Market Power and Price Informativeness

Marcin Kacperczyk Jaromir Nosal Savitar Sundaresan
Imperial College London Boston College Imperial College London

March 2018
Motivation

Levels and concentration of institutional ownership have increased recently.
Motivation

Passive funds have grown in popularity

Percentage of equity mutual funds’ total net assets; year-end, 2001–2016

![Bar chart showing percentage of equity mutual funds’ total net assets from 2001 to 2016.](image)

Figure: Investment Company Institute Fact Book
Motivation

- **Active investors typically associated with:**
 - Increased ability to gather information
- **Large investors typically associated with:**
 - Increased awareness of their power to affect prices
Motivation

• Active investors typically associated with:
 ○ Increased ability to gather information

• Large investors typically associated with:
 ○ Increased awareness of their power to affect prices

• Question
 ○ What is the effect of market structure on price informativeness?
Motivation

• Active investors typically associated with:
 ○ Increased ability to gather information

• Large investors typically associated with:
 ○ Increased awareness of their power to affect prices

• Question
 ○ What is the effect of market structure on price informativeness?

• Relevance
 ○ Important to understand price discovery in financial markets
 ○ Important to understand efficient allocation of capital to firms
Approach

- **Model**: portfolio choice with endogenous information acquisition
 van Nieuwerburgh & Veldkamp; Kacperczyk, Nosal & Stevens
 - Some investors are smart
 and can do research on shocks to an asset’s value
- Our novel take:
 - Some investors are large
 and internalize effects of trades *and* information processing on prices
- **Endogenous allocation** of learning and holdings across assets

 Results:
 1. Endogenous learning affects the impact of changes in size distribution
 2. Institutional ownership ↑↓ PI
 3. Institutional concentration ↓ PI
 4. Moving AUM from Active to Passive ↓ PI through two channels
Approach

- **Model:** portfolio choice with endogenous information acquisition
 van Nieuwerburgh & Veldkamp; Kacperczyk, Nosal & Stevens
 - Some investors are smart
 and can do research on shocks to an asset’s value

- **Our novel take:**
 - Some investors are large
 and internalize effects of trades *and* information processing on prices

- **Endogenous allocation** of learning and holdings across assets

- **Results:**
 1. Endogenous learning affects the impact of changes in size distribution
 2. Institutional ownership $\uparrow \downarrow PI$
 3. Institutional concentration $\downarrow PI$
 4. Moving AUM from Active to Passive $\downarrow PI$ through two channels
Model: Building Blocks

- Assets
 - 1 riskless with payoff r, unlimited supply
 - N risky with payoffs $z_i \sim \mathcal{N}(\bar{z}, \sigma^2_i)$; supply $x_i \sim \mathcal{N}(\bar{x}, \sigma^2_x)$
 - Shocks are i.i.d. across assets
Model: Building Blocks

- **Assets**
 - 1 riskless with payoff r, unlimited supply
 - N risky with payoffs $z_i \sim \mathcal{N}(\bar{z}, \sigma_i^2)$; supply $x_i \sim \mathcal{N}(\bar{x}, \sigma_x^2)$
 - Shocks are i.i.d. across assets

- **Continuum of investors with common risk aversion ρ**
 - Mean-variance preferences over end of period wealth
 - λ_0: atomistic competitive fringe with capacity $K_h \geq 0$
 - $1 - \lambda_0$: L non-atomistic oligopolists j with capacity $K_j > K_h \ \forall j$
Model: Building Blocks

- Assets
 - 1 riskless with payoff r, unlimited supply
 - N risky with payoffs $z_i \sim \mathcal{N}(\bar{z}, \sigma_i^2)$; supply $x_i \sim \mathcal{N}(\bar{x}, \sigma_x^2)$
 - Shocks are i.i.d. across assets

- Continuum of investors with common risk aversion ρ
 - Mean-variance preferences over end of period wealth
 - λ_0: atomistic competitive fringe with capacity $K_h \geq 0$
 - $1 - \lambda_0$: L non-atomistic oligopolists j with capacity $K_j > K_h \forall j$

- Optimization
 - Choose endogenous signals s_{ki} about z_i, s.t. $I(s_k, z) \leq K$
 - Given s_{ki}, update beliefs, choose portfolio allocations q_{ki}
Model: Timing

Linear pricing: \(p_i = a_i + b_i z_i - c_i x_i - \sum_j d_{ij} \zeta_{ij} \)
Model: Timing

Linear pricing: \(p_i = a_i + b_i z_i - c_i x_i - \sum_j d_{ij} \zeta_{ij} \)

1. Fringe and oligopolists make information decisions
 - Oligopolists: Nash equilibrium
 - Fringe take oligopolists’ choices as given
 - Each oligopolist internalizes the effect of her learning on the fringe
Model: Timing

Linear pricing: \[p_i = a_i + b_iz_i - c_ix_i - \sum_{j} d_{ij}\zeta_{ij} \]

1. Fringe and oligopolists make information decisions
 - Oligopolists: Nash equilibrium
 - Fringe take oligopolists’ choices as given
 - Each oligopolist internalizes the effect of her learning on the fringe

2. Fringe and oligopolists make portfolio decisions
 - Choose \(q_{ji} \)'s simultaneously to maximize mean-variance preferences
 - Fringe take oligopolists’ choices as given
 - Each oligopolist internalizes the effect of her decision on the fringe
Ex-ante choice of signal structure can be expressed as maximizing

\[E[U_j] = \sum_i \frac{\sigma_i^2}{\hat{\sigma}_{hi}^2} G_i \]

subject to entropy constraint

\[\prod_i \frac{\sigma_i^2}{\hat{\sigma}_{hi}^2} \leq e^{2K_h} \]

Model: Fringe Information Choices

- \(\hat{\sigma}_{hi}^2 \) is the choice variable: residual uncertainty
- The gain \(G_i \) from asset \(i \) is not investor specific

Convex Objective

\[+ \]

Convex Constraint

\[= \]

Individual Corner Solution
Model: Information Choices

- Standard result: Fringe traders each specialize in their learning

- Given signals, oligopolists solve a portfolio allocation problem
 - Oligopolists’ beliefs about \(z_i \sim \mathcal{N}(\mu_{ij}, \sigma_{ij}^2) \)
 - Mean-variance optimization gives
 \[
 q_{ij} = \frac{1}{\rho} \frac{\mu_{ij} - rp_i(q_{ij})}{\sigma_{ij}^2 + r \frac{dp_i(q_{ij})}{dq_{ij}}} \quad \text{where}
 \]

\[
 r \frac{dp_i(q_{ij})}{dq_{ij}} = \lambda_{ij} \rho \sigma_i^2
\]

and
\[
 \lambda_{ij} = \frac{\lambda_j}{\lambda_0(1+m_h(e^{2K_h}-1))}. \quad \text{Zero if no market power}
\]
Price Informativeness: Oligopolists and a Smart Fringe

\[PI_i = PI(\omega_{ji}, \varphi_{hi}, W_{ji}, \alpha_{ji}) \]

- \(\omega_{ji} \equiv \frac{Q_{ji}}{\sum_k Q_{ki}} \): Expected share of asset \(i \) held by oligopolist \(j \)

- \(\varphi_{hi} = \frac{\Phi_{hi}}{r(1+\Phi_{hi})} \): Fringe’s information contribution

- \(W_i \equiv \frac{\partial \lambda_1 q_i(\hat{\mu}_i)}{\partial \hat{\mu}_i} \): Pass-through of information to quantities
Price Informativeness: Oligopolists and a Smart Fringe

- Price informativeness is

\[PI_i = \frac{\sigma_i \left(\sum_j \omega_{ji} \frac{\alpha_{ji} - 1}{\alpha_{ji}} + \varphi_{hi} \right)}{\sqrt{\left(\sum_j \omega_{ji} \frac{\alpha_{ji} - 1}{\alpha_{ji}} + \varphi_{hi} \right)^2 + \frac{1}{(\sum_j W_{ji})^2} \frac{\sigma_{x_i}^2}{\sigma_i^2} + \sum_j \omega_{ji}^2 \frac{\alpha_{ji} - 1}{\alpha_{ji}^2}}} \]
Price Informativeness: Oligopolists and a Smart Fringe

- Price informativeness is

\[PI_i = \frac{\sigma_i \left(\sum_j \omega_{ji} \frac{\alpha_{ji} - 1}{\alpha_{ji}} + \varphi_{hi} \right)}{\sqrt{\left(\sum_j \omega_{ji} \frac{\alpha_{ji} - 1}{\alpha_{ji}} + \varphi_{hi} \right)^2 + \frac{1}{\left(\sum_j W_{ji} \right)^2} \frac{\sigma_{x_i}^2}{\sigma_i^2} + \sum_j \omega_{ji}^2 \frac{\alpha_{ji} - 1}{\alpha_{ji}^2}}} \]

1. \(\sum_j \omega_{ji} \frac{\alpha_{ji} - 1}{\alpha_{ji}} + \varphi_{hi} \): average, ownership-weighted information increases \(PI \)
Price Informativeness: Oligopolists and a Smart Fringe

- Price informativeness is

\[
PI_i = \frac{\sigma_i \left(\sum_j \omega_{ji} \frac{\alpha_{ji}-1}{\alpha_{ji}} + \varphi_{hi} \right)}{\sqrt{\left(\sum_j \omega_{ji} \frac{\alpha_{ji}-1}{\alpha_{ji}} + \varphi_{hi} \right)^2 + \frac{1}{(\sum_j W_{ji})^2} \frac{\sigma_{x_i}^2}{\sigma_i^2} + \sum_j \omega_{ji}^2 \frac{\alpha_{ji}-1}{\alpha_{ji}^2}}}
\]

1. \(\sum_j \omega_{ji} \frac{\alpha_{ji}-1}{\alpha_{ji}} + \varphi_{hi} \): average, ownership-weighted information

2. \(W_{ji} \) information pass-through to quantities increases \(PI \)
Price Informativeness: Oligopolists and a Smart Fringe

- Price informativeness is

\[PI_i = \frac{\sigma_i \left(\sum_j \omega_{ji} \frac{\alpha_j - 1}{\alpha_{ji}} + \varphi_{hi} \right)}{\sqrt{\left(\sum_j \omega_{ji} \frac{\alpha_j - 1}{\alpha_{ji}} + \varphi_{hi} \right)^2 + \left(\sum_j W_{ji} \right)^2 \sigma_i^2 + \sum_j \omega_{ji}^2 \frac{\alpha_j - 1}{\alpha_{ji}^2}}} \]

1. \(\sum_j \omega_{ji} \frac{\alpha_j - 1}{\alpha_{ji}} + \varphi_{hi} \): average, ownership-weighted information
2. \(W_{ji} \): information pass-through to quantities
3. \(\sum_j \omega_{ji}^2 \frac{\alpha_j - 1}{\alpha_{ji}^2} \): Learning-weighted HHI decreases PI
Price Informativeness: Oligopolists and a Smart Fringe

- Price informativeness is

\[
P_{Ii} = \frac{\sigma_i \left(\sum_j \omega_{ji} \frac{\alpha_i - 1}{\alpha_{ji}} + \varphi_{hi} \right)}{\sqrt{\left(\sum_j \omega_{ji} \frac{\alpha_i - 1}{\alpha_{ji}} + \varphi_{hi} \right)^2 + \left(\frac{1}{\sum_j W_{ji}} \right)^2 \frac{\sigma_i^2}{\sigma_{xi}^2} + \sum_j \omega_{ji}^2 \frac{\alpha_i - 1}{\alpha_{ji}^2}}}.
\]

- For fixed information structure (\(\alpha_s\)), to increase PI
 - \(\sum_j \omega_{ji} \frac{\alpha_i - 1}{\alpha_{ji}}\): put all ownership only on highest \(\alpha\)
Price Informativeness: Oligopolists and a Smart Fringe

- Price informativeness is

\[PI_i = \frac{\sigma_i \left(\sum_j \omega_{ji} \frac{\alpha_{ji} - 1}{\alpha_{ji}} + \varphi h_i \right)}{\sqrt{\left(\sum_j \omega_{ji} \frac{\alpha_{ji} - 1}{\alpha_{ji}} + \varphi h_i \right)^2 + \left(\sum_j W_{ji} \right)^2 \frac{\sigma_i^2}{\sigma_i^2} + \sum_j \omega_{ji}^2 \frac{\alpha_{ji} - 1}{\alpha_{ji}^2}}} \]

- For fixed information structure (\(\alpha_s\)), to increase PI
 - \(\sum_j \omega_{ji} \frac{\alpha_{ji} - 1}{\alpha_{ji}}\): put all ownership only on highest \(\alpha\)
 - But, concentrated ownership hurts PI through \(\sum_j \omega_{ji}^2 \frac{\alpha_{ji} - 1}{\alpha_{ji}^2}\)
Price Informativeness: Oligopolists and a Smart Fringe

- Price informativeness is

\[
PI_i = \frac{\sigma_i \left(\sum_j \omega_{ji} \frac{\alpha_{ji} - 1}{\alpha_{ji}} + \varphi_{hi} \right)}{\sqrt{\left(\sum_j \omega_{ji} \frac{\alpha_{ji} - 1}{\alpha_{ji}} + \varphi_{hi} \right)^2 + \left(\frac{1}{\sum_j W_{ji}} \right)^2 \frac{\sigma_{xi}^2}{\sigma_i^2} + \sum_j \omega_{ji}^2 \frac{\alpha_{ji} - 1}{\alpha_{ji}^2}}}
\]

- For fixed information structure (\(\alpha_s\)), to increase PI

 - \(\sum_j \omega_{ji} \frac{\alpha_{ji} - 1}{\alpha_{ji}}\): put all ownership only on highest \(\alpha\)

 - But, concentrated ownership hurts PI through \(\sum_j \omega_{ji}^2 \frac{\alpha_{ji} - 1}{\alpha_{ji}^2}\)

- Changing distribution of \(\alpha_{ji}\) determines the costs/benefits of institutional ownership and concentration

 - Crucial impact of endogenous adjustment of learning—need simulation to understand interactions of learning
Numerical Analysis: Parameter Values

- Parameterize benchmark model to exhibit
 - Learning about all assets (by at least one investor)
 - Institutional ownership of approx. 60%
 - Market excess return of 7% (1980-2015 average)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean payoff, supply</td>
<td>\bar{z}_i, \bar{x}_i</td>
<td>10, 5 for all i</td>
</tr>
<tr>
<td>Number of assets, large traders</td>
<td>N, L</td>
<td>10, 6</td>
</tr>
<tr>
<td>Risk-free rate</td>
<td>r</td>
<td>2.5%</td>
</tr>
<tr>
<td>Volatility of noise shocks</td>
<td>σ_{xi}</td>
<td>0.41 for all i</td>
</tr>
<tr>
<td>Volatility of asset payoffs</td>
<td>σ_i</td>
<td>$\in [1, 1.5]$, linear distribution</td>
</tr>
<tr>
<td>Risk aversion</td>
<td>ρ</td>
<td>1.3</td>
</tr>
<tr>
<td>Information capacities</td>
<td>$K_h, {K_j}$</td>
<td>0, 4.5, constant</td>
</tr>
<tr>
<td>Investor masses</td>
<td>$\lambda_0, \lambda_l/\lambda_1$</td>
<td>0.45, [1, 4] linearly distributed</td>
</tr>
</tbody>
</table>
Structural Experiment: Ownership

- Varying industry size \((1 - \lambda_0)\)
 - Hump-shaped PI curve

Price Informativeness

![Graph showing price informativeness versus Equilibrium Price Informativeness](image-url)
Structural Experiment: Concentration

Price Informativeness
Two Key Mechanisms

1. Price Informativeness of an asset
 - Has decreasing marginal returns in any active agent’s learning
Two Key Mechanisms

1. Price Informativeness of an asset
 - Has decreasing marginal returns in any active agent’s learning

2. Traders with size have a concave problem. To reduce price impact:
 - They trade less as they get bigger (Agg PI -)
 - They spread their learning as they get bigger (Agg PI +)
Numerical Experiment

Price Informativeness

Size of Oligopoly Sector

Average

Average Fixed Cov

Average Fixed PassThru

Average Fixed Conc
Numerical Experiment

Price Informativeness

AUM Share of Largest Oligopolist

- Average PI
- Average Fixed Cov
- Average Fixed PassThru
- Average Fixed Conc

35% 54% 67% 75% 81% 86% 90% 93% 96% 98%
Threshold Levels and Capacity

1. We consider the case of the monopolist with size λ_1
Threshold Levels and Capacity

1. We consider the case of the monopolist with size λ_1

2. We evaluate the size threshold at which the monopolist would switch from learning about one (most volatile) asset to learning about the second asset
Threshold Levels and Capacity

1. We consider the case of the monopolist with size λ_1.

2. We evaluate the size threshold at which the monopolist would switch from learning about one (most volatile) asset to learning about the second asset.

3. We assess the decision from the individual perspective and that of maximizing aggregate PI.
Threshold Levels and Capacity

1. We consider the case of the monopolist with size λ_1

2. We evaluate the size threshold at which the monopolist would switch from learning about one (most volatile) asset to learning about the second asset

3. We assess the decision from the individual perspective and that of maximizing aggregate PI

Price Informativeness
Threshold Levels and Volatility Ratio

Price Informativeness
Passive vs Active

1. Shift AUM from active to passive
Passive vs Active

1. Shift AUM from active to passive
 ○ Less active ownership \Rightarrow less active trade \Rightarrow PI \downarrow
Passive vs Active

1. Shift AUM from active to passive
 - Less active ownership \Rightarrow less active trade \Rightarrow PI \downarrow
 - Less active ownership \Rightarrow less spreading of learning \Rightarrow PI \downarrow
Passive vs Active

1. Shift AUM from active to passive
 - Less active ownership \Rightarrow less active trade \Rightarrow PI ↓
 - Less active ownership \Rightarrow less spreading of learning \Rightarrow PI ↓
 - *Result:* Endogenous learning *amplifies* PI effects
Passive vs Active

1. Shift AUM from active to passive
 - Less active ownership ⇒ less active trade ⇒ PI ↓
 - Less active ownership ⇒ less spreading of learning ⇒ PI ↓
 - Result: Endogenous learning amplifies PI effects
Passive vs Active: Fixing Total Oligopoly

Price Informativeness

Size of Passive Sector

- Average
- Average Fixed Cov
- Average Fixed PassThru
- Average Fixed Conc
Passive vs Active: Fixing Active Oligopoly

Price Informativeness

- Average
- Average Fixed Cov
- Average Fixed PassThru
- Average Fixed Conc

Size of Passive Sector
Endogenous Learning: Ownership

Benchmark λ_s

Fixed α

$\lambda_0 = 0.05$

$\lambda_0 = 0.999$
Conclusion

• Channels that affect Price Informativeness:
 ◦ The covariance channel: How well does the price track fundamentals?
 ◦ The pass-through channel: How sensitive are quantities to information?
 ◦ The concentration channel: How diversified are active participants?

• Results:
 ◦ PI is non-monotonic in the size of the active sector
 ◦ PI is decreasing in the concentration of the active sector
 ◦ Endogenous info amplifies reductions in PI arising from passive growth

• Mechanisms:
 ◦ Decreasing returns to learning for each trader
 ◦ Decreasing returns to an asset’s PI per trader’s learning