-French 49 industry portfolios and the DGTW characteristic-based portfolios, respectively. We observe a similar pattern: VESTING is positively related to BHAR over the two quarters surrounding repurchases but negatively related to BHAR over the next two years. In unreported results, we calculate the long-term returns to a portfolio of firms that engage in repurchases when VESTING is high. Specifically, we consider a subsample of firms that repurchase in a given quarter and have VESTING in the top quintile, where the quintile cutoff is defined either time-serially within the firm across all quarters, cross-sectionally for all firms in that quarter, or across all firm-quarters (i.e., the entire sample). For each firm within the subsample, we calculate its raw BHAR above the DGTW benchmark portfolio and then de-mean the raw BHAR to remove differences in average returns such as those due to risk. Under all three quintile definitions, we find significantly negative returns over quarters $q+1$ to $q+4$ and $q+5$ to $q+8$; we also find significantly negative returns over $q+9$ to $q+12$ under the first two definitions.

13 The sample size in the long-run return analysis changes between columns depending on the availability of BHAR. We report economic significance for each column using its reported coefficient on VESTING and the standard deviation of VESTING in the sample used to estimate the regression.
Overall, the results in Table 4 are more consistent with vesting equity inducing CEOs to undertake myopic repurchases that boost short-term returns at the expense of long-term value, rather than efficient repurchases that increase firm value in both the short- and long-term.

4. Mergers and Acquisitions

4.1 Equity vesting and M&A announcement

This section links vesting equity to another corporate action, M&A. Our hypothesis is that, similar to repurchases, vesting equity could induce a CEO to undertake M&A that boosts the short-term stock price at the expense of long-term returns. Unlike repurchases, the vast majority (95%) of announced M&A are completed, so we test this hypothesis by linking vesting equity to M&A announcements.

We run the following panel regression:

$$MA_q = \alpha + \beta VESTING_q + \gamma \text{CONTROLS}_{2q-1} + \epsilon_q. \quad (3)$$

The dependent variable is the M&A indicator MA, and the independent variables include $VESTING$ and the controls discussed in Section 2.3. As in the repurchase analyses, we build the sample at the firm-CEO-quarter level.

Table 5 reports the regression results of estimating equation (3) using a probit model in column (1) and an LPM in columns (2)-(3). We include year-quarter fixed effects in all three columns, and firm fixed effects in the last column. Vesting equity is positively associated with a firm’s likelihood of announcing an M&A in a given quarter at the 5% level or lower. Based on the reported marginal effect in column (1), a one standard deviation increase in $VESTING$ is associated with a 0.6% increase in the firm’s likelihood of announcing an M&A in a quarter, compared with the unconditional probability of 15.8%.

When firm fixed effects are included in column (3), the controls for other CEO incentives and CEO characteristics are all insignificant except for unvested equity, which is significantly positive at
the 10% level, and a new CEO indicator, which is significantly negative also at 10%. Turning to firm controls, market-to-book and the firm’s accounting and stock performance are significantly positive. Market leverage is significantly negative, consistent with Uysal (2011).

Given the size of M&A, it is less likely that M&A (unlike repurchases) is financed by investment cuts. Nevertheless, we repeat the analysis in Table 5 controlling for contemporaneous R&D-to-assets and capital expenditures-to-assets. The results are reported in Table OA1 and remain robust.

4.2 Equity vesting and BHAR surrounding M&A announcement

We now evaluate the efficiency of vesting-induced M&A. As in the repurchase analyses, we regress the BHAR surrounding M&A announcements on $VESTING$:

$$BHAR_t = \alpha + \beta VESTING_q + \varepsilon_q.$$ (4)

Unlike repurchases, we do have the exact announcement dates for M&A so, for the calculation of BHAR, we redefine quarter q as the event quarter that starts with the M&A announcement date.\(^{14}\) Again, we require a firm to continue trading at least two years following quarter q and include year-quarter and firm fixed effects.

Table 6 reports the regression results of estimating equation (4) with BHAR calculated relative to the returns on the CRSP value-weighted index, Fama-French 49 industry portfolios, and DGTW characteristic-based portfolios in Panels A, B, and C, respectively. All three panels indicate a similar pattern to Table 4: $VESTING$ is positively related to short-term returns but negatively related to long-term returns. The one difference is that the negative relation with long-term returns persists for up to four years, consistent with Agrawal, Jaffe, and Mandelker’s (1992) finding of five-year negative long-term returns to M&A. Based on the coefficients reported in Panel A, a one standard deviation increase in $VESTING$ is associated with an annualized 1.47% increase in BHAR over quarter $q-1$ to q.

\(^{14}\) Some firms announce multiple M&A in a given quarter. To avoid artificially inflating sample size, for the long-run BHAR analysis and the announcement return analysis, we retain the deal with the largest absolute market reaction.
However, it is also associated with a 0.79%, 0.37% (insignificant), 0.73%, and 0.62% decrease in BHAR in the first, second, and third, and fourth years after the M&A, respectively. We find similar (unreported) results when calculating the long-term returns to a portfolio of firms that engage in M&A when \(VESTING \) is high.

4.3 Equity vesting and M&A announcement returns

While column (1) of Table 6 studies stock returns in the two quarters around the M&A announcement, Table 7 hones in on the \([-1, +1]\), \([-2, +2]\), and \([-3, +3]\) windows, to more precisely measure how M&A boosts the short-term stock price. We hypothesize a positive relation between \(VESTING \) and \(CAR \), i.e. vesting equity leads CEOs to announce deals that are perceived more positively by the market in the short-term. We run the following regression:

\[
CAR_t = \alpha + \beta VESTING_q + \gamma CONTROLS_{3,q-1} + \varepsilon_q.
\]

As before, we control for other components of CEO pay, age, tenure, and a new CEO indicator, as well as size and the market-to-book ratio due to size and value effects in stock returns. Consistent with our hypothesis, a CEO’s vesting equity is positively related to his firm’s M&A announcement returns. Based on the reported coefficients, a one standard deviation increase in \(VESTING \) is associated with a 0.15% increase in three-day \(CAR \), 0.19% increase in five-day \(CAR \), and 0.21% increase in seven-day \(CAR \). These results suggest that CEOs with high vesting equity undertake acquisitions that the market responds to positively in the short-term.

4.4 Equity vesting and M&A impairment loss

Section 4.2 documented that vesting equity is significantly negatively related to the long-run return to M&A deals. This section studies a potential channel through which the negative long-run returns transpire: M&A goodwill impairment. Goodwill is the difference between the purchase price of a target and the fair value of its net identifiable assets. Goodwill alone need not imply that the
acquirer overpaid for the target (and thus need not lead to a negative short-term reaction), since it may
be justified by the target’s non-identifiable assets such as human capital and customer loyalty –
indeed, Henning, Lewis, and Shaw (2000) find that the market values purchased goodwill. However,
if the acquirer subsequently revises downwards its estimate of the fair value of the target, a goodwill
impairment arises. This indicates that the acquirer likely overpaid and leads to a negative market
reaction (as found by Li, Shroff, Venkataraman, and Zhang (2011)).

We run the following regression:

\[
\text{IMPAIREDMA\%}_t = \alpha + \beta VESTING_q + \gamma \text{CONTROLS}_{2q-1} + \epsilon_q. \tag{5}
\]

\text{IMPAIREDMA\%} is the total amount of goodwill written down by the firm over window \(t \) scaled by
its total M&A deal size in quarter \(q \). We measure \(t \) over quarters \(q+1 \) to \(q+8 \), \(q+1 \) to \(q+12 \), and \(q+1 \)
to \(q+16 \), respectively, to measure the cumulative write-down of goodwill over a given period. To
correct for possible truncation bias, we limit the sample for this analysis to be between 2006 and
2011, thus allowing all sample firms to have up to four years to book goodwill impairment loss. We
use the same controls as in Table 5, where the dependent variable is the M&A indicator.

The results are reported in Table 8 and show that vesting equity is significantly positively related
to subsequent M&A impairment losses. A one standard deviation increase in \(VESTING \) is associated
with a 0.28, 0.78, and 0.93 percentage point increase in M&A impairment losses over the next two,
three, and four years, respectively. The average two-, three-, and four-year impairment losses in our
sample are 5.09\%, 11.69\%, and 16.76\%, respectively. The results suggest that one channel through
which vesting equity leads to lower long-term returns to M&A is that it induces CEOs to overpay for
acquisitions, generating goodwill that is subsequently written down.
5. Robustness Checks

This section describes the results of additional robustness tests. The first set of tests verifies robustness to alternative definitions of the dependent variables. Table OA2 studies the link between vesting equity and repurchase announcements. We do not use repurchase announcements in the core analyses primarily due to the data quality issues described in Section 2.2. In addition, a repurchase announcement is less meaningful than an M&A announcement since it may not eventually be completed. However, since repurchase announcements can increase the short-term stock price even if not eventually executed, a CEO with short-term concerns may have incentives to undertake them.15

The dependent variable is REPANN, an indicator for whether a firm announces a share repurchase program or actual share repurchase in a given quarter. Under both probit and LPM specifications, VESTING is significantly positive at the 1% level. For example, a one standard deviation increase in VESTING is associated with a 0.4% increase in a firm’s likelihood of announcing a repurchase in a given quarter, compared with the unconditional probability of 4.3%. The economic significance is markedly higher than in Table 2, but we put less weight on these results given the data issues.

Table OA3 studies robustness to alternative definitions of the M&A dependent variable. The first alternative is MANUM, the number of acquisitions announced in a given quarter (while Table 5 used an indicator variable). Columns (1) and (2), without and with firm fixed effects respectively, show that VESTING is significantly positive at the 5% level or lower. The second alternative is MASUM, the aggregate value of all acquisitions made in a given quarter, scaled by the acquirer’s market

15 Hypothetically, one might wish to link vesting equity to repurchase announcements that are eventually completed. Such a test is difficult to do due to several data issues. Although SDC Platinum compiles some repurchase announcements, it is not always clear whether a particular announcement is about the establishment of a new repurchase program, an amended program, or shares actually repurchased under existing programs. Therefore, even if we had the actual repurchase amounts from Compustat Quarterly, it is difficult to match them with SDC announcement data. SDC also does not provide comprehensive coverage of all firms that announce repurchase programs or that repurchase shares.
capitalization at the end of the previous quarter. Since over half of the deals in our sample do not have their size recorded in SDC, MASUM is potentially underestimated. Despite this, columns (3) and (4), without and with firm fixed effects respectively, show that VESTING is significantly positive at the 1% and 10% levels. Panels A and B of Table OA4 repeat the results of Tables 5 and 6 (respectively) only considering M&A announcements that are subsequently completed. Despite the smaller sample, the results are similar to including all M&A announcements.

Table OA5 conducts the return analyses of Table 4 (for repurchases) and Table 6 (for M&A) studying long-term CAR rather than BHAR. While BHAR geometrically compounds a stock’s raw return and then subtracts the geometrically-compounded benchmark return, the CAR first calculates a stock’s benchmark-adjusted monthly (or daily) returns and then arithmetically compounds them over several months. Conrad and Kaul (1993) argue that the BHAR method is more accurate for statistical reasons, hence using it in the main analyses, but here we verify robustness to CAR. The inferences are unchanged: both repurchases and M&A lead to significantly positive short-term returns, but negative long-term returns over two years for repurchases and four years for M&A.

The final set of tables verifies robustness to alternative ways of calculating VESTING. One concern with VESTING is that an option’s delta is increasing in the current stock price, which may be correlated with unobservable variables (such as growth opportunities) that also drive repurchase and M&A activity. While this might seem to work against our repurchase results (since higher growth opportunities would encourage investment rather than repurchases), it may explain our M&A results (since a higher stock price would make it easier to stock-finance M&A, or obtain board approval for M&A). Table OA6 recalculates VESTING assuming that all options are at-the-money. This still

16 We drop a firm-quarter if a firm announced at least one M&A but all deals have missing transaction size. If the firm announces at least one deal with non-missing transaction size, the firm-quarter is included, with missing transaction sizes set to zero. If the firm did not announce any acquisitions, MASUM is zero.
allows option deltas to vary with their maturity date and the volatility of the underlying stock, but removes their dependence on the strike price.

A related concern is that the current stock price may affect VESTING through triggering vesting. Our use of vesting equity is motivated by it being determined by equity grants made several years prior. While true for grants with time-based vesting, performance-based vesting is becoming more common. Bettis et al. (2010) find that 46% of performance-based vesting provisions are contingent on stock price thresholds, twice as frequent as the next category. Table OA7 recalculates VESTING including only time-based vesting grants, and removes post-2006 grants labeled “performance-based,” “contingent,” or “accelerated,” as well as post-2006 grants with unknown vesting schedules.

Table OA8 addresses the concern that an option’s delta depends on its time-to-maturity, but if CEOs exercise their options shortly after they vest, their effective horizons are shorter. We thus recalculate VESTING using options’ intrinsic values: we assign a delta of one to all in-the-money options and zero to all out-of-the-money options, because only the former would be exercised immediately upon vesting. In Tables OA6-OA8, the inferences regarding both the frequency of and returns to repurchases and M&A are unchanged.

6. Conclusion

This paper suggests that the impending vesting of equity leads CEOs to take myopic actions – actions that boost the short-term stock price at the expense of long-term value. An increase in vesting equity is associated with a greater frequency of stock repurchases and M&A announcements, and higher short-term returns and lower long-term returns surrounding these events. These results provide suggestive evidence of the negative causal effects of short-term CEO incentives on long-term firm value.
Note that, while we have provided evidence of the potential costs of short-term incentives, there may also be costs of lengthening vesting periods, as proposed by some academics and practitioners. For example, longer vesting periods may subject the CEO to risk outside his control and lead to him demanding a risk premium, or avoiding value-creating risky projects as shown theoretically by Brisley (2006). Relatedly, the model of Laux (2012) demonstrates that, if equity is forfeited upon dismissal, long vesting periods may encourage the CEO to take short-term actions that reduce the risk of being fired. Future research is needed to identify the costs of long-term incentives to provide further guidance on any reform.
References

Appendix A: Definition of variables

This appendix describes the calculation of variables used in the core analyses. Underlined variables refer to variable names within Compustat. \(t \) indexes the year to which quarter \(q \) belongs.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outcome variables of interest</td>
<td></td>
</tr>
<tr>
<td>(REP_q)</td>
<td>An indicator variable that equals one if a firm reports either the number of shares repurchased ((CSHOPQ)) or average repurchase price ((PRCRAQ)) in quarter (q), and zero otherwise.</td>
</tr>
<tr>
<td>(REP_{%q})</td>
<td>The value of shares repurchased in quarter (q) ((CSHOPQ \times PRCRAQ)) as a percentage of market capitalization ((CSHOQ \times PRCCQ)) at the end of quarter (q-1), and zero if no repurchase is conducted.</td>
</tr>
<tr>
<td>(MA_q)</td>
<td>An indicator variable that equals one if a firm announced an M&A in quarter (q), and zero otherwise.</td>
</tr>
<tr>
<td>(BHAR_{q-1})</td>
<td>A firm’s buy-and-hold abnormal return (BHAR) over quarter (q-1) and (q), with quarter (q) being either the fiscal quarter in which a share repurchase occurred or the one quarter that follows an M&A announcement (with the first day of the quarter being the M&A announcement date). For repurchase events, BHAR is calculated as the firm’s geometrically-compounded monthly raw returns minus a benchmark return geometrically compounded over the same period on: the CRSP value-weighted index, the Fama-French 49 industry portfolio (obtained from Kenneth French’s website), or the DGTW (1997) characteristic-based portfolio (obtained from Russell Wermers’ website). BHAR and benchmark returns for M&A events are calculated similarly as those for repurchase events, but use daily returns rather than monthly returns. (BHAR_{q+1}) and (BHAR_{q+5}) are analogously calculated as a given firm’s BHAR for quarter (q+1) to (q+4), (q+5) to (q+8), (q+9) to (q+12), and (q+13) to (q+16), respectively.</td>
</tr>
<tr>
<td>(CAR_q)</td>
<td>Cumulative market-adjusted abnormal return surrounding an M&A announcement made by a firm during quarter (q). It is calculated as the sum of the firm’s daily abnormal returns over ([-n, n]]. The daily abnormal return is the firm’s daily raw return minus the corresponding return on the CRSP value-weighted index, where day 0 is the announcement date and (n = 1, 2,) and 3 trading days.</td>
</tr>
<tr>
<td>(IMPAIREDMA_{%t})</td>
<td>Percentage of M&A impairment loss, calculated as the total absolute value of goodwill impairment loss booked by a firm ((GDWLIPQ)) over window (t) scaled by the sum of deal size for all M&A announced by the firm in quarter (q). The variable is set to zero if a firm announced at least one M&A in quarter (q) but booked zero impairment loss over (t). We measure (t) over quarter (q+1) to (q+4), (q+5) to (q+8), (q+9) to (q+12), and (q+13) to (q+16), respectively. The sum of deal size for M&A is obtained from SDC Platinum.</td>
</tr>
<tr>
<td>CEO’s stock price sensitivity of his vesting equity</td>
<td></td>
</tr>
<tr>
<td>(VESTING_q)</td>
<td>CEO’s stock price sensitivity of his vesting equity in quarter (q), calculated as the price sensitivity of vesting stock [number of vesting shares in quarter (q \times) stock price at the end of quarter (q-1)] plus the price sensitivity of vesting options [aggregated delta of vesting options in quarter (q \times) stock price at the end of quarter (q-1)]. Vesting options are assigned to quarter (q) based on expiry dates, and vesting stocks are assigned to quarter (q) based on grant dates. See EFL for details on the algorithm to estimate the vesting date of option and stock grants and details on the calculation of option delta.</td>
</tr>
<tr>
<td>Controls</td>
<td></td>
</tr>
<tr>
<td>(UNVESTED_{q-1})</td>
<td>CEO’s stock price sensitivity of his unvested equity at the end of year (t-1).</td>
</tr>
<tr>
<td>(VESTED_{q-1})</td>
<td>CEO’s stock price sensitivity of his already-vested equity at the end of year (t-1).</td>
</tr>
<tr>
<td>(SALARY_{q-1})</td>
<td>CEO’s salary in year (t-1).</td>
</tr>
</tbody>
</table>
$BONUS_{q-1}$ CEO’s cash bonus in year $t-1$.

AGE_{q-1} CEO’s age in year $t-1$.

$TENURE_{q-1}$ CEO’s tenure in year $t-1$.

$NEWCEO_q$ An indicator variable to denote new CEO in year t to which quarter q belongs.

$SALES_{q-1}$ Natural logarithm of total sales of quarter $q-1$.

MB_{q-1} The ratio of market value of assets to book value of assets, calculated as $[\text{market capitalization plus book value of total debt (DLTTQ+DLCQ)}]$ divided by total assets, both at the end of quarter $q-1$.

$BKLEV_{q-1}$ Long-term debt-to-asset ratio ($DLTTQ/AT$) of quarter $q-1$.

ROA_{q-1} Operating income ($OIBDPQ$) in quarter $q-1$ divided by the average of the total assets at the beginning and the end of quarter $q-1$.

$NROA_{q-1}$ Non-operating income ($NIPIQ$) in quarter $q-1$ by the average of the total assets at the beginning and the end of quarter $q-1$.

RET_{q-1} A firm’s BHAR relative to the CRSP value-weighted index over quarter $q-1$.

$R&D_q$ R&D ($XRDQ$) in quarter q divided by total assets at the end of quarter $q-1$, and set to zero if missing.

$CAPX_q$ Capital expenditure (inferred from $CAPXY$) in quarter q divided by total assets at the end of quarter $q-1$, and set to zero if missing.

$MKLEV_{q-1}$ Average quarterly market leverage over year $t-1$, calculated as book value of total debt divided by market value of total debt, where market value of total debt is the sum of book value of total debt, market capitalization, and preferred stock ($PSTKO$) minus deferred taxes and investment tax credit ($TDITCQ$).

$MALIQ_{q-1}$ Industry M&A liquidity is the total value of acquisitions made by all Compustat firms within the firm’s three-digit SIC group during the year to which quarter $q-1$ belongs, divided by the total assets of all firms in the same industry group and year.

HFI_{q-1} Herfindahl index, calculated as the sum of the squares of the market shares of the Compustat firms within the same three-digit SIC group for the year to which quarter $q-1$ belongs. Market share is the sales of the firm during the year divided by total sales in the firm’s industry group of that year.

MV_{q-1} Natural logarithm of market capitalization at the end of quarter $q-1$.

30
Appendix B: Calculation of Vesting Equity

This Appendix describes our calculation of vesting equity, which also follows EFL. First, we retrieve a CEO’s number of vesting shares in a given year using Equilar’s variable “Shares Acquired on Vesting of Stock,” which includes shares vested from restricted stock plans, restricted stock unit plans, and long-term incentive plans. We then infer a CEO’s number of vesting options in the year, grant-by-grant, from his unvested options at the beginning and the end of the year as well as his newly awarded options during the year. Option grants are sorted using their strike price and expiry date.

Second, we convert vesting equity from annual to quarterly basis by estimating the vesting date of equity. For options, this is simple. Options vest and expire on the anniversary of a grant (as assumed in the literature and as we verify in a random sample). For shares, there is no expiry date, and grant dates are only available for shares awarded after 2006 in Equilar, so we follow EFL’s algorithm to assign them to a particular quarter. In the first step, a CEO’s vesting shares in a given year are attributed to stock awards post 2006 for which we know the grant dates from Equilar. These include cliff-vesting grants, which vest at the end of the vesting period, and graded-vesting grants, which we assume to vest annually on a straight-line basis following Gopalan et al. (2014). In the second step, the remaining vesting shares are attributed to pre-2006 grants evenly across all the grant dates that we observe from post-2006 awards in Equilar.

For robustness, EFL propose two alternative algorithms to assign vesting shares. The first uses post-2006 cliff and graded stock awards without performance provisions (as opposed to all post-2006 cliff and graded stock awards) in the first step. This addresses the concern that, for performance-vesting equity, the grant date anniversaries may not be a good guide to the vesting date. The second algorithm similarly uses post-2006 non-performance-vesting cliff and graded stock awards in the first step, but the second step uses only grant dates for performance-vesting stock — since non-performance-vesting stock was used in the first step, so the remaining unmatched shares are unlikely from this pool. Our results are unchanged under either alternative algorithm.

17 Equilar classifies the vesting schedule into “cliff”, “graded”, “retirement”, and “N/A”. While “retirement” awards is less than 1% of the total, “N/A” comprises 10%.
Table 1: Summary statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>5%</th>
<th>Mean</th>
<th>Median</th>
<th>95%</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main outcome variables of interest</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REP_q</td>
<td>93,537</td>
<td>0</td>
<td>0.375</td>
<td>0</td>
<td>1</td>
<td>0.484</td>
</tr>
<tr>
<td>$REP%_q$</td>
<td>93,537</td>
<td>0</td>
<td>0.356</td>
<td>0</td>
<td>2.226</td>
<td>0.900</td>
</tr>
<tr>
<td>MA_q</td>
<td>94,362</td>
<td>0</td>
<td>0.158</td>
<td>0</td>
<td>1</td>
<td>0.365</td>
</tr>
<tr>
<td>$\text{IMPAIREDMA}_{q+8}%$</td>
<td>7,200</td>
<td>0</td>
<td>5.085</td>
<td>0</td>
<td>43.474</td>
<td>13.448</td>
</tr>
<tr>
<td>$\text{IMPAIREDMA}_{q+12}%$</td>
<td>7,200</td>
<td>0</td>
<td>11.692</td>
<td>0</td>
<td>90.543</td>
<td>28.594</td>
</tr>
<tr>
<td>$\text{IMPAIREDMA}_{q+16}%$</td>
<td>7,200</td>
<td>0</td>
<td>16.763</td>
<td>0</td>
<td>122.045</td>
<td>39.100</td>
</tr>
<tr>
<td>CEO incentives from vesting equity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VESTING_q</td>
<td>93,537</td>
<td>0</td>
<td>786,877</td>
<td>0</td>
<td>4,479,960</td>
<td>2,625,736</td>
</tr>
<tr>
<td>Controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNVESTED_{q-1}</td>
<td>93,537</td>
<td>0</td>
<td>4,960,488</td>
<td>1,044,682</td>
<td>24,200,443</td>
<td>10,147,570</td>
</tr>
<tr>
<td>VESTED_{q-1}</td>
<td>93,537</td>
<td>93,852</td>
<td>59,941,941</td>
<td>8,506,756</td>
<td>248,049,717</td>
<td>192,995,235</td>
</tr>
<tr>
<td>SALARY_{q-1}</td>
<td>93,537</td>
<td>173,698</td>
<td>614,490</td>
<td>534,449</td>
<td>1,250,000</td>
<td>352,698</td>
</tr>
<tr>
<td>BONUS_{q-1}</td>
<td>93,537</td>
<td>0</td>
<td>145,428</td>
<td>0</td>
<td>800,000</td>
<td>444,774</td>
</tr>
<tr>
<td>AGE_{q-1}</td>
<td>93,537</td>
<td>42</td>
<td>54</td>
<td>54</td>
<td>80</td>
<td>8</td>
</tr>
<tr>
<td>TENURE_{q-1}</td>
<td>93,537</td>
<td>1</td>
<td>8</td>
<td>6</td>
<td>24</td>
<td>7</td>
</tr>
<tr>
<td>NEWCEO_q</td>
<td>93,537</td>
<td>0</td>
<td>0.037</td>
<td>0</td>
<td>0</td>
<td>0.189</td>
</tr>
<tr>
<td>SALES_{q-1}</td>
<td>93,537</td>
<td>1.557</td>
<td>4.836</td>
<td>4.854</td>
<td>8.239</td>
<td>2.075</td>
</tr>
<tr>
<td>MB_{q-1}</td>
<td>93,537</td>
<td>0.204</td>
<td>1.493</td>
<td>1.084</td>
<td>4.28</td>
<td>1.384</td>
</tr>
<tr>
<td>BKLEV_{q-1}</td>
<td>93,537</td>
<td>0</td>
<td>0.174</td>
<td>0.113</td>
<td>0.575</td>
<td>0.196</td>
</tr>
<tr>
<td>ROA_{q-1}</td>
<td>93,537</td>
<td>-0.059</td>
<td>0.019</td>
<td>0.024</td>
<td>0.077</td>
<td>0.046</td>
</tr>
<tr>
<td>NROA_{q-1}</td>
<td>93,537</td>
<td>-0.003</td>
<td>0</td>
<td>0</td>
<td>0.008</td>
<td>0.005</td>
</tr>
<tr>
<td>RET_{q-1}</td>
<td>93,537</td>
<td>-0.313</td>
<td>0.007</td>
<td>-0.007</td>
<td>0.376</td>
<td>0.213</td>
</tr>
<tr>
<td>R&D_q</td>
<td>93,537</td>
<td>0</td>
<td>0.01</td>
<td>0</td>
<td>0.056</td>
<td>0.025</td>
</tr>
<tr>
<td>CAPX_q</td>
<td>93,537</td>
<td>0</td>
<td>0.011</td>
<td>0.005</td>
<td>0.042</td>
<td>0.016</td>
</tr>
<tr>
<td>MKLEV_{q-1}</td>
<td>94,362</td>
<td>0</td>
<td>0.244</td>
<td>0.176</td>
<td>0.727</td>
<td>0.240</td>
</tr>
<tr>
<td>MALIQ_{q-1}</td>
<td>94,362</td>
<td>0</td>
<td>0.013</td>
<td>0</td>
<td>0.087</td>
<td>0.028</td>
</tr>
<tr>
<td>HFI_{q-1}</td>
<td>94,362</td>
<td>0.010</td>
<td>0.042</td>
<td>0.026</td>
<td>0.129</td>
<td>0.040</td>
</tr>
</tbody>
</table>

Summary statistics of our main variables. For variables that are included in both analyses, we calculate and report their summary statistics with the sample used in the repurchase analysis. All continuous variables are winsorized at the 1% and 99% levels. Variable definitions are in Appendix A.
Table 2: Repurchase and vesting equity

<table>
<thead>
<tr>
<th>Dependent Variables</th>
<th>(1) Probit REP_q</th>
<th>(2) LPM REP_q</th>
<th>(3) OLS REP_q</th>
<th>(4) OLS $REP_{%q}$</th>
<th>(5) OLS $REP_{%q}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$VESTING_{q-1}$</td>
<td>12.263*** (2.681)</td>
<td>4.354*** (0.875)</td>
<td>2.752*** (0.529)</td>
<td>11.888*** (1.776)</td>
<td>6.759*** (1.458)</td>
</tr>
<tr>
<td>$UNVESTED_{q-1}$</td>
<td>12.392*** (1.700)</td>
<td>4.435*** (0.544)</td>
<td>2.047*** (0.431)</td>
<td>5.904*** (0.911)</td>
<td>3.997*** (0.996)</td>
</tr>
<tr>
<td>$VESTED_{q-1}$</td>
<td>-0.214*** (0.083)</td>
<td>-0.071** (0.029)</td>
<td>0.023 (0.033)</td>
<td>-0.072** (0.036)</td>
<td>-0.005 (0.085)</td>
</tr>
<tr>
<td>$SALARY_{q-1}$</td>
<td>0.383*** (0.060)</td>
<td>0.150*** (0.021)</td>
<td>0.053** (0.021)</td>
<td>0.208*** (0.028)</td>
<td>0.094** (0.046)</td>
</tr>
<tr>
<td>$BONUS_{q-1}$</td>
<td>-0.001 (0.029)</td>
<td>0.002 (0.010)</td>
<td>0.002 (0.007)</td>
<td>0.008 (0.018)</td>
<td>0.010 (0.018)</td>
</tr>
<tr>
<td>AGE_{q-1}</td>
<td>-0.458** (0.203)</td>
<td>-0.137** (0.067)</td>
<td>-0.251*** (0.095)</td>
<td>-0.418*** (0.087)</td>
<td>-0.397** (0.170)</td>
</tr>
<tr>
<td>$TENURE_{q-1}$</td>
<td>0.443* (0.231)</td>
<td>0.120 (0.079)</td>
<td>0.220** (0.097)</td>
<td>0.134 (0.100)</td>
<td>0.297* (0.164)</td>
</tr>
<tr>
<td>$NEWCEO_q$</td>
<td>0.010 (0.035)</td>
<td>0.009 (0.011)</td>
<td>-0.001 (0.009)</td>
<td>0.040** (0.020)</td>
<td>0.014 (0.019)</td>
</tr>
<tr>
<td>$SALES_{q-1}$</td>
<td>0.133*** (0.011)</td>
<td>0.044*** (0.004)</td>
<td>0.038*** (0.006)</td>
<td>0.034*** (0.005)</td>
<td>0.030*** (0.010)</td>
</tr>
<tr>
<td>MB_{q-1}</td>
<td>-0.023** (0.011)</td>
<td>0.001 (0.003)</td>
<td>-0.013*** (0.003)</td>
<td>-0.004 (0.004)</td>
<td>-0.044*** (0.006)</td>
</tr>
<tr>
<td>$BKLEV_{q-1}$</td>
<td>-0.723*** (0.078)</td>
<td>-0.234*** (0.024)</td>
<td>-0.152*** (0.027)</td>
<td>-0.344*** (0.033)</td>
<td>-0.431*** (0.052)</td>
</tr>
<tr>
<td>ROA_{q-1}</td>
<td>4.077*** (0.363)</td>
<td>0.864*** (0.091)</td>
<td>-0.088 (0.072)</td>
<td>1.483*** (0.138)</td>
<td>0.329** (0.140)</td>
</tr>
<tr>
<td>$NROA_{q-1}$</td>
<td>-1.219 (1.669)</td>
<td>-0.318 (0.450)</td>
<td>0.242 (0.232)</td>
<td>1.624** (0.715)</td>
<td>0.947** (0.463)</td>
</tr>
<tr>
<td>RET_{q-1}</td>
<td>-0.129*** (0.021)</td>
<td>-0.035*** (0.006)</td>
<td>-0.039*** (0.006)</td>
<td>-0.042*** (0.011)</td>
<td>-0.054*** (0.012)</td>
</tr>
<tr>
<td>Intercept</td>
<td>-1.045*** (0.113)</td>
<td>0.121*** (0.037)</td>
<td>0.293*** (0.054)</td>
<td>0.313*** (0.051)</td>
<td>0.503*** (0.096)</td>
</tr>
</tbody>
</table>

Year-Quarter Fixed Effects | Yes | Yes | Yes | Yes | Yes
Firm Fixed Effects | Yes | Yes | Yes | Yes | Yes
Observations | 93,537 | 93,537 | 93,537 | 93,537 | 93,537
Pseudo (Adjusted) R^2 | 0.113 | 0.137 | 0.507 | 0.0633 | 0.254

This table presents the regression results on the relation between share repurchases and the CEO’s vesting equity. Variable definitions are in Appendix A. Column (1) estimates a probit model, columns (2)-(3) estimate a linear probability model (LPM), and columns (4)-(5) estimate an ordinary least squares (OLS) model. $VESTING$, $UNVESTED$, $VESTED$, $SALARY$, and $BONUS$ are in billions. AGE and $TENURE$ are in hundreds. Standard errors are in parentheses, clustered by firm. In column (1), the marginal effect for $VESTING$ is displayed below the standard errors. *** (** *) indicate significance at the 1% (5%) (10%) two-tailed level, respectively.
Table 3: Repurchase and vesting equity, controlling for investment

<table>
<thead>
<tr>
<th>Dependent Variables</th>
<th>(1) Probit REP_q</th>
<th>(2) LPM REP_q</th>
<th>(3) LPM REP_q</th>
<th>(4) OLS REP_{q-1}</th>
<th>(5) OLS REP_{q-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$VESTING_{q-1}$</td>
<td>12.507***</td>
<td>4.375***</td>
<td>2.748***</td>
<td>11.787***</td>
<td>6.750***</td>
</tr>
<tr>
<td></td>
<td>(2.704)</td>
<td>(0.878)</td>
<td>(0.529)</td>
<td>(1.770)</td>
<td>(1.459)</td>
</tr>
<tr>
<td>$UNVESTED_{q-1}$</td>
<td>12.272***</td>
<td>4.396***</td>
<td>2.047***</td>
<td>5.828***</td>
<td>3.995***</td>
</tr>
<tr>
<td></td>
<td>(1.707)</td>
<td>(0.544)</td>
<td>(0.431)</td>
<td>(0.897)</td>
<td>(0.996)</td>
</tr>
<tr>
<td>$VESTED_{q-1}$</td>
<td>-0.206**</td>
<td>-0.068**</td>
<td>0.024</td>
<td>-0.062*</td>
<td>-0.005</td>
</tr>
<tr>
<td></td>
<td>(0.082)</td>
<td>(0.029)</td>
<td>(0.034)</td>
<td>(0.036)</td>
<td>(0.086)</td>
</tr>
<tr>
<td>$SALARY_{q-1}$</td>
<td>0.369***</td>
<td>0.146***</td>
<td>0.052**</td>
<td>0.191***</td>
<td>0.093**</td>
</tr>
<tr>
<td></td>
<td>(0.060)</td>
<td>(0.021)</td>
<td>(0.021)</td>
<td>(0.028)</td>
<td>(0.046)</td>
</tr>
<tr>
<td>$BONUS_{q-1}$</td>
<td>0.004</td>
<td>0.000</td>
<td>0.002</td>
<td>0.014</td>
<td>0.010</td>
</tr>
<tr>
<td></td>
<td>(0.029)</td>
<td>(0.010)</td>
<td>(0.007)</td>
<td>(0.018)</td>
<td>(0.018)</td>
</tr>
<tr>
<td>AGE_{q-1}</td>
<td>-0.500**</td>
<td>-0.143**</td>
<td>-0.252***</td>
<td>-0.405***</td>
<td>-0.399**</td>
</tr>
<tr>
<td></td>
<td>(0.202)</td>
<td>(0.066)</td>
<td>(0.095)</td>
<td>(0.087)</td>
<td>(0.170)</td>
</tr>
<tr>
<td>$TENURE_{q-1}$</td>
<td>0.440</td>
<td>0.118</td>
<td>0.221**</td>
<td>0.126</td>
<td>0.299*</td>
</tr>
<tr>
<td></td>
<td>(0.231)</td>
<td>(0.079)</td>
<td>(0.097)</td>
<td>(0.099)</td>
<td>(0.164)</td>
</tr>
<tr>
<td>$NEWCEO_q$</td>
<td>0.003</td>
<td>0.006</td>
<td>-0.001</td>
<td>0.035*</td>
<td>0.013</td>
</tr>
<tr>
<td></td>
<td>(0.035)</td>
<td>(0.011)</td>
<td>(0.009)</td>
<td>(0.020)</td>
<td>(0.019)</td>
</tr>
<tr>
<td>$SALES_{q-1}$</td>
<td>0.133***</td>
<td>0.045***</td>
<td>0.038***</td>
<td>0.036***</td>
<td>0.030***</td>
</tr>
<tr>
<td></td>
<td>(0.011)</td>
<td>(0.004)</td>
<td>(0.006)</td>
<td>(0.005)</td>
<td>(0.010)</td>
</tr>
<tr>
<td>MB_{q-1}</td>
<td>0.002</td>
<td>0.007**</td>
<td>-0.012**</td>
<td>-0.002</td>
<td>-0.043**</td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
<td>(0.004)</td>
<td>(0.003)</td>
<td>(0.004)</td>
<td>(0.006)</td>
</tr>
<tr>
<td>$BKLEV_{q-1}$</td>
<td>-0.701***</td>
<td>-0.224***</td>
<td>-0.154***</td>
<td>-0.299***</td>
<td>-0.435***</td>
</tr>
<tr>
<td></td>
<td>(0.077)</td>
<td>(0.024)</td>
<td>(0.027)</td>
<td>(0.033)</td>
<td>(0.052)</td>
</tr>
<tr>
<td>ROA_{q-1}</td>
<td>3.848***</td>
<td>0.809***</td>
<td>-0.091</td>
<td>1.860***</td>
<td>0.314*</td>
</tr>
<tr>
<td></td>
<td>(0.398)</td>
<td>(0.102)</td>
<td>(0.073)</td>
<td>(0.160)</td>
<td>(0.140)</td>
</tr>
<tr>
<td>$NROA_{q-1}$</td>
<td>0.130</td>
<td>0.016</td>
<td>0.250</td>
<td>2.112***</td>
<td>0.964*</td>
</tr>
<tr>
<td></td>
<td>(1.664)</td>
<td>(0.445)</td>
<td>(0.231)</td>
<td>(0.710)</td>
<td>(0.462)</td>
</tr>
<tr>
<td>RET_{q-1}</td>
<td>-0.120***</td>
<td>-0.033***</td>
<td>-0.038***</td>
<td>-0.048***</td>
<td>-0.053***</td>
</tr>
<tr>
<td></td>
<td>(0.021)</td>
<td>(0.006)</td>
<td>(0.006)</td>
<td>(0.011)</td>
<td>(0.012)</td>
</tr>
<tr>
<td>$R&D_{q}$</td>
<td>-2.866***</td>
<td>-0.507***</td>
<td>-0.085</td>
<td>0.646***</td>
<td>-0.251</td>
</tr>
<tr>
<td></td>
<td>(0.766)</td>
<td>(0.177)</td>
<td>(0.184)</td>
<td>(0.247)</td>
<td>(0.349)</td>
</tr>
<tr>
<td>$CAPX_{q}$</td>
<td>-4.878***</td>
<td>-1.433***</td>
<td>-0.245</td>
<td>-3.543***</td>
<td>-0.444</td>
</tr>
<tr>
<td></td>
<td>(0.957)</td>
<td>(0.289)</td>
<td>(0.171)</td>
<td>(0.325)</td>
<td>(0.362)</td>
</tr>
<tr>
<td>Intercept</td>
<td>-0.978***</td>
<td>0.138***</td>
<td>0.298***</td>
<td>0.325***</td>
<td>0.511***</td>
</tr>
<tr>
<td></td>
<td>(0.113)</td>
<td>(0.037)</td>
<td>(0.054)</td>
<td>(0.051)</td>
<td>(0.096)</td>
</tr>
<tr>
<td>Year-Qtr Fixed Effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Firm Fixed Effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>93,537</td>
<td>93,537</td>
<td>93,537</td>
<td>93,537</td>
<td>93,537</td>
</tr>
<tr>
<td>Pseudo (Adjusted) R^2</td>
<td>0.116</td>
<td>0.140</td>
<td>0.507</td>
<td>0.067</td>
<td>0.254</td>
</tr>
</tbody>
</table>

This table presents the regression results on the relation between share repurchases and the CEO’s vesting equity, controlling for contemporaneous investment. Variable definitions are in Appendix A. Column (1) estimates a probit model, columns (2)-(3) estimate an LPM, and columns (4)-(5) estimate an OLS model. $VESTING$, $UNVESTED$, $VESTED$, $SALARY$, and $BONUS$ are in billions. AGE and $TENURE$ are in hundreds. Standard errors are in parentheses, clustered by firm. In column (1), the marginal effect for $VESTING$ is displayed below the standard errors. *** (*) (†) indicates significance at the 1% (5%) (10%) two-tailed level, respectively.
Table 4: Stock returns surrounding repurchase and vesting equity

Panel A: BHAR over market portfolio

<table>
<thead>
<tr>
<th>Period</th>
<th>(1) [q-1, q]</th>
<th>(2) [q+1, q+4]</th>
<th>(3) [q+5, q+8]</th>
<th>(4) [q+9, q+12]</th>
<th>(5) [q+13, q+16]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Variables</td>
<td>BHAR over value-weighted market index return</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$VESTING_q$</td>
<td>0.897**</td>
<td>-3.288***</td>
<td>-2.214***</td>
<td>-0.401</td>
<td>-0.476</td>
</tr>
<tr>
<td></td>
<td>(0.422)</td>
<td>(0.553)</td>
<td>(0.586)</td>
<td>(0.558)</td>
<td>(0.484)</td>
</tr>
<tr>
<td>Intercept</td>
<td>0.008</td>
<td>-0.011</td>
<td>0.022*</td>
<td>0.181***</td>
<td>0.048***</td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td>(0.011)</td>
<td>(0.013)</td>
<td>(0.023)</td>
<td>(0.014)</td>
</tr>
<tr>
<td>Year-Qtr Fixed Effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Firm Fixed Effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>28,535</td>
<td>28,479</td>
<td>28,360</td>
<td>27,171</td>
<td>23,458</td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>0.088</td>
<td>0.201</td>
<td>0.219</td>
<td>0.241</td>
<td>0.237</td>
</tr>
</tbody>
</table>

Panel B: BHAR over industry portfolio

<table>
<thead>
<tr>
<th>Period</th>
<th>(1) [q-1, q]</th>
<th>(2) [q+1, q+4]</th>
<th>(3) [q+5, q+8]</th>
<th>(4) [q+9, q+12]</th>
<th>(5) [q+13, q+16]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Variables</td>
<td>BHAR over Fama-French 49 industry portfolio return</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$VESTING_q$</td>
<td>0.722*</td>
<td>-3.001***</td>
<td>-1.842***</td>
<td>-0.278</td>
<td>-0.722</td>
</tr>
<tr>
<td></td>
<td>(0.399)</td>
<td>(0.527)</td>
<td>(0.569)</td>
<td>(0.541)</td>
<td>(0.463)</td>
</tr>
<tr>
<td>Intercept</td>
<td>0.010</td>
<td>0.041***</td>
<td>0.042***</td>
<td>0.115***</td>
<td>0.066***</td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td>(0.011)</td>
<td>(0.013)</td>
<td>(0.024)</td>
<td>(0.013)</td>
</tr>
<tr>
<td>Year-Qtr Fixed Effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Firm Fixed Effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>28,129</td>
<td>28,073</td>
<td>27,954</td>
<td>26,786</td>
<td>23,136</td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>0.072</td>
<td>0.189</td>
<td>0.200</td>
<td>0.228</td>
<td>0.231</td>
</tr>
</tbody>
</table>

Panel C: BHAR over characteristic-based portfolio

<table>
<thead>
<tr>
<th>Period</th>
<th>(1) [q-1, q]</th>
<th>(2) [q+1, q+4]</th>
<th>(3) [q+5, q+8]</th>
<th>(4) [q+9, q+12]</th>
<th>(5) [q+13, q+16]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Variables</td>
<td>BHAR over DGTW characteristic-based portfolio return</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$VESTING_q$</td>
<td>0.925**</td>
<td>-2.884***</td>
<td>-1.913***</td>
<td>0.320</td>
<td>-0.038</td>
</tr>
<tr>
<td></td>
<td>(0.419)</td>
<td>(0.519)</td>
<td>(0.528)</td>
<td>(0.529)</td>
<td>(0.446)</td>
</tr>
<tr>
<td>Intercept</td>
<td>-0.006</td>
<td>0.066***</td>
<td>0.034***</td>
<td>-0.047**</td>
<td>-0.020</td>
</tr>
<tr>
<td></td>
<td>(0.008)</td>
<td>(0.011)</td>
<td>(0.012)</td>
<td>(0.022)</td>
<td>(0.013)</td>
</tr>
<tr>
<td>Year-Qtr Fixed Effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Firm Fixed Effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>25,543</td>
<td>25,525</td>
<td>25,232</td>
<td>24,118</td>
<td>20,717</td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>0.079</td>
<td>0.215</td>
<td>0.234</td>
<td>0.225</td>
<td>0.219</td>
</tr>
</tbody>
</table>

This table presents the OLS regression results on the relation between buy-and-hold abnormal return (BHAR) over the period from one quarter prior to the quarter in which a share repurchase occurred to four years after the repurchase quarter and the CEO’s vesting equity. BHAR is calculated over the value-weighted market index in Panel A, the Fama-French industry portfolio in Panel B, and the DGTW benchmark portfolio in Panel C. Variable definitions are in Appendix A. $VESTING$ is in billions. Standard errors are in parentheses, clustered by firm. *** (**) (*) indicates significance at the 1% (5%) (10%) two-tailed level, respectively.
Table 5: M&A announcement and vesting equity

<table>
<thead>
<tr>
<th>Dependent Variables</th>
<th>(1) Probit</th>
<th>(2) LPM</th>
<th>(3) LPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>VESTING<sub>q</sub></td>
<td>10.029***</td>
<td>3.426**</td>
<td>1.478**</td>
</tr>
<tr>
<td></td>
<td>(2.238)</td>
<td>(0.751)</td>
<td>(0.659)</td>
</tr>
<tr>
<td></td>
<td>[2.244***]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNVESTED<sub>q,t</sub></td>
<td>4.303***</td>
<td>1.872***</td>
<td>0.585*</td>
</tr>
<tr>
<td></td>
<td>(0.996)</td>
<td>(0.334)</td>
<td>(0.301)</td>
</tr>
<tr>
<td>VESTED<sub>q,t</sub></td>
<td>0.095*</td>
<td>0.041**</td>
<td>0.044*</td>
</tr>
<tr>
<td></td>
<td>(0.056)</td>
<td>(0.019)</td>
<td>(0.026)</td>
</tr>
<tr>
<td>SALARY<sub>q,t</sub></td>
<td>-0.042</td>
<td>-0.005</td>
<td>0.020</td>
</tr>
<tr>
<td></td>
<td>(0.041)</td>
<td>(0.011)</td>
<td>(0.013)</td>
</tr>
<tr>
<td>BONUS<sub>q,t</sub></td>
<td>0.053***</td>
<td>0.015***</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>(0.018)</td>
<td>(0.006)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>AGE<sub>q,t</sub></td>
<td>-0.919***</td>
<td>-0.178***</td>
<td>-0.036</td>
</tr>
<tr>
<td></td>
<td>(0.134)</td>
<td>(0.029)</td>
<td>(0.052)</td>
</tr>
<tr>
<td>TENURE<sub>q,t</sub></td>
<td>0.344**</td>
<td>0.053</td>
<td>-0.057</td>
</tr>
<tr>
<td></td>
<td>(0.150)</td>
<td>(0.033)</td>
<td>(0.055)</td>
</tr>
<tr>
<td>NEWCEO<sub>q</sub></td>
<td>-0.114***</td>
<td>-0.021***</td>
<td>-0.013*</td>
</tr>
<tr>
<td></td>
<td>(0.032)</td>
<td>(0.007)</td>
<td>(0.007)</td>
</tr>
<tr>
<td>MKLEV<sub>q,t</sub></td>
<td>-0.566***</td>
<td>-0.118***</td>
<td>-0.264***</td>
</tr>
<tr>
<td></td>
<td>(0.045)</td>
<td>(0.009)</td>
<td>(0.016)</td>
</tr>
<tr>
<td>SALES<sub>q,t</sub></td>
<td>0.151***</td>
<td>0.032***</td>
<td>-0.001</td>
</tr>
<tr>
<td></td>
<td>(0.008)</td>
<td>(0.002)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>MB<sub>q,t</sub></td>
<td>-0.022***</td>
<td>-0.003**</td>
<td>0.004**</td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td>(0.001)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>ROA<sub>q,t</sub></td>
<td>1.379***</td>
<td>0.103**</td>
<td>0.217***</td>
</tr>
<tr>
<td></td>
<td>(0.237)</td>
<td>(0.044)</td>
<td>(0.047)</td>
</tr>
<tr>
<td>RET<sub>q,t</sub></td>
<td>0.106***</td>
<td>0.020**</td>
<td>0.024**</td>
</tr>
<tr>
<td></td>
<td>(0.025)</td>
<td>(0.005)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>MALIQ<sub>q,t</sub></td>
<td>2.246***</td>
<td>0.517***</td>
<td>0.042</td>
</tr>
<tr>
<td></td>
<td>(0.312)</td>
<td>(0.074)</td>
<td>(0.076)</td>
</tr>
<tr>
<td>HERFINDAHL<sub>q,t</sub></td>
<td>0.505**</td>
<td>0.132**</td>
<td>-0.054</td>
</tr>
<tr>
<td></td>
<td>(0.237)</td>
<td>(0.058)</td>
<td>(0.106)</td>
</tr>
<tr>
<td>Intercept</td>
<td>-1.240***</td>
<td>0.103***</td>
<td>0.229***</td>
</tr>
<tr>
<td></td>
<td>(0.081)</td>
<td>(0.018)</td>
<td>(0.032)</td>
</tr>
</tbody>
</table>

Year-Qtr Fixed Effects	Yes	Yes	Yes
Firm Fixed Effects			
Observations	94,362	94,362	94,362
Pseudo (Adjusted) R²	0.069	0.059	0.159

This table presents the regression results on the relation between the likelihood of M&A announcement and the CEO’s vesting equity. Variable definitions are in Appendix A. Column (1) estimates a probit model and columns (2)-(3) estimate an LPM. VESTING, UNVESTED, VESTED, SALARY, and BONUS are in billions. AGE and TENURE are in hundreds. Standard errors are in parentheses, clustered by firm. In column (1), the marginal effect for VESTING is displayed below the standard errors. *** (** *) (*) indicates significance at the 1% (5%) (10%) two-tailed level, respectively.
Table 6: Stock returns surrounding M&A announcement and vesting equity

Panel A: BHAR over market portfolio

<table>
<thead>
<tr>
<th>Period</th>
<th>(1) [q-1, q]</th>
<th>(2) [q+1, q+4]</th>
<th>(3) [q+5, q+8]</th>
<th>(4) [q+9, q+12]</th>
<th>(5) [q+13, q+16]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Variables</td>
<td>BHAR over value-weighted market index return</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$VESTING_q$</td>
<td>2.056**</td>
<td>-2.222**</td>
<td>-1.033</td>
<td>-2.047**</td>
<td>-1.727**</td>
</tr>
<tr>
<td></td>
<td>(0.851)</td>
<td>(0.879)</td>
<td>(1.041)</td>
<td>(0.924)</td>
<td>(0.842)</td>
</tr>
<tr>
<td>Intercept</td>
<td>0.022</td>
<td>-0.039*</td>
<td>-0.043*</td>
<td>0.257**</td>
<td>0.080***</td>
</tr>
<tr>
<td></td>
<td>(0.016)</td>
<td>(0.021)</td>
<td>(0.023)</td>
<td>(0.034)</td>
<td>(0.020)</td>
</tr>
<tr>
<td>Year-Qtr Fixed Effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Firm Fixed Effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>12,202</td>
<td>12,203</td>
<td>12,167</td>
<td>12,117</td>
<td>11,662</td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>0.178</td>
<td>0.211</td>
<td>0.217</td>
<td>0.254</td>
<td>0.250</td>
</tr>
</tbody>
</table>

Panel B: BHAR over industry portfolio

<table>
<thead>
<tr>
<th>Period</th>
<th>(1) [q-1, q]</th>
<th>(2) [q+1, q+4]</th>
<th>(3) [q+5, q+8]</th>
<th>(4) [q+9, q+12]</th>
<th>(5) [q+13, q+16]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Variables</td>
<td>BHAR over Fama-French 49 industry portfolio return</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$VESTING_q$</td>
<td>1.744**</td>
<td>-1.410*</td>
<td>-1.670*</td>
<td>-2.015**</td>
<td>-1.516*</td>
</tr>
<tr>
<td></td>
<td>(0.780)</td>
<td>(0.827)</td>
<td>(0.971)</td>
<td>(0.904)</td>
<td>(0.804)</td>
</tr>
<tr>
<td>Intercept</td>
<td>0.022</td>
<td>-0.005</td>
<td>-0.032</td>
<td>0.206**</td>
<td>0.073***</td>
</tr>
<tr>
<td></td>
<td>(0.015)</td>
<td>(0.020)</td>
<td>(0.023)</td>
<td>(0.034)</td>
<td>(0.019)</td>
</tr>
<tr>
<td>Year-Qtr Fixed Effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Firm Fixed Effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>12,102</td>
<td>12,104</td>
<td>12,068</td>
<td>12,018</td>
<td>11,565</td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>0.165</td>
<td>0.195</td>
<td>0.205</td>
<td>0.244</td>
<td>0.243</td>
</tr>
</tbody>
</table>

Panel C: BHAR over characteristic-based portfolio

<table>
<thead>
<tr>
<th>Period</th>
<th>(1) [q-1, q]</th>
<th>(2) [q+1, q+4]</th>
<th>(3) [q+5, q+8]</th>
<th>(4) [q+9, q+12]</th>
<th>(5) [q+13, q+16]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Variables</td>
<td>BHAR over DGTW characteristic-based portfolio return</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$VESTING_q$</td>
<td>1.773*</td>
<td>-1.610*</td>
<td>-0.157</td>
<td>-0.666</td>
<td>-1.734**</td>
</tr>
<tr>
<td></td>
<td>(0.923)</td>
<td>(0.945)</td>
<td>(1.137)</td>
<td>(1.021)</td>
<td>(0.858)</td>
</tr>
<tr>
<td>Intercept</td>
<td>0.016</td>
<td>-0.002</td>
<td>-0.064**</td>
<td>0.032</td>
<td>0.029</td>
</tr>
<tr>
<td></td>
<td>(0.018)</td>
<td>(0.014)</td>
<td>(0.027)</td>
<td>(0.038)</td>
<td>(0.022)</td>
</tr>
<tr>
<td>Year-Qtr Fixed Effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Firm Fixed Effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>10,192</td>
<td>10,188</td>
<td>10,166</td>
<td>10,125</td>
<td>9,738</td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>0.169</td>
<td>0.217</td>
<td>0.238</td>
<td>0.229</td>
<td>0.234</td>
</tr>
</tbody>
</table>

This table presents the OLS regression results on the relation between BHAR over the period from one quarter prior to the M&A announcement date to four years after the announcement date and the CEO’s vesting equity. BHAR is calculated over the value-weighted market index in Panel A, the Fama-French industry portfolio in Panel B, and the DGTW benchmark portfolio in Panel C. Variable definitions are in Appendix A. $VESTING$ is in billions. Standard errors are in parentheses, clustered by firm. ** (**) (*) indicates significance at the 1% (5%) (10%) two-tailed level, respectively.
Table 7: M&A announcement returns and vesting equity

<table>
<thead>
<tr>
<th>Period Dependent Variables</th>
<th>(1) [-1, +1]</th>
<th>(2) [-2, +2]</th>
<th>(3) [-3, +3]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$VESTING_q$</td>
<td>0.432*</td>
<td>0.540*</td>
<td>0.595**</td>
</tr>
<tr>
<td></td>
<td>(0.242)</td>
<td>(0.276)</td>
<td>(0.297)</td>
</tr>
<tr>
<td>$UNVESTED_{q-1}$</td>
<td>0.026</td>
<td>0.057</td>
<td>0.093</td>
</tr>
<tr>
<td></td>
<td>(0.094)</td>
<td>(0.102)</td>
<td>(0.110)</td>
</tr>
<tr>
<td>$VESTED_{q-1}$</td>
<td>0.000</td>
<td>0.002</td>
<td>-0.005</td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td>(0.009)</td>
<td>(0.010)</td>
</tr>
<tr>
<td>$SALARY_{q-1}$</td>
<td>-0.006</td>
<td>-0.000</td>
<td>-0.002</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.006)</td>
<td>(0.006)</td>
</tr>
<tr>
<td>$BONUS_{q-1}$</td>
<td>0.001</td>
<td>0.002</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>AGE_{q-1}</td>
<td>0.018</td>
<td>0.031</td>
<td>0.032</td>
</tr>
<tr>
<td></td>
<td>(0.029)</td>
<td>(0.036)</td>
<td>(0.040)</td>
</tr>
<tr>
<td>$TENURE_{q-1}$</td>
<td>-0.014</td>
<td>-0.006</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>(0.030)</td>
<td>(0.037)</td>
<td>(0.043)</td>
</tr>
<tr>
<td>$NEWCEO_q$</td>
<td>-0.002</td>
<td>0.001</td>
<td>-0.000</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.005)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>MV_{q-1}</td>
<td>0.001</td>
<td>-0.003</td>
<td>-0.003</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.004)</td>
<td>(0.004)</td>
</tr>
<tr>
<td>MB_{q-1}</td>
<td>0.004**</td>
<td>0.007***</td>
<td>0.010***</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>Intercept</td>
<td>-0.012</td>
<td>0.002</td>
<td>-0.003</td>
</tr>
<tr>
<td></td>
<td>(0.026)</td>
<td>(0.030)</td>
<td>(0.034)</td>
</tr>
<tr>
<td>Year-Qtr Fixed Effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Firm Fixed Effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>12,624</td>
<td>12,624</td>
<td>12,624</td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>0.111</td>
<td>0.103</td>
<td>0.107</td>
</tr>
</tbody>
</table>

This table presents the OLS regression results on the relation between M&A announcement return and the CEO’s vesting equity. Variable definitions are in Appendix A. $VESTING$, $UNVESTED$, $VESTED$, $SALARY$, and $BONUS$ are in billions. AGE and $TENURE$ are in hundreds. Standard errors are in parentheses, clustered by firm. *** (**) (*) indicates significance at the 1% (5%) (10%) two-tailed level, respectively.
Table 8: M&A impairment loss and vesting equity

<table>
<thead>
<tr>
<th>Dependent Variables</th>
<th>(1) $[q+1, q+8]$</th>
<th>(2) $[q+1, q+12]$</th>
<th>(3) $[q+1, q+16]$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IMPAIREDMA%</td>
<td>IMPAIREDMA%</td>
<td>IMPAIREDMA%</td>
</tr>
<tr>
<td>$VESTING_q$</td>
<td>0.846*</td>
<td>2.379**</td>
<td>2.842*</td>
</tr>
<tr>
<td></td>
<td>(0.497)</td>
<td>(1.081)</td>
<td>(1.538)</td>
</tr>
<tr>
<td>$UNVESTED_{q-1}$</td>
<td>-0.234</td>
<td>-0.648</td>
<td>-0.938</td>
</tr>
<tr>
<td></td>
<td>(0.311)</td>
<td>(0.614)</td>
<td>(0.919)</td>
</tr>
<tr>
<td>$VESTED_{q-1}$</td>
<td>-0.028</td>
<td>-0.022</td>
<td>-0.007</td>
</tr>
<tr>
<td></td>
<td>(0.033)</td>
<td>(0.066)</td>
<td>(0.092)</td>
</tr>
<tr>
<td>$SALARY_{q-1}$</td>
<td>0.006</td>
<td>-0.014</td>
<td>-0.020</td>
</tr>
<tr>
<td></td>
<td>(0.032)</td>
<td>(0.081)</td>
<td>(0.105)</td>
</tr>
<tr>
<td>$BONUS_{q-1}$</td>
<td>0.002</td>
<td>0.001</td>
<td>0.012</td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td>(0.012)</td>
<td>(0.016)</td>
</tr>
<tr>
<td>AGE_{q-1}</td>
<td>0.055</td>
<td>0.339</td>
<td>0.518</td>
</tr>
<tr>
<td></td>
<td>(0.161)</td>
<td>(0.334)</td>
<td>(0.447)</td>
</tr>
<tr>
<td>$TENURE_{q-1}$</td>
<td>0.014</td>
<td>0.045</td>
<td>0.127</td>
</tr>
<tr>
<td></td>
<td>(0.192)</td>
<td>(0.357)</td>
<td>(0.450)</td>
</tr>
<tr>
<td>$NEWCEO_q$</td>
<td>0.011</td>
<td>0.015</td>
<td>0.011</td>
</tr>
<tr>
<td></td>
<td>(0.015)</td>
<td>(0.035)</td>
<td>(0.047)</td>
</tr>
<tr>
<td>$MKLEV_{q-1}$</td>
<td>-0.077</td>
<td>-0.231**</td>
<td>-0.261**</td>
</tr>
<tr>
<td></td>
<td>(0.053)</td>
<td>(0.103)</td>
<td>(0.128)</td>
</tr>
<tr>
<td>$SALES_{q-1}$</td>
<td>0.036**</td>
<td>0.082***</td>
<td>0.123***</td>
</tr>
<tr>
<td></td>
<td>(0.014)</td>
<td>(0.027)</td>
<td>(0.033)</td>
</tr>
<tr>
<td>MB_{q-1}</td>
<td>-0.012***</td>
<td>-0.023**</td>
<td>-0.031**</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.009)</td>
<td>(0.012)</td>
</tr>
<tr>
<td>ROA_{q-1}</td>
<td>-0.437***</td>
<td>-0.734**</td>
<td>-1.029**</td>
</tr>
<tr>
<td></td>
<td>(0.168)</td>
<td>(0.313)</td>
<td>(0.427)</td>
</tr>
<tr>
<td>RET_{q-1}</td>
<td>-0.015</td>
<td>-0.034</td>
<td>-0.016</td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
<td>(0.024)</td>
<td>(0.034)</td>
</tr>
<tr>
<td>$MALIQ_q$</td>
<td>0.106</td>
<td>0.424</td>
<td>0.473</td>
</tr>
<tr>
<td></td>
<td>(0.150)</td>
<td>(0.322)</td>
<td>(0.444)</td>
</tr>
<tr>
<td>$HERFINDAHL_{q-1}$</td>
<td>0.002</td>
<td>0.016</td>
<td>-0.069</td>
</tr>
<tr>
<td></td>
<td>(0.173)</td>
<td>(0.326)</td>
<td>(0.424)</td>
</tr>
<tr>
<td>Intercept</td>
<td>-0.156</td>
<td>-0.388*</td>
<td>-0.611**</td>
</tr>
<tr>
<td></td>
<td>(0.106)</td>
<td>(0.212)</td>
<td>(0.265)</td>
</tr>
</tbody>
</table>

Year-Qtr Fixed Effects: Yes, Yes, Yes
Firm Fixed Effects: Yes, Yes, Yes
Observations: 7,200, 7,200, 7,200
Adjusted R²: 0.420, 0.460, 0.457

This table presents the OLS regression results on the relation between the extent of M&A impairment loss and the CEO’s vesting equity. Variable definitions are in Appendix A. $VESTING$, $UNVESTED$, $VESTED$, $SALARY$, and $BONUS$ are in billions. AGE and $TENURE$ are in hundreds. Standard errors are in parentheses, clustered by firm. **·**· indicates significance at the 1% (5%) (10%) two-tailed level, respectively.
Table OA1: M&A announcement and vesting equity, controlling for investment

<table>
<thead>
<tr>
<th>Dependent Variables</th>
<th>(1) Probit MA_q</th>
<th>(2) LPM MA_q</th>
<th>(3) LPM MA_q</th>
</tr>
</thead>
<tbody>
<tr>
<td>$VESTING_{q-1}$</td>
<td>10.028*</td>
<td>3.416*</td>
<td>1.480*</td>
</tr>
<tr>
<td></td>
<td>(2.228)</td>
<td>(0.749)</td>
<td>(0.659)</td>
</tr>
<tr>
<td>$UNVESTED_{q-1}$</td>
<td>4.130*</td>
<td>1.837***</td>
<td>0.583*</td>
</tr>
<tr>
<td></td>
<td>(0.978)</td>
<td>(0.329)</td>
<td>(0.302)</td>
</tr>
<tr>
<td>$VESTED_{q-1}$</td>
<td>0.102*</td>
<td>0.044**</td>
<td>0.043</td>
</tr>
<tr>
<td></td>
<td>(0.054)</td>
<td>(0.019)</td>
<td>(0.026)</td>
</tr>
<tr>
<td>$SALARY_{q-1}$</td>
<td>-0.050</td>
<td>-0.007</td>
<td>0.020</td>
</tr>
<tr>
<td></td>
<td>(0.041)</td>
<td>(0.011)</td>
<td>(0.013)</td>
</tr>
<tr>
<td>$BONUS_{q-1}$</td>
<td>0.057***</td>
<td>0.016**</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>(0.018)</td>
<td>(0.006)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>AGE_{q-1}</td>
<td>-0.934***</td>
<td>-0.180**</td>
<td>-0.035</td>
</tr>
<tr>
<td></td>
<td>(0.133)</td>
<td>(0.029)</td>
<td>(0.052)</td>
</tr>
<tr>
<td>$TENURE_{q-1}$</td>
<td>0.336*</td>
<td>0.051</td>
<td>-0.057</td>
</tr>
<tr>
<td></td>
<td>(0.149)</td>
<td>(0.033)</td>
<td>(0.055)</td>
</tr>
<tr>
<td>$NEWCEO_{q-1}$</td>
<td>-0.118***</td>
<td>-0.022**</td>
<td>-0.013*</td>
</tr>
<tr>
<td></td>
<td>(0.032)</td>
<td>(0.007)</td>
<td>(0.007)</td>
</tr>
<tr>
<td>$MKLEV_{q-1}$</td>
<td>-0.584***</td>
<td>-0.121**</td>
<td>-0.260***</td>
</tr>
<tr>
<td></td>
<td>(0.046)</td>
<td>(0.009)</td>
<td>(0.016)</td>
</tr>
<tr>
<td>$SALES_{q-1}$</td>
<td>0.152***</td>
<td>0.032**</td>
<td>-0.001</td>
</tr>
<tr>
<td></td>
<td>(0.008)</td>
<td>(0.002)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>MB_{q-1}</td>
<td>-0.008</td>
<td>-0.000</td>
<td>0.004**</td>
</tr>
<tr>
<td></td>
<td>(0.008)</td>
<td>(0.002)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>ROA_{q-1}</td>
<td>1.339***</td>
<td>0.106**</td>
<td>0.206***</td>
</tr>
<tr>
<td></td>
<td>(0.261)</td>
<td>(0.048)</td>
<td>(0.049)</td>
</tr>
<tr>
<td>RET_{q-1}</td>
<td>0.111***</td>
<td>0.021***</td>
<td>0.024***</td>
</tr>
<tr>
<td></td>
<td>(0.026)</td>
<td>(0.005)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>$MALIQ_{q-1}$</td>
<td>2.036***</td>
<td>0.457***</td>
<td>0.043</td>
</tr>
<tr>
<td></td>
<td>(0.312)</td>
<td>(0.074)</td>
<td>(0.076)</td>
</tr>
<tr>
<td>$HERFINDAHL_{q-1}$</td>
<td>0.304</td>
<td>0.093</td>
<td>-0.054</td>
</tr>
<tr>
<td></td>
<td>(0.237)</td>
<td>(0.058)</td>
<td>(0.106)</td>
</tr>
<tr>
<td>$R&D_q$</td>
<td>-1.353***</td>
<td>-0.152*</td>
<td>-0.078</td>
</tr>
<tr>
<td></td>
<td>(0.487)</td>
<td>(0.084)</td>
<td>(0.112)</td>
</tr>
<tr>
<td>$CAPX_q$</td>
<td>-3.918***</td>
<td>-0.891***</td>
<td>0.275**</td>
</tr>
<tr>
<td></td>
<td>(0.588)</td>
<td>(0.116)</td>
<td>(0.129)</td>
</tr>
<tr>
<td>Intercept</td>
<td>-1.177***</td>
<td>0.116**</td>
<td>0.225***</td>
</tr>
<tr>
<td></td>
<td>(0.081)</td>
<td>(0.018)</td>
<td>(0.032)</td>
</tr>
</tbody>
</table>

This table presents the regression results on the relation between the likelihood of M&A announcement and the CEO’s vesting equity, controlling for contemporaneous investment. Variable definitions are in Appendix A. Column (1) estimates a probit model and columns (2)-(3) estimate a linear probability model (LPM). $VESTING$, $UNVESTED$, $VESTED$, $SALARY$, and $BONUS$ are in billions. AGE and $TENURE$ are in hundreds. Standard errors are in parentheses, clustered by firm. In column (1), the marginal effect for $VESTING$ is displayed below the standard errors. *** (**) (*) indicates significance at the 1% (5%) (10%) two-tailed level, respectively.
Table OA2: Repurchase announcement and vesting equity

<table>
<thead>
<tr>
<th>Dependent Variables</th>
<th>(1) Probit</th>
<th>(2) (REPANN_q)</th>
<th>(3) LPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>(VESTING_{q-1})</td>
<td>16.353***</td>
<td>2.181***</td>
<td>1.625***</td>
</tr>
<tr>
<td></td>
<td>(3.012)</td>
<td>(0.449)</td>
<td>(0.466)</td>
</tr>
<tr>
<td>([1.342***])</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(UNVESTED_{q-1})</td>
<td>3.037***</td>
<td>0.380***</td>
<td>0.175</td>
</tr>
<tr>
<td></td>
<td>(0.994)</td>
<td>(0.124)</td>
<td>(0.149)</td>
</tr>
<tr>
<td>(VESTED_{q-1})</td>
<td>-0.098*</td>
<td>-0.009*</td>
<td>-0.000</td>
</tr>
<tr>
<td></td>
<td>(0.055)</td>
<td>(0.005)</td>
<td>(0.011)</td>
</tr>
<tr>
<td>(SALARY_{q-1})</td>
<td>0.098**</td>
<td>0.011***</td>
<td>0.010*</td>
</tr>
<tr>
<td></td>
<td>(0.040)</td>
<td>(0.004)</td>
<td>(0.006)</td>
</tr>
<tr>
<td>(BONUS_{q-1})</td>
<td>0.006</td>
<td>0.001</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>(0.020)</td>
<td>(0.002)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>(AGE_{q-1})</td>
<td>-0.439***</td>
<td>-0.033***</td>
<td>-0.056**</td>
</tr>
<tr>
<td></td>
<td>(0.152)</td>
<td>(0.013)</td>
<td>(0.027)</td>
</tr>
<tr>
<td>(TENURE_{q-1})</td>
<td>0.168</td>
<td>0.009</td>
<td>0.013</td>
</tr>
<tr>
<td></td>
<td>(0.165)</td>
<td>(0.014)</td>
<td>(0.028)</td>
</tr>
<tr>
<td>(NEWCEO_{q})</td>
<td>0.035</td>
<td>0.004</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>(0.041)</td>
<td>(0.004)</td>
<td>(0.004)</td>
</tr>
<tr>
<td>(SALES_{q-1})</td>
<td>0.028***</td>
<td>0.002***</td>
<td>0.005***</td>
</tr>
<tr>
<td></td>
<td>(0.009)</td>
<td>(0.001)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>(MB_{q-1})</td>
<td>-0.052***</td>
<td>-0.002***</td>
<td>-0.004***</td>
</tr>
<tr>
<td></td>
<td>(0.009)</td>
<td>(0.001)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>(BKLEV_{q-1})</td>
<td>-0.578***</td>
<td>-0.044***</td>
<td>-0.064***</td>
</tr>
<tr>
<td></td>
<td>(0.058)</td>
<td>(0.004)</td>
<td>(0.009)</td>
</tr>
<tr>
<td>(ROA_{q-1})</td>
<td>3.662***</td>
<td>0.179***</td>
<td>0.055**</td>
</tr>
<tr>
<td></td>
<td>(0.289)</td>
<td>(0.018)</td>
<td>(0.027)</td>
</tr>
<tr>
<td>(NROA_{q-1})</td>
<td>0.339</td>
<td>-0.015</td>
<td>0.122</td>
</tr>
<tr>
<td></td>
<td>(1.504)</td>
<td>(0.100)</td>
<td>(0.097)</td>
</tr>
<tr>
<td>(RET_{q-1})</td>
<td>-0.090**</td>
<td>-0.006**</td>
<td>-0.007**</td>
</tr>
<tr>
<td></td>
<td>(0.038)</td>
<td>(0.003)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>Intercept</td>
<td>-1.602***</td>
<td>0.052***</td>
<td>0.062***</td>
</tr>
<tr>
<td></td>
<td>(0.090)</td>
<td>(0.008)</td>
<td>(0.015)</td>
</tr>
</tbody>
</table>

Year-Qtr Fixed Effects Yes Yes Yes
Firm Fixed Effects Yes
Observations 93,537 93,537 93,537
Pseudo (Adjusted) R² 0.035 0.011 0.046

This table presents the regression results on the relation between the likelihood of repurchase announcement and the CEO’s vesting equity. Variable definitions are in Appendix A and Table OA9. Column (1) estimates a probit model and columns (2)-(3) estimate an LPM. \(VESTING, UNVESTED, VESTED, SALARY, \) and \(BONUS\) are in billions. \(AGE\) and \(TENURE\) are in hundreds. Standard errors are in parentheses, clustered by firm. In column (1), the marginal effect for \(VESTING\) is displayed below the standard errors. *** (**) (*) indicates significance at the 1% (5%) (10%) two-tailed level, respectively.
Table OA3: Number and size of M&A and vesting equity

<table>
<thead>
<tr>
<th>Dependent Variables</th>
<th>(1) MANUM<sub>q</sub></th>
<th>(2) MASUM<sub>q</sub></th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VESTING<sub>q</sub></td>
<td>4.173***</td>
<td>2.678*</td>
<td>0.291***</td>
<td>0.153*</td>
</tr>
<tr>
<td></td>
<td>(1.488)</td>
<td>(1.161)</td>
<td>(0.084)</td>
<td>(0.087)</td>
</tr>
<tr>
<td>UNVESTED<sub>q-1</sub></td>
<td>3.463***</td>
<td>1.788*</td>
<td>0.045</td>
<td>0.033</td>
</tr>
<tr>
<td></td>
<td>(0.809)</td>
<td>(0.964)</td>
<td>(0.028)</td>
<td>(0.038)</td>
</tr>
<tr>
<td>VESTED<sub>q-1</sub></td>
<td>0.146**</td>
<td>-0.099</td>
<td>-0.002</td>
<td>-0.010**</td>
</tr>
<tr>
<td></td>
<td>(0.064)</td>
<td>(0.208)</td>
<td>(0.001)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>SALARY<sub>q-1</sub></td>
<td>-0.055</td>
<td>0.038</td>
<td>-0.001</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>(0.039)</td>
<td>(0.029)</td>
<td>(0.001)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>BONUS<sub>q-1</sub></td>
<td>0.032**</td>
<td>0.024**</td>
<td>0.001**</td>
<td>-0.001</td>
</tr>
<tr>
<td></td>
<td>(0.013)</td>
<td>(0.012)</td>
<td>(0.000)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>AGE<sub>q-1</sub></td>
<td>-0.221***</td>
<td>0.031</td>
<td>-0.013***</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>(0.062)</td>
<td>(0.146)</td>
<td>(0.003)</td>
<td>(0.008)</td>
</tr>
<tr>
<td>TENURE<sub>q-1</sub></td>
<td>0.179*</td>
<td>0.027</td>
<td>-0.003</td>
<td>-0.008</td>
</tr>
<tr>
<td></td>
<td>(0.108)</td>
<td>(0.147)</td>
<td>(0.003)</td>
<td>(0.008)</td>
</tr>
<tr>
<td>NEWCEO<sub>q</sub></td>
<td>-0.022</td>
<td>-0.008</td>
<td>-0.002**</td>
<td>-0.001</td>
</tr>
<tr>
<td></td>
<td>(0.013)</td>
<td>(0.011)</td>
<td>(0.001)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>MKLEV<sub>q-1</sub></td>
<td>-0.155***</td>
<td>-0.354***</td>
<td>-0.005***</td>
<td>-0.037***</td>
</tr>
<tr>
<td></td>
<td>(0.024)</td>
<td>(0.029)</td>
<td>(0.001)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>SALES<sub>q-1</sub></td>
<td>0.062***</td>
<td>0.002</td>
<td>0.001***</td>
<td>-0.004***</td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td>(0.007)</td>
<td>(0.000)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>MB<sub>q-1</sub></td>
<td>-0.003</td>
<td>0.010***</td>
<td>-0.001***</td>
<td>-0.001**</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>ROA<sub>q-1</sub></td>
<td>-0.174</td>
<td>0.305***</td>
<td>0.022***</td>
<td>0.042***</td>
</tr>
<tr>
<td></td>
<td>(0.113)</td>
<td>(0.075)</td>
<td>(0.005)</td>
<td>(0.008)</td>
</tr>
<tr>
<td>RET<sub>q-1</sub></td>
<td>0.034***</td>
<td>0.041***</td>
<td>0.008***</td>
<td>0.008***</td>
</tr>
<tr>
<td></td>
<td>(0.008)</td>
<td>(0.008)</td>
<td>(0.001)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>MALIQ<sub>q-1</sub></td>
<td>0.895***</td>
<td>-0.048</td>
<td>0.021***</td>
<td>0.013</td>
</tr>
<tr>
<td></td>
<td>(0.168)</td>
<td>(0.119)</td>
<td>(0.007)</td>
<td>(0.011)</td>
</tr>
<tr>
<td>HERFINDAHL<sub>q-1</sub></td>
<td>0.251*</td>
<td>-0.377*</td>
<td>0.003</td>
<td>-0.008</td>
</tr>
<tr>
<td></td>
<td>(0.129)</td>
<td>(0.227)</td>
<td>(0.005)</td>
<td>(0.015)</td>
</tr>
<tr>
<td>Intercept</td>
<td>0.046</td>
<td>0.249***</td>
<td>0.017***</td>
<td>0.036***</td>
</tr>
<tr>
<td></td>
<td>(0.043)</td>
<td>(0.073)</td>
<td>(0.002)</td>
<td>(0.005)</td>
</tr>
</tbody>
</table>

Year-Qtr Fixed Effects Yes Yes Yes Yes
Firm Fixed Effects Yes Yes Yes Yes
Observations 94,362 94,362 89,680 89,680
Adjusted R² 0.057 0.292 0.009 0.045

This table presents the ordinary least squares (OLS) regression results on the relation between the number of M&A announcements (as well as the total size of the M&A deals announced) and the CEO’s vesting equity. Variable definitions are in Appendix A and Table OA9. VESTING, UNVESTED, VESTED, SALARY, and BONUS are in billions. AGE and TENURE are in hundreds. Standard errors are in parentheses, clustered by firm. *** (**) (*) indicates significance at the 1% (5%) (10%) two-tailed level, respectively.
Table OA4: M&A analyses restricting to the deals that are subsequently completed

Panel A: M&A announcement and vesting equity

<table>
<thead>
<tr>
<th>Dependent Variables</th>
<th>(1) Probit</th>
<th>(2) LPM</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$VESTING_q$</td>
<td>5.958**</td>
<td>1.722*</td>
<td>0.248</td>
</tr>
<tr>
<td></td>
<td>(2.435)</td>
<td>(0.694)</td>
<td>(0.579)</td>
</tr>
<tr>
<td>Controls</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year-Qtr Fixed Effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Firm Fixed Effects</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>94,362</td>
<td>94,362</td>
<td>94,362</td>
</tr>
<tr>
<td>Pseudo (Adjusted) R^2</td>
<td>0.066</td>
<td>0.046</td>
<td>0.165</td>
</tr>
</tbody>
</table>

Panel B: Stock returns surrounding M&A announcement and vesting equity

<table>
<thead>
<tr>
<th>Period</th>
<th>(1) [q-1, q]</th>
<th>(2) [q+1, q+4]</th>
<th>(3) [q+5, q+8]</th>
<th>(4) [q+9, q+12]</th>
<th>(5) [q+13, q+16]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$VESTING_q$</td>
<td>2.143**</td>
<td>-2.242*</td>
<td>-2.773**</td>
<td>-2.402**</td>
<td>-2.290**</td>
</tr>
<tr>
<td></td>
<td>(0.991)</td>
<td>(1.167)</td>
<td>(1.288)</td>
<td>(1.084)</td>
<td>(1.082)</td>
</tr>
<tr>
<td>Year-Qtr Fixed Effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Firm Fixed Effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>8,819</td>
<td>8,821</td>
<td>8,796</td>
<td>8,763</td>
<td>8,457</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.193</td>
<td>0.227</td>
<td>0.237</td>
<td>0.304</td>
<td>0.273</td>
</tr>
</tbody>
</table>

Panel A presents the regression results on the relation between the likelihood of M&A announcement and the CEO’s vesting equity, and Panel B presents the regression results on the relation between BHAR over the period from one quarter prior to the M&A announcement date to four years after the announcement date and the CEO’s vesting equity. Both include only the announcements for the M&A that is subsequently completed within our sample period. Variable definitions are in Appendix A. Column (1) of Panel A estimates a probit model and columns (2)-(3) of Panel A estimate an LPM. All three columns of Panel B estimate an OLS model. $VESTING$ is in billions. BHAR is calculated over the value-weighted market index. Standard errors are in parentheses, clustered by firm. ***(*)** indicates significance at the 1% (5%) (10%) two-tailed level, respectively.
Table OA5: Stock returns surrounding repurchase (and M&A) and vesting equity using long-term CAR

Panel A: Long-term CAR surrounding repurchases and vesting equity

<table>
<thead>
<tr>
<th>Period</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period</td>
<td>[q-1, q]</td>
<td>[q+1, q+4]</td>
<td>[q+5, q+8]</td>
<td>[q+9, q+12]</td>
<td>[q+13, q+16]</td>
</tr>
<tr>
<td>Dependent Variables</td>
<td>CAR over value-weighted market index return</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VESTING_q</td>
<td>0.915** (0.398)</td>
<td>-2.549*** (0.502)</td>
<td>-1.674*** (0.489)</td>
<td>-0.433 (0.439)</td>
<td>-0.360 (0.436)</td>
</tr>
<tr>
<td>Year-Qtr Fixed Effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Firm Fixed Effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>28,535</td>
<td>28,479</td>
<td>28,360</td>
<td>27,171</td>
<td>23,458</td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>0.095</td>
<td>0.227</td>
<td>0.254</td>
<td>0.254</td>
<td>0.252</td>
</tr>
</tbody>
</table>

Panel B: Long-term CAR surrounding M&A and vesting equity

<table>
<thead>
<tr>
<th>Period</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period</td>
<td>[q-1, q]</td>
<td>[q+1, q+4]</td>
<td>[q+5, q+8]</td>
<td>[q+9, q+12]</td>
<td>[q+13, q+16]</td>
</tr>
<tr>
<td>Dependent Variables</td>
<td>CAR over value-weighted market index return</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VESTING_q</td>
<td>1.908** (0.743)</td>
<td>-1.995** (0.836)</td>
<td>-0.722 (0.816)</td>
<td>-1.506** (0.764)</td>
<td>-1.330* (0.745)</td>
</tr>
<tr>
<td>Year-Qtr Fixed Effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Firm Fixed Effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>12,202</td>
<td>12,203</td>
<td>12,167</td>
<td>12,117</td>
<td>11,662</td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>0.189</td>
<td>0.249</td>
<td>0.259</td>
<td>0.268</td>
<td>0.262</td>
</tr>
</tbody>
</table>

Panel A presents the OLS regression results on the relation between long-term cumulative market-adjusted abnormal return (CAR) over the period from one quarter prior to the quarter in which a share repurchase occurred to four years after the repurchase quarter and the CEO’s vesting equity. Panel B presents the OLS regression results on the relation between long-term CAR over the period from one quarter prior to the M&A announcement date to four years after the announcement date and the CEO’s vesting equity. CAR is calculated over the value-weighted market index in both panels. Variable definitions are in Appendix A and Table OA9. VESTING is in billions. Standard errors are in parentheses, clustered by firm. ***(**) (*) indicates significance at the 1% (5%) (10%) two-tailed level, respectively.
Table OA6: Repurchase and M&A analyses replacing VESTING with VESTING_ATM

Panel A: Repurchase and vesting equity

<table>
<thead>
<tr>
<th>Dependent Variables</th>
<th>(1) Probit</th>
<th>(2) LPM</th>
<th>(3)</th>
<th>(4) OLS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>REP_q</td>
<td>REP_q</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VESTING_ATM_q</td>
<td>14.011***</td>
<td>4.983***</td>
<td>2.982***</td>
<td>13.310***</td>
</tr>
<tr>
<td></td>
<td>(2.952)</td>
<td>(0.966)</td>
<td>(0.576)</td>
<td>(1.953)</td>
</tr>
<tr>
<td>Controls</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year-Qtr Fixed Effects (FE)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Firm FE</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>93,537</td>
<td>93,537</td>
<td>93,537</td>
<td>93,537</td>
</tr>
<tr>
<td>Pseudo (Adjusted) R²</td>
<td>0.113</td>
<td>0.137</td>
<td>0.507</td>
<td>0.063</td>
</tr>
</tbody>
</table>

Panel B: Stock returns surrounding repurchases and vesting equity

<table>
<thead>
<tr>
<th>Dependent Variables</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period</td>
<td></td>
<td>[q-1, q]</td>
<td>[q+1, q+4]</td>
<td>[q+5, q+8]</td>
<td>[q+9, q+12]</td>
</tr>
<tr>
<td>VESTING_ATM_q</td>
<td>0.930**</td>
<td>-3.426***</td>
<td>-2.342***</td>
<td>-0.427</td>
<td>-0.481</td>
</tr>
<tr>
<td></td>
<td>(0.466)</td>
<td>(0.602)</td>
<td>(0.642)</td>
<td>(0.609)</td>
<td>(0.521)</td>
</tr>
<tr>
<td>Year-Qtr & Firm FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>28,535</td>
<td>28,479</td>
<td>28,360</td>
<td>27,171</td>
<td>23,458</td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>0.088</td>
<td>0.201</td>
<td>0.218</td>
<td>0.241</td>
<td>0.237</td>
</tr>
</tbody>
</table>

Panel C: M&A announcement and vesting equity

<table>
<thead>
<tr>
<th>Dependent Variables</th>
<th>(1) Probit</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MA_q</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VESTING_ATM_q</td>
<td>11.202***</td>
<td>3.796***</td>
<td>1.583**</td>
</tr>
<tr>
<td></td>
<td>(2.470)</td>
<td>(0.826)</td>
<td>(0.727)</td>
</tr>
<tr>
<td>Controls</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year-Qtr FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Firm FE</td>
<td>Yes</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>94,362</td>
<td>94,362</td>
<td>94,362</td>
</tr>
<tr>
<td>Pseudo (Adjusted) R²</td>
<td>0.069</td>
<td>0.059</td>
<td>0.159</td>
</tr>
</tbody>
</table>

Panel D: Stock returns surrounding M&A announcement and vesting equity

<table>
<thead>
<tr>
<th>Dependent Variables</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period</td>
<td>[q-1, q]</td>
<td>[q+1, q+4]</td>
<td>[q+5, q+8]</td>
<td>[q+9, q+12]</td>
<td>[q+13, q+16]</td>
</tr>
<tr>
<td>VESTING_ATM_q</td>
<td>2.010**</td>
<td>-2.164**</td>
<td>-1.089</td>
<td>-2.276**</td>
<td>-1.711*</td>
</tr>
<tr>
<td></td>
<td>(0.934)</td>
<td>(0.980)</td>
<td>(1.148)</td>
<td>(1.022)</td>
<td>(0.936)</td>
</tr>
<tr>
<td>Year-Qtr & Firm FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>12,202</td>
<td>12,203</td>
<td>12,167</td>
<td>12,117</td>
<td>11,662</td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>0.177</td>
<td>0.211</td>
<td>0.217</td>
<td>0.254</td>
<td>0.250</td>
</tr>
</tbody>
</table>

Panel A (C) presents the regression results on the relation between share repurchases (M&A announcements) and the CEO’s vesting equity. Panel B (D) presents the regression results on the relation between BHAR over the period from one quarter prior to the quarter in which a share repurchase occurred to four years after the repurchase quarter (from one quarter prior to the M&A announcement date to four years after the announcement date) and the CEO’s vesting equity. Variable definitions are in Appendix A and Table OA9. All are estimated using an OLS model unless otherwise specified. VESTING is in billions. BHAR is calculated over the value-weighted market index. Standard errors are in parentheses, clustered by firm. *** (**) (*) indicates significance at the 1% (5%) (10%) two-tailed level, respectively.
Table OA7: Repurchase and M&A analyses replacing VESTING with VESTING_TB

Panel A: Repurchase and vesting equity

<table>
<thead>
<tr>
<th>Dependent Variables</th>
<th>(1) Probit</th>
<th>(2) LPM</th>
<th>(3) OLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$VESTING_{TBq}$</td>
<td>26.069***</td>
<td>8.961***</td>
<td>4.152***</td>
</tr>
<tr>
<td>Controls</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year-Qtr FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Firm FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>93,537</td>
<td>93,537</td>
<td>93,537</td>
</tr>
<tr>
<td>Pseudo (Adjusted) R²</td>
<td>0.114</td>
<td>0.138</td>
<td>0.507</td>
</tr>
</tbody>
</table>

Panel B: Stock returns surrounding repurchases and vesting equity

<table>
<thead>
<tr>
<th>Period</th>
<th>(1) [q-1, q]</th>
<th>(2) [q+1, q+4]</th>
<th>(3) [q+5, q+8]</th>
<th>(4) [q+9, q+12]</th>
<th>(5) [q+13, q+16]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$VESTING_{TBq}$</td>
<td>1.294*</td>
<td>-4.543***</td>
<td>-2.798***</td>
<td>-0.504</td>
<td>-0.944</td>
</tr>
<tr>
<td>Year-Qtr & Firm FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>28,535</td>
<td>28,479</td>
<td>28,360</td>
<td>27,171</td>
<td>23,458</td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>0.088</td>
<td>0.201</td>
<td>0.218</td>
<td>0.241</td>
<td>0.237</td>
</tr>
</tbody>
</table>

Panel C: M&A announcement and vesting equity

<table>
<thead>
<tr>
<th>Dependent Variables</th>
<th>(1) Probit</th>
<th>(2) LPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>$VESTING_{TBq}$</td>
<td>10.588***</td>
<td>3.429**</td>
</tr>
<tr>
<td>Controls</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year-Qtr FE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Firm FE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>94,362</td>
<td>94,362</td>
</tr>
<tr>
<td>Pseudo (Adjusted) R²</td>
<td>0.064</td>
<td>0.058</td>
</tr>
</tbody>
</table>

Panel D: Stock returns surrounding M&A announcement and vesting equity

<table>
<thead>
<tr>
<th>Period</th>
<th>(1) [q-1, q]</th>
<th>(2) [q+1, q+4]</th>
<th>(3) [q+5, q+8]</th>
<th>(4) [q+9, q+12]</th>
<th>(5) [q+13, q+16]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$VESTING_{TBq}$</td>
<td>2.122*</td>
<td>-2.834**</td>
<td>-1.023</td>
<td>-1.464</td>
<td>-2.918**</td>
</tr>
<tr>
<td>Year-Qtr & Firm FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>12,202</td>
<td>12,203</td>
<td>12,167</td>
<td>12,117</td>
<td>11,662</td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>0.177</td>
<td>0.211</td>
<td>0.217</td>
<td>0.254</td>
<td>0.250</td>
</tr>
</tbody>
</table>

Panel A (C) presents the regression results on the relation between share repurchases (M&A announcements) and the CEO’s vesting equity. Panel B (D) presents the regression results on the relation between BHAR over the period from one quarter prior to the quarter in which a share repurchase occurred to four years after the repurchase quarter (from one quarter prior to the M&A announcement date to four years after the announcement date) and the CEO’s vesting equity. Variable definitions are in Appendix A and Table OA9. All are estimated using an OLS model unless otherwise specified. VESTING is in billions. BHAR is calculated over the value-weighted market index. Standard errors are in parentheses, clustered by firm. *** (**) (*) indicates significance at the 1% (5%) (10%) two-tailed level, respectively.
Table OA8: Repurchase and M&A analyses replacing VESTING with VESTING_INT

Panel A: Repurchase and vesting equity

<table>
<thead>
<tr>
<th>Dependent Variables</th>
<th>(1) Probit</th>
<th>(2) LPM</th>
<th>(3)</th>
<th>(4) OLS</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VESTING_INT<sub>q</sub></td>
<td>12.366*** (2.484)</td>
<td>4.338*** (0.802)</td>
<td>2.709*** (0.495)</td>
<td>11.016*** (1.644)</td>
<td>6.953*** (1.363)</td>
</tr>
<tr>
<td>Controls Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year-Qtr FE Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Firm FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>93,537</td>
<td>93,537</td>
<td>93,537</td>
<td>93,537</td>
<td>93,537</td>
</tr>
<tr>
<td>Pseudo (Adjusted) R<sup>2</sup></td>
<td>0.113</td>
<td>0.138</td>
<td>0.507</td>
<td>0.063</td>
<td>0.254</td>
</tr>
</tbody>
</table>

Panel B: Stock returns surrounding repurchases and vesting equity

<table>
<thead>
<tr>
<th>Period</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[q-1, q]</td>
<td>VESTING_INT<sub>q</sub></td>
<td>0.830** (0.390)</td>
<td>-3.046*** (0.515)</td>
<td>-2.435*** (0.551)</td>
<td>-0.431</td>
</tr>
<tr>
<td>[q+1, q+4]</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>[q+5, q+8]</td>
<td>28,535</td>
<td>28,479</td>
<td>28,360</td>
<td>27,171</td>
<td>23,458</td>
</tr>
<tr>
<td>[q+9, q+12]</td>
<td>Adjusted R<sup>2</sup></td>
<td>0.088</td>
<td>0.201</td>
<td>0.219</td>
<td>0.241</td>
</tr>
<tr>
<td>[q+13, q+16]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Panel C: M&A announcement and vesting equity

<table>
<thead>
<tr>
<th>Dependent Variables</th>
<th>(1) Probit</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VESTING_INT<sub>q</sub></td>
<td>8.683*** (2.083)</td>
<td>3.007*** (0.701)</td>
<td>1.462** (0.625)</td>
</tr>
<tr>
<td>Controls Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year-Qtr FE Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Firm FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>94,362</td>
<td>94,362</td>
<td>94,362</td>
</tr>
<tr>
<td>Pseudo (Adjusted) R<sup>2</sup></td>
<td>0.069</td>
<td>0.058</td>
<td>0.159</td>
</tr>
</tbody>
</table>

Panel D: Stock returns surrounding M&A announcement and vesting equity

<table>
<thead>
<tr>
<th>Period</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[q-1, q]</td>
<td>VESTING_INT<sub>q</sub></td>
<td>2.389*** (0.782)</td>
<td>-1.966** (0.803)</td>
<td>-1.341 (0.931)</td>
<td>-2.227*** (0.853)</td>
</tr>
<tr>
<td>[q+1, q+4]</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>[q+5, q+8]</td>
<td>12,202</td>
<td>12,203</td>
<td>12,167</td>
<td>12,117</td>
<td>11,662</td>
</tr>
<tr>
<td>[q+9, q+12]</td>
<td>Adjusted R<sup>2</sup></td>
<td>0.178</td>
<td>0.211</td>
<td>0.217</td>
<td>0.254</td>
</tr>
<tr>
<td>[q+13, q+16]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Panel A (C) presents the regression results on the relation between share repurchases (M&A announcements) and the CEO’s vesting equity. Panel B (D) presents the regression results on the relation between BHAR over the period from one quarter prior to the quarter in which a share repurchase occurred to four years after the repurchase quarter (from one quarter prior to the M&A announcement date to four years after the announcement date) and the CEO’s vesting equity. Variable definitions are in Appendix A and Table OA9. All are estimated using an OLS model unless otherwise specified. VESTING is in billions. BHAR is calculated over the value-weighted market index. Standard errors are in parentheses, clustered by firm. *** (**) (*) indicates significance at the 1% (5%) (10%) two-tailed level, respectively.
Table OA9: Definition of variables used in the Online Appendix

This table describes the calculation of variables used only in this online appendix. The variables used also in the core analysis are described in Appendix A of the paper.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(REPANN_q)</td>
<td>An indicator variable that equals one if a firm announced either the establishment of a new share repurchase program or actual repurchase(s) under an existing repurchase program in quarter (q) as captured by the SDC Platinum, and zero otherwise.</td>
</tr>
<tr>
<td>(MANUM_q)</td>
<td>The number of M&A that a firm announced in quarter (q), and zero if none was announced.</td>
</tr>
<tr>
<td>(MASUM_q)</td>
<td>The sum of deal size for all M&A that a firm announced in quarter (q), as a percentage of market capitalization at the end of quarter (q-1), and zero if none was announced. We delete a firm-quarter if a firm announces at least one M&A in a quarter but none of the M&A has transaction size recorded in the SDC Platinum.</td>
</tr>
<tr>
<td>(CAR_{q-1 \to q})</td>
<td>A firm’s cumulative market-adjusted abnormal return over quarter (q-1) and (q), with quarter (q) being either the fiscal quarter in which a share repurchase occurred or one-quarter time that follows an M&A announcement (with the first day of the quarter being the M&A announcement date). For repurchase events, it is calculated as the sum of the firm’s monthly abnormal returns over the two quarters with the monthly abnormal return being the firm’s monthly raw return minus the corresponding return on the CRSP value-weighted index. For M&A events, it is calculated as the sum of the firm’s daily abnormal returns over the two quarters with the daily abnormal return being the firm’s daily raw return minus the corresponding return on the CRSP value-weighted index. (CAR_{q+1 \to q+4}), (CAR_{q+5 \to q+8}), (CAR_{q+9 \to q+12}), and (CAR_{q+13 \to q+16}) are analogously calculated as a given firm’s CAR for quarter (q+1) to (q+4), (q+5) to (q+8), (q+9) to (q+12), and (q+13) to (q+16), respectively.</td>
</tr>
<tr>
<td>(VESTING_{ATM_q})</td>
<td>Similar to (VESTING_q), except that all options are assumed to be at the money.</td>
</tr>
<tr>
<td>(VESTING_{TB_q})</td>
<td>Similar to (VESTING_q), except that it includes only post-2006 time-based vesting grants without performance provisions (i.e., we remove post-2006 grants labeled “retirement,” “performance-based,” “contingent,” or “accelerated,” and post-2006 grants with unknown vesting schedule).</td>
</tr>
<tr>
<td>(VESTING_{INT_q})</td>
<td>Similar to (VESTING_q), except that options’ deltas are replaced with their intrinsic values, i.e., delta is set to one for all in-the-money options and zero for all out-of-the-money options.</td>
</tr>
</tbody>
</table>