Maximum likelihood estimation of the equity premium *

Efstathios Avdis Jessica A. Wachter
University of Alberta University of Pennsylvania
and NBER

March 11, 2016

Abstract
The equity premium, namely the expected return on the aggregate stock market less the government bill rate, is of central importance to the portfolio allocation of individuals, to the investment decisions of firms, and to model calibration and testing. This quantity is usually estimated from the sample average excess return. We propose an alternative estimator, based on maximum likelihood, that takes into account information contained in dividends and prices. Applied to the postwar sample, our method leads to an economically significant reduction from 6.4% to 5.1%. Simulation results show that our method produces more reliable estimates under a wide range of specifications.

*Avdis: avdis@ualberta.ca; Wachter: jwachter@wharton.upenn.edu. We are grateful to Kenneth Ahern, John Campbell, John Cochrane, Frank Diebold, Greg Duffee, Ian Dew-Becker, Adlai Fisher, Robert Hall, Soohun Kim, Alex Maynard, Ilaria Piatti, Jonathan Wright, Motohiro Yogo and seminar participants at the University of Alberta, the University of Rochester, the Wharton School, the NBER Forecasting & Empirical Methods Workshop, the SFS Cavalcade, the SoFiE Conference, the Northern Finance Association meetings and the EFA Conference for helpful comments.
Maximum likelihood estimation of the equity premium

Abstract
The equity premium, namely the expected return on the aggregate stock market less the government bill rate, is of central importance to the portfolio allocation of individuals, to the investment decisions of firms, and to model calibration and testing. This quantity is usually estimated from the sample average excess return. We propose an alternative estimator, based on maximum likelihood, that takes into account information contained in dividends and prices. Applied to the postwar sample, our method leads to an economically significant reduction from 6.4% to 5.1%. Simulation results show that our method produces more reliable estimates under a wide range of specifications.
1 Introduction

The equity premium, namely the expected return on equities less the risk-free rate, is an important economic quantity for many reasons. It is an input into the decision process of individual investors as they determine their asset allocation between stocks and bonds. It is also a part of cost-of-capital calculations and thus investment decisions by firms. Finally, financial economists use it to calibrate and to test, both formally and informally, models of asset pricing and of the macroeconomy.¹

The equity premium is almost always estimated by taking the sample mean of stock returns and subtracting a measure of the riskfree rate such as the average Treasury Bill return. As is well known (Merton, 1980), it is difficult to estimate the mean of a stochastic process. If one is computing the sample average, a tighter estimate can be obtained only by extending the data series in time which has the disadvantage that the data are potentially less relevant to the present day.

Given the importance of the equity premium, and the noise in the sample average of stock returns, it is not surprising that a substantial literature has grown up around estimating this quantity using other methods. One idea is to use the information in dividends, given that, in the long run, prices are determined by the present value of future dividends. Studies that implement this idea in various ways include Blanchard (1993), Constantinides (2002), Donaldson, Kamstra, and Kramer (2010), Fama and French (2002), and Ibbotson and Chen (2003). However, in each case it is not clear why the method in question would deliver an estimate that is superior to the sample mean.

In this paper, we propose a method of estimating the equity premium that incorporates additional information contained in the time series of prices and

¹See, for example, the classic paper of Mehra and Prescott (1985), and surveys such as Kocherlakota (1996), Campbell (2003), DeLong and Magin (2009), and Siegel (2005).
dividends in a simple and econometrically-motivated way. As in the previous literature, our work is based on the long-run relation between prices, returns and dividends. However, our implementation is quite different, and grows directly out of maximum likelihood estimation of autoregressive processes. First, we show that our method yields an economically significant difference in the estimation of the equity premium. Taking the sample average of monthly log returns and subtracting the monthly log return on the Treasury bill over the postwar period implies a monthly equity premium of 0.43%. Our maximum likelihood approach implies an equity premium of 0.32%. Translated to level returns per annum, our method implies an equity premium of 5.06%, as compared with the sample average of 6.37%.

Second, we show that our method is a more reliable way to estimate risk premia. Because it is based on maximum likelihood, our method will be efficient in large samples. We demonstrate efficiency in small samples by running Monte Carlo experiments under a wide variety of assumptions on the data generating process, allowing for significant mis-specification. We generally find that the standard errors are about half as large using our method as using the sample average. In other words, there is good reason to believe that the answer given by our method is closer to the true equity premium as compared with the average return.

Finally, we are able to derive analytical expressions for our estimator that give intuition for our results. Maximum likelihood allows additional information to be extracted from the time series of the dividend-price ratio. This additional information implies that shocks to the dividend-price ratio have on average been negative. In contrast, ordinary least squares (OLS) implies that the shocks are zero on average by definition. Because shocks to the dividend-price ratio are negatively correlated with shocks to returns, our results imply that shocks to returns must have been positive over the time period. That is, the historical time series of returns is unusually high; a lower value of the
equity premium is closer to the truth.

The remainder of our paper proceeds as follows. Section 2 describes our statistical model and estimation procedure. Section 3 describes our results for the equity premium, and extends these results to international data and to characteristic-sorted portfolios. Because we find a larger reduction for small stocks as compared to large stocks, our results suggest that the size premium, as well as the equity premium, may have been a result of an unusual series of shocks. Section 4 describes the intuition for our efficiency results and how these results depend on the parameters of the data generating process. Section 5 shows the applicability of our procedure under alternative data generating processes, including conditional heteroskedasticity and structural breaks. Section 6 concludes.

2 Statistical Model and Estimation

2.1 Statistical model

Let R_{t+1} denote net returns on an equity index between t and $t + 1$, and $R_{f,t+1}$ denote net riskfree returns between t and $t + 1$. We let $r_{t+1} = \log(1 + R_{t+1}) - \log(1 + R_{f,t+1})$. Let x_t denote the log of the dividend-price ratio. We assume

$$r_{t+1} - \mu_r = \beta(x_t - \mu_x) + u_{t+1} \tag{1a}$$
$$x_{t+1} - \mu_x = \theta(x_t - \mu_x) + v_{t+1}, \tag{1b}$$

where, conditional on $(r_1, \ldots, r_t, x_0, \ldots, x_t)$, the vector of shocks $[u_{t+1}, v_{t+1}]^T$ is normally distributed with zero mean and covariance matrix

$$\Sigma = \begin{bmatrix} \sigma^2_u & \sigma_{uv} \\ \sigma_{uv} & \sigma^2_v \end{bmatrix}.$$

We assume that the dividend-price ratio follows a stationary process, namely, that $-1 < \theta < 1$; later we discuss the implications of relaxing this assump-
tion. Taking expectations on both sides of (1a) and (1b) implies that μ_r is the unconditional mean of r_t (namely, the equity premium), and μ_x as the unconditional mean of x_t.

The system of equations in (1) is standard in the literature. Indeed, (1a) is equivalent to the ordinary least squares regression that has been a focus of measuring predictability in stock returns for almost 30 years (Keim and Stambaugh, 1986; Fama and French, 1989). We have simply rearranged the parameters so that the mean excess return μ_r appears explicitly. The stationary first-order autoregression for x_t is standard in settings where modeling x_t is necessary, e.g. understanding long-horizon returns or the statistical properties of estimators for β. Indeed, most leading economic models imply that x_t is stationary (e.g. Bansal and Yaron, 2004; Campbell and Cochrane, 1999). A large and sophisticated literature uses this setting to explore the bias and size distortions in estimation of β, treating other parameters, including μ_r, as “nuisance” parameters. Our work differs from this literature in that μ_r is not a nuisance parameter but rather the focus of our study.

A classic motivation for (1) is the tight theoretical connection between realized returns, expected future returns, and the dividend-price ratio (Campbell and Shiller, 1988). For the purpose of this discussion, let r_t denote the log of the return on the stock market index (rather than the equity premium), let p_t

denote the log price, and \(d_t \) the log dividend. It follows from the definition of a return that

\[
 r_{t+1} = \log(e^{p_{t+1} - d_{t+1}} + 1) - (p_t - d_t) + d_{t+1} - d_t.
\]

Applying a Taylor expansion, as in Campbell (2003), implies

\[
 r_{t+1} \approx \text{constant} + k(p_{t+1} - d_{t+1}) + d_{t+1} - p_t
\]

where \(k \in (0, 1) \). Thus, with \(x_t = d_t - p_t \), it follows that

\[
 r_{t+1} - E_t[r_{t+1}] = -k (x_{t+1} - E_t[x_t]) + d_{t+1} - E_t[d_{t+1}].
\] (2)

Equation 2 establishes that, as a matter of accounting, we would expect that shocks to returns and shocks to the dividend-price ratio to be negatively correlated. That is, \(\rho_{uv} < 0 \) in the equations above.

By solving these equations forward, Campbell (2003) further derives the present-value identity

\[
 x_t = \text{constant} + E_t \sum_{j=0}^{\infty} k^j (r_{t+1+j} - \Delta d_{t+1+j}).
\] (3)

Equation 3 provides a second link between the dividend-price ratio and returns, namely, that the dividend-price ratio \(x_t \) should pick up variation in future discount rates \((\beta > 0 \text{ in } (1a))\). Given (3), it follows from (2) that shocks to returns can be expressed as

\[
 r_{t+1} - E_t[r_{t+1}] = (E_{t+1} - E_t) \sum_{j=0}^{\infty} k^j \Delta d_{t+1+j} - (E_{t+1} - E_t) \sum_{j=1}^{\infty} k^j r_{t+1+j}.
\] (4)

There is a longstanding debate about which term in (4), expected future cash flows or discount rates, is responsible for the volatility of the dividend-price ratio. As we will show, our method is agnostic when it comes to this question. What we will require is the first link described in the paragraph above: persistent variation in the dividend-price ratio (which could be driven either
by discount rates for cash flows) that is negatively correlated with realized returns.\footnote{These considerations motivate our focus on the dividend-price ratio throughout this manuscript. Moreover, the economic reasons for our effect are easiest seen in a univariate setting. As an empirical matter, adding variables such as the default spread and term spread to (1) has little effect beyond what we find with the dividend-price ratio.}

2.2 Estimation procedure

We estimate the parameters μ_r, μ_x, β, θ, σ_u^2, σ_v^2 and σ_{uv} by maximum likelihood. The assumption on the shocks implies that, conditional on the first observation x_0, the likelihood function is given by

$$p(r_{1},\ldots,r_{T};x_{1},\ldots,x_{T}|\mu_r,\mu_x,\beta,\theta,\Sigma,x_0) =$$

$$|2\pi\Sigma|^{-\frac{T}{2}} \exp\left\{-\frac{1}{2} \left(\frac{\sigma_v^2}{|\Sigma|} \sum_{t=1}^{T} u_t^2 - 2 \frac{\sigma_{uv}}{|\Sigma|} \sum_{t=1}^{T} u_tv_t + \frac{\sigma_u^2}{|\Sigma|} \sum_{t=1}^{T} v_t^2 \right) \right\}.$$ \hspace{1cm} (5)

Maximizing this likelihood function is equivalent to running ordinary least squares regression (Davidson and MacKinnon, 1993, Chapter 8). Not surprisingly, maximizing the above requires choosing means and predictive coefficients to minimize the sum of squares of u_t and v_t.

This likelihood function, however, ignores the information contained in the initial draw x_0. For this reason, studies have proposed a likelihood function that incorporates the first observation (Box and Tiao, 1973; Poirier, 1978), assuming that it is a draw from the stationary distribution. In our case, the stationary distribution of x_0 is normal with mean μ_x and variance

$$\sigma_x^2 = \frac{\sigma_v^2}{1-\theta^2}.$$
The resulting likelihood function is
\[
p(r_1, \ldots, r_T; x_0, \ldots, x_T | \mu_r, \mu_x, \beta, \theta, \Sigma) = (2\pi \sigma_x^2)^{-\frac{1}{2}} \exp \left\{ -\frac{1}{2} \left(\frac{x_0 - \mu_x}{\sigma_x} \right)^2 \right\} \times |2\pi \Sigma|^{-\frac{T}{2}} \exp \left\{ -\frac{1}{2} \left(\sigma_u^2 \sum_{t=1}^{T} u_t^2 - 2\sigma_{uv} \sum_{t=1}^{T} u_t v_t + \sigma_v^2 \sum_{t=1}^{T} v_t^2 \right) \right\}. \tag{6}
\]

We follow Box and Tiao in referring to (5) as the conditional likelihood and (6) as the exact likelihood. Papers that make use of the exact likelihood in the context of return estimation include Stambaugh (1999) and Wachter and Warusawitharana (2009, 2012), who focus on estimation of the predictive coefficient \(\beta. \) In contrast, van Binsbergen and Koijen (2010), who focus on return predictability in a latent-variable context, use the conditional likelihood function (with the assumption of stationarity). Other previous studies have focused on the effect of the exact likelihood on unit root tests (Elliott, 1999; Müller and Elliott, 2003).

We derive the values of \(\mu_r, \mu_x, \beta, \theta, \sigma_u^2, \sigma_v^2 \) and \(\sigma_{uv} \) that maximize the likelihood (6) by solving a set of first-order conditions. We give closed-form expressions for each maximum likelihood estimate in Appendix A. Our solution amounts to solving a polynomial for the autoregressive coefficient \(\theta, \) after which the solution of every other parameter unravels easily. Because our method does not require numerical optimization, it is computationally expedient. In what follows, we refer to this procedure as maximum likelihood estimation (MLE) even when we examine cases in which it is mis-specified. Depending on the context, we may also refer to it as our benchmark procedure. We focus on a comparison with the most common alternative way of calculating the equity premium, namely the sample average. Note that this sample

\[^5\text{Wachter and Warusawitherana (2009, 2012) use Bayesian methods rather than maximum likelihood.}\]
average would appear as the constant term an OLS regression of returns on a predictor variable that is demeaned using the first \(T - 1 \) observations.

Given that our goal is to estimate \(\mu_r \), which is a parameter determining the marginal distribution of returns, why might it be beneficial to jointly estimate a process for returns and for the dividend-price ratio? Here, we give a general answer to this question, and go further into specifics in Section 4. First, a standard result in econometrics says that maximum likelihood, assuming that the specification is correct, provides the most efficient estimates of the parameters, that is, the estimates with the (weakly) smallest asymptotic standard errors (Amemiya, 1985). Furthermore, in large samples, and assuming no mis-specification, introducing more data makes inference more reliable rather than less. Thus the value of \(\mu_r \) that maximizes the likelihood function (6) should be (asymptotically) more efficient than the sample mean because it is a maximum likelihood estimator and because it incorporates more data than a simpler likelihood function based only on the unconditional distribution of the return \(r_t \).

This reasoning holds asymptotically. Several considerations might be expected to work against this reasoning in small samples. First, one might ask whether maximum likelihood delivers a substantively different, and more reliable, estimator than the sample mean. The asymptotic results say only that maximum likelihood is better (or, technically, at least as good), but the difference may be negligible. Second, even if there is an improvement in asymptotic efficiency for maximum likelihood, it could easily be outweighed in practice by the need to estimate a more complicated system. Finally, estimation of the

\[\text{The distinction between a multivariate and univariate system calls to mind the distinction between Seemingly Unrelated Regression (SUR) and OLS (Zellner, 1962). As will become clear in what follows, our results do not arise from the use of the multivariate system per se (as Zellner shows, there is no efficiency gain to multivariate estimation when the right-hand-side variables are the same). Rather, the gains arise from the multivariate system in combination with the initial term in the exact likelihood function.} \]
equity premium by the sample mean does not require specification of the predictor process. Mis-specification in the process for dividend-price ratio could outweigh the benefits from maximum likelihood. These questions motivate the analysis that follows.

2.3 Data

In what follows, our market return is defined as the monthly value-weighted return on the NYSE/AMEX/NASDAQ available from CRSP. Using returns with and without dividends, we construct a monthly dividend series. We then follow the standard construction for the dividend-price ratio that eliminates seasonality, namely, we divide a monthly dividend series (constructed by summing over dividend payouts over the current month and previous eleven months) by the price.

We also consider returns on portfolios formed on the basis of size and book-to-market. Again we use value-weighted returns with and without dividends to construct a dividend series for each portfolio. We then construct a dividend-price ratio series for each portfolio in the same manner as for the market portfolio. We also consider dollar returns on international and country-level indices. For each of these, we construct a dividend-price ratio series in the same manner described above. International return data are available from Kenneth French’s website. Fama and French (1989) discuss details of the construction of these data.

To form an excess return, we subtract the monthly return on the 30-day Treasury Bill. Given the net return R_t on the equity series and the net Treasury return R_t^f, we take $r_t = R_t - R_t^f$.
3 Results

3.1 Point estimates of the U.S. Equity Premium

Table 1 reports estimates of the parameters of our statistical model given in (1). We report estimates for the 1927-2011 sample and for the 1953-2011 postwar subsample. For comparison, we first report the sample average of excess returns and the sample mean of the dividend-price ratio under the heading “sample”. For the postwar sample, this sample average is 0.433% in monthly terms, or 5.20% per annum. In contrast, the maximum likelihood estimate of the equity premium is 0.322% monthly, or 3.86% per annum. The annualized difference is 133 basis points. Applying MLE to the 1927–2011 sample yields an estimated mean of 4.69% per annum, 88 basis points lower than the sample average.

Maximum likelihood also implies a different estimate for the mean of the dividend-price ratio than the sample average. The difference is relatively small, however; only 4 basis point in the postwar data, an order of magnitude smaller than the difference in the estimate of the equity premium. Nonetheless, the two results are closely related, as we will discuss in what follows.

Maximum likelihood gives values for the predictive coefficient β, the autocorrelation θ, and the variance-covariance matrix Σ. We compare these to values of β and θ from traditional OLS forecasting regressions on a constant and on the lagged dividend-price ratio. We report the results for β and θ, as well as the variance-covariance matrix, in Table 1 under the heading OLS. The estimate of the variance-covariance matrix are nearly identical (by definition, the estimates of σ_u and σ_v might be higher under MLE than under OLS; we find no noticeable difference for σ_v and a negligible difference for σ_u). This is not surprising, as volatility is known to be estimated precisely in monthly data. Estimates for the regression coefficient β are noticeably different. In postwar data, maximum likelihood estimates a lower value of β (0.69 vs. 0.83). This
lower estimate for β is driven by the (slightly) higher estimate for the autocorrelation coefficient θ (deviations of β and θ from their OLS values go in opposite directions, see Stambaugh (1999)). The result, however, is sample-dependent. In the longer sample, the maximum likelihood estimate for β is higher than the OLS value, and naturally the estimate for θ is lower.

Given the controversy surrounding the parameter β, we next ask how the estimation of predictability affects our results. We repeat maximum likelihood estimation, but restrict β to be zero. That is, we consider

$$r_{t+1} - \mu_r = u_{t+1}$$

$$x_{t+1} - \mu_x = \theta(x_t - \mu_x) + v_{t+1},$$

$(7a)$

$(7b)$

In what follows, we refer to this as restricted maximum likelihood, and use the terminology MLE$_0$.7 Table 1 shows, perhaps surprisingly, that the maximum likelihood estimate for the mean return hardly changes. It is in fact slightly lower (0.31% vs. 0.32%) in postwar data, and thus further away from the sample mean. The most notable difference between the two types of estimation is the value for the autocorrelation θ, which is closer to unity under MLE$_0$. Given that the right-hand-side variables of the two equations are no longer the same, it is possible for estimation of the system to yield different results than estimation of each equation separately (Zellner, 1986). Moreover, if the true value of β is equal to zero but the OLS value is positive, realized shocks must be such that the true autocorrelation of x_t is higher than the measured one.

The results from the MLE$_0$ estimation indicate that our finding of a lower mean does not arise from return predictability. In fact, it arises because MLE allows us to incorporate information about the stationary distribution of x_t. This information leads us to conclude that shocks to the dividend-price ratio have been negative on average. The negative contemporaneous correlation between the shocks to returns and to x_t allow this information to be incorpo-

7See Appendix B for more details on our methodology.
rated into the estimation of returns; namely they have been positive. Namely, a substantial portion of the observed equity premium is due to good luck. We discuss this intuition in more detail in Section 4.

3.2 Out-of-sample results

While we are using the system (1) to estimate the unconditional mean μ_r, much of the prior literature focuses on estimating the conditional equity premium, namely the forecast for excess stock returns conditional on x_t. Such forecasts have been found to have inferior out-of-sample performance as compared to the sample average (Bossaerts and Hillion, 1999; Welch and Goyal, 2008). This raises the question of whether our unconditional estimates, coming from a conditional model, can outperform the sample average.

To answer this question, we compute the root-mean-squared-error (RMSE) based on our estimate versus the sample mean. Specifically, for each observation (starting ten years after the start of our sample), we compute both the maximum likelihood estimate and the sample mean using the previous data. We then take the difference between the stock return and this estimate over the following month and square it. Summing these up, dividing by the number of observations, and taking the square root yields the RMSE.

A caveat to this analysis is in order. Given that we are only attempting an unconditional estimate of the mean, the best we could possibly do in terms of RMSE would be the realized unconditional standard deviation of stock returns over the sample. This is what we would find if we could estimate the mean perfectly. That is, the “error” in the RMSE is in fact the variation in stock returns. This variation is quite high, and is likely to be high compared to possible improvements in the unconditional estimate of the mean.

8Alternative means of incorporating information can lead some conditional models to outperform, e.g. Campbell and Thompson (2008) and Kelly and Pruitt (2013).
In fact, we find that unlike conditional mean forecasts that incorporate the dividend-price ratio, our unconditional forecasts yield better out-of-sample performance. The difference in the RMSEs between the sample mean and the MLE is 0.011% per month in the postwar period, or 0.132% per annum. We find very similar results for MLE$_0$. Despite the fact that more data is used, the method even outperforms over the sample period beginning in 1927. These results suggest that our estimates are not only different from the sample mean, they are also more reliable. We return to this point in Section 3.5, when we evaluate efficiency.

3.3 Characteristic-sorted portfolios

An advantage of our method is its ease and wide applicability: it is not specific to the market portfolio. To illustrate this, we highlight two additional applications, one to characteristic-sorted portfolios (this section) and to international stock returns (the following section).

We first consider portfolios formed by sorting stocks by market equity and then forming portfolios based on quintiles (see Fama and French (1992) for more detail). Panel A of Table 2 shows the resulting sample means (Sample), maximum likelihood estimates (MLE), and restricted maximum likelihood estimates (MLE$_0$). The Sample row clearly replicates the classic finding of Fama and French (1992): stocks with low market equity of higher average than stocks with high market equity. The difference is an economically significant 0.16% per month.

The next column re-examines this size finding from the perspective of MLE. We repeat our analysis, using the relevant dividend-price ratio series for each quintile (see Section 2.3) for more information. As for the market portfolio, the use of maximum likelihood significantly reduces the estimated mean on each portfolio. Again, replicating our results for the market portfolio, MLE
and MLE$_0$ consistently lead to lower RMSE in out-of-sample tests across the quintiles.

While the change to the quintiles is all in the same direction (namely, down), the magnitude of the effect differs substantially between the quintiles. The lowest quintile (with the smallest stocks) exhibits the greatest reduction: around 23 basis points. The largest stocks exhibit a reduction of less than one basis point. As the last column shows, the resulting size premium therefore all but disappears (it is a mere 3 basis points) when MLE is used. Running restricted MLE leads to a similar, and in fact slightly larger, reduction.

Panel B of Table 2 shows analogous results for portfolios formed on the ratio of book equity to market equity. Again, the first row shows sample means, and replicates the result of Fama and French (1992) that stocks with a low ratio of book equity to market equity (growth firms) have substantially lower returns than stocks with a high ratio of book equity to market equity (value firms). The difference is 0.32% per month. Repeating MLE and MLE$_0$ (again, we construct a dividend-price ratio series for each quintile), we find a reduction in the mean estimate for all portfolios and an improved RMSE. However, unlike for size, there appears to be no relation between the book-to-market ratio and the magnitude of the reduction, leading the value premium, as estimated over this sample, to be largely unchanged.

3.4 International stock returns

We now ask whether our results are U.S. specific, or appear internationally. Table 3 shows results for regional indices. Given the high correlations between markets, it is perhaps not surprising that our estimation also reveals international data as having been influenced by the same good luck as U.S. data. Moreover, the effects are sometimes stronger because of the shorter data sample.
Specifically, a value-weighted index meant to proxy for the world portfolio falls by nearly half, from 0.36% per month to 0.19% per month. The Asia index falls by even more: 0.26% per month to 0.12%. However, the EU index (with the UK included) is affected by comparatively little: the premium falls from 0.42% to 0.33%.

Table 4 breaks these results down to a country level. For some countries, nearly all the return appears to be due to luck (for example, Japan, Italy, and France). We also find that our measure concludes that “bad luck” has caused some returns to be understated, for example, Denmark and Spain. The findings for both regional and country-level data are consistent across MLE and MLE\(_0\) methods, indicating that these findings are not driven by return predictability.\(^9\)

3.5 Efficiency

So far we have demonstrated that MLE gives different estimates for the equity premium than the sample average. However, the question remains: does it give better estimates? A standard method for addressing this question is to ask whether the procedure reduces estimation noise in finite samples. We focus on our benchmark estimation, namely the equity premium over postwar data.

We simulate 10,000 samples of excess returns and predictor variables, each of length equal to the data. Namely, we simulate from (1), setting parameter values equal to their maximum likelihood estimates, and, for each sample, initializing \(x\) using a draw from the stationary distribution. For each simulated sample, we calculate sample averages, OLS estimates and maximum likelihood estimates, generating a distribution of these estimates over the 10,000 paths.\(^10\)

\(^9\)Given the short data sample available, RMSEs are particularly noisy. However, we find that, on average, MLE has a lower RMSE than the sample mean, both for the regional indices and country-level data.

\(^10\)In every sample, both actual and artificial, we have been able to find a unique solution
Table 5 (Panel A) reports the means, standard deviations, and the 5th, 50th, and 95th percentile values of a simulation calibrated using the postwar sample. While the sample average of the excess return has a standard deviation of 0.089, the maximum likelihood estimate has a standard deviation of only 0.050 (unless stated otherwise, units are in monthly percentage terms). Besides lower standard deviations, the maximum likelihood estimates also have a tighter distribution. For example, the 95th percentile value for the sample mean of returns is 0.47, while the 95th percentile value for the maximum likelihood estimate is 0.40 (in monthly terms, the value of the maximum likelihood estimate is 0.32). The 5th percentile is 0.18 for the sample average but 0.24 for the maximum likelihood estimate.

Table 5 also shows that the maximum likelihood estimate of the mean of the predictor has a lower standard deviation and tighter confidence intervals than the sample average, though the difference is much less pronounced. Similarly, the maximum likelihood estimate of the regression coefficient β also has a smaller standard deviation and confidence intervals than the OLS estimate, though again, the differences for these parameters between MLE and OLS are not large. The results in this table show that, in terms of the parameters of this system at least, the equity premium is unique in the improvement offered by maximum likelihood. This is in part due to the fact that estimation of first moments is more difficult than that of second moments in the time series (Merton, 1980). However, the result that the mean of returns is affected more than the mean of the predictor shows that this is not all that is going on. We to the first order conditions such that θ is real and between -1 and 1. Given this value for θ, there is a unique solution for the other parameters. See Appendix A for further discussion of the polynomial for θ.

\[\text{Table A.1 shows an economically significant decline in standard deviation for the long sample as well: the standard deviation falls from 0.080 to 0.058. It is noteworthy that our results still hold in the longer sample, indicating that our method has value even when there is a large amount of data available to estimate the sample mean.}\]
return to this issue in Section 4.

Figure 1 provides another view of the difference between the sample mean and the maximum likelihood estimate of the equity premium. The solid line shows the probability density of the maximum likelihood estimates while the dashed line shows the probability density of the sample mean.12 The data generating process is calibrated to the postwar period, assuming the parameters estimated using maximum likelihood (unless otherwise stated, all simulations that follow assume this calibration). The distribution of the maximum likelihood estimate is visibly more concentrated around the true value of the equity premium, and the tails of this distribution fall well under the tails of the distribution of sample means.13 For the remainder of the paper, we refer to this data generating process, namely (1) with parameters given by maximum likelihood estimates from the postwar sample, as our benchmark case. Unless otherwise specified, we simulate samples of length equal to the postwar sample in the data (707 months).

It is well known that OLS estimates of predictive coefficients can be biased (Stambaugh, 1999). Panel A of Table 5 replicates this result: the “true” value of the predictive coefficient β in the simulated data is 0.69, however, the mean OLS value from the simulated samples is 1.28. That is, OLS estimates the predictive coefficient to be much higher than the true value, and thus the predictive relation to be stronger. The bias in the predictive coefficient is associated with bias in the autoregressive coefficient on the dividend-price ratio. The true value of θ in the simulated data is 0.993, but the mean OLS value is 0.987. Maximum likelihood reduces the bias somewhat: the mean

12Both densities are computed non-parametrically and smoothed by a normal kernel.

13In Table 5, we used coefficients estimated by maximum likelihood to evaluate whether MLE is more efficient than OLS. Perhaps it is not surprising that MLE delivers better estimates, if we use the maximum likelihood estimates themselves in the simulation. However, Table A.3 shows nearly identical results from setting the parameters equal to their sample means and OLS estimates. We perform more extensive robustness checks in Section 5.
maximum likelihood estimate of β is 1.24 as opposed to 1.28, but it does not eliminate it. Note that the estimates of the equity premium are not biased; the mean for both maximum likelihood and the sample average is close to the population value.

These results suggest that 0.69 is probably not a good estimate of β, and likewise, 0.993 is likely not to be a good estimate of θ. Does the superior performance of maximum likelihood continue to hold if these estimates are corrected for bias? We turn to this question next. We repeat the exercise described above, but instead of using the maximum likelihood estimates, we adjust the values of β and θ so that the mean computed across the simulated samples matches the observed value in the data. The results are given in Panel B. This adjustment lowers β and increases θ, but does not change the maximum likelihood estimate of the equity premium. If anything, adjusting for biases shows that we are being conservative in how much more efficient our method of estimating the equity premium is in comparison to using the sample average. The sample average has a standard deviation of 0.138, while the standard deviation of the maximum likelihood estimate if 0.072. Namely, after accounting for biases, maximum likelihood gives an equity premium estimate with standard deviation that is about half of the standard deviation of the sample mean excess return.14 We will refer to this as our benchmark case with bias-correction.

14Table A.2 shows results under bias correction and fat-tailed shocks. Our results are virtually unchanged. Table A.4 shows results for MLE_0; the finite-sample properties of this estimator are very similar to those of MLE.
4 Discussion

4.1 Source of the gain in efficiency

What determines the difference between the maximum likelihood estimate of the equity premium and the sample average of excess returns? Let $\hat{\mu}_r$ denote the maximum likelihood estimate of the equity premium and $\hat{\mu}_x$ the maximum likelihood estimate of the mean of the dividend-price ratio. Given these estimates, we can define a time series of shocks \hat{u}_t and \hat{v}_t as follows:

\[\hat{u}_t = r_t - \hat{\mu}_r - \hat{\beta}(x_{t-1} - \hat{\mu}_x) \]
\[\hat{v}_t = x_t - \hat{\mu}_x - \hat{\theta}(x_{t-1} - \hat{\mu}_x). \]

By definition, then,

\[\hat{\mu}_r = \frac{1}{T} \sum_{t=1}^{T} r_t - \frac{1}{T} \sum_{t=1}^{T} \hat{u}_t - \hat{\beta} \frac{1}{T} \sum_{t=1}^{T} (x_{t-1} - \hat{\mu}_x). \]

As (9) shows, there are two reasons why the maximum likelihood estimate of the mean, $\hat{\mu}_r$, might differ from the sample mean $\frac{1}{T} \sum_{t=1}^{T} r_t$. The first is that the shocks \hat{u}_t may not average to zero over the sample. The second, which depends on return predictability, is that the average value of x_t might differ from $\hat{\mu}_x$.

It turns out that only the first of these effects is quantitatively important for our sample. For the period January 1953 to December 2001, the sample average $\frac{1}{T} \sum_{t=1}^{T} \hat{u}_t$ is equal to 0.1382% per month, while $\hat{\beta} \frac{1}{T} \sum_{t=1}^{T} (x_{t-1} - \hat{\mu}_x)$ is −0.0278% per month. The difference in the maximum likelihood estimate and the sample mean thus ultimately comes down to the interpretation of the shocks \hat{u}_t. To understand the behavior of these shocks, we will argue it is necessary to understand the behavior of the shocks \hat{v}_t. And, to understand \hat{u}_t, it is necessary to understand why the maximum likelihood estimate of the mean of x_t differs from the sample mean.
4.1.1 Estimation of the mean of the predictor variable

To build intuition, we consider a simpler problem in which the true value of the autocorrelation coefficient θ is known. We show in Appendix A that the first-order condition in the exact likelihood function with respect to μ_x implies

$$\hat{\mu}_x = \frac{(1 + \theta)}{1 + \theta + (1 - \theta)T} x_0 + \frac{1}{(1 + \theta) + (1 - \theta)T} \sum_{t=1}^{T} (x_t - \theta x_{t-1}). \tag{10}$$

We can rearrange (1b) as follows:

$$x_{t+1} - \theta x_t = (1 - \theta) \mu_x + v_{t+1}.$$

Summing over t and solving for μ_x implies that

$$\mu_x = \frac{1}{1 - \theta} \frac{1}{T} \sum_{t=1}^{T} (x_t - \theta x_{t-1}) - \frac{1}{T(1 - \theta)} \sum_{t=1}^{T} v_t, \tag{11}$$

where the shocks v_t are defined using the mean μ_x and the autocorrelation θ.

Consider the conditional maximum likelihood estimate of μ_x, the estimate that arises from maximizing the conditional likelihood (5). We will call this $\hat{\mu}_x^c$. Note that this is also equal to the OLS estimate of μ_x, which arises from estimating the intercept $(1 - \theta) \mu_x$ in the regression equation

$$x_{t+1} = (1 - \theta) \mu_x + \theta x_t + v_{t+1}$$

and dividing by $1 - \theta$. The conditional maximum likelihood estimate of μ_x is determined by the requirement that the shocks v_t average to zero. Therefore, it follows from (11) that

$$\hat{\mu}_x^c = \frac{1}{1 - \theta} \frac{1}{T} \sum_{t=1}^{T} (x_t - \theta x_{t-1}).$$

Substituting back into (10) implies

$$\hat{\mu}_x = \frac{(1 + \theta)}{1 + \theta + (1 - \theta)T} x_0 + \frac{(1 - \theta)T}{(1 + \theta) + (1 - \theta)T} \hat{\mu}_x^c.$$
Multiplying and dividing by $1 - \theta$ implies a more intuitive formula:

$$
\hat{\mu}_x = \frac{1 - \theta^2}{1 - \theta^2 + (1 - \theta)^2T} x_0 + \frac{(1 - \theta)^2 T}{1 - \theta^2 + (1 - \theta)^2T} \hat{\mu}_c.
$$

Equation 12 shows that the exact maximum likelihood estimate is a weighted average of the first observation and the conditional maximum likelihood estimate. The weights are determined by the precision of each estimate. Recall that

$$
x_0 \sim \mathcal{N}\left(0, \frac{\sigma_v^2}{1 - \theta^2}\right).
$$

Also, because the shocks v_t are independent, we have that

$$
\frac{1}{T(1 - \theta)} \sum_{t=1}^{T} v_t \sim \mathcal{N}\left(0, \frac{\sigma_v^2}{T(1 - \theta)^2}\right).
$$

Therefore $T(1 - \theta)^2$ can be viewed as proportional to the precision of the conditional maximum likelihood estimate, just as $1 - \theta^2$ can be viewed as proportional to the precision of x_0. Note that when $\theta = 0$, there is no persistence and the weight on x_0 is $1/(T + 1)$, its appropriate weight if all the observations were independent. At the other extreme, as θ approaches 1, less and less information is conveyed by the shocks v_t and the “estimate” of $\hat{\mu}_x$ approaches x_0.\(^{15}\)

While (12) rests on the assumption that θ is known, we can nevertheless use it to qualitatively understand the effect of including the first observation. Because of the information contained in x_0, we can conclude that the last T observations of the predictor variable are not entirely representative of values of the predictor variable in population. Namely, the values of the predictor variable for the last T observations are lower, on average, than they would be.

\(^{15}\)We cannot use (12) to obtain our maximum likelihood estimate because θ is not known (more precisely, the conditional and exact maximum likelihood estimates of θ will differ). Because of the need to estimate θ, the conditional likelihood estimator for μ_x is much less efficient than the exact likelihood estimator; a fact that is not apparent from these equations.
in a representative sample. It follows that the predictor variable must have declined over the sample period. Thus the shocks \(v_t \) do not average to zero, as OLS (conditional maximum likelihood) would imply, but rather, they average to a negative value.

Figure 2 shows the historical time series of the dividend-price ratio, with the starting value in bold, and a horizontal line representing the mean. Given the appearance of this figure, the conclusion that the dividend-price ratio has been subject to shocks that are negative on average does not seem surprising.

4.1.2 Estimation of the equity premium

We now return to the problem of estimating the equity premium. Equation 9 shows that the average shock \(\frac{1}{T} \sum_{t=1}^{T} \hat{u}_t \) plays an important role in explaining the difference between the maximum likelihood estimate of the equity premium and the sample mean return. In traditional OLS estimation, these shocks must, by definition, average to zero. When the shocks are computed using the (exact) maximum likelihood estimate, however, they may not.

To understand the properties of the average shocks to returns, we note that the first-order condition for estimation of \(\hat{\mu}_r \) implies

\[
\frac{1}{T} \sum_{t=1}^{T} \hat{u}_t = \frac{\hat{\sigma}_{uv}}{\hat{\sigma}_v^2} \frac{1}{T} \sum_{t=1}^{T} \hat{v}_t.
\]

(13)

This is analogous to a result of Stambaugh (1999), in which the averages of the error terms are replaced by the deviation of \(\beta \) and of \(\theta \) from the true means. Equation 13 implies a connection between the average value of the shocks to the predictor variable and the average value of the shocks to returns. As the previous section shows, MLE implies that the average shock to the predictor variable is negative in our sample. Because shocks to returns are negatively correlated with shocks to the predictor variable, the average shock to returns is positive.\(^{16}\) Note that this result operates purely through the correlation of

\(^{16}\)This point is related to the result that longer time series can help estimate parameters
the shocks, and is not related to predictability.\footnote{Ultimately, however, there may be a connection in that variation in the equity premium is the main driver of variation in the dividend-price ratio and thus the reason why the shocks are negatively correlated.}

Based on this intuition, we can label the terms in (9) as follows:

\[
\hat{\mu}_r = \frac{1}{T} \sum_{t=1}^{T} r_t - \frac{1}{T} \sum_{t=1}^{T} \hat{u}_t - \hat{\beta} \frac{1}{T} \sum_{t=1}^{T} (x_{t-1} - \hat{\mu}_x).
\]

\[\text{Correlated shock term} \quad \text{Predictability term}\]

As discussed above, the correlated shock term accounts for more than 100% of the difference between the sample mean and the maximum likelihood estimate of the equity premium, and is an order of magnitude larger than the predictability term. Our argument above can be extended to show why these terms tend to have opposite signs. When the correlated shock term is positive (as is the case in our data), shocks to the dividend-price ratio must be negative over the sample. The estimated mean of the predictor variable will therefore be above the sample mean, and the predictability term will be negative. Figure A.2 shows that indeed these terms tend to have opposite signs in the simulated data.\footnote{There is a small opposing effect on the sign of the predictability term. Note that the sample mean in this term only sums over the first \(T - 1\) observations. If the predictor has been falling over the sample, this partial sum will lie above the sample mean, though probably below the maximum likelihood estimate of the mean.}

This section has explained the difference between the sample mean and the maximum likelihood estimate of the equity premium by appealing to the difference between the sample mean and the maximum likelihood estimate of the mean of the predictor variable. However, Table 1 shows that the difference determined by shorter time series, as long as the shocks are correlated (Stambaugh, 1997; Singleton, 2006; Lynch and Wachter, 2013). Here, the time series for the predictor is slightly longer than the time series of the return. Despite the small difference in the lengths of the data, the structure of the problem implies that the effect of including the full predictor variable series is very strong.
ence between the sample mean of excess returns and the maximum likelihood estimate of the equity premium is many times that of the difference between the two estimates of the mean of the predictor variable. Moreover, Table 5 shows that the difference in efficiency for returns is also much greater than the difference in efficiency for the predictor variable. How is it then that the difference in the estimates for the mean of the predictor variable could be driving the results? Equation 13 offers an explanation. Shocks to returns are far more volatile than shocks to the predictor variable. The term $\hat{\sigma}_{uv}/\hat{\sigma}^2_v$ is about -100 in the data. What seems like only a small increase in information concerning the shocks to the predictor variable translates to quite a lot of information concerning returns.

4.1.3 Conditional maximum likelihood

In the previous sections, we compare the results from maximizing the exact likelihood function (6) with sample means. Another point of comparison is the results of maximizing the conditional likelihood function (5). Conditional maximum likelihood gives identical results to OLS for the regression parameters β, θ, and the variance-covariance matrix Σ. The conditional MLEs of μ_r and μ_x, however, do not equal the corresponding sample means.

In our application, this difference turns out to be substantial. The conditional maximum likelihood estimate for the mean of the log dividend-price ratio is -3.67. This is below the sample mean of -3.55. In contrast, the exact maximum likelihood estimate (reported in Table 1) is -3.50. This wedge between the conditional maximum likelihood estimate and the sample mean also creates a wedge between the conditional maximum likelihood estimate of μ_r and the corresponding sample mean, but in a very different way than for exact maximum likelihood estimation.

To understand the mechanics of conditional MLE, consider (14), which must hold for any estimator of μ_r because it relies only on (1a). A moment
condition of conditional maximum likelihood is that the shocks must average to zero (recall the equivalence with OLS); thus the correlated shock term in (14) disappears. The entire difference between the conditional MLE $\hat{\mu}_c^r$ and the sample mean of returns is therefore due to return predictability. Because the conditional MLE $\hat{\mu}_c^r$ is far below the sample mean, the predictability term in (14) is positive and large. It follows that, like its exact counterpart, conditional MLE $\hat{\mu}_r^c$ is below the sample mean (it is equal to 0.31 in postwar data). Intuitively, if the dividend-price ratio has been abnormally high in the sample, and if returns have a component that is based on this value, then returns, too, will have been abnormally high.

It is instructive to compare these properties with exact maximum likelihood. First, the finding of the lower equity premium depends entirely on stock return predictability; bias-correcting β substantially reduces this result and restricting β to equal zero eliminates it. In contrast, for exact MLE, the effect of predictability is small and in the opposite direction. The source of this distinction is the difference in the estimate of μ_x. Exact maximum likelihood uses information from the level of the series. Conditional maximum likelihood, however, solves

$$\hat{\mu}_x^c = \frac{1}{1 - \hat{\theta}^c} \sum_{t=1}^{T} (x_t - \hat{\theta}^c x_{t-1}),$$

for $\hat{\theta}^c < 1$; otherwise $\hat{\mu}_x^c$ is undefined. Conditional maximum likelihood attempts to identify the mean of x_t from its drift over the course of the sample. It divides these tiny increments by another tiny value: $1 - \hat{\theta}^c$. The resulting estimates of μ_x are highly unstable; in fact, because $\hat{\theta}^c$ is greater than one in some sample paths, the finite-sample performance of $\hat{\mu}_x^c$, and therefore $\hat{\mu}_r^c$, are impossible to evaluate.\(^{19}\)

\(^{19}\)Even if we disregard the problematic draws, the finite-sample variance of $\hat{\mu}_x^c$ is several times that of the exact maximum likelihood estimate and the sample mean. One way around the stationarity problem is to force θ to be less than 1. This is most easily accomplished in

25
4.2 Properties of the maximum likelihood estimator

In this section we investigate the properties of the exact maximum likelihood estimator, and, in particular, how the variance of the estimator depends on the persistence of the predictor variable, the amount of predictability, and the correlation between the shocks to the predictor and the shocks to returns.

4.2.1 Variance of the estimator as a function of the persistence

The theoretical discussion in the previous section suggests that the persistence θ is an important determinant of the increase in efficiency from maximum likelihood. Figure 3 shows the standard deviation of estimators of the mean of the predictor variable (μ_x) in Panel A and of estimators of the equity premium (μ_r) in Panel B as functions of θ. Other parameters are set equal to their benchmark values, adjusted for bias in the case of β. For each value of θ, we simulate 10,000 samples.

Panel A shows that the standard deviation of both the sample mean and MLE of μ_x are increasing in θ. This is not surprising; holding all else equal, an increase in the persistence of θ makes the observations on the predictor variable more alike, thus decreasing their information content. The standard deviation of the sample mean is larger than the standard deviation of the maximum likelihood estimate, indicating that our results above do not depend on a specific value of θ. Moreover, the improvement in efficiency increases as θ grows larger. Consistent with the results in Table 5, the size of the improvement is small.

Panel B shows the standard deviation of estimators of μ_r. In contrast to the case of μ_x, the relation between the standard deviation and θ is non-

Wachter and Warusawitharana (2015) discuss the extreme instability of conditional estimates of μ_x and μ_r in a Bayesian setting.
monotonic for both the sample mean of excess returns and the maximum likelihood estimate of the equity premium. For values of θ below about 0.998, the standard deviations of the estimates are decreasing in θ, while for values of θ above this number they are increasing. This result is surprising given the result in Panel A. As θ increases, any given sample contains less information about the predictor variable, and thus about returns. One might expect that the standard deviation of estimators of the mean return would follow the same pattern as in Panel A. Indeed, this is the case for part of the parameter space, namely when the persistence of the predictor variable is very close to one.

However, an increase in θ has two opposing effects on the variance of the estimators of the equity premium. On the one hand, an increase in θ decreases the information content of the predictor variable series, and thus of the return series, as described above. On the other hand, for a given β, an increase in θ raises the R^2 in the return regression. Because innovations to the predictable part of returns are negatively correlated with innovations to the unpredictable part of returns, an increase in θ increases mean reversion (this can be seen directly from the expressions for the autocovariance of returns in Appendix E).

This increase in mean reversion has consequences for estimation of the equity premium. Intuitively, if in a given sample there is a sequence of unusually high returns, this will tend to be followed by unusually low returns. Thus a sequence of unusually high observations or unusually low observations are less likely to dominate in any given sample, and so the sample average will be more stable than it would be if returns were iid (see Appendix F). Because the sample mean is simply the scaled long-horizon return, our result is related to the fact that mean reversion reduces the variability of long-horizon returns relative to short-horizon returns. For θ sufficiently large, the reduction in information from the greater autocorrelation does dominate the effect of mean-reversion, and the variance of both the sample mean and the maximum likelihood estimate increase. In the limit as θ approaches one, returns
become non-stationary and the sample mean has infinite variance.

Panel B of Figure 3 also shows that MLE is more efficient than the sample mean for any value of θ. The benefit of using maximum likelihood increases with θ. Indeed, while the standard deviation of the sample mean falls from 0.14 to 0.12 as θ goes from 0.980 to 0.995, the maximum likelihood estimate falls further, from 0.14 to 0.06. It appears that the benefits from mean reversion and from maximum likelihood reinforce each other.

4.2.2 The role of predictability and of correlated shocks

The previous section established the importance of the persistence of the dividend-price ratio in the precision gains from maximum likelihood. In this section we focus on the two aspects of joint return and dividend-price ratio process that affect how information about the distribution of the dividend-price ratio affects inference concerning returns: the predictive coefficient β and the correlation of the shocks ρ_{uv}.

We first consider the role of predictability. In the historical sample, predictability works against us in finding a lower equity premium. Indeed, as (9) shows, the difference between the maximum likelihood estimator can be decomposed into a term originating from non-zero shocks, and a term originating from predictability. More than 100% of our result comes from the correlated shock term; in other words the predictability term works against us. Without the predictability term, our equity premium would be 0.29% per month rather than 0.32%.

This result is not surprising given that the intuition in Section 4.1 points to negative ρ_{uv} rather than positive β as the source of our gains. If this is correct, we should be able to document efficiency gains in simulations where the predictive coefficient is reduced or eliminated entirely. Indeed, Table 5 shows that if we bias-correct β and θ, the efficiency gains are even larger than when parameters are set to the maximum likelihood estimates. In this section,
we take this analysis a step further, and set β exactly to zero. We repeat the exercise from Section 4.2.1, calculating the standard deviation of the estimates across different values of θ. When we repeat the estimation, we do not impose $\beta = 0$, which will work against us in finding efficiency gains.

Panel C of Figure 3 shows the results. First, because returns are iid, the standard deviation of the sample mean is independent of θ and is a horizontal line on the graph. The standard deviation of the maximum likelihood estimate is, however, decreasing in θ. As θ increases, the information contained in the first data point carries more weight. Thus the estimator is better able to identify the average sign of the shocks to the dividend-price ratio and thus to expected returns. Consider, for example, an autocorrelation of 0.998 (the bias-corrected value in Panel B of Table 5). As Panel C shows, the standard deviation of the MLE estimator is 0.12 while the standard deviation of the sample mean is 0.17, or nearly 50% greater. Thus neither the reduction in the equity premium that we observe in the historical sample, nor the efficiency of the maximum likelihood estimator depend on the predictability of returns.

So far we have shown how changes in the persistence, and changes in the predictability of returns impact the efficiency of our estimates. In particular, the efficiency of our estimates does not depend on return predictability. On what, then, does it depend? The above discussion suggests that it depends, critically, on the correlation between shocks to the dividend-price ratio and to returns, because this is how the information from the dividend-price ratio regression finds its way into the return regression. We look at this issue specifically in Panel D of Figure 3, where we set the correlation between the shocks to equal zero. In this figure, returns are no longer iid, which explains why the standard deviation of the sample mean estimate rises as θ increases. On other hand, though there is return predictability, the lack of correlation implies that there is no mean reversion in returns, so the increase is monotonic, as opposed
to what we saw in Panel B. Most importantly, this figure shows zero, or negligible, efficiency improvements from MLE. In fact, for all but extremely high values of θ, MLE performs very slightly worse than the sample mean, perhaps because it relies on biased estimates of predictability. This exercise has little empirical relevance as the correlation between returns and the dividend-price ratio is reliably estimated to be strongly negative. Nonetheless, it is a stark illustration of the conditions under which our efficiency gains break down.

5 Estimation under Alternative Data Generating Processes

This section shows the applicability of our procedure under alternative data generating processes. Section 5.1 shows how to adapt our procedure to capture conditional heteroskedasticity in returns and in the predictor variable. Section 5.1 and Section 5.2 consider the performance of our benchmark procedure when confronted with data generating processes that depart from the stationary homoskedastic case in important ways. Our aim is to map out cases where mis-specification overwhmels the gains from introducing data on the dividend-price ratio, and when it does not. Finally, Section 5.3 analysis the consequences of structural breaks for our results.

5.1 Conditional Heteroskedasticity

It is well known that stock returns exhibit time-varying volatility (French, Schwert, and Stambaugh, 1987; Schwert, 1989; Bollerslev, Chou, and Kroner, 2020). However, if the equity premium were indeed varying over time, one would expect return innovations to be negatively correlated with realized returns (Pastor and Stambaugh, 2009).

Though the data generating process assumes bias-corrected estimates, MLE will still find values of β that are high relative to the values specified in the simulation. This will hurt its finite-sample performance.
1992). In this section we generalize our estimation method to take this into account. Because of our focus on maximum likelihood, a natural approach is to use the GARCH model of Bollerslev (1986). We will refer to this method as GARCH-MLE, and, for consistency, continue to refer to the method described in Section 2 as MLE. We ask three questions: (1) Do we still find a lower equity premium when we apply GARCH-MLE to the data? (2) Is GARCH-MLE efficient in small samples? (3) If we simulate data characterized by time-varying volatility and apply (homoskedastic, and therefore mis-specified) MLE, do we still find efficiency gains?

While the traditional GARCH model is typically applied to return data alone, our method closely relies on estimation of a bivariate process with correlated shocks. Allowing for time-varying volatility of returns but not of the dividend-price ratio seems artificial and unnecessarily restrictive. Following Bollerslev (1990), who estimates a GARCH model on exchange rates, we consider two correlated GARCH(1,1) processes. We assume

\[r_{t+1} - \mu_r = \beta(x_t - \mu_x) + u_{t+1} \]
\[x_{t+1} - \mu_x = \theta(x_t - \mu_x) + v_{t+1}, \]

where, conditional on information available up to and including time \(t \),

\[
\begin{bmatrix}
 u_{t+1} \\
 v_{t+1}
\end{bmatrix} \sim N \left(0, \begin{bmatrix}
 \sigma^2_{u,t+1} & \rho_{uv}\sigma_{u,t+1}\sigma_{v,t+1} \\
 \rho_{uv}\sigma_{u,t+1}\sigma_{v,t+1} & \sigma^2_{v,t+1}
\end{bmatrix} \right),
\]

with

\[
\sigma^2_{u,t+1} = \omega_u + \alpha_u u^2_t + \delta_u \sigma^2_{u,t},
\]
\[
\sigma^2_{v,t+1} = \omega_v + \alpha_v v^2_t + \delta_v \sigma^2_{v,t}.
\]

We assume initial conditions

\[
\sigma^2_{u,1} = \frac{\omega_u}{1 - \alpha_u - \delta_u},
\]
\[
\sigma^2_{v,1} = \frac{\omega_v}{1 - \alpha_v - \delta_v}.
\]
Note that $\frac{\omega_u}{1 - \alpha_u - \delta_u}$ and $\frac{\omega_v}{1 - \alpha_v - \delta_v}$ represent the unconditional means of $\sigma^2_{u,t}$ and $\sigma^2_{v,t}$ respectively.\(^{22}\) The bivariate GARCH(1,1) log-likelihood function is therefore

\[
l(r_1, \ldots, r_T; x_1, \ldots, x_T | \mu_r, \mu_x, \beta, \theta, \omega_u, \alpha_u, \delta_u, \alpha_v, \delta_v, \rho_{uv}, x_0) = \sum_{t=1}^T \log \left[(1 - \rho_{uv}^2)\sigma_{u,t}^2 \sigma_{v,t}^2\right] + \frac{1}{1 - \rho_{uv}^2} \sum_{t=2}^T \left(\frac{u_t^2}{\sigma_{u,t}^2} + \frac{v_t^2}{\sigma_{v,t}^2} + 2\rho_{uv} \frac{u_t v_t}{\sqrt{\sigma_{u,t}^2 \sigma_{v,t}^2}}\right),
\]

(16)

This likelihood function conditions on x_0, and thus is the GARCH analogue of the conditional maximum likelihood function (5). However, unlike in the homoskedastic case, there is no analytical expression for the unconditional distribution of x_0 (Diebold and Schuermann, 2000).\(^{23}\) For this reason, we adopt a two-stage method that allows us both to estimate conditional heteroskedasticity, and to take into account the initial observation on the dividend-price ratio. While this represents a departure from “pure” maximum likelihood, it nonetheless allows us to consistently and efficiently estimate parameters.

We proceed as follows. First, we maximize the function (16) across the full

\(^{22}\)Applying the law of iterated expectations, we find $E u_t^2 = E[E_{t-1} u_t^2] = E \sigma_{u,t}^2$. The result for σ_u follows under stationarity by taking the expectation of the left and right hand sides of (15d), and the same argument works for σ_v.

\(^{23}\)In principle we could capture this distribution by simulating from the conditional bivariate GARCH(1,1) over a long-period of time. To integrate this method into our optimization would not be easy however; for each function evaluation in our numerical optimization, we would need to simulate this distribution with enough accuracy to capture subtle effects of, say, the autoregressive coefficient θ along with the GARCH parameters. This would be challenging given that the parameter range of interest implies that x_t is highly persistent. We would then need to repeat the procedure thousands of times in our Monte Carlo simulations. It is hard to see the benefits (in terms of finite-sample efficiency gains) that this procedure would have over the more computationally feasible procedure that we do adopt.
set of parameters. We then maximize

\[
l(r_1, \ldots, r_T; x_0, \ldots, x_T | \mu_r, \mu_x, \beta, \theta, \omega_u, \alpha_u, \delta_u, \omega_v, \alpha_v, \delta_v, \rho_{uv}) =
\log \left(\frac{\omega_v}{(1 - \alpha_v - \delta_v)(1 - \theta^2)} \right) + \frac{(x_0 - \mu_x)^2}{\omega_v} (1 - \alpha_v - \delta_v)(1 - \theta^2)
\]

\[
+ \sum_{t=1}^{T} \log \left[(1 - \rho_{uv}^2) \sigma_{u,t}^2 \sigma_{v,t}^2 \right] + \frac{1}{1 - \rho_{uv}^2} \sum_{t=1}^{T} \left(\frac{u_{t}^2}{\sigma_{u,t}^2} + 2 \rho_{uv} \frac{u_t v_t}{\sqrt{\sigma_{u,t}^2 \sigma_{v,t}^2}} + \frac{v_{t}^2}{\sigma_{v,t}^2} \right),
\]

(17)

where we fix the estimates of \(\omega_u, \alpha_u, \delta_u, \omega_v, \alpha_v, \delta_v \) and \(\rho_{uv} \) from the first stage, and obtain new estimates of \(\mu_r, \mu_x, \beta \) and \(\theta \). The first two terms on the right hand side of (17) represents a density for the initial observation \(x_0 \). This density, which is normal with standard deviation \(E[\sigma_{v,t}]/(1 - \theta^2) \), represents an approximation to the true unknown density. By performing the estimation in two stages, we can make sure that the mis-specification in the second stage doesn’t contaminate our GARCH estimation. Indeed, the GARCH estimation we perform in the first stage is the standard one in the literature. As mentioned above, we refer to this procedure as GARCH-MLE.

We report estimates in Table A.6. Similarly to previous studies (e.g. French, Schwert, and Stambaugh (1987)), we find that return volatility is moderately persistent, with a monthly autocorrelation of 0.72. Volatility of the dividend-price ratio is somewhat more persistent, with a monthly autocorrelation of 0.89. The average conditional volatilities of \(u_t \) and \(v_t \) are nearly identical to the unconditional volatilities in our benchmark case. Most importantly, given the focus of this study, the average equity premium is very close to what we found in our benchmark estimation: 0.335% per month, as opposed to 0.322%. The sample mean is 0.433% per month. Thus the finding of a lower equity premium is robust to time-varying volatility, which answers the first question we pose in the introduction to this section.

We now move on to the question of efficiency. We simulate 10,000 samples
from the process (15) using parameter values estimated by GARCH-MLE. We consider the performance of OLS (where we report sample means for the equity premium and the dividend-price ratio), the benchmark MLE procedure, and GARCH-MLE. Table 6 reports the means, standard deviations, and the 5th, 50th, and 95th percentiles of each parameter estimate. We find that both MLE and GARCH-MLE are more efficient than the sample mean, and they are both about as efficient as each other. The efficiency gains are similar to what we see when the data generating process is homoskedastic (Table 5). We conclude that our estimation works well in the presence of time-varying volatility, both when we consider a method that explicitly takes time-varying volatility into account, and when we consider a (mis-specified) method that does not.

5.2 Non-stationarities in the dividend-price ratio

The previous section shows that our method works equally well for a bivariate GARCH(1,1) model as for our benchmark homoskedastic model. This may be because our method essentially translates information from long-run changes in the dividend-price ratio to information about returns. These long-run changes are sufficiently large that short-term volatility fluctuations do not alter their interpretations. Here, and in the sections that follow, we consider alternative models that have the potential to dramatically alter the interpretation of the time series of the dividend-price ratio, and thus the model’s results for the equity premium. As in Section 4.2.2 where we set the correlation between shocks to the dividend-yield and returns to be zero, our aim is to “turn off” the gains from our method. However, in that case, a zero correlation was clearly counterfactual. Here, we consider models which, at least on a purely statistical

\[\text{For the volatility parameters } \sigma_u \text{ and } \sigma_v, \text{ we report the square root of the unconditional means of } \sigma_{u,t}^2 \text{ and } \sigma_{v,t}^2 \text{ for GARCH-MLE.} \]
level, could account for the data. To focus on our main mechanism, we consider homoskedastic returns; however, the results of the previous section strongly suggest that these findings are also robust to conditional heteroskedasticity.

Given the observed high autocorrelation of the dividend-price ratio, a natural extension is to consider a random walk.\(^{25}\) One immediate question that we face in assuming a random walk is the role of the predictive coefficient \(\beta\). If the dividend-price ratio were to follow a random walk, and if \(\beta\) were nonzero, then the equity premium would be undefined. That is, excess stock returns, which would be non-stationary in this case, would not possess an unconditional mean. Any method, including the sample mean and our maximum likelihood procedure would give meaningless results. For this reason, when we consider a non-stationary dividend-price ratio (in this and in the subsequent section), we assume \(\beta = 0\).

We therefore simulate 10,000 artificial samples from the process

\[
\begin{align*}
 r_{t+1} - \mu_r &= u_{t+1} \\
 x_{t+1} &= x_t + v_{t+1}.
\end{align*}
\]

For each sample, we then apply our benchmark maximum likelihood procedure, as well as OLS regression.\(^{26}\) For parameters \(\mu_r\) and \(\mu_x\) (this is a parameter in the estimation, not in the data generating process), we compare our maximum likelihood results with the sample means. Our benchmark maximum likelihood procedure is mis-specified because it assumes stationarity and al-

\(^{25}\)See for example, Campbell (2006) and Cochrane (2008).

\(^{26}\)In our previous simulations, we initialize \(x_0\) using a draw from the stationary distribution. Clearly this is not possible in this case. We report simulation results with \(x_0\) set equal to its value in the data, but we have obtained identical results from randomizing over \(x_0\). Other parameters are as follows: \(\mu_r\) equals to its benchmark maximum likelihood estimate, \(\sigma_u\) the standard deviation of returns, \(\sigma_v\) the standard deviation of differences in the log dividend-price ratio, and \(\rho_{uv}\) to the correlation between returns and differences in the log dividend-price ratio.
allows for predictability. Of course assumptions of OLS are also violated, as discussed above.

Table A.7 in the Online Appendix shows the results. Maximum likelihood still estimates the equity premium without bias, as shown by the fact that the average estimate of μ_r is exactly equal to the true value from the simulation. Besides correctly estimating the equity premium, maximum likelihood leads to significant gains in efficiency, even relative to our benchmark case. The standard deviation of the maximum likelihood estimate is only 30% of the standard deviation of the sample mean. The spread between the fifth and ninety-fifth percentile also falls by a factor greater than three. In this case, our estimation method does not pick up the non-stationarity in the dividend-price ratio (nor does OLS). However, the intuition of Section 4 still holds in this limiting case, and the model successfully estimates the equity premium with increased precision.

The previous discussion shows that our method is effective under a random-walk model for the dividend-price ratio. What about other forms of non-stationarity? Here, we consider what intuitively represents a worst-case scenario: a time trend in the dividend-price ratio. As in the case of the random-walk model, we set β equal to zero so the equity premium is still well-defined. We therefore consider

\begin{align}
r_{t+1} - \mu_r &= u_{t+1} \tag{18a} \\
x_{t+1} - \mu_x &= \Delta + \theta(x_t - \mu_x) + v_{t+1}, \tag{18b}
\end{align}

where Δ denotes the time trend. With the exceptions of Δ and β, we set the parameters to equal those of our benchmark calibration. We then set Δ so that the in-sample average of shocks to the dividend-price ratio is exactly zero. Because $\sum_{t=1}^{T} \hat{v}_t$ in the data is -1.051, and because the length of the sample is 707 months, this implies a value of Δ of -0.1487%.

We simulate 10,000 samples from (18). For each of these we compute OLS
and find the sample mean of the predictor variable and of the equity premium. We also run our benchmark maximum likelihood estimation, which is highly mis-specified in this case. For consistency, we continue to refer to this as maximum likelihood.

Results are shown in Table A.8 in the Online Appendix. Unlike in the case of the random walk, in this case mis-specification has serious consequences for the estimation of the equity premium. Whereas the sample mean finds, on average, the correct value, maximum likelihood finds a lower value: 0.280% versus 0.322%. Why does the maximum likelihood estimator fail in this case? Consider first the estimation of the process for \(x_t \). The true mean of \(x_t \) is undefined. However, in every sample there will be an observed mean. This sample mean will be on average lower than the true value of \(\mu_x \) because the time trend lowers the level of the dividend-price ratio. The MLE will be slightly higher than the sample mean because it will correct for what it sees as an unusual series of shocks. However, what appears to be an unusual series of shocks is in fact the time trend.

Now consider the estimation of the equity premium. Unlike the mean of \(x_t \), the equity premium is well-defined because we have set \(\beta \) to equal zero. This is why the sample mean finds the correct answer. The maximum likelihood estimator, however, uses information from the predictor variable equation, information that is, in this case, incorrect. This information indicates that, on average, shocks have been positive to returns over each sample period, and thus it is necessary to adjust the equity premium downward.

While it would probably be nearly impossible to reject this time-trend model on purely statistical grounds, it seems unappealing from the point of view of economics. It implies that market participants would have known in advance about the decrease in the dividend-price ratio over the post-war sample, which is hard to believe. Not surprisingly given this basic intuition, equilibrium models of the asset prices tend to imply not (18), but rather the
autoregressive process (1b), at least as an approximation.27

\section*{5.3 Structural Breaks}

So far, we have assumed that a single process characterizes returns and the dividend-price ratio over the postwar period. Studies including Pástor and Stambaugh (2001), Lettau and Van Nieuwerburgh (2008) and Pettenuzzo and Timmermann (2011) argue that this period has been characterized by a structural break. The presence of a structural break could have several implications for our findings. Recall that the reason for our lower point estimate of the equity premium is the decline in the dividend-price ratio over the sample period. In a limiting case, where this decline is due entirely to a structural break, then our finding of a lower equity premium could completely disappear because the dividend-price ratio would no longer be declining over each sub-sample. As a related point, a structural break could make it less likely that we would find efficiency gains because, while the relevant sample size would be smaller, the persistence of the dividend-price ratio would be smaller as well.

To evaluate the effects, we use the framework of Lettau and Van Nieuwerburgh (2008), whose model is most similar to the one we consider. Lettau and van Nieuwerburgh find evidence for a structural break in the dividend-price ratio in 1994. Accordingly, we re-estimate our model on each sub-period. The results are reported in Table 7. This table shows that maximum likelihood still leads to substantially lower point estimates as compared with the sample mean. Consider first the 1953–1994 subperiod. This subperiod is characterized by relatively high returns, as indicated by a sample mean of 0.439\%, slightly higher than our full sample average. However, this period is characterized by a striking decline in the dividend-price ratio, a fact that is largely undiminished.

27Hansen, Heaton, and Li (2008) also present an example where a time-trend model for valuation ratios creates problems for interpretation of statistical findings. They argue similarly that the time trend model is an implausible description on economic grounds.
by breaking the sample in 1994 (see Figure 2). Our model thus attributes the high observed equity premium to an unusual series of shocks rather than a high true mean. The point estimate for the equity premium, at 0.315%, is lower than the point estimate for the full sample.

For the second sub-period, from 1995-2011, observed returns were lower, leading to a sample mean of 0.411%. Again, the dividend-price ratio declined over this sub-sample, so the maximum likelihood estimate is lower than the sample mean, at 0.336%. Thus maximum likelihood continues to have a substantial effect on the equity premium estimate, despite the presence of a structural break.

We now turn to the question of efficiency. Panel A1 of Table 8 shows simulation results when the parameters and the length of each fictitious sample are set to match the 1953–1994 subsample. We still do find efficiency gains, but they are indeed smaller than in our benchmark case. The standard error on the equity premium falls from 0.086 for the sample mean to 0.062 for maximum likelihood (in comparison, for our benchmark case, the sample mean had a standard error of 0.089 and the maximum likelihood estimate had a standard error of 0.050). Panel A1 also reveals the extent of the bias in the predictive and autoregressive coefficients. The mean estimate of β is substantially higher than its true value, and the mean of θ is substantially lower. This bias was also apparent in our benchmark case discussed in Section 3.5, but it is more substantial because of the reduction in sample size. Motivated by these results, we also consider a bias-corrected simulation, where, as before, we choose the true values of the parameters so that the mean in simulation matches the observed point estimates. As Panel A2 shows, the efficiency gain from maximum likelihood is almost as large as for our benchmark simulation when we correct for bias. The reason is that θ is higher than in Panel A1 (though it is still below the full-sample estimate), and the sample size is lower.

We repeat this analysis for the 1995–2011 subsample, with results shown
in Panel B. Panel B1 shows the results without the bias correction. In this case, because the sample size is so short, we still see efficiency gains despite the relatively low value of the autocorrelation. We also attempt a bias correction in Panel B2. Our results indicate the difficulties of inference over short time periods in the presence of persistent regressors. Even if we set the predictive coefficient to zero and the autocorrelation to 0.999, we are unable to quite match the values in the data (though we come close). Under this calibration, a short sample, combined with a high degree of persistence implies that the standard errors for maximum likelihood are less than half as large as for the sample mean. In other words, our efficiency gains are larger than even in the full sample.

To summarize, because a structural break does not entirely explain the decline in the price-dividend ratio, our method still produces substantially lower estimates of the equity premium than the sample mean, even when we take a structural break into account. Moreover, our efficiency gains are the same or larger than in our benchmark case.

6 Conclusion

A large literature has grown up around the empirical quantity known as the equity premium, in part because of its significance for evaluating models in macro-finance (Mehra and Prescott (1985)) and in part because of its practical significance as indicated by discussions in popular classics on investing (e.g. Siegel (1994), Malkiel (2003)) and in undergraduate and masters’ level textbooks.

Estimation of the equity premium is almost always accomplished by taking sample means. The implicit assumption is that the period in question contains a representative sample of returns. We show that it is possible to relax this assumption, and obtain a better estimate of the premium, by bringing
additional information to bear on the problem, specifically the information contained separately in prices and dividends.

We show that the time series behavior of prices, dividends and returns, suggests that shocks to returns have been unusually positive over the post-war period. Thus the sample average will overstate the equity premium. We show that this intuition can be formalized with the standard econometric technique of maximum likelihood. Applying maximum likelihood rather than taking the sample average leads to an economically significant reduction in the equity premium of 1.3 percentage points from 6.4% to 5.1%. Furthermore, Monte Carlo experiments indicate that the small-sample noise is greatly reduced, indicating that our method more reliably captures the true equity premium.

Our method differs from the sample mean in that we require assumptions on the data generating process for the dividend-price ratio. We have shown that our findings are robust to a wide range of variations in these assumptions. Specifically, it is not necessary for returns to be homoskedastic, or even for the dividend-price ratio to be stationary. We also show that our method works well in the presence of structural breaks. The main conclusion from our findings is that the generous risk compensation offered by equities over the postwar sample may in part be an artifact of that period, and may not be a reliable guide to what investors will experience going forward.
References

Table 1: Sample, Maximum Likelihood, and OLS Estimates

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OLS</td>
<td>Sample</td>
</tr>
<tr>
<td>(\mu_r)</td>
<td>0.433</td>
<td>0.322</td>
</tr>
<tr>
<td>(\mu_x)</td>
<td>−3.545</td>
<td>−3.504</td>
</tr>
<tr>
<td>(\beta)</td>
<td>0.828</td>
<td>0.686</td>
</tr>
<tr>
<td>(\theta)</td>
<td>0.992</td>
<td>0.993</td>
</tr>
<tr>
<td>(\sigma_u)</td>
<td>4.414</td>
<td>4.416</td>
</tr>
<tr>
<td>(\sigma_v)</td>
<td>0.046</td>
<td>0.046</td>
</tr>
<tr>
<td>(\rho_{uv})</td>
<td>−0.961</td>
<td>−0.961</td>
</tr>
</tbody>
</table>

Notes: Estimates of

\[
\begin{align*}
 r_{t+1} - \mu_r &= \beta (x_t - \mu_x) + u_{t+1} \\
 x_{t+1} - \mu_x &= \theta (x_t - \mu_x) + v_{t+1},
\end{align*}
\]

where \(u_t \) and \(v_t \) are jointly Gaussian and iid over time with standard deviations \(\sigma_u \) and \(\sigma_v \) and correlation \(\rho_{uv} \). \(r_t \) is the continuously-compounded CRSP return minus the 30-day Treasury Bill return and \(x_t \) is the log of the dividend-price ratio. Data are monthly. Means and standard deviations of returns are in percentage terms. Under the OLS columns, parameters are estimated by ordinary least squares, with \(\sigma_u, \sigma_v \), and \(\rho_{uv} \) estimated from the residuals. In the Sample column, \(\mu_r \) (the equity premium) and \(\mu_x \) (the mean of \(x_t \)), are estimated using sample means. In the MLE column parameters are estimated using maximum likelihood. In the MLE\(_0\) columns, parameters are estimated using maximum likelihood assuming \(\beta = 0 \). RMSE denotes the root-mean-squared error from monthly out-of-sample return forecasts.
Table 2: Estimates of the mean for characteristic-sorted portfolios

<table>
<thead>
<tr>
<th>Method</th>
<th>Estimate of μ_r by quintile</th>
<th>Premium</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Small</td>
<td>Q2</td>
</tr>
<tr>
<td>Panel A: portfolios sorted by size</td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ_r</td>
<td>Sample</td>
<td>0.957</td>
</tr>
<tr>
<td></td>
<td>MLE</td>
<td>0.730</td>
</tr>
<tr>
<td></td>
<td>MLE0</td>
<td>0.709</td>
</tr>
<tr>
<td>RMSE</td>
<td>Sample</td>
<td>6.428</td>
</tr>
<tr>
<td></td>
<td>MLE</td>
<td>6.420</td>
</tr>
<tr>
<td></td>
<td>MLE0</td>
<td>6.422</td>
</tr>
<tr>
<td>Panel B: portfolios sorted by book-to-market ratio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ_r</td>
<td>Sample</td>
<td>0.755</td>
</tr>
<tr>
<td></td>
<td>MLE</td>
<td>0.683</td>
</tr>
<tr>
<td></td>
<td>MLE0</td>
<td>0.631</td>
</tr>
<tr>
<td>RMSE</td>
<td>Sample</td>
<td>4.943</td>
</tr>
<tr>
<td></td>
<td>MLE</td>
<td>4.929</td>
</tr>
<tr>
<td></td>
<td>MLE0</td>
<td>4.935</td>
</tr>
</tbody>
</table>

Notes: Estimates of the risk premium μ_r (the expected return less the riskfree rate) on characteristic-sorted portfolios in monthly data from 1953–2011. Estimates are reported in monthly percentage terms. “Sample” denotes the sample average of excess returns. “MLE” denotes maximum likelihood on

$$r_{t+1} - \mu_r = \beta(x_t - \mu_x) + u_{t+1}$$

$$x_{t+1} - \mu_x = \theta(x_t - \mu_x) + v_{t+1},$$

where the u_t and v_t are jointly normal and iid across time, and x_t denotes the dividend-price ratio on the correspondign portfolio. “MLE0” denotes maximum likelihood on the system above with β restricted to be zero. Under the Premium column, we report the difference in the mean between the first and fifth quintile. RMSE denotes the root-mean-squared error from monthly out-of-sample return forecasts.
Table 3: Estimates for international indices

<table>
<thead>
<tr>
<th></th>
<th>Sample</th>
<th>MLE</th>
<th>MLE₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>0.362</td>
<td>0.191</td>
<td>0.249</td>
</tr>
<tr>
<td>Asia</td>
<td>0.259</td>
<td>0.119</td>
<td>0.130</td>
</tr>
<tr>
<td>EU with UK</td>
<td>0.423</td>
<td>0.327</td>
<td>0.360</td>
</tr>
<tr>
<td>EU without UK</td>
<td>0.386</td>
<td>0.243</td>
<td>0.321</td>
</tr>
<tr>
<td>Scandinavia</td>
<td>0.569</td>
<td>0.340</td>
<td>0.459</td>
</tr>
</tbody>
</table>

Notes: Estimates of the risk premium μ_r (the expected return less the riskfree rate) on international indices in monthly data beginning in January of 1976 and ending in 2011. Estimates are reported in monthly percentage terms. “Sample” denotes the sample average of excess returns. “MLE” denotes maximum likelihood on

\[
\begin{align*}
 r_{t+1} - \mu_r &= \beta(x_t - \mu_x) + u_{t+1} \\
 x_{t+1} - \mu_x &= \theta(x_t - \mu_x) + v_{t+1},
\end{align*}
\]

where the u_t and v_t are jointly normal and iid across time, and x_t denotes the dividend-price ratio on the corresponding portfolio. “MLE₀” denotes maximum likelihood on the system above with β restricted to be zero.
Table 4: Estimates of the mean for different countries

<table>
<thead>
<tr>
<th>Country</th>
<th>Sample</th>
<th>MLE</th>
<th>MLE$_0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia (1976)</td>
<td>0.463</td>
<td>0.429</td>
<td>0.423</td>
</tr>
<tr>
<td>Austria (1988)</td>
<td>0.404</td>
<td>−0.014</td>
<td>0.272</td>
</tr>
<tr>
<td>Belgium (1976)</td>
<td>0.511</td>
<td>0.344</td>
<td>0.349</td>
</tr>
<tr>
<td>Canada (1978)</td>
<td>0.473</td>
<td>0.134</td>
<td>0.200</td>
</tr>
<tr>
<td>Denmark (1990)</td>
<td>0.390</td>
<td>0.405</td>
<td>0.417</td>
</tr>
<tr>
<td>Finland (1989)</td>
<td>0.353</td>
<td>0.160</td>
<td>0.387</td>
</tr>
<tr>
<td>France (1976)</td>
<td>0.415</td>
<td>0.189</td>
<td>0.284</td>
</tr>
<tr>
<td>Germany (1976)</td>
<td>0.363</td>
<td>0.387</td>
<td>0.405</td>
</tr>
<tr>
<td>Hong Kong (1976)</td>
<td>0.631</td>
<td>0.690</td>
<td>0.688</td>
</tr>
<tr>
<td>Ireland (1992)</td>
<td>0.230</td>
<td>0.124</td>
<td>0.159</td>
</tr>
<tr>
<td>Italy (1976)</td>
<td>0.213</td>
<td>−0.191</td>
<td>0.042</td>
</tr>
<tr>
<td>Japan (1976)</td>
<td>0.198</td>
<td>0.063</td>
<td>0.040</td>
</tr>
<tr>
<td>Netherlands (1976)</td>
<td>0.530</td>
<td>0.445</td>
<td>0.449</td>
</tr>
<tr>
<td>New Zealand (1989)</td>
<td>0.121</td>
<td>−0.117</td>
<td>−0.010</td>
</tr>
<tr>
<td>Norway (1976)</td>
<td>0.474</td>
<td>0.357</td>
<td>0.392</td>
</tr>
<tr>
<td>Singapore (1976)</td>
<td>0.385</td>
<td>0.309</td>
<td>0.313</td>
</tr>
<tr>
<td>Spain (1976)</td>
<td>0.279</td>
<td>0.328</td>
<td>0.345</td>
</tr>
<tr>
<td>Sweden (1976)</td>
<td>0.630</td>
<td>0.408</td>
<td>0.534</td>
</tr>
<tr>
<td>Switzerland (1976)</td>
<td>0.465</td>
<td>0.286</td>
<td>0.417</td>
</tr>
<tr>
<td>UK (1976)</td>
<td>0.495</td>
<td>0.433</td>
<td>0.430</td>
</tr>
</tbody>
</table>

Notes: Estimates of the risk premium μ_r (the expected return less the riskfree rate) on country-level indices in monthly data beginning on the date in parentheses and ending in 2011. Estimates are reported in monthly percentage terms. “Sample” denotes the sample average of excess returns. “MLE” denotes maximum likelihood on

\[r_{t+1} - \mu_r = \beta(x_t - \mu_x) + u_{t+1} \]

where the u_t are jointly normal and iid across time, and x_t denotes the dividend-price ratio on the correspondign portfolio. “MLE$_0$” denotes maximum likelihood on the system above with β restricted to be zero.
Table 5: Small-sample distribution of estimated parameters

<table>
<thead>
<tr>
<th>True Value Method</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>5 %</th>
<th>50 %</th>
<th>95 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: DGP calibrated to maximum likelihood estimates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\mu_r)</td>
<td>Sample 0.322</td>
<td>0.089</td>
<td>0.175</td>
<td>0.322</td>
<td>0.467</td>
</tr>
<tr>
<td></td>
<td>MLE 0.323</td>
<td>0.050</td>
<td>0.241</td>
<td>0.324</td>
<td>0.404</td>
</tr>
<tr>
<td>(\mu_x)</td>
<td>Sample -3.504</td>
<td>0.231</td>
<td>-3.894</td>
<td>-3.507</td>
<td>-3.126</td>
</tr>
<tr>
<td></td>
<td>MLE -3.508</td>
<td>0.221</td>
<td>-3.875</td>
<td>-3.507</td>
<td>-3.145</td>
</tr>
<tr>
<td>(\beta)</td>
<td>OLS 1.284</td>
<td>0.699</td>
<td>0.420</td>
<td>1.145</td>
<td>2.639</td>
</tr>
<tr>
<td></td>
<td>MLE 1.243</td>
<td>0.670</td>
<td>0.440</td>
<td>1.103</td>
<td>2.541</td>
</tr>
<tr>
<td>(\theta)</td>
<td>OLS 0.987</td>
<td>0.007</td>
<td>0.973</td>
<td>0.988</td>
<td>0.996</td>
</tr>
<tr>
<td></td>
<td>MLE 0.987</td>
<td>0.007</td>
<td>0.974</td>
<td>0.989</td>
<td>0.996</td>
</tr>
<tr>
<td>(\sigma_u)</td>
<td>OLS 4.408</td>
<td>0.119</td>
<td>4.213</td>
<td>4.408</td>
<td>4.603</td>
</tr>
<tr>
<td></td>
<td>MLE 4.406</td>
<td>0.119</td>
<td>4.211</td>
<td>4.406</td>
<td>4.600</td>
</tr>
<tr>
<td>(\sigma_v)</td>
<td>OLS 0.046</td>
<td>0.001</td>
<td>0.044</td>
<td>0.046</td>
<td>0.048</td>
</tr>
<tr>
<td></td>
<td>MLE 0.046</td>
<td>0.001</td>
<td>0.044</td>
<td>0.046</td>
<td>0.048</td>
</tr>
<tr>
<td>(\rho_{uv})</td>
<td>OLS -0.961</td>
<td>0.003</td>
<td>-0.965</td>
<td>-0.961</td>
<td>-0.956</td>
</tr>
<tr>
<td></td>
<td>MLE -0.961</td>
<td>0.003</td>
<td>-0.965</td>
<td>-0.961</td>
<td>-0.956</td>
</tr>
<tr>
<td>Panel B: DGP calibrated to bias-corrected estimates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\mu_r)</td>
<td>Sample 0.324</td>
<td>0.138</td>
<td>0.097</td>
<td>0.327</td>
<td>0.546</td>
</tr>
<tr>
<td></td>
<td>MLE 0.322</td>
<td>0.072</td>
<td>0.205</td>
<td>0.323</td>
<td>0.441</td>
</tr>
<tr>
<td>(\mu_x)</td>
<td>Sample -3.510</td>
<td>0.582</td>
<td>-4.464</td>
<td>-3.512</td>
<td>-2.567</td>
</tr>
<tr>
<td></td>
<td>MLE -3.510</td>
<td>0.557</td>
<td>-4.425</td>
<td>-3.506</td>
<td>-2.601</td>
</tr>
<tr>
<td>(\beta)</td>
<td>OLS 0.750</td>
<td>0.643</td>
<td>-0.009</td>
<td>0.610</td>
<td>1.989</td>
</tr>
<tr>
<td></td>
<td>MLE 0.686</td>
<td>0.601</td>
<td>0.036</td>
<td>0.528</td>
<td>1.881</td>
</tr>
<tr>
<td>(\theta)</td>
<td>OLS 0.991</td>
<td>0.007</td>
<td>0.978</td>
<td>0.992</td>
<td>0.999</td>
</tr>
<tr>
<td></td>
<td>MLE 0.992</td>
<td>0.006</td>
<td>0.979</td>
<td>0.993</td>
<td>0.998</td>
</tr>
<tr>
<td>(\sigma_u)</td>
<td>OLS 4.417</td>
<td>0.118</td>
<td>4.223</td>
<td>4.416</td>
<td>4.611</td>
</tr>
<tr>
<td></td>
<td>MLE 4.417</td>
<td>0.118</td>
<td>4.225</td>
<td>4.416</td>
<td>4.612</td>
</tr>
<tr>
<td>(\sigma_v)</td>
<td>OLS 0.046</td>
<td>0.001</td>
<td>0.044</td>
<td>0.046</td>
<td>0.048</td>
</tr>
<tr>
<td></td>
<td>MLE 0.046</td>
<td>0.001</td>
<td>0.044</td>
<td>0.046</td>
<td>0.048</td>
</tr>
<tr>
<td>(\rho_{uv})</td>
<td>OLS -0.961</td>
<td>0.003</td>
<td>-0.965</td>
<td>-0.961</td>
<td>-0.956</td>
</tr>
<tr>
<td></td>
<td>MLE -0.961</td>
<td>0.003</td>
<td>-0.965</td>
<td>-0.961</td>
<td>-0.956</td>
</tr>
</tbody>
</table>

Notes: We simulate 10,000 monthly samples from the data generating process (DGP)

\[
\begin{align*}
 r_{t+1} - \mu_r &= \beta(x_t - \mu_x) + u_{t+1} \\
 x_{t+1} - \mu_x &= \theta(x_t - \mu_x) + v_{t+1},
\end{align*}
\]

where \(u_t \) and \(v_t \) are Gaussian and iid over time with standard deviations \(\sigma_u \) and \(\sigma_v \) and correlation \(\rho_{uv} \). The sample length is as in postwar data. In Panel A parameters are set to their maximum likelihood estimates. In Panel B parameters are set to their maximum likelihood estimates with \(\theta \) and \(\beta \) adjusted for bias. We conduct maximum likelihood estimation (MLE) for each sample path. As a comparison, we take sample means to estimate \(\mu_r \) and \(\mu_x \) (Sample) and use ordinary least squares to estimate the slope coefficients and the variance and correlations of the residuals (OLS). The table reports the means, standard deviations, and 5th, 50th, and 95th percentile values across simulations.
<table>
<thead>
<tr>
<th>True Value</th>
<th>Method</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>5 %</th>
<th>50 %</th>
<th>95 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_r</td>
<td>Sample</td>
<td>0.335</td>
<td>0.088</td>
<td>0.190</td>
<td>0.335</td>
<td>0.478</td>
</tr>
<tr>
<td></td>
<td>MLE</td>
<td>0.335</td>
<td>0.049</td>
<td>0.253</td>
<td>0.335</td>
<td>0.415</td>
</tr>
<tr>
<td></td>
<td>GARCH-MLE</td>
<td>0.335</td>
<td>0.049</td>
<td>0.252</td>
<td>0.335</td>
<td>0.414</td>
</tr>
<tr>
<td>μ_x</td>
<td>Sample</td>
<td>-3.570</td>
<td>0.225</td>
<td>-3.945</td>
<td>-3.570</td>
<td>-3.204</td>
</tr>
<tr>
<td></td>
<td>MLE</td>
<td>-3.571</td>
<td>0.214</td>
<td>-3.926</td>
<td>-3.572</td>
<td>-3.222</td>
</tr>
<tr>
<td></td>
<td>GARCH-MLE</td>
<td>-3.571</td>
<td>0.214</td>
<td>-3.922</td>
<td>-3.571</td>
<td>-3.224</td>
</tr>
<tr>
<td>β</td>
<td>OLS</td>
<td>1.288</td>
<td>0.694</td>
<td>0.425</td>
<td>1.156</td>
<td>2.621</td>
</tr>
<tr>
<td></td>
<td>MLE</td>
<td>1.244</td>
<td>0.668</td>
<td>0.436</td>
<td>1.103</td>
<td>2.554</td>
</tr>
<tr>
<td></td>
<td>GARCH-MLE</td>
<td>1.236</td>
<td>0.664</td>
<td>0.436</td>
<td>1.100</td>
<td>2.531</td>
</tr>
<tr>
<td>θ</td>
<td>OLS</td>
<td>0.987</td>
<td>0.007</td>
<td>0.974</td>
<td>0.989</td>
<td>0.996</td>
</tr>
<tr>
<td></td>
<td>MLE</td>
<td>0.987</td>
<td>0.007</td>
<td>0.974</td>
<td>0.989</td>
<td>0.996</td>
</tr>
<tr>
<td></td>
<td>GARCH-MLE</td>
<td>0.987</td>
<td>0.007</td>
<td>0.974</td>
<td>0.989</td>
<td>0.996</td>
</tr>
<tr>
<td>σ_u</td>
<td>OLS</td>
<td>4.343</td>
<td>0.131</td>
<td>4.128</td>
<td>4.341</td>
<td>4.565</td>
</tr>
<tr>
<td></td>
<td>MLE</td>
<td>4.342</td>
<td>0.131</td>
<td>4.126</td>
<td>4.340</td>
<td>4.563</td>
</tr>
<tr>
<td></td>
<td>GARCH-MLE</td>
<td>4.341</td>
<td>0.133</td>
<td>4.125</td>
<td>4.339</td>
<td>4.566</td>
</tr>
<tr>
<td>σ_v</td>
<td>OLS</td>
<td>0.045</td>
<td>0.001</td>
<td>0.043</td>
<td>0.045</td>
<td>0.047</td>
</tr>
<tr>
<td></td>
<td>MLE</td>
<td>0.045</td>
<td>0.001</td>
<td>0.043</td>
<td>0.045</td>
<td>0.047</td>
</tr>
<tr>
<td></td>
<td>GARCH-MLE</td>
<td>0.045</td>
<td>0.001</td>
<td>0.043</td>
<td>0.045</td>
<td>0.047</td>
</tr>
<tr>
<td>ρ_{uv}</td>
<td>OLS</td>
<td>-0.959</td>
<td>0.003</td>
<td>-0.964</td>
<td>-0.959</td>
<td>-0.954</td>
</tr>
<tr>
<td></td>
<td>MLE</td>
<td>-0.959</td>
<td>0.003</td>
<td>-0.964</td>
<td>-0.959</td>
<td>-0.954</td>
</tr>
<tr>
<td></td>
<td>GARCH-MLE</td>
<td>-0.959</td>
<td>0.003</td>
<td>-0.964</td>
<td>-0.960</td>
<td>-0.954</td>
</tr>
</tbody>
</table>

Notes: We simulate 10,000 monthly data samples from

\[
\begin{align*}
 r_{t+1} - \mu_r &= \beta (x_t - \mu_x) + u_{t+1} \\
 x_{t+1} - \mu_x &= \theta (x_t - \mu_x) + v_{t+1},
\end{align*}
\]

where u_t and v_t follow GARCH processes with conditional correlation ρ_{uv}. The parameter σ_u equals $\sqrt{E[\sigma_{ut}^2]}$ and similarly for σ_v. Parameters are set equal to estimates from GARCH-MLE as described in Section 5.1. For each sample path, we estimate parameters by OLS (and report sample means for μ_r and μ_x), by MLE (assuming homoskedastic shocks), and by GARCH-MLE.
Table 7: Sub-sample estimates

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OLS Sample</td>
<td>MLE</td>
</tr>
<tr>
<td>(\mu_r)</td>
<td>0.439</td>
<td>0.315</td>
</tr>
<tr>
<td>(\mu_x)</td>
<td>−3.342</td>
<td>−3.337</td>
</tr>
<tr>
<td>(\beta)</td>
<td>2.538</td>
<td>2.186</td>
</tr>
<tr>
<td>(\theta)</td>
<td>0.977</td>
<td>0.981</td>
</tr>
<tr>
<td>(\sigma_u)</td>
<td>4.205</td>
<td>4.210</td>
</tr>
<tr>
<td>(\sigma_v)</td>
<td>0.043</td>
<td>0.043</td>
</tr>
<tr>
<td>(\rho_{uv})</td>
<td>−0.967</td>
<td>−0.967</td>
</tr>
<tr>
<td>RMSE</td>
<td>4.413</td>
<td>4.398</td>
</tr>
</tbody>
</table>

Notes: Estimates of

\[
\begin{align*}
 r_{t+1} - \mu_r &= \beta (x_t - \mu_x) + u_{t+1} \\
 x_{t+1} - \mu_x &= \theta (x_t - \mu_x) + v_{t+1},
\end{align*}
\]

where \(u_t \) and \(v_t \) are Gaussian and iid over time with correlation \(\rho_{uv} \). \(r_t \) is the continuously-compounded CRSP return minus the 30-day Treasury Bill return and \(x_t \) is the log of the dividend-price ratio. Two monthly data samples are considered: 1953–1994 and 1995–2011. Means and standard deviations of returns are in percentage terms. Under the OLS columns, parameters are estimated by ordinary least squares, except for \(\mu_r \) and \(\mu_x \), which are equal to the sample averages of excess returns and the log dividend-price ratio respectively. Under the MLE columns, parameters are estimated using maximum likelihood. Under the MLE₀ columns, parameters are estimated using maximum likelihood under the restriction \(\beta = 0 \), except for \(\sigma_u \), \(\sigma_v \), and \(\rho_{uv} \), which are estimated using sample moments of residuals (we use OLS for \(\theta \) in the residual for \(v \)).
Table 8: Small-sample distribution of estimators in simulations calibrated to subsamples from Table 7

<table>
<thead>
<tr>
<th>True Value</th>
<th>Method</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>5 %</th>
<th>50 %</th>
<th>95 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_r 0.315</td>
<td>Sample</td>
<td>0.315</td>
<td>0.086</td>
<td>0.176</td>
<td>0.315</td>
<td>0.457</td>
</tr>
<tr>
<td></td>
<td>MLE</td>
<td>0.316</td>
<td>0.062</td>
<td>0.214</td>
<td>0.315</td>
<td>0.417</td>
</tr>
<tr>
<td>μ_x -3.337</td>
<td>Sample</td>
<td>-3.336</td>
<td>0.097</td>
<td>-3.494</td>
<td>-3.337</td>
<td>-3.179</td>
</tr>
<tr>
<td></td>
<td>MLE</td>
<td>-3.336</td>
<td>0.093</td>
<td>-3.488</td>
<td>-3.337</td>
<td>-3.183</td>
</tr>
<tr>
<td>β 2.186</td>
<td>MLE</td>
<td>2.983</td>
<td>1.133</td>
<td>1.518</td>
<td>2.776</td>
<td>5.122</td>
</tr>
<tr>
<td>θ 0.981</td>
<td>MLE</td>
<td>0.973</td>
<td>0.012</td>
<td>0.951</td>
<td>0.975</td>
<td>0.988</td>
</tr>
<tr>
<td>Panel A2: DGP calibrated to 1953–1994 period with bias correction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ_r 0.315</td>
<td>Sample</td>
<td>0.315</td>
<td>0.115</td>
<td>0.125</td>
<td>0.314</td>
<td>0.504</td>
</tr>
<tr>
<td></td>
<td>MLE</td>
<td>0.315</td>
<td>0.080</td>
<td>0.184</td>
<td>0.315</td>
<td>0.447</td>
</tr>
<tr>
<td>μ_x -3.337</td>
<td>Sample</td>
<td>-3.336</td>
<td>0.166</td>
<td>-3.610</td>
<td>-3.337</td>
<td>-3.061</td>
</tr>
<tr>
<td></td>
<td>MLE</td>
<td>-3.336</td>
<td>0.158</td>
<td>-3.595</td>
<td>-3.336</td>
<td>-3.074</td>
</tr>
<tr>
<td>β 1.400</td>
<td>MLE</td>
<td>2.185</td>
<td>0.961</td>
<td>1.007</td>
<td>1.983</td>
<td>4.066</td>
</tr>
<tr>
<td>θ 0.990</td>
<td>MLE</td>
<td>0.981</td>
<td>0.010</td>
<td>0.962</td>
<td>0.983</td>
<td>0.993</td>
</tr>
<tr>
<td>Panel B1: DGP calibrated to 1995–2011 period</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ_r 0.336</td>
<td>Sample</td>
<td>0.333</td>
<td>0.187</td>
<td>0.028</td>
<td>0.332</td>
<td>0.639</td>
</tr>
<tr>
<td></td>
<td>MLE</td>
<td>0.334</td>
<td>0.110</td>
<td>0.153</td>
<td>0.335</td>
<td>0.516</td>
</tr>
<tr>
<td>μ_x -3.955</td>
<td>Sample</td>
<td>-3.952</td>
<td>0.145</td>
<td>-4.194</td>
<td>-3.951</td>
<td>-3.712</td>
</tr>
<tr>
<td></td>
<td>MLE</td>
<td>-3.953</td>
<td>0.139</td>
<td>-4.183</td>
<td>-3.952</td>
<td>-3.721</td>
</tr>
<tr>
<td>β 1.968</td>
<td>MLE</td>
<td>3.841</td>
<td>2.220</td>
<td>1.158</td>
<td>3.358</td>
<td>8.071</td>
</tr>
<tr>
<td>θ 0.979</td>
<td>MLE</td>
<td>0.958</td>
<td>0.024</td>
<td>0.913</td>
<td>0.963</td>
<td>0.986</td>
</tr>
<tr>
<td>Panel B2: DGP calibrated to 1995–2011 period with bias correction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ_r 0.336</td>
<td>Sample</td>
<td>0.331</td>
<td>0.339</td>
<td>-0.232</td>
<td>0.336</td>
<td>0.891</td>
</tr>
<tr>
<td></td>
<td>MLE</td>
<td>0.332</td>
<td>0.152</td>
<td>0.083</td>
<td>0.332</td>
<td>0.582</td>
</tr>
<tr>
<td>μ_x -3.955</td>
<td>Sample</td>
<td>-3.941</td>
<td>1.091</td>
<td>-5.741</td>
<td>-3.949</td>
<td>-2.161</td>
</tr>
<tr>
<td></td>
<td>MLE</td>
<td>-3.941</td>
<td>1.079</td>
<td>-5.733</td>
<td>-3.952</td>
<td>-2.175</td>
</tr>
<tr>
<td>β 0</td>
<td>MLE</td>
<td>2.109</td>
<td>1.877</td>
<td>0.136</td>
<td>1.620</td>
<td>5.831</td>
</tr>
<tr>
<td>θ 0.999</td>
<td>MLE</td>
<td>0.976</td>
<td>0.020</td>
<td>0.937</td>
<td>0.981</td>
<td>0.996</td>
</tr>
</tbody>
</table>

Notes: We simulate 10,000 monthly samples from the data generating process (DGP)

\[
\begin{align*}
 r_{t+1} - \mu_r & = \beta (x_t - \mu_x) + u_{t+1} \\
 x_{t+1} - \mu_x & = \theta (x_t - \mu_x) + v_{t+1},
\end{align*}
\]

where u_t and v_t are Gaussian and iid over time with correlation ρ_{uv}. In Panel A, sample length and parameters are for the 1953–1994 subsample, without bias correction (A1) and with bias correction (A2). In Panel B is constructed similarly for the 1995-2011 sample, except that here the bias-correction is partial. For each sample path, we conduct maximum likelihood estimation (MLE) and, for comparison, take sample means to find μ_r and μ_x (Sample). The table reports the means, standard deviations, and 5th, 50th, and 95th percentile values across simulations.
Figure 1: Densities of the estimators of the equity premium in repeated samples of length equal to the postwar data. The solid line shows the density of the maximum likelihood estimate while the dashed line shows the density of the sample mean.

Figure 2: The logarithm of the dividend-price ratio over the period January 1953 to December 2011 (the postwar sample). The dotted line indicates the mean, and the black dot the initial value.
Figure 3: Standard deviation of estimators of the mean of the log-dividend price ratio (Panel A) and of the equity premium (Panels B–D). Estimators are the sample mean (dots) and maximum likelihood (crosses). For each value of the autocorrelation θ, we simulate 10,000 monthly samples and calculate the standard deviation of estimates across samples. Parameters other than θ are set equal to their maximum likelihood estimates with the following exceptions. In Panel B, the predictive coefficient is bias-corrected. In Panel C, the predictive coefficient is set equal to zero. In Panel D, the predictive coefficient is bias-corrected and the correlation of the shocks is set equal to zero.
Appendix

A Derivation of the Maximum Likelihood Estimators

We denote the maximum likelihood estimate of parameter \(q \) as \(\hat{q} \). Here we derive the estimators for \(\mu_r, \mu_x, \beta, \theta, \sigma^2_u, \sigma^2_v \) and \(\sigma_{uv} \). We note in particular that \(\hat{\sigma}^2_u \) is the estimator of \(\sigma^2_u \), not the square of the estimator of \(\sigma_u \), and similarly for \(\hat{\sigma}^2_v \).

Maximizing the exact log likelihood function is the same as minimizing the function \(L \):

\[
L(\beta, \theta, \mu_r, \mu_x, \sigma_{uv}, \sigma_u, \sigma_v) = \log(\sigma^2_v) - \log(1 - \theta^2) + \frac{1 - \theta^2}{\sigma^2_v} (x_0 - \mu_x)^2 \\
+ T \log(|\Sigma|) + \frac{\sigma^2_v}{|\Sigma|} T \sum_{t=1}^T u_t^2 - 2 \frac{\sigma_{uv}}{|\Sigma|} T \sum_{t=1}^T u_t v_t + \frac{\sigma^2_v}{|\Sigma|} \sum_{t=1}^T v_t^2,
\]

(A.1)

where \(|\Sigma| = \sigma^2_u \sigma^2_v - \sigma^2_{uv} \). The first-order conditions arise from setting the following partial derivatives of the likelihood function to zero:

\[
0 = \frac{\partial}{\partial \beta} L = \frac{\sigma^2_v}{|\Sigma|} \sum_{t=1}^T u_t (\mu_x - x_{t-1}) - \frac{\sigma_{uv}}{|\Sigma|} \sum_{t=1}^T (\mu_x - x_{t-1}) v_t
\]

(A.2a)

\[
0 = \frac{\partial}{\partial \theta} L = \frac{\theta}{1 - \theta^2} - \theta \frac{(x_0 - \mu_x)^2}{\sigma^2_v} - \frac{\sigma_{uv}}{|\Sigma|} \sum_{t=1}^T u_t (\mu_x - x_{t-1}) + \frac{\sigma^2_v}{|\Sigma|} \sum_{t=1}^T v_t (\mu_x - x_{t-1})
\]

(A.2b)

\[
0 = \frac{\partial}{\partial \mu_r} L = -\frac{\sigma^2_v}{|\Sigma|} \sum_{t=1}^T u_t + \frac{\sigma_{uv}}{|\Sigma|} \sum_{t=1}^T v_t
\]

(A.2c)

\[
0 = \frac{\partial}{\partial \mu_x} L = -\frac{1 - \theta^2}{\sigma^2_v} (x_0 - \mu_x) + \frac{\sigma^2_v}{|\Sigma|} \sum_{t=1}^T \beta u_t - \frac{\sigma_{uv}}{|\Sigma|} \sum_{t=1}^T (\beta v_t - (1 - \theta) u_t) - \frac{\sigma^2_v}{|\Sigma|} \sum_{t=1}^T (1 - \theta) v_t
\]

(A.2d)

\[
0 = \frac{\partial}{\partial \sigma_{uv}} L = -T \frac{2\sigma_{uv}}{|\Sigma|}
\]
\[
0 = \frac{\partial}{\partial \sigma_u^2} L = T \frac{\sigma_u^2}{|\Sigma|} - \frac{\sigma_u^2}{|\Sigma|^2} \sum_{t=1}^{T} u_t^2 + \frac{2 \sigma_u \sigma_v^2}{|\Sigma|^2} \sum_{t=1}^{T} u_t v_t - \frac{\sigma_u \sigma_v^2}{|\Sigma|^2} \sum_{t=1}^{T} v_t^2.
\]
(A.2e)

\[
0 = \frac{\partial}{\partial \sigma_v^2} L = \frac{1}{\sigma_v^2} + T \frac{\sigma_u^2}{|\Sigma|} - (1 - \theta^2)(x_0 - \mu_x)^2 \frac{1}{\sigma_v^4}
- \frac{\sigma_u^2}{|\Sigma|^2} \sum_{t=1}^{T} u_t^2 + \frac{2 \sigma_u \sigma_v^2}{|\Sigma|^2} \sum_{t=1}^{T} u_t v_t - \frac{\sigma_v^4}{|\Sigma|^2} \sum_{t=1}^{T} v_t^2.
\]
(A.2f)

Define the residuals

\[
\hat{u}_t = r_t - \hat{\mu}_r - \hat{\beta}(x_{t-1} - \hat{\mu}_x)
\]
\[
\hat{v}_t = x_t - \hat{\mu}_x - \hat{\theta}(x_{t-1} - \hat{\mu}_x).
\]

We now outline the algebra that allows us to solve these first-order conditions.

Step 1: Express \(\hat{\mu}_x \) in terms of \(\hat{\theta} \) and the data.

Combining the first-order conditions (A.2c) and (A.2d) gives

\[
\sum_{t=1}^{T} \hat{v}_t = \left(1 + \hat{\theta}\right) (\hat{\mu}_x - x_0),
\]
(A.3)

which we can write as

\[
\hat{\mu}_x = \frac{\left(1 + \hat{\theta}\right) x_0 + \sum_{t=1}^{T} (x_t - \hat{\theta} x_{t-1})}{\left(1 + \hat{\theta}\right) + (1 - \hat{\theta}) T}.
\]
(A.4)

Step 2: Express the covariance matrix in terms of \(\hat{\mu}_x, \hat{\theta}, \hat{\mu}_r, \hat{\beta} \) and the data.

The first-order conditions (A.2e), (A.2f) and (A.2g) give the relations
\[T\hat{\sigma}^2_u = -\frac{\hat{\sigma}_{uv}}{\hat{\sigma}^2_v} \hat{\sigma}_{uv} + (1 - \hat{\theta}^2)(x_0 - \hat{\mu}_x)^2 \left(\frac{\hat{\sigma}_{uv}}{\hat{\sigma}^2_v} \right)^2 + \sum_{t=1}^T \hat{u}_t^2, \quad (A.5) \]

\[(T + 1)\hat{\sigma}^2_v = (1 - \hat{\theta}^2)(x_0 - \hat{\mu}_x)^2 + \sum_{t=1}^T \hat{v}_t^2, \quad (A.6) \]

\[\frac{\hat{\sigma}_{uv}}{\hat{\sigma}^2_v} = \frac{\sum_{t=1}^T \hat{u}_t \hat{v}_t}{\sum_{t=1}^T \hat{v}_t^2}. \quad (A.7) \]

Step 3: Solve for \(\hat{\theta} \) in terms of the data. This also gives \(\hat{\mu}_x \) and \(\hat{\sigma}^2_v \) in terms of the data.

Combining the first-order conditions (A.2a) and (A.2b) gives

\[0 = \sum_{t=1}^T (\hat{\mu}_x - x_{t-1})\hat{v}_t + \hat{\sigma}^2_v \frac{\hat{\theta}}{1 - \hat{\theta}^2} - \hat{\theta}(x_0 - \hat{\mu}_x)^2. \quad (A.8) \]

Here \(\hat{\mu}_x \) and \(\hat{v}_t \) are functions of only \(\hat{\theta} \) and the data, so if we combine (A.8) and (A.6) we can get an equation for \(\hat{\theta} \):

\[0 = (T + 1) \sum_{t=1}^T (\hat{\mu}_x - x_{t-1})\hat{v}_t + \frac{\hat{\theta}}{1 - \hat{\theta}^2} \sum_{t=1}^T \hat{v}_t^2 - T\hat{\theta}(x_0 - \hat{\mu}_x)^2. \]

Because we require that \(-1 < \hat{\theta} < 1\), we can multiply this by

\[\left((T + 1) - (T - 1)\hat{\theta} \right)^2 \left(1 - \hat{\theta}^2 \right) \]

and rearrange to obtain

\[0 = T \left(\hat{\theta} - 1 \right) \left((T + 1) \left(1 - \hat{\theta}^2 \right) + 2\hat{\theta} \left(\sum_{t=0}^T x_t - \hat{\theta} \sum_{t=1}^{T-1} x_t \right) \right)^2 \]

\[+ \left((T + 1) - (T - 1)\hat{\theta} \right) \left(\hat{\theta} - 1 \right) \left(\sum_{t=0}^T x_t - \hat{\theta} \sum_{t=1}^{T-1} x_t \right) \]

\[\times \left[2T\hat{\theta}(1 + \hat{\theta}) \left(\sum_{t=1}^{T-1} x_t \right) - \left((T + 1) + (T - 1)\hat{\theta} \right) \left(\sum_{t=0}^T x_t + \sum_{t=1}^{T-1} x_t \right) \right] \]

\[+ \left((T + 1) - (T - 1)\hat{\theta} \right)^2 \]
\[\times \left[\hat{\theta} \left((1 - \hat{\theta}^2) T + 1 \right) \left(\sum_{t=1}^{T-1} x_t^2 \right) + \left(\hat{\theta}^2 (T - 1) - (T + 1) \right) \sum_{t=1}^{T} x_t x_{t-1} + \hat{\theta} \sum_{t=0}^{T} x_t^2 \right]. \]

This is a fifth-order polynomial in \(\hat{\theta} \) where the coefficients are determined by the sample. As a consequence, it is very hard to establish analytical results on existence and uniqueness of solutions that would be accepted as estimators of \(\theta \). Nevertheless, in lengthy experimentation and simulation runs we have always found that this polynomial only has one root within the unit circle of the complex plane and that this root is real. Therefore this root is a valid MLE of \(\theta \). Given this solution for \(\hat{\theta} \), (A.4) gives the estimator for \(\mu_x \) and (A.6) gives the estimator for \(\sigma_u^2 \).

Step 4: Solve for \(\hat{\mu}_r \) and \(\hat{\beta} \) in terms of the data. This also gives the solution for \(\hat{\sigma}_{uv} \) and \(\hat{\sigma}_u^2 \).

The first-order condition (A.2c) gives

\[\sum_{t=1}^{T} \hat{u}_t = \frac{\hat{\sigma}_{uv}}{\hat{\sigma}_u^2} \sum_{t=1}^{T} \hat{v}_t. \tag{A.9} \]

Combining this with the first-order condition (A.2a) yields

\[\hat{\beta} = \beta_{OLS} + \frac{\hat{\sigma}_{uv}}{\hat{\sigma}_u^2} \left(\hat{\theta} - \theta_{OLS} \right), \tag{A.10} \]

where

\[\theta_{OLS} = \frac{1}{\frac{1}{T} \sum_{t=1}^{T} x_t^2 - \left(\frac{1}{T} \sum_{t=1}^{T} x_{t-1} \right)^2} \left[\frac{1}{T} \sum_{t=1}^{T} x_{t-1} x_t - \left(\frac{1}{T} \sum_{t=1}^{T} x_{t-1} \right) \left(\frac{1}{T} \sum_{s=1}^{T} x_s \right) \right] \]

is the OLS coefficient of regressing \(x_t \) on \(x_{t-1} \) and

\[\beta_{OLS} = \frac{1}{\frac{1}{T} \sum_{t=1}^{T} x_t^2 - \left(\frac{1}{T} \sum_{t=1}^{T} x_{t-1} \right)^2} \left[\frac{1}{T} \sum_{t=1}^{T} x_{t-1} r_t - \left(\frac{1}{T} \sum_{t=1}^{T} x_{t-1} \right) \left(\frac{1}{T} \sum_{s=1}^{T} r_s \right) \right] \]

is the OLS coefficient of regressing \(r_t \) on \(x_{t-1} \).

Equations (A.7), (A.9) and (A.10) constitute a system of three equations in the three unknowns \(\hat{\mu}_r \), \(\hat{\beta} \) and \(\frac{\hat{\sigma}_{uv}}{\hat{\sigma}_u^2} \). The solution is
\[\hat{\beta} = \frac{\beta_{OLS} + (\hat{\theta} - \theta_{OLS})F}{1 + (\hat{\theta} - \theta_{OLS})H} \]

\[\hat{\sigma}_{uv}^2 = \frac{F - \beta_{OLS}H}{1 + (\hat{\theta} - \theta_{OLS})H} \]

where

\[J = 1 - \frac{G}{1 + (\hat{\theta} - \theta_{OLS})H} \left[1 + \frac{T}{T} \sum_{t=1}^{T} x_t - \hat{\mu}_x - \theta_{OLS} \left(1 + \frac{T}{T} \sum_{t=1}^{T} x_{t-1} - \hat{\mu}_x \right) \right] \]

\[F = \frac{\sum_{t=1}^{T} r_t \hat{v}_t}{\sum_{t=1}^{T} \hat{v}_t^2} \]

\[G = \frac{\sum_{t=1}^{T} \hat{v}_t}{\sum_{t=1}^{T} \hat{v}_t^2} \]

\[H = \frac{\sum_{t=1}^{T} (x_{t-1} - \hat{\mu}_x) \hat{v}_t}{\sum_{t=1}^{T} \hat{v}_t^2} \]

Expressions (A.11) and (A.12) provide the estimators for \(\mu_r \) and \(\beta \) because they depend only on the data and \(\hat{\mu}_x \) and \(\hat{\theta} \), which we have already expressed in terms of the data. Finally, (A.13) gives the estimator the estimator of \(\sigma_{uv}^2 \) via (A.6), which further yields the estimator of \(\sigma_v^2 \) via (A.5).

B Derivation of the restricted Maximum Likelihood Estimators

We denote the maximum likelihood estimate of parameter \(q \) as \(\hat{q} \). Here we derive the estimators for \(\mu_r \), \(\mu_x \), and \(\theta \), under the assumption that \(\beta = 0 \). We take the values of \(\sigma_u^2 \), \(\sigma_v^2 \) and \(\sigma_{uv} \) as given. Maximizing the exact log likelihood function is the same as minimizing the function \(L \), given in Eq. (A.1), after setting \(\beta = 0 \). The first-order conditions arise from setting the following partial derivatives of the
likelihood function to zero:

\[
0 = \frac{\partial}{\partial \theta} L = \frac{\theta}{1-\theta^2} - \theta \left(\frac{x_0 - \mu_x}{\sigma_v^2} \right)^2
\]

\[
- \frac{\sigma_{uv}}{|\Sigma|} \sum_{t=1}^{T} u_t (\mu_x - x_{t-1}) + \frac{\sigma_u^2}{|\Sigma|} \sum_{t=1}^{T} v_t (\mu_x - x_{t-1})
\]

(B.1a)

\[
0 = \frac{\partial}{\partial \mu_r} L = - \frac{\sigma_{uv}}{\sigma_v^2} \sum_{t=1}^{T} u_t + \frac{\sigma_{uv}}{|\Sigma|} \sum_{t=1}^{T} v_t
\]

(B.1b)

\[
0 = \frac{\partial}{\partial \mu_x} L = - \frac{1-\theta^2}{\sigma_v^2} (x_0 - \mu_x)
\]

\[
+ \frac{\sigma_{uv}}{|\Sigma|} \sum_{t=1}^{T} \beta u_t - \frac{\sigma_{uv}}{|\Sigma|} \sum_{t=1}^{T} (\beta v_t - (1-\theta) u_t) - \frac{\sigma_u^2}{|\Sigma|} \sum_{t=1}^{T} (1-\theta) v_t
\]

(B.1c)

Define the residuals

\[
\hat{u}_t = r_t - \hat{\mu}_r
\]

\[
\hat{v}_t = x_t - \hat{\mu}_x - \hat{\theta}(x_{t-1} - \hat{\mu}_x).
\]

We now outline the algebra that allows us to solve these first-order conditions.

Step 1: Express \(\hat{\mu}_x \) and \(\hat{\mu}_r \) in terms of \(\hat{\theta} \) and the data.

The first-order condition (B.1b) gives

\[
\sum_{t=1}^{T} \hat{u}_t = \frac{\sigma_{uv}}{\sigma_v^2} \sum_{t=1}^{T} \hat{v}_t.
\]

(B.2)

Combining this with the first-order condition (B.1c) gives

\[
\sum_{t=1}^{T} \hat{v}_t = \left(1 + \hat{\theta} \right) (\hat{\mu}_x - x_0),
\]

(B.3)

which we can write as

\[
\hat{\mu}_x = \frac{\left(1 + \hat{\theta} \right) x_0 + \sum_{t=1}^{T} \left(x_t - \hat{\theta} x_{t-1} \right)}{\left(1 + \hat{\theta} \right) + (1-\hat{\theta}) T}.
\]

(B.4)

Combining (B.3) and (B.2) yields

\[
\hat{\mu}_r = \frac{1}{T} \sum_{t=1}^{T} r_t - \frac{1}{T} \frac{\sigma_{uv}}{\sigma_v^2} \left(1 + \hat{\theta} \right) (\hat{\mu}_x - x_0).
\]

(B.5)
Step 2: Solve for $\tilde{\theta}$ in terms of the data.

Plugging (B.2), (B.3) and (B.5) into the first-order condition (B.1a) gives

$$0 = \frac{\sigma_v^2}{1-\tilde{\theta}^2} + \frac{1}{|\Sigma|} \left(\sum_{t=1}^{T} x_{t-1} \right) \left[\frac{\sigma_{uu}}{T} (1+\tilde{\theta}) (\tilde{\mu}_x - x_0) + \sigma_u^2 \sigma_v^2 (1-\tilde{\theta}) \tilde{\mu}_x \right]$$

$$+ \frac{1}{|\Sigma|} \left[\sigma_{uv} \sigma_v^2 \sum_{t=1}^{T} x_{t-1} (r_t - \frac{1}{T} \sum_{s=1}^{T} r_s) - \sigma_u^2 \sigma_v^2 \sum_{t=1}^{T} x_{t-1} (x_t - \tilde{\theta} x_{t-1}) \right]$$

Here $\tilde{\mu}_x$ is a function of only $\tilde{\theta}$ and the data, so given σ_{uu}^2, σ_v^2 and σ_{uv} the above an equation for $\tilde{\theta}$. Similarly to Appendix A, multiplying through by

$$\left((T+1) - (T-1)\tilde{\theta} \right)^2 (1-\tilde{\theta}^2)$$

and carrying out the algebra gives a fifth-order polynomial in $\tilde{\theta}$ where the coefficients are determined by the sample. As for the exact ML estimator in Appendix A, in lengthy experimentation and simulation runs we have always found that this polynomial only has one root within the unit circle of the complex plane and that this root is real. Therefore this root is a valid MLE of θ. Given this solution for $\tilde{\theta}$, (B.4) gives the estimator for μ_x and (B.5) gives the estimator for μ_r.

C The equity premium in levels

In this section we discuss how to translate our results for log returns into levels. For simplicity, assume that the log returns log $(1 + R_t)$ are normally distributed. Then

$$E[R_t] = E \left[e^{\log(1+R_t)} \right] - 1 = e^{E[\log(1+R_t)] + \frac{1}{2} \text{Var}(\log(1+R_t))} - 1.$$

Using the definition of the excess log return, $E[\log(1+R_t)] = E[r_t] + E[\log(1+R^f_t)]$, so the above implies that

$$E[R_t - R^f_t] = e^{E[r_t]} e^{E[\log(1+R^f_t)] + \frac{1}{2} \text{Var}(\log(1+R_t))} - 1 - E[R^f_t].$$

Our maximum likelihood method provides an estimate of $E[r_t]$ and all other quantities above can be easily calculated using sample moments. Taking the sample mean
of the series $R_t - R^f_t$ for the period 1953-2011 yields a risk premium that is 0.530% per month, or 6.37% per annum. On the other hand, using the above calculation and our maximum likelihood estimate of the mean of τ_t gives an estimate of $\mathbb{E}[R_t - R^f_t]$ of 0.422% per month, or 5.06% per annum.28 Thus our estimate of the risk premium in return levels is 131 basis lower than taking the sample average, in line with our results for log returns.

\section*{D Comparison with Fama and French (2002)}

Fama and French (2002) also propose an estimator that takes the time series of the dividend-price ratio into account in estimating the mean return. Noting the following return identity:

$$R_t = \frac{D_t}{P_{t-1}} + \frac{P_t - P_{t-1}}{P_{t-1}},$$

and taking the expectation:

$$E[R_t] = E\left[\frac{D_t}{P_{t-1}}\right] + E\left[\frac{P_t - P_{t-1}}{P_{t-1}}\right],$$

they propose replacing the capital gain term $E[(P_t - P_{t-1})/P_{t-1}]$ with dividend growth $E[(D_t - D_{t-1})/D_{t-1}]$. They argue that, because prices and dividends are cointegrated, their mean growth rates should be the same. They find that the resulting expected return is less than half the sample average, namely 4.74% rather than 9.62%.

While their argument seems intuitive, a closer look reveals a problem. Let $X_t = D_t/P_t$, and let lower-case letters denote natural logs. Then

$$d_{t+1} - d_t = x_{t+1} - x_t + p_{t+1} - p_t. \quad (D.1)$$

Because X_t is stationary, $E[x_{t+1} - x_t] = 0$ and it is indeed the case that

$$E[d_{t+1} - d_t] = E[p_{t+1} - p_t]. \quad (D.2)$$

28In the data, in monthly terms for the period 1953-2011, the sample mean of R_t is 0.918%, the sample mean of R^f_t is 0.387%, the sample mean of log$(1 + R^f_t)$ is 0.386% and the variance of log$(1 + R_t)$ is 0.194%.
However, exponentiating (D.1) and subtracting 1 implies
\[\frac{D_{t+1} - D_t}{D_t} = \frac{X_{t+1}}{X_t} \frac{P_{t+1}}{P_t} - 1. \]
(D.3)
That is, stationarity of \(X_t \) implies (D.2), but not \(E[(P_t - P_{t-1})/P_{t-1}] = E[(D_t - D_{t-1})/D_{t-1}] \). Namely it does not imply that the average level growth rates are equal.

For expected growth rates to be equal in levels, (D.3) shows that it must be the case that \(E\left[\frac{X_{t+1}}{X_t} \frac{P_{t+1}}{P_t} \right] = E\left[\frac{P_{t+1}}{P_t} \right] \). It seems unlikely that there are general conditions under which this holds. Note that it follows from \(E[\log(X_{t+1}/X_t)] = 0 \) and Jensen’s inequality that \(E[X_{t+1}/X_t] > 1 \). This implies that the estimator proposed by Fama and French (2002) is inconsistent for the equity premium, and thus it is not necessary (or possible) to evaluate efficiency.

Nonetheless, our results show that assuming cointegration of prices and dividends can be very informative for estimation of the mean return. Indeed, the intuition that we will develop in the next section is closely related to that conjectured by Fama and French (2002): The sample average of realized returns is “too

\[\text{Var}(d_{t+1} - d_t) = \text{Var}(p_{t+1} - p_t). \]
(D.4)
To see this, note that (D.2), combined with log-normality, implies that
\[E\left[\frac{D_{t+1}}{D_t} \right] e^{-\frac{1}{2}\text{Var}(d_{t+1} - d_t)} = E\left[\frac{P_{t+1}}{P_t} \right] e^{-\frac{1}{2}\text{Var}(p_{t+1} - p_t)}. \]
If (D.4) holds, then the second terms on the right and left hand side cancel, yielding the result. This is a knife-edge result in which the variance of the log dividend-price ratio \(x_t \) and the covariance of \(x_t \) with log price changes cancel out. However, it is well-known that prices are more volatile than dividends (Shiller, 1981).

\[\text{Indeed, if we assume that growth rates of dividends and prices are log-normal, a necessary and sufficient condition for equality of expected (level) growth rates is that the variances of the log growth rates are equal:} \]

\[\text{Var}(d_{t+1} - d_t) = \text{Var}(p_{t+1} - p_t). \]
(D.4)
To see this, note that (D.2), combined with log-normality, implies that
\[E\left[\frac{D_{t+1}}{D_t} \right] e^{-\frac{1}{2}\text{Var}(d_{t+1} - d_t)} = E\left[\frac{P_{t+1}}{P_t} \right] e^{-\frac{1}{2}\text{Var}(p_{t+1} - p_t)}. \]
If (D.4) holds, then the second terms on the right and left hand side cancel, yielding the result. This is a knife-edge result in which the variance of the log dividend-price ratio \(x_t \) and the covariance of \(x_t \) with log price changes cancel out. However, it is well-known that prices are more volatile than dividends (Shiller, 1981).

\[\text{This point is also made by Constantinides (2002), who suggests adjusting the mean return by the difference in the valuation ratio between the first and last observation. Constantinides derives conditions such that the resulting estimator has lower variance than the average return.} \]
high” because shocks to discount rates (proxied for by the dividend-price ratio) were negative on average over the sample period.

E Mean Reversion in Returns

Consider the effect of a series of shocks on excess returns (in this subsection, we will assume, for expositional reasons, that the mean excess return is zero):

\[r_t = \beta x_{t-1} + u_t \]
\[r_{t+1} = \beta \theta x_{t-1} + \beta v_t + u_{t+1} \]
\[r_{t+2} = \beta \theta^2 x_{t-1} + \beta \theta v_t + \beta v_{t+1} + u_{t+2} \]

and so on. Thus, for \(k \geq 1 \), the autocovariance of returns is given by

\[\text{Cov} (r_t, r_{t+k}) = \theta^k \beta^2 \text{Var}(x_t) + \theta^{k-1} \beta \sigma_{uv}, \tag{E.1} \]

where \(\text{Var}(x_t) = \sigma_x^2 / (1 - \theta^2) \). An increase in \(\theta \) increases the variance of the predictor variable. In the absence of covariance between the shocks \(u \) and \(v \), this effect would increase the autocovariance of returns through the term \(\theta^k \beta^2 \text{Var}(x_t) \). However, because \(u \) and \(v \) are negatively correlated, the second term in (E.1), \(\theta^{k-1} \beta \sigma_{uv} \) is also negative. We show below that this second term dominates the first for all positive values of \(\theta \) up until a critical value, at which point the first comes to dominate.

Assume \(\theta > 0 \), \(\beta > 0 \) and \(\sigma_{uv} < 0 \), as we estimate the case to be in our data. Substituting in \(\text{Var}(x_t) = \sigma_x^2 / (1 - \theta^2) \), multiplying by \((1 - \theta^2) > 0 \) and dividing through by \(\theta^{k-1} \beta > 0 \) shows that the autocovariance of returns is negative whenever

\[-\sigma_{uv} \theta^2 + \beta \sigma_x^2 \theta + \sigma_{uv} < 0. \]

The left-hand side is a quadratic polynomial in \(\theta \) with a positive leading coefficient. As a result, whenever this polynomial has two real roots in \(\theta \), the entire expression is negative if and only if \(\theta \) lies in between those roots. Indeed, the polynomial has two real roots because its discriminant equals \(\beta^2 \sigma_x^4 + 4 \sigma_{uv}^2 > 0 \). Let \(\theta_1 \) be the smaller of the two roots and let \(\theta_2 \) be the larger one, that is,

\[\theta_2 = \frac{-\beta \sigma_x^2 + \sqrt{\beta^2 \sigma_x^4 + 4 \sigma_{uv}^2}}{-2 \sigma_{uv}}. \]
Under our assumptions it is straightforward to prove that \(\theta_1 < -1 \) and \(-1 < \theta_2 < 1 \), so the only possible change of sign of the return autocovariance happens at \(\theta_2 \). In particular, \(\text{Cov} (r_t, r_{t+k}) < 0 \) whenever \(\theta < \theta_2 \) and \(\text{Cov} (r_t, r_{t+k}) > 0 \) whenever \(\theta > \theta_2 \).

F The Variance of the Sample Mean Return

By definition
\[
\frac{1}{T} \sum_{t=1}^{T} r_t = \mu_r + \beta \left(\frac{1}{T} \sum_{t=1}^{T} x_{t-1} - \mu_x \right) + \frac{1}{T} \sum_{t=1}^{T} u_t,
\]
thus
\[
\text{Var} \left(\frac{1}{T} \sum_{t=1}^{T} r_t \right) = \beta^2 \text{Var} \left(\frac{1}{T} \sum_{t=1}^{T} x_{t-1} \right) + \text{Var} \left(\frac{1}{T} \sum_{t=1}^{T} u_t \right) + 2 \beta \text{Cov} \left(\frac{1}{T} \sum_{t=1}^{T} x_{t-1}, \frac{1}{T} \sum_{t=1}^{T} u_t \right).
\]

The variance of the average predictor is available and it depends on \(\theta \). The variance of the average residual does not depend on \(\theta \). Finally, the covariance of the average predictor and the average predictor depends on \(\theta \) and \(\rho_{uv} \). It is not a trivial quantity because even though \(u_t \) is uncorrelated with \(x_{t-1} \), it is correlated with \(x_t \) via \(v_t \) whenever \(\rho_{uv} \neq 0 \) and thus it is also correlated with \(x_{t+1}, x_{t+2}, \ldots, x_{T-1} \) whenever \(\theta \neq 0 \).

In particular,
\[
\text{Var} \left(\frac{1}{T} \sum_{t=1}^{T} u_t \right) = \sigma_u^2 \frac{1}{T},
\]
\[
\text{Var} \left(\frac{1}{T} \sum_{t=1}^{T} x_{t-1} \right) = \sigma_x^2 \frac{1}{1-\theta^2} \left[\frac{1}{T} \left(1 + \frac{\theta}{1-\theta} \right) + \frac{2 \theta (\theta^T - 1)}{T^2 (1-\theta)^2} \right],
\]
\[
\text{Cov} \left(\frac{1}{T} \sum_{t=1}^{T} x_{t-1}, \frac{1}{T} \sum_{t=1}^{T} u_t \right) = \sigma_{uv} \left[\frac{1}{T} \frac{1}{1-\theta} + \frac{\theta^T - 1}{T^2 (1-\theta)^2} \right],
\]
so that

\[
\text{Var} \left(\frac{1}{T} \sum_{t=1}^{T} r_t \right) = \frac{1}{T} \left(\sigma_u^2 + 2\beta \frac{\sigma_{uv}}{1-\theta} + \beta^2 \frac{\sigma_v^2}{1-\theta^2} \right) \\
- \frac{1}{T^2} 2\beta \frac{1-\theta^T}{(1-\theta)^2} \left(\beta \theta \frac{\sigma_v^2}{1-\theta^2} + \sigma_{uv} \right).
\]

It follows that

\[
\text{Var} \left(\frac{1}{T} \sum_{t=1}^{T} r_t \right) = \frac{1}{T} \left(\sigma_u^2 + \beta^2 \frac{\sigma_v^2}{1-\theta^2} + 2\beta \frac{\sigma_{uv}}{1-\theta} \right) + O \left(\frac{1}{T^2} \right).
\]

The term \(\sigma_u^2 + \beta^2 \sigma_v^2/(1 - \theta^2) \) measures the contribution of the return shocks and the predictor to the variability of the sample-mean return. The term \(\beta \sigma_{uv}/(1 - \theta) \) measures the contribution of the covariance of the return shocks and the predictor shocks to the variability of the sample-mean return. The former term increases as \(\theta \) increases, which says that the sample-mean return is more variable because the predictor is more variable. At the same time, the latter term becomes more negative as \(\theta \) increases, so that in fact the overall variability of the sample-mean return can decrease.
Table A.1: Small-sample distribution of estimators: calibration to 1927–2011 sample

<table>
<thead>
<tr>
<th>True Value</th>
<th>Method</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>5 %</th>
<th>50 %</th>
<th>95 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_r</td>
<td>0.391</td>
<td>Sample</td>
<td>0.390</td>
<td>0.080</td>
<td>0.258</td>
<td>0.389</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MLE</td>
<td>0.391</td>
<td>0.058</td>
<td>0.295</td>
<td>0.390</td>
</tr>
<tr>
<td>μ_x</td>
<td>-3.383</td>
<td>Sample</td>
<td>-3.383</td>
<td>0.196</td>
<td>-3.710</td>
<td>-3.385</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MLE</td>
<td>-3.384</td>
<td>0.196</td>
<td>-3.701</td>
<td>-3.384</td>
</tr>
<tr>
<td>β</td>
<td>0.650</td>
<td>OLS</td>
<td>1.039</td>
<td>0.547</td>
<td>0.336</td>
<td>0.941</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MLE</td>
<td>1.018</td>
<td>0.530</td>
<td>0.345</td>
<td>0.923</td>
</tr>
<tr>
<td>θ</td>
<td>0.991</td>
<td>OLS</td>
<td>0.987</td>
<td>0.006</td>
<td>0.976</td>
<td>0.988</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MLE</td>
<td>0.987</td>
<td>0.006</td>
<td>0.977</td>
<td>0.989</td>
</tr>
<tr>
<td>σ_u</td>
<td>5.464</td>
<td>OLS</td>
<td>5.460</td>
<td>0.119</td>
<td>5.265</td>
<td>5.459</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MLE</td>
<td>5.458</td>
<td>0.119</td>
<td>5.263</td>
<td>5.458</td>
</tr>
<tr>
<td>σ_v</td>
<td>0.057</td>
<td>OLS</td>
<td>0.057</td>
<td>0.001</td>
<td>0.055</td>
<td>0.057</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MLE</td>
<td>0.057</td>
<td>0.001</td>
<td>0.055</td>
<td>0.057</td>
</tr>
<tr>
<td>ρ_{uv}</td>
<td>-0.953</td>
<td>OLS</td>
<td>-0.953</td>
<td>0.003</td>
<td>-0.958</td>
<td>-0.953</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MLE</td>
<td>-0.953</td>
<td>0.003</td>
<td>-0.958</td>
<td>-0.953</td>
</tr>
</tbody>
</table>

Notes: We simulate 10,000 monthly samples from

$$r_{t+1} - \mu_r = \beta (x_t - \mu_x) + u_{t+1}$$
$$x_{t+1} - \mu_x = \theta (x_t - \mu_x) + v_{t+1},$$

where u_t and v_t are Gaussian and iid over time with standard deviations σ_u and σ_v and correlation ρ_{uv}. The sample length is set to match the 1927–2011 sample, and parameters are set to their maximum likelihood estimates over this period. We conduct maximum likelihood estimation (MLE) for each sample path. As a comparison, we take sample means to estimate μ_r and μ_x (Sample) and use ordinary least squares to estimate the slope coefficients and the variance and correlations of the residuals (OLS). The table reports the means, standard deviations, 5th, 50th, and 95th percentile values across simulations.
Table A.2: Small-sample distribution of estimators: t-distributed shocks

<table>
<thead>
<tr>
<th>True Value</th>
<th>Method</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>5 %</th>
<th>50 %</th>
<th>95 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_r 0.322</td>
<td>Sample</td>
<td>0.323</td>
<td>0.138</td>
<td>0.098</td>
<td>0.320</td>
<td>0.552</td>
</tr>
<tr>
<td>MLE</td>
<td>0.322</td>
<td>0.072</td>
<td>-2.543</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ_x -3.504</td>
<td>Sample</td>
<td>-3.504</td>
<td>0.578</td>
<td>-4.454</td>
<td>-3.498</td>
<td>-2.543</td>
</tr>
<tr>
<td>MLE</td>
<td>-3.504</td>
<td>0.549</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β 0.090</td>
<td>OLS</td>
<td>0.746</td>
<td>0.634</td>
<td>0.007</td>
<td>0.601</td>
<td>1.947</td>
</tr>
<tr>
<td>MLE</td>
<td>0.683</td>
<td>0.594</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ 0.998</td>
<td>OLS</td>
<td>0.991</td>
<td>0.007</td>
<td>0.978</td>
<td>0.993</td>
<td>0.999</td>
</tr>
<tr>
<td>MLE</td>
<td>0.992</td>
<td>0.006</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_u 4.430</td>
<td>OLS</td>
<td>4.419</td>
<td>0.185</td>
<td>4.136</td>
<td>4.411</td>
<td>4.727</td>
</tr>
<tr>
<td>MLE</td>
<td>4.419</td>
<td>0.185</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_v 0.046</td>
<td>OLS</td>
<td>0.046</td>
<td>0.002</td>
<td>0.043</td>
<td>0.045</td>
<td>0.049</td>
</tr>
<tr>
<td>MLE</td>
<td>0.046</td>
<td>0.002</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ_{uv} -0.961</td>
<td>OLS</td>
<td>-0.961</td>
<td>0.004</td>
<td>-0.967</td>
<td>-0.961</td>
<td>-0.954</td>
</tr>
<tr>
<td>MLE</td>
<td>-0.961</td>
<td>0.004</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: We simulate 10,000 monthly samples from

\[
\begin{align*}
 r_{t+1} - \mu_r &= \beta (x_t - \mu_x) + u_{t+1} \\
 x_{t+1} - \mu_x &= \theta (x_t - \mu_x) + v_{t+1},
\end{align*}
\]

where $[u_t, v_t]$ has a bivariate t-distribution. The sample length is as in postwar data. Parameters are set to their maximum likelihood estimates (assuming normally distributed shocks) where β and θ are adjusted for bias. We conduct benchmark maximum likelihood estimation (MLE) for each sample path (this assumes normality and is therefore mis-specified). As a comparison, we take sample means to estimate μ_r and μ_x (Sample) and use ordinary least squares to estimate the slope coefficients and the variance and correlations of the residuals (OLS). The table reports the means, standard deviations, and 5th, 50th, and 95th percentile values across simulations. We set the degrees of freedom for the t-distribution to 5.96. This matches the average kurtosis of the estimated residuals for returns and the dividend-price ratio, and takes into account that the kurtosis is downward biased.
Table A.3: Small-sample distribution of estimators: Calibration to OLS estimates and sample means

<table>
<thead>
<tr>
<th>Parameter</th>
<th>True Value</th>
<th>Method</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>5 %</th>
<th>50 %</th>
<th>95 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_r</td>
<td>0.433</td>
<td>Sample</td>
<td>0.432</td>
<td>0.082</td>
<td>0.297</td>
<td>0.431</td>
<td>0.565</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MLE</td>
<td>0.432</td>
<td>0.049</td>
<td>0.352</td>
<td>0.432</td>
<td>0.513</td>
</tr>
<tr>
<td>μ_x</td>
<td>-3.545</td>
<td>Sample</td>
<td>-3.550</td>
<td>0.192</td>
<td>-3.865</td>
<td>-3.551</td>
<td>-3.232</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MLE</td>
<td>-3.550</td>
<td>0.184</td>
<td>-3.854</td>
<td>-3.552</td>
<td>-3.242</td>
</tr>
<tr>
<td>β</td>
<td>0.828</td>
<td>OLS</td>
<td>1.414</td>
<td>0.715</td>
<td>0.512</td>
<td>1.276</td>
<td>2.801</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MLE</td>
<td>1.372</td>
<td>0.689</td>
<td>0.515</td>
<td>1.241</td>
<td>2.675</td>
</tr>
<tr>
<td>θ</td>
<td>0.992</td>
<td>OLS</td>
<td>0.986</td>
<td>0.007</td>
<td>0.971</td>
<td>0.987</td>
<td>0.995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MLE</td>
<td>0.986</td>
<td>0.007</td>
<td>0.972</td>
<td>0.988</td>
<td>0.995</td>
</tr>
<tr>
<td>σ_u</td>
<td>4.414</td>
<td>OLS</td>
<td>4.410</td>
<td>0.118</td>
<td>4.215</td>
<td>4.410</td>
<td>4.603</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MLE</td>
<td>4.408</td>
<td>0.118</td>
<td>4.214</td>
<td>4.408</td>
<td>4.601</td>
</tr>
<tr>
<td>σ_v</td>
<td>0.046</td>
<td>OLS</td>
<td>0.046</td>
<td>0.001</td>
<td>0.044</td>
<td>0.046</td>
<td>0.048</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MLE</td>
<td>0.046</td>
<td>0.001</td>
<td>0.044</td>
<td>0.046</td>
<td>0.048</td>
</tr>
<tr>
<td>ρ_{uv}</td>
<td>-0.961</td>
<td>OLS</td>
<td>-0.961</td>
<td>0.003</td>
<td>-0.965</td>
<td>-0.961</td>
<td>-0.956</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MLE</td>
<td>-0.961</td>
<td>0.003</td>
<td>-0.965</td>
<td>-0.961</td>
<td>-0.956</td>
</tr>
</tbody>
</table>

Notes: We simulate 10,000 monthly samples from

\[
\begin{align*}
 r_{t+1} - \mu_r &= \beta(x_t - \mu_x) + u_{t+1} \\
 x_{t+1} - \mu_x &= \theta(x_t - \mu_x) + v_{t+1},
\end{align*}
\]

where u_t and v_t are Gaussian and iid over time with standard deviations σ_u and σ_v and correlation ρ_{uv}. The sample length is as in postwar data. Parameters μ_r and μ_x are set to their sample averages, and parameters β, θ and variances and correlations are set to their OLS estimates. We conduct maximum likelihood estimation (MLE) for each sample path. We also report sample averages for μ_r and μ_x (Sample) and OLS estimates for the remaining parameters.
Table A.4: Small-sample distribution of MLE₀

<table>
<thead>
<tr>
<th>True Value</th>
<th>Method</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>5 %</th>
<th>50 %</th>
<th>95 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu_r)</td>
<td>0.312</td>
<td>Sample</td>
<td>0.312</td>
<td>0.169</td>
<td>0.040</td>
<td>0.309</td>
</tr>
<tr>
<td>(\mu_x)</td>
<td>-3.437</td>
<td>MLE</td>
<td>0.312</td>
<td>0.090</td>
<td>0.164</td>
<td>0.312</td>
</tr>
<tr>
<td>(\mu_x)</td>
<td>-3.437</td>
<td>MLE₀</td>
<td>0.312</td>
<td>0.089</td>
<td>0.164</td>
<td>0.312</td>
</tr>
<tr>
<td>(\mu_x)</td>
<td>-3.437</td>
<td>Sample</td>
<td>-3.436</td>
<td>1.051</td>
<td>-5.172</td>
<td>-3.438</td>
</tr>
<tr>
<td>(\mu_x)</td>
<td>-3.437</td>
<td>MLE</td>
<td>-3.436</td>
<td>1.044</td>
<td>-5.156</td>
<td>-3.435</td>
</tr>
<tr>
<td>(\mu_x)</td>
<td>-3.437</td>
<td>MLE₀</td>
<td>-3.436</td>
<td>1.044</td>
<td>-5.156</td>
<td>-3.435</td>
</tr>
<tr>
<td>(\beta)</td>
<td>0</td>
<td>OLS</td>
<td>0.678</td>
<td>0.0063</td>
<td>0.0048</td>
<td>0.550</td>
</tr>
<tr>
<td>(\beta)</td>
<td>0</td>
<td>MLE</td>
<td>0.602</td>
<td>0.058</td>
<td>0.012</td>
<td>0.450</td>
</tr>
<tr>
<td>(\beta)</td>
<td>0</td>
<td>MLE₀</td>
<td>0.602</td>
<td>0.058</td>
<td>0.012</td>
<td>0.450</td>
</tr>
<tr>
<td>(\theta)</td>
<td>0.9992</td>
<td>OLS</td>
<td>0.9920</td>
<td>0.0063</td>
<td>0.9798</td>
<td>0.9933</td>
</tr>
<tr>
<td>(\theta)</td>
<td>0.9992</td>
<td>MLE</td>
<td>0.9928</td>
<td>0.0058</td>
<td>0.9812</td>
<td>0.9944</td>
</tr>
<tr>
<td>(\theta)</td>
<td>0.9992</td>
<td>MLE₀</td>
<td>0.9982</td>
<td>0.0012</td>
<td>0.9959</td>
<td>0.9985</td>
</tr>
</tbody>
</table>

Notes: We simulate 10,000 monthly data samples from

\[r_{t+1} - \mu_r = u_{t+1} \]

\[x_{t+1} - \mu_x = \theta(x_t - \mu_x) + v_{t+1}. \]

where \(u_t \) and \(v_t \) are Gaussian and iid over time with correlation \(\rho_{uv} \). The sample length is as in postwar data. The parameters are set to their restricted maximum likelihood estimates in Table 1. For each sample path, we compute sample averages for \(\mu_r \) and \(\mu_x \) (Sample), OLS estimates of \(\beta \) and \(\theta \) (OLS), unrestricted maximum likelihood (MLE, mis-specified in this case), and restricted maximum likelihood (MLE₀, correctly specified).
Table A.5: Estimates using multiple predictors

<table>
<thead>
<tr>
<th>returns</th>
<th>d/p</th>
<th>dfsp</th>
<th>tmsp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: ML estimates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\mu_r)</td>
<td>0.338</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\mu_{x_i})</td>
<td>-3.493</td>
<td>0.903</td>
<td>-0.871</td>
</tr>
<tr>
<td>(\beta_i)</td>
<td>0.893</td>
<td>-0.524</td>
<td>-0.143</td>
</tr>
<tr>
<td>(\theta_i)</td>
<td>0.994</td>
<td>0.969</td>
<td>0.972</td>
</tr>
<tr>
<td>RMSE</td>
<td>4.569</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panel B: Sample and OLS estimates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\mu_r)</td>
<td>0.441</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\mu_{x_i})</td>
<td>-3.548</td>
<td>0.904</td>
<td>-0.871</td>
</tr>
<tr>
<td>(\beta_i)</td>
<td>1.239</td>
<td>-0.157</td>
<td>-0.480</td>
</tr>
<tr>
<td>(\theta_i)</td>
<td>0.991</td>
<td>0.968</td>
<td>0.973</td>
</tr>
<tr>
<td>RMSE</td>
<td>4.581</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panel C: Covariance matrix</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\sigma^2)</td>
<td>4.391</td>
<td>0.046</td>
<td>0.101</td>
</tr>
<tr>
<td>(\rho_{ui})</td>
<td>-0.957</td>
<td>-0.058</td>
<td>-0.115</td>
</tr>
<tr>
<td>(\rho_{1i})</td>
<td>0.067</td>
<td>0.133</td>
<td></td>
</tr>
<tr>
<td>(\rho_{2i})</td>
<td>-0.130</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: Estimates of

\[
\begin{align*}
 r_{t+1} - \mu_r &= \sum_{i=1}^{N} \beta_i (x_{it} - \mu_{x_i}) + u_{t+1} \\
 x_{1,t+1} - \mu_{x_1} &= \theta_1 (x_{1,t} - \mu_{x_1}) + v_{1,t+1} \\
 \vdots \\
 x_{N,t+1} - \mu_{x_N} &= \theta_N (x_{N,t} - \mu_{x_N}) + v_{N,t+1}
\end{align*}
\]

where \(u_t \) and \(v_{1t}, \ldots, v_{Nt} \) are Gaussian and iid over time with covariance matrix

\[
\Sigma = \begin{bmatrix}
 \sigma_u^2 & \rho_{u1}\sigma_u\sigma_{11} & \cdots & \rho_{uN}\sigma_u\sigma_{N1} \\
 \rho_{u1}\sigma_u\sigma_{11} & \sigma_1^2 & \cdots & \rho_{1N}\sigma_1\sigma_{N1} \\
 \vdots & \vdots & \ddots & \vdots \\
 \rho_{uN}\sigma_u\sigma_{N1} & \rho_{1N}\sigma_1\sigma_{N1} & \cdots & \sigma_N^2
\end{bmatrix},
\]

where \(r_t \) is the continuously-compounded CRSP return minus the 30-day Treasury Bill return, \(x_{1t} \) is the log dividend-price ratio, \(x_{2t} \) is the default spread, and \(x_{3t} \) is the term spread. Data are monthly, April 1953 – December 2011. Means and standard deviations of returns are in percentage terms. In Panel A, parameters are estimated using maximum likelihood. In Panel B, \(\mu_r \) and \(\mu_{x_i} \) are estimated by sample averages, and \(\beta_i \) and \(\theta_i \) are estimated by ordinary least squares. Panel C gives the standard deviations of the shocks (top row) and the correlations between the shocks estimated using OLS residuals. Variables are the dividend-price ratio (d/p), the continuously-compounded yield of BAA-rated bonds minus the continuously-compounded yield of AAA rated bonds (dfsp), and the continuously-compounded yield of ten-year treasury bonds minus the continuously-compounded yield of one-year treasury bonds (tmsp).
Table A.6: Estimation of a predictive regression with heteroskedasticity

<table>
<thead>
<tr>
<th>Panel A: Means and coefficients</th>
<th>Panel B: Volatility parameters</th>
<th>Panel C: Covariance matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_r</td>
<td>0.335</td>
<td>ω_u</td>
</tr>
<tr>
<td>μ_x</td>
<td>-3.569</td>
<td>α_u</td>
</tr>
<tr>
<td>β</td>
<td>0.688</td>
<td>δ_u</td>
</tr>
<tr>
<td>θ</td>
<td>0.993</td>
<td>ω_v</td>
</tr>
<tr>
<td></td>
<td></td>
<td>δ_v</td>
</tr>
</tbody>
</table>

Notes: We estimate the bivariate process

$$r_{t+1} - \mu_r = \beta (x_t - \mu_x) + u_{t+1}$$
$$x_{t+1} - \mu_x = \theta (x_t - \mu_x) + v_{t+1},$$

where, conditional on information available up to and including time t,

$$\begin{bmatrix} u_{t+1} \\ v_{t+1} \end{bmatrix} \sim N \left(0, \begin{bmatrix} \sigma^2_{u,t+1} & \rho_{uv} \sigma_{u,t+1} \sigma_{v,t+1} \\ \rho_{uv} \sigma_{u,t+1} \sigma_{v,t+1} & \sigma^2_{v,t+1} \end{bmatrix} \right),$$

and

$$\sigma^2_{u,t+1} = \omega_u + \alpha_u u_t^2 + \delta_u \sigma^2_{u,t},$$
$$\sigma^2_{v,t+1} = \omega_v + \alpha_v v_t^2 + \delta_v \sigma^2_{v,t}.$$

Here, r_t is the continuously compounded return on the value-weighted CRSP portfolio in excess of the return on the 30-day Treasury Bill and x_t is the log of the dividend-price ratio. Starred parameters are implied by other estimates, namely $\sigma^*_u = \sqrt{\omega_u/(1 - \alpha_u - \delta_u)}$ and $\sigma^*_v = \sqrt{\omega_v/(1 - \alpha_v - \delta_v)}$. Parameters are estimated using a two-stage process by which the means and coefficients (Panel A) are treated as fixed and the volatility parameters (Panels B and C) are estimated using conditional maximum likelihood in the first stage, and the volatility parameters are treated as fixed, while the means and coefficients are re-estimated in the second stage. Data are monthly, from January 1953 to December 2011. Means and standard deviations of returns are in percentage terms.
Table A.7: Small-sample distribution of estimators when the dividend-price ratio follows a random walk

<table>
<thead>
<tr>
<th></th>
<th>True Value</th>
<th>Method</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>5 %</th>
<th>50 %</th>
<th>95 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_r</td>
<td>0.322</td>
<td>Sample</td>
<td>0.325</td>
<td>0.166</td>
<td>0.050</td>
<td>0.327</td>
<td>0.599</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MLE</td>
<td>0.322</td>
<td>0.047</td>
<td>0.246</td>
<td>0.323</td>
<td>0.401</td>
</tr>
<tr>
<td>μ_x</td>
<td>-3.504</td>
<td>Sample</td>
<td>-2.988</td>
<td>0.699</td>
<td>-4.130</td>
<td>-2.996</td>
<td>-1.845</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MLE</td>
<td>-2.986</td>
<td>0.637</td>
<td>-4.006</td>
<td>-2.997</td>
<td>-1.971</td>
</tr>
<tr>
<td>θ</td>
<td>0.993</td>
<td>OLS</td>
<td>0.992</td>
<td>0.006</td>
<td>0.980</td>
<td>0.994</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MLE</td>
<td>0.993</td>
<td>0.006</td>
<td>0.981</td>
<td>0.995</td>
<td>0.999</td>
</tr>
<tr>
<td>σ_u</td>
<td>4.416</td>
<td>OLS</td>
<td>4.413</td>
<td>0.117</td>
<td>4.221</td>
<td>4.414</td>
<td>4.605</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MLE</td>
<td>4.415</td>
<td>0.117</td>
<td>4.223</td>
<td>4.417</td>
<td>4.607</td>
</tr>
<tr>
<td>σ_v</td>
<td>0.046</td>
<td>OLS</td>
<td>0.046</td>
<td>0.001</td>
<td>0.044</td>
<td>0.046</td>
<td>0.048</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MLE</td>
<td>0.046</td>
<td>0.001</td>
<td>0.044</td>
<td>0.046</td>
<td>0.048</td>
</tr>
<tr>
<td>ρ_{uv}</td>
<td>-0.961</td>
<td>OLS</td>
<td>-0.962</td>
<td>0.003</td>
<td>-0.967</td>
<td>-0.962</td>
<td>-0.957</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MLE</td>
<td>-0.962</td>
<td>0.003</td>
<td>-0.967</td>
<td>-0.962</td>
<td>-0.957</td>
</tr>
</tbody>
</table>

Notes: We simulate 10,000 monthly data samples from

$$r_{t+1} - \mu_r = u_{t+1}$$

$$x_{t+1} = x_t + v_{t+1}$$

where u_t and v_t are Gaussian and iid over time with correlation ρ_{uv}. For each sample path we conduct (mis-specified) maximum likelihood estimation (MLE) of

$$r_{t+1} - \mu_r = \beta (x_t - \mu_x) + u_{t+1}$$

$$x_{t+1} - \mu_x = \theta (x_t - \mu_x) + v_{t+1}.$$

For comparison, we take sample means to estimate μ_r and μ_x (Sample) and use ordinary least squares to estimate the slope coefficients and the variance and correlations of the residuals (OLS). The table reports the means, standard deviations, and 5th, 50th, and 95th percentile values across simulations.
Table A.8: Small-sample distribution of estimators when the dividend-price ratio has a time trend

<table>
<thead>
<tr>
<th>Parameter</th>
<th>True Value</th>
<th>Method</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>5 %</th>
<th>50 %</th>
<th>95 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_r</td>
<td>0.322</td>
<td>Sample</td>
<td>0.322</td>
<td>0.168</td>
<td>0.044</td>
<td>0.321</td>
<td>0.599</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MLE</td>
<td>0.280</td>
<td>0.145</td>
<td>0.044</td>
<td>0.280</td>
<td>0.516</td>
</tr>
<tr>
<td>μ_x</td>
<td>-3.504</td>
<td>Sample</td>
<td>-3.682</td>
<td>0.234</td>
<td>-4.066</td>
<td>-3.682</td>
<td>-3.292</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MLE</td>
<td>-3.663</td>
<td>0.223</td>
<td>-4.028</td>
<td>-3.661</td>
<td>-3.296</td>
</tr>
<tr>
<td>β</td>
<td>0</td>
<td>OLS</td>
<td>0.590</td>
<td>0.684</td>
<td>-0.255</td>
<td>0.460</td>
<td>1.880</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MLE</td>
<td>0.514</td>
<td>0.660</td>
<td>-0.270</td>
<td>0.375</td>
<td>1.756</td>
</tr>
<tr>
<td>θ</td>
<td>0.993</td>
<td>OLS</td>
<td>0.987</td>
<td>0.007</td>
<td>0.974</td>
<td>0.988</td>
<td>0.996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MLE</td>
<td>0.988</td>
<td>0.007</td>
<td>0.975</td>
<td>0.989</td>
<td>0.996</td>
</tr>
<tr>
<td>σ_u</td>
<td>4.416</td>
<td>OLS</td>
<td>4.410</td>
<td>0.117</td>
<td>4.219</td>
<td>4.410</td>
<td>4.602</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MLE</td>
<td>4.409</td>
<td>0.117</td>
<td>4.218</td>
<td>4.410</td>
<td>4.601</td>
</tr>
<tr>
<td>σ_v</td>
<td>0.046</td>
<td>OLS</td>
<td>0.046</td>
<td>0.001</td>
<td>0.044</td>
<td>0.046</td>
<td>0.048</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MLE</td>
<td>0.046</td>
<td>0.001</td>
<td>0.044</td>
<td>0.046</td>
<td>0.048</td>
</tr>
<tr>
<td>ρ_{uv}</td>
<td>-0.961</td>
<td>OLS</td>
<td>-0.961</td>
<td>0.003</td>
<td>-0.965</td>
<td>-0.961</td>
<td>-0.956</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MLE</td>
<td>-0.961</td>
<td>0.003</td>
<td>-0.965</td>
<td>-0.961</td>
<td>-0.956</td>
</tr>
</tbody>
</table>

Notes: We simulate 10,000 monthly data samples from

$$r_{t+1} - \mu_r = u_{t+1}$$
$$x_{t+1} - \mu_x = \Delta + \theta(x_t - \mu_x) + v_{t+1}$$

where u_t and v_t are Gaussian and iid over time with correlation ρ_{uv}. We set μ_r, μ_x, θ, σ_u, σ_v and ρ_{uv} to their benchmark maximum likelihood estimates (Table 1) and Δ to the mean residual $(1/T) \sum_{t=1}^{T} \hat{v}_t = -0.14868$. For each sample path we conduct (mis-specified) maximum likelihood estimation (MLE) of

$$r_{t+1} - \mu_r = \beta(x_t - \mu_x) + u_{t+1}$$
$$x_{t+1} - \mu_x = \theta(x_t - \mu_x) + v_{t+1}.$$

For comparison, we take sample means to estimate μ_r and μ_x (Sample) and use ordinary least squares to estimate the slope coefficients and the variance and correlations of the residuals (OLS). The table reports the means, standard deviations, and 5th, 50th, and 95th percentile values across simulations.
Figure A.1: Histogram of maximum likelihood estimates of θ, the autocorrelation of the dividend-price ratio from simulated data. We simulate 10,000 monthly data samples from (1) with length and parameters as in the postwar data series.

Figure A.2: We simulate 10,000 monthly data samples from (1) with length and parameters as in the postwar data series. The figure shows the joint distribution of the predictability term $\hat{\beta}^T \sum_{t=1}^{T} (x_{t-1} - \hat{\mu}_x)$ and the correlated shock term $\hat{\sum}_{t=1}^{T} \hat{u}_t$ that sum to the difference between the maximum likelihood estimate and the sample mean.