A Model of Monetary Policy and Risk Premia

Itamar Drechsler, Alexi Savov, and Philipp Schnabl *

March 2014

Abstract

We present a dynamic heterogeneous-agent asset pricing model in which monetary policy affects the risk premium component of the cost of capital. Risk tolerant agents (banks) borrow from risk averse agents (depositors) and invest in risky assets, subject to a reserve requirement. By varying the nominal interest rate, the central bank affects the spread banks pay for external funding (i.e., leverage), a link that we show has strong empirical support. Lower nominal rates result in increased leverage, lower risk premia and overall cost of capital, and higher volatility. The effects of policy shocks are amplified via bank balance sheet effects. We use the model to implement dynamic interventions such as a “Greenspan put” and forward guidance, and analyze their impact on asset prices and volatility.

JEL: E52, E58, G12, G21
Keywords: Monetary policy, leverage, risk premia, reaching for yield, Greenspan put

*New York University Stern School of Business, idrechsl@stern.nyu.edu, asavov@stern.nyu.edu, and pschnabl@stern.nyu.edu. Drechsler is also with NBER, Schnabl is also with NBER and CEPR. We thank Xavier Gabaix and participants at the 2012 CITE conference at the Becker Friedman Institute, the 2013 Kellogg Junior Macro conference, the Princeton Finance Seminar, the 2013 Five-Star Conference at NYU, and the 2014 UBC Winter Finance Conference for their comments.
I. Introduction

In the textbook model (e.g. Woodford 2003), monetary policy impacts the economy by inducing changes in the risk-free interest rate. Yet, a growing body of evidence shows that monetary policy also has a large impact on the risk premium component of the cost of capital.\(^1\) Furthermore, many central bank interventions can be usefully interpreted as directly targeting risk premia. These include interventions undertaken during the financial crisis such as large-scale asset purchases, “Operation Twist”, across-the-board asset guarantees, and lender-of-last-resort operations, all of which specifically target the prices of risky assets. Monetary policy may also influence risk premia in normal times; an active debate centers on whether a “Greenspan put” in the late 1990s or abnormally low rates in the mid-2000s encourage excessive leverage and “reaching for yield”.\(^2\)

The link between monetary policy and risk premia works at least in part through financial institutions (Adrian and Shin 2010). For this reason, it appears in the banking literature alternatively as the bank lending channel (Bernanke and Blinder 1992, Kashyap and Stein 1994), the credit channel (Bernanke and Gertler 1995), and financial stability policy more broadly (Stein 2012). Yet risk premia are the subject of asset pricing.

In this paper, we provide a dynamic asset pricing model of the risk premium channel of monetary policy. The central bank varies the nominal interest rate in order to regulate the effective risk aversion of the marginal investor in the economy. It does so by influencing financial institutions’ cost of leverage. Lowering the nominal interest rate reduces the cost of leverage, which increases risk taking and decreases risk premia.

Specifically, we model an endowment economy populated by two types of agents, those with low risk aversion and those with high risk aversion. We think of the relatively risk tolerant agents as pooling their wealth in the form of the net worth (i.e., equity) of financial intermediaries, which we identify as banks. Because banks invest on behalf of the risk tolerant agents, in equilibrium they take leverage. They do so by borrowing from the relatively risk averse agents, or taking deposits. Our view of banks and deposits is purposely simplified, abstracting from other functions such as screening and monitoring in order to focus on risk taking and risk premia.

The central bank requires banks to hold a fraction of the deposits that they raise as reserves.\(^3\) Reserves are a liability of the central bank and they enter circulation via open

\(^1\)Bernanke and Kuttner (2005) document that monetary policy surprises have a powerful impact on stock prices, and show that this induced primarily by changes in risk premia, with very little of the effect coming directly from the risk-free rate. Hanson and Stein (2012), and Gertler and Karadi (2013) extend these results to long-term Treasury bonds and credit spreads, respectively.

\(^2\)See for example Blinder and Reis (2005), Rajan (2011), and Yellen (2011).

\(^3\)We do not micro-found the reserve requirement, but this can be done in several ways. An important
market operations. Aside from this constraint, the model is frictionless. In particular, there are no nominal rigidities, which allows us to focus exclusively on the risk premium channel. The single state variable of the model is the share of bank capital in total wealth.

The difference between the return on reserves and the return on risk-free bonds represents the opportunity cost of holding reserves, and hence the cost of taking leverage. This difference equals the nominal interest rate. Hence, the central bank regulates banks’ demand for leverage by inducing changes in the nominal rate. An increase in the nominal rate represents an increase in the cost of leverage and so it reduces banks’ demand for leverage. As banks are the risk tolerant investors in the economy, this causes aggregate risk taking to fall and the economy’s effective risk aversion to rise, driving up the equilibrium risk premium.

The solution to the model shows that the nominal rate equals the shadow price of banks’ leverage constraint—the reserves requirement. When the reserve requirement binds strongly, and banks’ demand for leverage is tightly constrained, the nominal rate is high. When the reserves requirement is slack and banks’ demand for leverage is satiated, the nominal rate is zero. A zero nominal rate therefore implies that further easing cannot increase banks’ risk taking. Indeed, any further attempt to lower the nominal rate results in banks holding excess reserves. As a result, the nominal rate in the model is bounded below by zero.

Our model allows the central bank to specify the nominal interest rate policy as a function of the state variable, the net worth share of the banking sector. We solve for the dynamics of reserves required for the central bank to support its target nominal rate. The solution shows that the nominal rate depends on the dynamics of total reserves, not on their quantity. The reason is that the return to holding reserves does not depend on their level, but on their growth rate over time.\(^4\) We take reserves to be the numeraire in the model, so inflation is the endogenous change in the price of consumption in units of reserves, or minus the capital gain on reserves.

We show that banks’ optimization problem can be rewritten as an unconstrained portfolio-choice problem by replacing the interest rate on deposits or risk-free bonds with the Fed Funds rate, the rate banks charge to lend to each other in the interbank market. The literature refers to the spread between these two rates as the external finance spread (e.g., Bernanke and Gertler 1995) because it represents the difference between the rate paid to rationale for reserves is that deposit insurance severs the link between banks’ risk taking and the rate they pay on deposits. This creates a role for the government in regulating banks’ risk taking. A reserve requirement provides a way of doing so with the added advantage that the tightness of bank funding is visible to regulators as a market price (Stein 2012). In turn, the standard rationale for government-run deposit insurance is the need to avoid costly banks runs (Diamond and Dybvig 1983).

\(^4\)One way to see this is to consider a one-time doubling of total reserves. This would halve the value of each unit of reserves (i.e. double the price level), but it would not affect the holding return of reserves going forward, and so it would leave the nominal rate unchanged.
borrow a dollar externally and the rate earned on a dollar that is “inside” the bank. Monetary policy can therefore be viewed as governing bank leverage by altering the external finance spread.

A novel prediction of our model is that the external finance spread is proportional to the nominal rate. Figure 1 shows the corresponding empirical relationship. It plots 20-week moving averages of the Fed Funds rate and the Fed Funds-TBill spread for the period July 1980 to May 2008. The relationship between the two series is remarkably tight and nearly proportional. The raw correlation is 86%, and the two series track each other closely both in the cycle and in the trend. The sample average Fed Funds-TBill spread is 0.57%, and its sensitivity to the Fed Funds rate, estimated via OLS, is 0.14. This evidence shows that there is a strong relationship between the nominal interest rate and bank funding conditions, which is the essential mechanism underpinning our model.

The model’s asset pricing implications all follow from the interaction of the external finance spread with the nominal rate in combination with heterogeneity in agents’ risk tolerances. We emphasize that any channel that gives rise to the observed relationship between the external finance spread and the nominal rate will induce the same asset-pricing dynamics. Such channels can originate with frictions on either the asset or liabilities side of bank balance sheets that impose a cost on taking leverage. In the body of the paper we model the reserves requirement, an asset-side cost.

The appendix presents a version of the model where the leverage cost arises instead on the liabilities side. In that version, deposits provide households with liquidity services and therefore pay a low rate, but must also be secured with collateral. The spread banks earn on deposits is controlled by the nominal rate, which therefore governs the tradeoff banks face between funding cost and leverage, just as in the main model.

To analyze the full implications of the model, we solve for the equilibrium using projection methods. To demonstrate the impact of monetary policy, we compare prices and quantities between a high nominal rate and a low nominal rate regime. We show that when nominal rates are high, bank leverage is low, the Sharpe ratio and risk premium of the endowment claim are high, and the valuation of the endowment claim is low. We also show that volatility is decreasing in the nominal rate. Volatility in the model is endogenously stochastic; it depends on banks’ net worth. Because low interest rates increase bank leverage, they also increase the volatility of the state variable, the volatility of discount rates, and hence the

5This spread is large since Fed Funds are overnight and extremely safe. By comparison, the credit spread (Moody’s Baa versus Aaa long-term bonds) averages 1.07% over the same period.

6Driscoll and Judson (2013) show empirically that deposit rates are “sticky”, meaning that they do not move one-for-one with the nominal interest rate, and hence the spread banks earn on deposits is driven by the nominal rate.
volatility of returns.

We further examine two dynamic interest rate policies. The first policy captures a “Greenspan put” by decreasing nominal rates as bank net worth falls. This policy stabilizes prices locally by boosting bank leverage. However, as leverage rises and eventually becomes satiated, further negative shocks cause prices to fall rapidly. At this point, volatility is significantly higher than it would have been otherwise. Thus, in our framework a Greenspan put can support valuations in the short run at the expense of greater instability in the long run.

The second policy examines the impact of forward guidance. Under forward guidance, the central bank commits to keeping nominal rates low even after the economy recovers (the wealth share of the banking sector rises above some threshold). We show that by reducing future discount rates through forward guidance, the central bank is able to induce an additional increase in prices even when current nominal rates are at the zero lower bound.

Finally, we extend the model to allow the central bank to deviate from its expected nominal rate policy. We show that policy shocks lead to a second round amplification effect on risk premia and other equilibrium quantities. This effect is akin to a financial accelerator: when nominal rates fall unexpectedly, the assets on bank balance sheets rise more than their liabilities, which raises banks’ net worth and enables them to expand their balance sheets, pushing risk premia down even further.

The rest of this paper is organized as follows: Section II reviews the literature, Section III presents the model, Section IV characterizes the equilibrium, Section V presents results for a benchmark economy, Section VI examines the effects of dynamic policies, Section VII introduces an extension with policy shocks, and Section VIII concludes.

II. Related literature

Our paper is related to the literature on the bank lending channel of monetary policy initiated by Bernanke (1983) and formalized by Bernanke and Blinder (1988) and Kashyap and Stein (1994). The bank lending channel relies on an imperfect substitutability between bank loans and unintermediated bonds so that a contraction in bank lending affects the overall availability of funding and spills over to the macroeconomy. The transmission runs through bank reserves: a drop in the supply of reserves forces banks to shrink their balance sheets.

Bernanke and Gertler (1989), Kiyotaki and Moore (1997), and Bernanke, Gertler, and Gilchrist (1999) develop the broader balance sheet channel of monetary policy, which emphasizes the impact of policy shocks on the net worth of borrowers. Against the backdrop of the financial crisis, recent models shift attention from firms to financial intermediaries
(e.g. Adrian and Shin 2010, Gertler and Kiyotaki 2010, Cúrdia and Woodford 2009, Adrian and Boyarchenko 2012, Brunnermeier and Sannikov 2013, He and Krishnamurthy 2013). In these models, a maturity or liquidity mismatch between intermediary assets and liabilities causes interest rate shocks to affect intermediary net worth, driving the supply of credit.

Our contribution to these literatures is to develop an asset pricing framework in which monetary policy influences the risk premium component of the cost of capital. We model an economy populated by agents with different levels of risk aversion, which gives rise to a credit market as in Dumas (1989), Wang (1996) and Longstaff and Wang (2012). Risk tolerant agents deploy their wealth in levered portfolios that we interpret as banks. They raise funds by selling bonds to risk averse households, or depositors. The key friction is a cost on leverage. Our model is thus related to models in which margin requirements lead to incomplete risk sharing (e.g. Gromb and Vayanos 2002, Brunnermeier and Pedersen 2009, Gărleanu and Pedersen 2011, Ashcraft, Garleanu, and Pedersen 2011). An important distinction of our model is that the tightness of the leverage constraint depends on monetary policy through the nominal interest rate.

Stein (1998, 2012) also studies the ability of the central bank to control bank leverage. In Stein (2012), leverage entails a negative externality resulting from fire sales. Reserves function as “pollution permits” whose price, the nominal rate, provides a market-based signal that enables regulators to maintain financial stability. In our framework the central bank controls the price of reserves by regulating their dynamics, which allows it to influence the external finance premium faced by banks. The external finance premium in turn affects bank leverage and risk premia.

In contrast to the literature, our model does not require any nominal price rigidities. Our asset pricing framework allows us to focus exclusively on risk taking. This differs from other papers on monetary policy and bank balance sheets including Stein (2012), Adrian and Shin (2010), and Dell’Ariccia, Laeven, and Marquez (2011).

Our paper is also related to the literature on the role of government liabilities as a source of liquidity for the financial sector (Woodford 1990, Gertler and Karadi 2011, Caballero and Farhi 2013, Krishnamurthy and Vissing-Jorgensen 2012, Greenwood, Hanson, and Stein 2012). In our model, policy accommodation provides liquidity to banks and “crowd in” investment in risky assets similarly to the role of government debt in Woodford (1990).

On the empirical side, Bernanke and Blinder (1992) and Bernanke and Gertler (1995) are early papers that find support for the bank lending and balance sheet channels of monetary

7In this sense our model represents a counter-example to Kashyap and Stein’s (1994) conjecture that absent nominal price rigidities, “there can be no real effects of monetary policy through either the lending channel or the conventional money channel.”
policy. Bernanke and Blinder (1992) show that monetary tightening as reflected in a shock to the Fed Funds rate, leads banks to shrink their balance sheets. Kashyap, Stein, and Wilcox (1993) show that bank funding is sensitive to policy shocks, and Kashyap and Stein (2000) find that this is especially true of smaller banks. More recently, Jiménez, Ongena, Peydró, and Saurina Salas (2011) and Landier, Sraer, and Thesmar (2013) provide further corroborating evidence on the links between monetary policy and bank balance sheets.

Our model generates a positive relationship between nominal interest rates and risk premia, a phenomenon sometimes referred to as “reaching for yield”. A fast-growing literature finds support for this relationship. In a key paper, Bernanke and Kuttner (2005) document that surprise rate hikes induce large negative stock returns. Using a VAR decomposition, they find that this effect is largely due to increases in expected excess returns, and that very little is directly attributable to changes in expected real interest rates. Bekaert, Hoerova, and Lo Duca (2013) use the VIX index in a similar analysis, finding that tightening shocks increase investor risk aversion. Hanson and Stein (2012) show that policy shocks affect long-term Treasury bond premia, while Gertler and Karadi (2013) find similar results for credit spreads.

III. Model

We model an infinite-horizon exchange economy in continuous time $t \geq 0$, with aggregate endowment D_t that follows a geometric Brownian motion:

$$\frac{dD_t}{D_t} = \mu_D dt + \sigma_D dB_t.$$

(1)

The economy is populated by a continuum of agents with total mass one. There are two types of agents, A and B. Both types have recursive preferences as in Duffie and Epstein (1992), the continuous-time analog to the discrete-time formulation of Epstein and Zin (1989).8

To ensure stationarity, we assume that agents die at a rate κ. New agents are also born at a rate κ with a fraction ϖ as type A and $1 - \varpi$ as type B. Gârleanu and Panageas (2008) show that under these assumptions, κ simply increases agents’ effective rate of time preference and hence the lifetime utility V_0^i of an agent of type $i = A, B$ is given by the

8These preferences allow us to vary the elasticity of intertemporal substitution (EIS) independently of the risk aversion coefficient. An EIS greater than one ensures that valuations are decreasing in risk aversion.
recursion

\[V_0^i = E_0 \left[\int_0^\infty f^i (C_t^i, V_t^i) \, dt \right] \]
\[f^i (C_t^i, V_t^i) = \left(\frac{1 - \gamma^i}{1 - 1/\psi^i} \right) V_t^i \left(\frac{C_t^i}{[(1 - \gamma^i) V_t^i]^{1/(1-\gamma^i)}} \right)^{1-1/\psi^i} - (\rho + \kappa) \cdot \tag{3} \]

The felicity function \(f^i \) is an aggregator over current consumption and future utility. The parameters \(\psi^i \) and \(\gamma^i \), \(i = A, B \), denote agents’ elasticity of intertemporal substitution (EIS) and relative risk aversion (RRA).

Without loss of generality, we assume that \(A \) agents are more risk tolerant, \(\gamma^A < \gamma^B \). We view these agents as pooling their wealth into the net worth (i.e. equity capital) of the “banks” in the economy (or more generally the financial sector). We abstract from other aspects of financial intermediation and adopt this simplified view in order to focus on risk taking.\(^9\) We therefore often refer to the \(A \) agents as the banks and their wealth as the equity capital of the banking sector.

Let \(W_t^i \) denote the total wealth of type-\(i \) agents at time \(t \). We denote the wealth share of \(A \) agents by \(\omega_t \):

\[\omega_t = \frac{W_t^A}{W_t^A + W_t^B}. \]
\[\tag{4} \]

We show below that \(\omega_t \) summarizes the state of the economy. To derive its dynamics, we assume that the wealth of agents who die is bequeathed to the newly born on an even per-capita basis. We can then write the law of motion of \(\omega_t \) as

\[d\omega_t = \kappa (\bar{\omega} - \omega_t) \, dt + \omega_t (1 - \omega_t) \left[\mu_\omega (\omega_t) \, dt + \sigma_\omega (\omega_t) \, dB_t \right]. \]
\[\tag{5} \]

The evolution of \(\omega_t \) has an exogenous component due to demographic turnover that ensures stationarity, and an endogenous component (in brackets) due to differences in the rates of saving and the portfolio choices of the two agent types.

Agents trade a claim on the aggregate endowment. The price of this claim is \(P_t \), its dividend yield is \(F (\omega_t) = D_t/P_t \), and its return process is

\[dR_t = \frac{dP_t}{P_t} + \frac{D_t \, dt}{P_t} = \mu (\omega_t) \, dt + \sigma (\omega_t) \, dB_t. \]
\[\tag{6} \]

\(^9\)We note that in our setup it is not necessary to impose a restriction on equity issuance as in He and Krishnamurthy (2013) and Brunnermeier and Sannikov (2013).
Agents also trade instantaneous risk-free bonds, i.e. deposits, that pay the endogenously-determined real interest rate $r(\omega_t)$.

A. Deposits and reserves

The difference in risk aversion between agents leads to the emergence of a credit market (Longstaff and Wang 2012). In particular, optimal risk sharing implies that the risk-averse B agents lend to the risk-tolerant A agents using the instantaneous risk-free bonds. Continuing with our interpretation of A agents as banks, we think of these bonds as deposits.

The central bank regulates deposit taking through a reserve requirement. In particular, banks must hold reserves of no less than a fixed proportion of their deposits. Holding reserves is costly due to foregone interest. Reserves are issued only by the central bank though they can be traded freely in a secondary market.

A reserve requirement can be motivated in several ways. For example, it provides a lever for regulating deposit creation, and deposit creation entails an externality in the context of deposit insurance. Deposit insurance itself can be optimal if deposits are susceptible to destructive bank runs as in Diamond and Dybvig (1983). A reserve requirement is particularly well-suited to regulating the externalities associated with deposit creation because it takes advantage of a price mechanism. The central bank monitors the cost of lending and borrowing reserves in interbank markets and responds to fluctuations in that cost by conducting open market operations.

Rather than directly modeling the externalities associated with deposit creation, we take reserve requirements as given and study their implications for risk-taking. Formally, let $w_{S,t}$ be the banks’ portfolio weight in the risky endowment claim. Of this, $\max\{w_{S,t} - 1, 0\}$ must be deposit-financed (borrowed). Let $w_{M,t}$ be the banks’ portfolio weight in reserves. The reserve requirement imposes the constraint

$$w_{M,t} \geq \max \left[\lambda \sigma_t^2 (w_{S,t} - 1), 0 \right]. \quad (7)$$

Banks must hold reserves in proportion to their deposits, if any, and reserves cannot be held short. The parameter λ controls the reserve requirement, $\lambda \sigma_t^2$. Scaling by σ_t^2 simplifies the resulting expressions, but is not essential. When $\lambda = 0$, there is no reserve requirement.

10 Interest on reserves can be easily incorporated into the model as we discuss below.
11 Stein (2012) draws the analogy with the market for pollution permits. Reserves regulate the supply of deposits based on a tradeoff between the private value of monetary services and the externality due to fire sales following crashes. In general, any negative externality associated with deposit creation introduces a role for reserves.
12 In the absence of this scaling, the tightness of the reserves requirements varies inversely with the variance.
and asset markets are complete. This case might correspond to a frictionless economy in which deposit-related externalities and the need to regulate them do not arise.

Let M_t denote the total quantity of reserves and Π_t the total real value of reserves in units of the endowment. It will be useful to define

$$G(\omega_t) = \frac{\Pi_t}{P_t}$$

as the total wealth share of reserves. Furthermore, let $\pi_t = \Pi_t/M_t$ denote the consumption value of each dollar of reserves. We take reserves to be the numeraire, so π_t is the inverse price level. It follows that the realized rate of inflation is $-d\pi_t/\pi_t$. We assume that the central bank sets the path of reserves dM_t/M_t so that inflation is locally deterministic,

$$-\frac{d\pi_t}{\pi_t} = i(\omega_t) dt.$$ (9)

Locally deterministic inflation simplifies the exposition of the model and is arguably realistic. In Section IV.B, we show precisely how the central bank implements (9) by adjusting the drift of reserves growth and its exposure to the endowment shock.

Next, we define the nominal interest rate:

$$n(\omega_t) = r(\omega_t) + i(\omega_t).$$ (10)

We treat $n(\omega_t)$ as the central bank’s policy instrument and solve for the path of reserves that implements it. We write this policy as a function of ω_t since it summarizes the state of the economy. Agents have rational expectations so they know this function. In Section VII, we also consider policy shocks, which may take the nominal rate away from its benchmark rule.

The central bank controls the supply of reserves via open market operations, sales and purchases of bonds in exchange for reserves at prevailing market prices. Let B_t be the central bank’s total holdings of bonds (hence the private sector as a whole holds $-B_t$). If we think of reserves as the central bank’s liability, then its net worth is $B_t - \Pi_t$. Since open market operations are conducted at prevailing market prices, they do not change this net worth. However, the central bank earns a stream of “seignorage” profits on its portfolio, which is given by the difference between the interest income it earns on its bond assets and the

13In practice, reserves are fungible with currency, which serves as numeraire. Since our focus is on risk taking, we abstract from introducing a transactions medium such as currency.
increase in the value of its reserve liabilities, which is given by realized deflation. Thus, total
seignorage is
\[B_t r (\omega_t) dt - \Pi_t \frac{d\pi_t}{\pi_t} = \Pi_t n (\omega_t) dt. \] (11)

As we show below, no-arbitrage requires \(n (\omega_t) \geq 0 \) so seignorage is never negative. To close
the model, we assume the central bank pays out its seignorage profits, which keeps its net
worth at zero. To keep this refund from changing the wealth distribution, we assume it gets
distributed to all agents in the economy in proportion to their wealth.

B. Optimization

We begin with the Hamilton-Jacobi-Bellman (HJB) equation of an agent in our economy. Let
\(V^i (W^h_t, \omega_t) \) denote the value function of agent \(h \) of type \(i = A, B \). Also let \(c^h_t, w^h_{S,t}, \)
and \(w^h_{M,t} \) be the agent’s consumption-wealth ratio, endowment claim portfolio weight, and
reserves portfolio weight (the remaining weight is held in bonds). The HJB equation is
\[0 = \max_{c^h_t, w^h_{S,t}, w^h_{M,t}} f^i \left(c^h_t W^h_t, V^i (W^h_t, \omega_t) \right) dt + E \left[dV^i (W^h_t, \omega_t) \right] \] (12)
subject to the agent’s wealth dynamics\(^{14}\) and reserve requirement
\[\frac{dW^h_t}{W^h_t} = \left(r (\omega_t) - c^h_t + w^h_{S,t} [\mu (\omega_t) - r (\omega_t)] + w^h_{M,t} \left[\frac{d\pi_t}{\pi_t} - r (\omega_t) \right] + G (\omega_t) n (\omega_t) \right) dt + w^h_{S,t} \sigma (\omega_t) dB_t \] (13)
\[w^h_{M,t} \geq 0 \] (14)
\[w^h_{M,t} \geq \lambda \sigma^2 (\omega_t) (w^h_{S,t} - 1). \] (15)

The diffusive component of wealth depends only on the weight of the risky claim and not on
the reserves holdings, which are locally risk-free. In the drift term, \(G (\omega_t) n (\omega_t) \) represents
the stream of seignorage refund payments.\(^{15}\) By (9) and (10), the excess return on reserves,
\(d\pi_t/\pi_t - r (\omega_t) \), equals \(-n (\omega_t)\), the negative of the nominal rate. Hence, reserves are costly

\(^{14}\)These are the wealth dynamics should the agent manage to cheat death over the next instant. The agent
accounts for the possibility of death directly in the felicity function (3).

\(^{15}\)Recall from (11) that total seignorage is \(\Pi_t n (\omega_t) \) and that it gets refunded in proportion to wealth, so
an agent with wealth \(W^h_t \) gets \(\Pi_t n (\omega_t) \frac{W^h_t}{\pi_t} = G (\omega_t) n (\omega_t) W^h_t \).
when the nominal rate is positive. Not that the reserve requirement consists of two parts: the shorting restriction that prevents agents from increasing the effective supply of reserves on their own, and the constraint on deposit taking.

The homogeneity of preferences implies that the consumption and portfolio policies are independent of wealth, so we can write them as functions of agent type only. Finally, denote the aggregated consumption-wealth ratio of type i agents by $c^i(\omega_t) = \int_i c^h(\omega_t) \frac{W^h_t}{W_t} dh$ for $i = A, B$, and similarly for the portfolio policies $w^i_S(\omega_t)$ and $w^i_M(\omega_t)$.

C. Equilibrium conditions

In equilibrium, the markets for goods (i.e. consumption), the endowment claim, and reserves must clear. The bond (deposit) market clears by Walras’ law. Since the public’s net bond holdings are simply minus the value of reserves, aggregate wealth equals the value of the endowment claim, $W^A_t + W^B_t = P_t$. The three market-clearing conditions can therefore be written as

$$\omega_t c^A(\omega_t) + (1 - \omega_t) c^B(\omega_t) = F(\omega_t) \quad (16)$$
$$\omega_t w^A_S(\omega_t) + (1 - \omega_t) w^B_S(\omega_t) = 1 \quad (17)$$
$$\omega_t w^A_M(\omega_t) + (1 - \omega_t) w^B_M(\omega_t) = G(\omega_t). \quad (18)$$

All three conditions are normalized by total wealth. The first equation gives the goods-market clearing condition, the second gives the market-clearing condition for the endowment claim, and the third gives the market-clearing condition for reserves.

IV. Analysis

In this section we derive the equations that characterize the equilibrium. These equations do not permit closed-form solutions. However, we are able to derive analytical expressions that highlight key mechanisms. In the next section, we provide a full analysis of the model’s implications by applying numerical methods.

16Paying interest on reserves would partially offset this cost. In the end, what matters is the difference between the nominal rate and the interest rate on reserves, which represents the net cost of holding reserves. Interest on reserves could serve as a separate policy tool for achieving financial stability while maintaining price stability in the presence of nominal price rigidities, see Kashyap and Stein (2012).
A. The value function and the demand for leverage

For simplicity of notation, we drop agent, type, and time subscripts though it should be understood that they apply. Let \(\theta_\lambda V_W W \geq 0 \) and \(\theta_0 V_W W \geq 0 \) be the Lagrange multipliers on the reserves and non-negativity constraints. By Ito’s lemma we can rewrite the HJB equation as the Lagrangian

\[
0 = \max_{c,w,M} f(cW, V) + V_W W [r - c + w_S (\mu - r) - w_M n + Gn] \\
+ V_\omega [\kappa (\overline{\omega} - \omega) + \omega (1 - \omega) \mu_\omega] + V_W W \omega (1 - \omega) w_S \sigma \sigma + \frac{1}{2} V_{WW} W^2 (w_S \sigma)^2 \\
+ \frac{1}{2} V_{\omega\omega} \omega^2 (1 - \omega)^2 \sigma^2 \omega + \lambda V_W W [w_M - \lambda \sigma^2 (w_S - 1)] + \theta_0 V_W W w_M.
\]

The following proposition gives the form of the value function up to an an unknown function of the wealth distribution \(J(\omega) \) together with the equation that characterizes it.

Proposition 1. Each agent’s value function has the form

\[
V(W, \omega) = \left(\frac{W^{1-\gamma}}{1-\gamma} \right) J(\omega)^{\frac{1-\gamma}{1-\psi}}.
\]\n
The unknown function \(J(\omega) \) gives the agent’s consumption-wealth ratio, \(c^* = J \) and solves the second-order ordinary differential equation

\[
\rho + \kappa = \frac{1}{\psi} J + (1 - 1/\psi) \left(r + \lambda \sigma^2 \theta_\lambda + Gn \right) - \frac{1}{\psi} \frac{J_\omega}{J} \left[\kappa (\overline{\omega} - \omega) \\
+ \omega (1 - \omega) \mu_\omega \right] - \frac{1}{2} \left[\left(\psi - \gamma \right) \left(\frac{J_\omega}{J} \right)^2 + \frac{J_{\omega\omega}}{J} \right] \omega^2 (1 - \omega)^2 \sigma^2 \omega \\
+ \frac{1}{2} \left(\frac{1 - 1/\psi}{\gamma} \right) \left[\frac{\mu - r}{\sigma^2} - \lambda \theta_\lambda + \left(\frac{1 - \gamma}{1-\psi} \right) \frac{J_\omega}{J} \omega (1 - \omega) \frac{\sigma_\omega}{\sigma} \right]^2 \sigma^2
\]

if \(\gamma^B - \gamma^A \geq \lambda n \), with \(\theta_\lambda = n \) if the agent is of type A and \(\theta_\lambda = 0 \) if the agent is of type B. If instead \(\gamma^B - \gamma^A < \lambda n \), \(J \) solves

\[
\rho + \kappa = \frac{1}{\psi} J + (1 - 1/\psi) \left(\mu - \gamma \sigma^2 \right) - \frac{1}{\psi} \frac{J_\omega}{J} \left[\kappa (\overline{\omega} - \omega) + \omega (1 - \omega) \mu_\omega \right]. \tag{22}
\]

Proof of Proposition 1. The proof is contained in Appendix A. \(\square \)

The function \(J \) is type-specific but not agent-specific since it does not depend on wealth. Instead, it depends solely on the wealth distribution \(\omega \). As a result, \(\omega \) is a sufficient statistic for asset valuations and other equilibrium quantities.
Using the value functions, we can solve for agents’ portfolio demands. Proposition 2 below provides the conditions under which banks take leverage (by issuing deposits), and characterizes their demand for the risky endowment claim as it depends on the central bank’s nominal rate policy.

Proposition 2. Banks take leverage/deposits \(w_A \gamma^B > 1 \) if and only if

\[
\gamma^B - \gamma^A > \lambda n. \tag{23}
\]

In this case, banks’ portfolio holdings of the endowment claim are given by

\[
w_A = \frac{1}{\gamma^A} \left[\frac{\mu - r}{\sigma^2} - \lambda n + \left(1 - \gamma^A \right) \frac{J^A}{J^A} \omega \left(1 - \omega \right) \frac{\sigma^2}{\sigma} \right]. \tag{24}
\]

Proof of Proposition 2. The proof is contained in Appendix A.

Equation (24) has three parts. The first term, \((\mu - r)/\sigma^2 \), is the standard “myopic” mean-variance tradeoff for the endowment claim. It shows that banks take more leverage when there is a higher return premium per unit of risk. The third term, which depends on \(J^A \), represents the intertemporal hedging component of banks’ demand for the risky asset. This component determines how much banks adjust their current risk taking to hedge future changes in investment opportunities. The investment opportunity set is stochastic because of variation in aggregate risk aversion that is induced by changes in the relative wealth \(\omega \) of the risk-tolerant and risk-averse agents.

The term \(-\lambda n\) in equation (24) gives the direct impact of the nominal rate on bank leverage, which we summarize in the following corollary.

Corollary 1. All else equal, an increase in the nominal interest rate reduces bank leverage.

For every dollar of deposit funding, banks must increase their reserves holdings by the reserve requirement. Since the excess return on reserves is the negative of the nominal rate, holding reserves is costly. An increase in the nominal interest rate raises the effective cost of deposits and results in less leverage.

Using (24), we can see that an increase in the nominal rate works like an increase in banks’ effective risk aversion. This in turn raises the economy’s aggregate risk aversion and hence also the risk premium.

Proposition 2 also shows that banks lever up only if agents’ risk aversions differ sufficiently to overcome the cost of leverage. The difference in risk aversions multiplied by the return variance, \((\gamma^A - \gamma^B) \sigma^2 \), measures the risk premium earned by banks on their first dollar of
leverage. This premium reflects the gains from risk sharing. For banks to take leverage, it must be greater than the cost of leverage which is given by the nominal rate \(n \) multiplied by the reserve requirement \(\lambda \sigma^2 \).

Corollary 2. If \(\lambda n \geq \gamma^B - \gamma^A \) then \(w^A_S = w^B_S = 1 \).

If the cost of leverage exceeds the difference in risk aversions then banks do not raise deposits and the two groups remain in “financial autarky”.

B. The external finance spread and the Fed Funds rate

Next, we relate the external finance spread and the Fed Funds rate inside our model. The Fed Funds market is a short-term (mostly overnight) uncollateralized lending market for banks in the US.\(^{17}\) The rate that prevails in this market, the Fed Funds rate, has emerged as a key target for monetary policy. Fed Funds loans are not subject to reserve requirements as they are not deposits. In equilibrium, banks must be indifferent between raising a dollar of funding in the form of deposits or Fed Funds. The real Fed Funds rate \((FFr)\) must therefore equal the real deposit (or risk-free bond) rate plus the cost of the reserve requirement:

\[
FFr_t = r(\omega_t) + \lambda \sigma^2_t n(\omega_t). \tag{25}
\]

The term \(\lambda \sigma^2 n \) captures the spread between the Fed Funds rate and the rate on deposits or TBills. This spread represents the external finance spread, since it is the difference between the value of a dollar inside the banking system versus outside. In the literature (Bernanke and Gertler 1995), this term is similarly used to refer to the gap between the cost of banks’ marginal sources of funding and the rate on risk-free deposits or short-term TBills.

We highlight the importance of the external finance spread in the model by rewriting equation (24) for banks’ optimal leverage/risky claim holdings as follows:

\[
w^A_S = \frac{1}{\gamma^A} \left[\frac{\mu - FFr}{\sigma^2} + \left(\frac{1 - \gamma^A}{1 - \psi^A} \right) \frac{J^A}{J} \omega (1 - \omega) \frac{\sigma_\omega}{\sigma} \right]. \tag{26}
\]

This shows that banks’ constrained leverage can be recast as an unconstrained optimal portfolio decision if the real interest rate is replaced by the cost of external financing, which exceeds the risk-free rate by the external finance spread.

\(^{17}\)The Fed Funds market represents a substantial source of overnight funding for large US money-center banks. The other significant source of interbank uncollateralized dollar funding is the Eurodollar market. The prevailing rate in that market, LIBOR, closely tracks the Fed Funds rate very closely (Kuo, Skeie, and Vickery 2010).
Equation (26) shows that changes in the nominal rate affect bank leverage by changing the external finance spread. When the central bank increases the nominal rate, the external finance spread widens, reducing banks’ demand for leverage. In turn, this increases in effective aggregate risk aversion and the price of risk.

Figure 1 plots the empirical relationship between the level of the Fed Funds rate (solid line, left axis) and the Fed Funds-TBill spread (dashed line, right axis) for the period July 1980 to May 2008. The beginning of this period corresponds roughly to the abolition of Regulation Q, which limited the rate banks could pay on deposits, while the end corresponds roughly to the beginning of the financial crisis, which temporarily introduced credit risk into the Fed Funds market. The figure plots 20-week moving averages of these series.

The figure displays a remarkably tight relationship between the two series over this roughly twenty-eight year period. Indeed, the correlation is 86%. Moreover, the Fed Funds-TBill spread closely tracks both the trend and the cycles in the Fed Funds rate over this period. The evidence shows a relationship between the levels of interest rates and bank funding costs and, therefore, presents a challenge to models driven solely by interest rate shocks.

The average Fed Funds rate over this period is 6.25%, while the average Fed Funds-TBill spread is 0.57%. The sensitivity of the Fed Funds-TBill spread to the Fed Funds rate, estimated via OLS regression, is 0.14. In the model, this value corresponds to the reserve requirement, $\lambda \sigma^2$, which we set to 0.10.

The relationship between the nominal rate and the external finance spread is more general than the reserves-based approach employed here. Broadly speaking, it can be induced by both asset- and liabilities-side frictions. The reserve requirement represents an asset-side friction. In Appendix C, we present a version of the model in which a liabilities-side friction, a tradeoff between cheap deposit funding and leverage, generates this relationship.

C. Reserves value and implementation dynamics

Recall that reserves are locally risk-free yet their excess return, $-n$, is negative in equilibrium. The reason for this is that reserves give banks the right to take leverage, which we can think of as a latent dividend stream. Its value is given by the Lagrange multiplier on banks’ reserve requirement, θ^A, which in equilibrium equals the nominal rate n. At the same time, the risk-adjusted real return on any asset must equal r. Hence the capital gain on reserves, $d\pi/\pi = -idt$, must adjust so that:

$$r = n - i.$$

(27)
This is Fisher’s equation. Interpreted through the lens of asset pricing, it states that the real risk-free rate r equals the capital gain on reserves $-i$ plus the latent dividend stream n.

The following proposition solves for the value of reserves G and the law of motion for their quantity M that supports the central bank’s nominal interest rate rule.

Proposition 3. The value of reserves as a share of aggregate wealth is given by

$$G(\omega_t) = \omega_t \lambda \sigma_t^2 (w_{St}^A - 1). \quad (28)$$

Under the central bank’s nominal rate rule $n(\omega_t)$, the quantity of reserves M_t must follow the law of motion

$$\frac{dM_t}{M_t} = [n(\omega_t) - r(\omega_t)] dt + \frac{d\Pi_t}{\Pi_t}, \quad (29)$$

$$= [n(\omega_t) - r(\omega_t)] dt + \frac{dG(\omega_t)}{G(\omega_t)} + \frac{dP_t}{P_t} + \frac{dG(\omega_t)}{G(\omega_t)} \frac{dP_t}{P_t}. \quad (30)$$

Proof of Proposition 3. The proof is contained in Appendix A. □

The dynamics of the quantity of reserves in equation (29) are given as a function of the central bank’s policy $n(\omega)$, and two endogenous quantities, the total value of reserves $\Pi(\omega)$, and the real rate $r(\omega)$. The central bank adjusts the growth rate of reserves to achieve the target while responding to underlying shocks.

Note that the growth rate of reserves is stochastic even though realized inflation is locally deterministic. To attain the nominal rate $n(\omega)$, the central bank must influence the rate of return on reserves, which depends on the state of the economy ω. In particular, to maintain a stable nominal rate, the quantity of reserves must keep up with aggregate wealth P and demand for reserves G.

Equation (29) also implies the following corollary.

Corollary 3. The nominal interest rate depends on the growth rate of reserves, not their level, which is not separately identified.

This result follows directly from equation (29), which shows that $n(\omega)$ is related to the growth of M, not the level. A specific value of M pins down the price level ($\Pi = M\pi$), but the nominal rate depends only on the growth rate of M. Thus, the model features neutrality with respect to the quantity of reserves.
<table>
<thead>
<tr>
<th>Description</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk aversion A</td>
<td>γ^A</td>
<td>1.5</td>
</tr>
<tr>
<td>Risk aversion B</td>
<td>γ^B</td>
<td>15</td>
</tr>
<tr>
<td>EIS</td>
<td>ψ^A, ψ^B</td>
<td>3.5</td>
</tr>
<tr>
<td>Reserve requirement</td>
<td>$\lambda \sigma_D^2$</td>
<td>0.1</td>
</tr>
<tr>
<td>Endowment growth</td>
<td>μ_D</td>
<td>0.02</td>
</tr>
<tr>
<td>Endowment volatility</td>
<td>σ_D</td>
<td>0.02</td>
</tr>
<tr>
<td>Time preference</td>
<td>ρ</td>
<td>0.01</td>
</tr>
<tr>
<td>Death rate</td>
<td>κ</td>
<td>0.01</td>
</tr>
<tr>
<td>Type-A share of population</td>
<td>ω</td>
<td>0.10</td>
</tr>
<tr>
<td>Nominal Rate 1</td>
<td>n_1</td>
<td>0%</td>
</tr>
<tr>
<td>Nominal Rate 2</td>
<td>n_2</td>
<td>5%</td>
</tr>
</tbody>
</table>

Table I: **Parameter values.** This table lists the benchmark parameter values used to illustrate the results of the model.

V. Results

To further examine the impact of monetary policy on the economy, we choose values for the model parameters, specify a nominal rate policy, and solve for the resulting equilibrium. Since the model does not permit a closed-form solution, we solve it numerically. This requires solving the HJB equations of the two types of agents simultaneously. We do this using Chebyshev collocation, which produces a global solution.

A. Parameters

Table I displays our benchmark parameter values. We set the risk aversions of the two agents at 1.5 for type A and 15 for type B in order to generate a high demand for deposits and leverage.

We set the elasticity of intertemporal substitution (EIS) to 3.5 for all agents so that the two types differ only in risk aversion. An EIS value greater than one implies that an increase in effective risk aversion, for example generated by a rise in the nominal interest rate, results in a decrease in the equilibrium wealth-consumption ratio. Thus, as rates rise, prices fall.

18 Campbell (1999) estimates an EIS less than one based on a regression of aggregate consumption growth on the real interest rate. Running this regression within our model would produce an estimate that is even lower—in fact zero—as consumption growth is i.i.d. Our model provides an example where this regression is misspecified due to limited risk sharing.
We pick the reserve requirement parameter λ so that $\lambda \sigma^2_D = 0.1$. Since σ^2_D is similar in magnitude to σ^2_c, the reserve requirement is about 10%. This is also the reserve requirement for net transactions accounts in the US.

We set the endowment growth rate and volatility to 2%, consistent with standard estimates for US aggregate consumption growth and volatility. We set agents’ time preference parameter ρ and death rate κ both to 0.01, which leads to real interest rates near 2%. To stabilize banks’ wealth share ω at moderate levels, we set the population share of A agents Ξ to 10%.

We compare equilibria across two nominal rate policies. In the first policy, the nominal rate is identically zero. In this case, holding reserves is costless, so the model is equivalent to a frictionless one with no reserve requirement. This case represents a useful frictionless benchmark. In the second policy, the nominal rate is at 5%, making reserves costly and constraining leverage. While the model allows for much more complex policy rules, we restrict attention to these simple cases in order to convey the main intuition. We consider dynamic policies later in the paper.

B. Portfolio Choice

Figure 2 shows the impact of higher nominal rates on the holdings of risky claims by banks (top panel) and depositors (bottom panel). The plots show portfolio weights across different values of the wealth distribution ω under policy $n_1 = 0\%$ (blue triangles) and policy $n_2 = 5\%$ (red squares).

As the nominal rate rises, bank leverage falls at every value of the wealth distribution. The drop is larger when banks’ wealth is relatively small (low ω). When ω is close to zero, banks’ risky asset holdings decrease from around 10 times their net worth to less than 2 times. At moderate levels of ω between 0.2 and 0.4 where the economy spends most of its time, banks’ holdings of risky assets decrease from between 2 and 4 times net worth under n_1 to slightly above 1 under n_2, so that a near complete deleveraging takes place.

As the bottom panel of Figure 2 shows, depositor holdings of the risky asset offset the decrease in bank holdings. For instance, when ω is between 0.2 and 0.4, depositors hold 40% of their wealth in risky claims under $n_1 = 0\%$, rising to almost 100% under $n_2 = 5\%$. The shift in the allocation of risk in the direction of the more risk averse depositors is tantamount to increasing the effective risk aversion of the representative investor.

The relationship between the portfolio weight and the wealth share ω in Figure 2 is a result of market clearing. When ω is close to either zero or one, a single type of agent dominates the economy, which reduces the opportunity for risk sharing. Agents of the remaining type
must hold all their wealth in the endowment claim, whereas agents of the disappearing type
can be satisfied with a vanishingly small amount of borrowing and lending. Thus, when ω is
near zero, prices are set by depositors, causing banks to demand very high leverage as long
as the nominal rate is not too high. By contrast, when ω is near one, banks set prices making
risky claims unattractive to depositors unless a high nominal rate keeps the risk premium
high.

We see that under $n_2 = 5\%$, reserves are sufficiently costly so that banks take almost
no leverage. At even higher levels of n, the economy enters financial autarky (see Corollary
2): the credit market shuts down and both types of agents hold all their wealth in the risky
endowment claim at all levels of ω. This is why under $n_2 = 5\%$ portfolio demand is relatively
flat in ω for both types of agents.

C. The price of risk and the risk premium

Figure 3 shows how the Sharpe ratio (top panel) and risk premium (bottom panel) of the
endowment claim change with the interest rate policy. As noted above, the effective risk
aversion in the economy is higher at the higher nominal rate, and this is indeed reflected in
a higher Sharpe ratio. At moderate levels of ω between 0.2 and 0.4, the price of risk goes
up by a factor of between two and four in going from the low-rate policy $n_1 = 0\%$ to the
high-rate policy $n_2 = 5\%$. The effect is even stronger at higher levels of ω, rising to an
almost ten-fold increase near $\omega = 1$.

The upper value of the Sharpe ratio near 0.3 is due to the high risk aversion of depositors.
When rates are high and depositors are required to hold almost 100\% of their wealth in risky
claims, the price of risk approaches $\gamma^D \sigma_D$, its value in an economy inhabited solely by the
more risk averse agents.

The bottom panel of Figure 3 shows that the increase in the risk premium largely tracks
the increase in the Sharpe ratio. At ω between 0.2 and 0.4, the risk premium rises from 0.15–
0.3\% under $n_1 = 0\%$ to near 0.6\% under $n_2 = 5\%$. The small differences in the shapes of the
risk premium and Sharpe ratio curves are due to changes in the volatility of the endowment
claim induced by the two policies.

D. Volatility

Figure 4 plots the volatility of returns. Although cash flow volatility is constant, return
volatility is time varying. Moreover, it exceeds cash flow volatility in a hump-shaped pattern.
Under the low-rate policy $n_1 = 0\%$, return volatility peaks near $\omega = 0.2$ at about 2.8\%, which
is 40% higher than fundamental volatility.

The excess volatility of returns is a result of changes in discount rates. For a given nominal rate policy, the aggregate discount rate is determined by a weighted average of the risky-asset demands of the two agent types. The weights depend on ω. At moderate values of ω, banks take significant leverage and at the same time command enough wealth to affect prices. As a result, in this region endowment shocks have a large effect on banks’ wealth share ω. This makes aggregate risk aversion and the discount rate volatile, which in turn makes prices volatile. By contrast, when either type of agent dominates the economy, returns do not change the risk aversion of the representative investor by much and there is little variation in discount rates. Return volatility is then close to fundamental volatility.

Note that excess volatility is much lower under the high-rate policy $n_2 = 5\%$. This is because bank leverage is reduced so that shocks do little to change the wealth distribution, and by extension discount rates. Hence, Figure 4 shows that a low interest rate policy is associated with greater endogenous risk. This result illustrates the potential role for monetary policy in regulating financial stability.

We note that return volatility is higher than fundamental volatility because discount rates are “counter-cyclical”. The presence of leverage implies that a positive endowment shock disproportionately raises the net worth of banks, which lowers effective aggregate risk aversion and the discount rate. As a result, endowment shocks and discount rate shocks reinforce each other, amplifying realized returns.

E. The real interest rate

Figure 5 plots the equilibrium real interest rate under the two nominal rate policies. The real rate is actually lower under the high nominal rate policy $n_2 = 5\%$ than under $n_1 = 0\%$. The difference between the real rates under the two policies is greatest near $\omega = 1$. Recall that the same pattern holds for depositors’ portfolio holdings in Figure 2. At high nominal rates, depositors retain a large amount of risk and so the real rate is lower.

It may seem surprising that the increase in the nominal rate has opposing effects on the risk premium and risk free rate. Yet, this is a direct consequence of the higher nominal rate increasing aggregate risk aversion. Higher risk aversion increases both risk prices and precautionary savings. The risk premium rises and the hence the (real) interest rate falls.19

We note that the real rate effect can in principle be reversed without affecting the risk

19The same result obtains in homogeneous economies in a comparative static with respect to risk aversion. Specifically, in a homogeneous economy with RRA γ and EIS ψ, we have $\frac{\partial}{\partial \gamma} (\mu - r) = \sigma^2 > 0$ and $\frac{\partial}{\partial \gamma} r = -\frac{1}{2} \sigma^2 (1 + 1/\psi) < 0$.

21
premium effect, which is our main focus. For example, in the version of the model developed in Appendix C, this can happen due to depositors’ preference for liquidity. Introducing nominal price rigidities would also cause the real and nominal rate to move in tandem.

F. Valuations

Figure 6 plots the wealth-consumption ratio under the two policies. Although a higher nominal rate has opposing effects on the risk premium and real risk-free rate, the net impact on the value of the endowment claim is unambiguous. For all values of ω, the valuation ratio is higher under the low-rate policy n_1. The effect is strongest near the middle of the state-space where the value of the endowment claim is about 15% higher under n_1.

The sign of the net impact of nominal rates on valuations is a function of the EIS. When the EIS is greater than one, greater risk aversion reduces demand for assets causing valuations to fall. In this case the rise in the risk premium exceeds the fall in the interest rate. In contrast, when the EIS is less than one, the opposite occurs and valuations actually rise in risk aversion.

While the higher nominal rate uniformly decreases valuations, the size of the impact is non-monotonic in ω. In particular, it is highest at intermediate values of ω, when the wealth levels of banks and depositors are comparable. In this region, the deleveraging induced by high nominal rates has a large impact on the allocation of risk: it causes demand for risky assets and the supply of deposits to shrink substantially. In contrast, when ω is near zero, a reduction in leverage has little effect on allocations since banks hold few assets. Similarly, when ω is close to one, the supply of deposits is low regardless of the nominal rate. Thus, the effect of monetary policy on valuations is largest when aggregate risk sharing (measured either by aggregate leverage or aggregate deposits), is at its greatest extent.

G. Wealth distribution

While the nominal rate has no effect on aggregate leverage when ω equals zero or one, it still has an effect on the price of the endowment claim, as Figure 6 shows. This is due to the impact that the nominal rate has on the dynamics of the wealth distribution. At higher nominal rates, banks take less risk and their wealth tends to grow more slowly. As a result, the stationary distribution for their wealth share, ω centers around a lower value. This is shown in Figure 7, which depicts this stationary distribution under the two nominal rate policies obtained by solving the associated forward Kolmogorov equation.

Since a higher nominal rate diminishes the expected future size of banks, it increases
the expected aggregate risk aversion of the economy, and hence also discount rates. This
dynamic effect on prices via expected future risk aversion is in addition to the local, direct
effect of higher nominal rates on risk taking. Below, we further explore the dynamic asset
price effects of changes in interest rates by looking at policy shocks and forward guidance.

H. Reserves

Figure 8 plots the ratio of the value of reserves to total wealth \(G\) under each policy. The
wealth share of reserves is very small under the high nominal rate policy \(n_2 = 5\%\), and for
most values of \(\omega\) it is much greater under \(n_1 = 0\%.\) Since higher nominal rates make holding
reserves more costly, banks hold less reserves (and take less leverage). Indeed, if the interest
rate is high enough as to induce financial autarky (Corollary 2) reserves holdings fall to zero.

As the nominal rate decreases, banks take more leverage and hold a larger share of
reserves on their balance sheets. In Figure 8, the increase in equilibrium reserves holdings in
moving from policy \(n_2\) to a zero-interest rate policy is large, especially at moderate values
of \(\omega\). Indeed, near \(\omega = 0.2\), the wealth share of reserves \(G\) rises to almost 10\%. This occurs
because under a zero nominal rate there is no cost to holding reserves. In fact, at that point
there is no difference between holding reserves and holding bonds.

Figure 8 further shows that reserves holdings depend on the relative size of bank wealth
\(\omega\). The relationship is non-monotonic. Holding the nominal rate fixed, equilibrium reserves
holdings at first increase in banks' wealth, and then start to decrease. This result shows
that aggregate reserves can both increase and decrease independently of any change in the
stance of monetary policy as measured by the nominal rate.

The relation between bank wealth and reserves reflects the aggregate leverage in the
economy, \(\omega (w_A^d - 1)\). When bank wealth \(\omega\) is small, aggregate leverage is small even though
per dollar banks are highly levered \((w_A^d - 1\) is high). As banks’ wealth increases, their per-
dollar leverage decreases but it does so less rapidly at first as the risk premium remains high.
Aggregate leverage therefore increases. As bank wealth continues to rise, however, per-dollar
leverage starts to decline more rapidly. This occurs as risk prices decline due to the increased
amount of risk-tolerant capital. Aggregate leverage decreases and it approaches zero as \(\omega\)
approaches one. This pattern is responsible for the hum-shaped value of total reserves in
Figure 8.

Figure 9 shows the growth rate in the quantity of reserves required to implement the
low and high nominal rate policies, \(n_1\) and \(n_2\). This rate is characterized in Proposition 3.
Note that reserves growth is higher under \(n_2\) than \(n_1\). The reason is that in order to obtain
a higher nominal rate, the central bank must make the cost of holding reserves higher. It
does so by issuing reserves at a higher rate, which reduces the rate at which existing reserves appreciate, creating higher inflation. The rise in inflation makes the higher nominal rate consistent with the real interest rate.

Looking across the range of the wealth share \(\omega \), the growth rate of reserves is lowest between 0.2 and 0.5. This is also the region where the real value of reserves \(G \) is relatively flat in \(\omega \) (see Figure 8). In this case, from Proposition 3, the demand for reserves is stable, so money growth is approximately the sum of inflation and expected wealth growth, which is close to the growth in output. In this region, the central bank can maintain a steady nominal rate with steady reserves growth.

In contrast, money growth rises steeply at low or high levels of \(\omega \). When \(\omega \) is low, the value of reserves is also small since aggregate leverage is small (banks are highly levered but they have little capital). At the same time, banks earn a high risk premium, so their wealth is expected to grow quickly. This means that all else equal, the aggregate value of reserves is expected to rise. To keep the capital gain on reserves from being too high, and hence the cost of holding reserves, the nominal rate, too low, the central bank must increase the growth rate of reserves. At the other end, if \(\omega \) is high, then it is also expected to fall, causing demand for reserves to rise as bank leverage increases. Again, to achieve the desired nominal rate the central bank must increase the growth rate of reserves to prevent them from appreciating too quickly. Note that at either extreme the required growth rate in reserves is unbounded since as \(\omega \) approaches zero or one, the aggregate value of reserves vanishes (see Figure 8).

Turning to the volatility of reserves growth, the picture is asymmetric. When \(\omega \) is low, bank leverage is high, so a positive endowment shock has a strong positive impact on the demand for reserves. To avert unexpected deflation, the quantity of reserves must be increased quickly. For the high rate policy \(n_2 \), demand for reserves rises more slowly, and the required response is less aggressive. When \(\omega \) is high, however, leverage is low and endowment shocks have a smaller impact on the wealth distribution. Hence, the effect on the reserves demand is much smaller. In this case the central bank does not need to intervene as aggressively.

VI. Dynamic policies

So far we have restricted attention to constant interest rate policies. We now analyze two settings in which dynamic policies play a central role. The first is one in which the central bank has already lowered the nominal rate to zero, and yet it wishes to further support asset prices. In the literature this situation is often referred to as hitting the “zero lower bound”.
We show how the central bank can support asset prices by lowering investors’ expectations of future nominal interest rates, i.e. “forward guidance”.

Our second setting examines the effect of an interest rate policy that responds to negative shocks by decreasing nominal rates. This type of policy has been called a “Greenspan put”.

A. The zero lower bound and forward guidance

The monetary policy literature usually posits that the nominal rate cannot go below zero. This bound arises endogenously in the model in this paper. Mathematically speaking, the nominal rate must be nonnegative because it equals the Lagrange multiplier on the reserves constraint. More intuitively, the nominal rate reflects the tightness of the constraint on banks’ risk taking. When the nominal rate is zero, banks are satiated in their demand for risk, as shown in Proposition 2. In this case, their weight in the risky asset equals the optimal weight for an unconstrained investor. Banks have no desire to increase risk taking beyond this point.

If the central bank did try to decrease the nominal rate below zero, banks would borrow deposits to invest in reserves, rather than in risky assets. Since reserves are riskless, this combination would represent an arbitrage. The resulting demand for reserves would then force the nominal rate back up to zero. This asymmetry between positive and negative nominal rates reflects the fact that the reserves requirement forces banks to hold a minimum amount of reserves, but does not prevent them from holding excess reserves.

Nevertheless, the central bank can still use monetary policy to influence asset prices by changing the course of expected future interest rates. This is illustrated in Figure 10. The top panel plots two nominal rate policies. Both policies set the nominal rate to zero when bank capital ω is low, as in a financial crisis. Under policy $n_{fg,2}$ (red squares), the nominal rate increases once bank capital recovers to a value of $\omega = 0.25$. In contrast, policy $n_{fg,1}$ (blue triangles) delays the increase in the nominal rate until $\omega = 0.3$. Viewed from states where $\omega < 0.25$, it is meant to capture the idea of the central bank providing investors with guidance that rates will remain low for a longer period.

The bottom panel of Figure 10 plots the ratio of the prices of the endowment claim under the two policies, $P_{fg,1}/P_{fg,2}$. We focus on values of ω less than 0.25, where the nominal rate is zero under both policies. The plot shows that even though the nominal rate is at its lower bound, the expectation that future rates will be lower under policy $n_{fg,1}$ has a substantial impact on the current price of the endowment claim. For example, for $\omega = 0.25$ the price of the endowment claim is around 4% higher under the forward guidance policy $n_{fg,1}$.

Guiding future nominal rates down increases prices by inducing a decrease in future
discount rates. Investors expect that assets will be worth more in the future, and they are therefore willing to pay more for them today. Note that this effect is purely dynamic, it does not work by changing the cost of taking leverage today since this cost is already zero.

Finally, note that prices are higher under $n_{fg,1}$ than under $n_{fg,2}$ even when ω is such that both policies have equally high nominal rates. The reason is that prices reflect the possibility that ω will be low in the future.

B. Greenspan put

As a second example of a state-contingent policy, we analyze the impact of a “Greenspan put”.\(^{20}\) Within the context of our model, we interpret a Greenspan put as a policy that reduces nominal interest rates in the event of a large enough sequence of negative shocks. Specifically, we consider the simple example of a constant benchmark and a Greenspan put alternative defined as

\[
\begin{align*}
 n_{gp,1}(\omega_t) & = 0.04 \\
 n_{gp,2}(\omega_t) & = \min \left\{ 0.05, \frac{0.05}{0.3} \omega_t \right\}.
\end{align*}
\]

(31)\hfill (32)

Under policy $n_{gp,2}$, the nominal rate rises from 0% at $\omega = 0$ at a constant rate before reaching 5% at $\omega = 0.3$ at which point it levels off. Thus, a sequence of negative shocks that pushes the bank capital share ω below 0.3 triggers progressive rate decreases. The level of the constant benchmark $n_{gp,1}$ is set so that the two policies have similar unconditional average nominal rates (integrated against the stationary distribution of ω).

The results are presented in Figure 11. The top left panel plots the two policies, while the top right panel displays the wealth-consumption ratio. The Greenspan put policy $n_{gp,2}$ results in lower prices when ω is high as it implements a higher nominal rate. However, when ω approaches the cutoff 0.3 from above, the valuation under $n_{gp,2}$ approaches that under the benchmark $n_{gp,1}$. This occurs because of the nearing prospect of lower nominal rates. As ω falls below 0.3, the valuation under $n_{2, gp}$ flattens out and even mildly increases, whereas it falls under $n_{gp,1}$. In this way, the central bank is supporting asset prices by cutting nominal rates, which increases bank leverage. As ω continues to fall however, there is little room for further rate cuts, leverage can no longer support valuations, and valuations begin to fall steeply so that they are nearly equal under the two policies at $\omega = 0$. The Greenspan put

\(^{20}\)The term dates to the late 1990s when critics faulted Federal Reserve chairman Alan Greenspan for “encouraging excessive risk-taking by creating what came to be called ‘the Greenspan put’, that is, the belief that the Fed would, if necessary, support the economy and therefore the stock market” (Blinder and Reis 2005).
policy therefore has the effect of stabilizing prices in a moderate downturn but it cannot forestall a severe price decline in a highly adverse scenario.

The bottom left panel of Figure 11 plots the risk premium. When \(\omega \) is high, the higher nominal rates of the Greenspan put policy result in a higher risk premium. As \(\omega \) declines towards 0.3, the stabilization effect of the policy results in reduced risk premia. Once rates actually start falling past 0.3, the risk premium drops precipitously as a result of the aggressive rate cutting. However, when \(\omega \) nears zero, prices are set to fall even more steeply than under the benchmark policy, so the risk premium under \(n_{gp,2} \) eventually that under \(n_{gp,1} \).

The bottom right panel of Figure 11 plots volatility. The pattern here is also driven by the behavior of prices. Under the Greenspan put policy \(n_{gp,2} \), volatility is lower when \(\omega \) is high. This is due to the higher nominal rate in this region, which suppresses risk taking and stabilizes aggregate risk aversion. As \(\omega \) declines towards 0.3, it dips further as the prospect of intervention keeps prices from falling. Past 0.3, the “put” goes into the money and the rate cutting kicks in, causing volatility to fall even further. In this way, the Greenspan put policy is able to reduce volatility in moderate downturns. However, if \(\omega \) declines even further, the temporary support runs out and prices enter a steep descent. As a result, the Greenspan put results in higher volatility in severe downturns.

VII. Policy shocks

In the baseline model the interest-rate policy gives the nominal rate as a function of the single state variable \(\omega \). The only shock is the endowment growth shock and there is no independent monetary policy shock. Hence, in examining the impact of different nominal rates on equilibrium, we have so far compared across equilibria under different nominal rate rules. In this section we extend the model to incorporate an independent shock to the interest rate policy.

We model the monetary policy shock as exogenous. Under this shock the central bank “surprises the market” by raising or lowering nominal rates independently of the endowment growth shock. A policy shock has two effects. The first is direct: it changes banks’ cost of taking leverage. This is the same effect as in the baseline comparison across policies. The second, indirect effect, is that a surprise rate change impacts prices and causes the wealth distribution to change. This change in the state variable produces second-round effects on prices that tend to amplify the direct impact of the rate change.
A. Model extension

We alter the policy rule with two objectives in mind. First, we want to allow for independent policy shocks. These shock the nominal rate away from a benchmark policy rule that agents know. As under the baseline model, this benchmark rule is a function of ω. At the same time, we do not want the nominal rate to stray too far from the benchmark rule. This leads to a clearer interpretation of both the benchmark rule and the ensuing quantitative results.

To that end, let $n_b(\omega_t) \in [n, \bar{n}]$ be the benchmark policy rate and suppose the nominal rate n_t follows the process

$$dn_t = -\kappa_n \left[n_t - n_b(\omega_t) \right] dt + (n_t - \bar{n}) \sigma_n dB_t^n,$$

where dB_t^n are the policy shocks, which we assume are independent of the endowment growth shocks dB. The nominal rate tends to drift towards the benchmark rate $n_b(\omega_t)$ at the rate κ_n. Note that due to the structure of the diffusive component, n is bounded below by n and above by \bar{n}.

Since shocks to n are persistent, the equilibrium now depends on two state variables, the wealth share ω and nominal rate n. Moreover, the dynamics of ω now depend on n, so that $\mu_\omega = \mu_\omega(\omega, n)$ and $\sigma_\omega = \sigma_\omega(\omega, n)$. Hence, we rewrite all endogenous functions in terms of the two state variables. For example, $F = F(\omega, n)$. Furthermore, we maintain the same notation for the diffusions, but now the exposures (i.e., σ) are 2×1 vectors whose first and second components correspond to the endowment shock dB and the policy shock dB^n. The rest of the model, including the reserve requirement, is unchanged.

We now state the form of the agent’s value function and optimal portfolio choice under the extended model, leaving the full derivation to the Appendix.

Proposition 4. The agents’ value functions are given by

$$V(W, \omega, n) = \left(\frac{W^{1-\gamma}}{1-\gamma} \right) J(\omega, n)^{\frac{1-\gamma}{1-\psi}},$$

where $J(\omega, n)$ represents the agents’ optimal consumption-wealth ratio, $c^* = J$. Banks take leverage ($w^A_S > 1$) when (and only when)

$$\lambda n < \gamma^B - \gamma^A - \left[\frac{(1 - \gamma^A)}{1 - \psi^A} J^A_n - \frac{(1 - \gamma^B)}{1 - \psi^B} J^B_n \right] \left[\frac{F^A (n - \bar{n})^2 (\pi - n)^2 \sigma^2_n}{\sigma^2_B + (F^B)^2 (n - \bar{n})^2 (\pi - n)^2 \sigma^2_n} \right].$$

28
In this case, their holdings of the endowment claim are given by

\[
 w^A_S = \frac{1}{\gamma} \left\{ \frac{\mu - r}{\sigma' \sigma} - \lambda n \right\}
 + \left(\frac{1 - \gamma}{1 - \psi} \right) \left\{ J_\omega \omega (1 - \omega) \left(\sigma' \sigma \right) + \frac{J_n}{J} (n - \bar{n}) (\bar{n} - n) \right\}.
\]

(36)

Proof. The proof is contained in Appendix B.

The solution of the extended model generally follows that of the benchmark model. We note two differences. First, the portfolio demand (36) includes a hedging term for policy shocks. Second, the boundary of the region in which banks take leverage in \(n \times \omega \) space (equation 35) depends on the difference in hedging demands between the two agent types. The reason is that, even though \(\omega \) becomes locally deterministic in the no-leverage region, \(n \) does not.

B. Results

To illustrate the model with policy shocks, we set \(n_b = 0.03, \; \bar{n} = 0.00, \; \bar{n} = 0.06, \; \kappa_n = 0.01, \) and \(\sigma_n = 5 \). A high persistence (low \(\kappa_n \)) for policy shocks increases their impact on valuations, while the boundaries \(\bar{n} \) and \(\bar{n} \) keep the nominal rate from drifting very far away from the benchmark policy.\(^2^1\)

Figure 12 shows the impact of a policy shock that raises the nominal interest rate from 1% to 4%, at different values of \(\omega \). As in the benchmark case, the increase in the nominal rate leads to a higher risk premium, lower real interest rate, and lower valuation of the endowment claim. Since the shock is highly persistent, the effects are similar to the changes observed in the benchmark model across the high and low nominal rate policies.

Figure 12 further shows that policy shocks have a second-round effect on prices. This occurs because in changing prices the interest rate shock causes a change in the wealth distribution. This is a result of the differences in risk taking across agent types. When the nominal rate is 1%, banks employ high levels of leverage. As a result, the fall in the value of the wealth claim due to the nominal rate increase causes them to lose wealth disproportionately. The top left panel in the figure shows the fall in banks’ wealth share \(\omega \). The change in the wealth distribution is greatest when \(\omega \) is between one quarter and one third, since at this point banks’ wealth share is significant and their leverage is high.

The top right panel shows that the wealth redistribution effect amplifies the first-round

\(^{2^1}\)Figure B.1 in Appendix B plots the joint stationary density of \(n \) and \(\omega \) under the model to give a sense of the distribution of these state variables.
fall in prices. The dashed red line isolates the direct effect of the policy shock on the valuation ratio, calculated by holding \(\omega \) constant. The total effect, given by the solid red line, also incorporates the additional price impact of the policy shock due to the induced change in the wealth distribution. By reducing the size of bank balance sheets, higher rates reduce banks’ capacity to bear risk, causing prices to fall further. Hence, the total effect is always greater than the direct effect. This amplification resembles the financial accelerator of Bernanke, Gertler, and Gilchrist (1999), except it is driven by policy shocks.

The bottom panels of Figure 12 show that under these parameters the amplification arises mainly through the real interest rate rather than the risk premium. Looking first at the risk premium, the indirect effect of the policy shock is small, as seen in the narrow gap between the direct and total effects, though the two go in the same direction. This effect is comparatively small because at these parameters leverage is quite low at the high nominal rate and hence the risk premium is nearly flat in \(\omega \).

Turning to the real interest rate, the first-round effect of the policy shock is negative, as in the baseline model. However, because the shock shifts the wealth distribution towards the risk averse depositors who have a strong precautionary motive, the second-round effect actually raises the real rate. In this way, the policy shock dampens the fall in the real interest rate, leading to a greater fall in prices.

We note that policy shocks in our model have pronounced asymmetric effects. Specifically, a rate hike leads to greater amplification than a rate drop. The reason is that at higher rates banks take less leverage, so the wealth distribution is less affected when prices change.

VIII. Conclusion

Contemporary monetary policy is substantially concerned with the functioning of the financial system and with valuations in the markets for risky assets. Through their effects on financial institutions, central bank interventions drive not only the level of interest rates in the economy, but also the level of risk premia.

We present an asset pricing framework that enables us to study the relationship between monetary policy and risk premia in an environment with no nominal rigidities. The nominal interest rate affects the spread banks pay for external funding through a reserve requirement. Lower rates lead to greater leverage, lower risk premia, and higher volatility. A zero lower bound reflects satiation in risk taking and the central bank can support asset prices further through forward guidance. A “Greenspan put” policy can stabilize prices locally by boosting leverage, at the cost of increased instability in the face of large shocks. Unexpected rate changes receive amplification via bank balance sheets.
References

———, 2013. Monetary policy surprises, credit costs and economic activity. Discussion paper, .

Kuo, Dennis, David Skeie, and James Vickery, 2010. How well did libor measure bank wholesale funding rates during the crisis?. Unpublished manuscript, Federal Reserve Bank of New York.

Appendix A

Proof of Proposition 1. Conjecture that V has the form in (20). After substituting for V and f from (3), wealth drops out of the HJB equation (19):

$$0 = \max_{c,w,S,M} \left(\frac{1 - \gamma}{1 - 1/\psi} \right) \left[\left(\frac{c}{1 - \psi} \right)^{1-1/\psi} - (\rho + \kappa) \right]$$

$$+ (1 - \gamma) \left[r - c + w_S (\mu - r) - \frac{\gamma}{2} (w_S \sigma)^2 - w_M n + G_n \right]$$

$$+ \left(\frac{1 - \gamma}{1 - \psi} \right) \left[\frac{J_\omega}{J} \omega (1 - \omega) \mu_\omega + (1 - \gamma) \frac{J_\omega}{J} \omega (1 - \omega) w_S \sigma_\omega \sigma \right]$$

$$+ \frac{1}{2} \left(\frac{1 - \gamma}{1 - \psi} \right) \left[\left(\frac{1 - \gamma}{1 - \psi} - 1 \right) \left(\frac{J_\omega}{J} \right)^2 + \frac{J_{\omega \omega}}{J} \right] \omega^2 (1 - \omega)^2 \sigma^2_\omega$$

$$+ (1 - \gamma) \theta_\lambda \left[w_M - \lambda \sigma^2 (w_S - 1) \right] + (1 - \gamma) \theta_0 w_M.$$

The FOC for consumption gives

$$c = J.$$

Substituting and rearranging,

$$(\rho + \kappa) \left(\frac{1 - \gamma}{1 - 1/\psi} \right) = \max_{w_S,w_M} \left(1 - \gamma \right) \left(\frac{1/\psi}{1 - 1/\psi} \right) J$$

$$+ (1 - \gamma) \left[r + w_S (\mu - r) - \frac{\gamma}{2} (w_S \sigma)^2 - w_M n + G_n \right]$$

$$+ \left(\frac{1 - \gamma}{1 - \psi} \right) \left[\frac{J_\omega}{J} \omega (1 - \omega) \mu_\omega + (1 - \gamma) \frac{J_\omega}{J} \omega (1 - \omega) w_S \sigma_\omega \sigma \right]$$

$$+ \frac{1}{2} \left(\frac{1 - \gamma}{1 - \psi} \right) \left[\left(\frac{1 - \gamma}{1 - \psi} - 1 \right) \left(\frac{J_\omega}{J} \right)^2 + \frac{J_{\omega \omega}}{J} \right] \omega^2 (1 - \omega)^2 \sigma^2_\omega$$

$$+ (1 - \gamma) \theta_\lambda \left[w_M - \lambda \sigma^2 (w_S - 1) \right] + (1 - \gamma) \theta_0 w_M.$$

Portfolio demand is characterized by

$$w_S = \frac{1}{\gamma} \left[\frac{\mu - r}{\sigma^2} - \lambda \theta_\lambda + \left(\frac{1 - \gamma}{1 - \psi} \right) \frac{J_\omega}{J} \omega (1 - \omega) \frac{\sigma_\omega}{\sigma} \right]$$

$$n = \theta_0^B + \theta_\lambda.$$

Let

$$w_S = \frac{1}{\gamma} \left[\frac{\mu - r}{\sigma^2} - \lambda n + \left(\frac{1 - \gamma}{1 - \psi} \right) \frac{J_\omega}{J} \omega (1 - \omega) \frac{\sigma_\omega}{\sigma} \right]$$

$$w_S = \frac{1}{\gamma} \left[\frac{\mu - r}{\sigma^2} + \left(\frac{1 - \gamma}{1 - \psi} \right) \frac{J_\omega}{J} \omega (1 - \omega) \frac{\sigma_\omega}{\sigma} \right].$$
There are three possible cases:

\[w_S = \begin{cases}
\bar{w}_S & \text{if } \bar{w}_S \leq 1 \\
1 & \text{if } \bar{w}_S \leq 1 < \bar{w}_S \\
\frac{w_S}{\bar{w}_S} & \text{if } 1 < \bar{w}_S.
\end{cases} \quad (A.8) \]

The corresponding multipliers are

\[\{\theta_0, \theta_\lambda\} = \begin{cases}
\{n, 0\} & \text{if } \bar{w}_S \leq 1 \\
\left\{\frac{\gamma}{\lambda} (1 - w_S), \frac{\gamma}{\lambda} \left(\frac{\bar{w}_S}{w_S} - 1\right)\right\} & \text{if } w_S \leq 1 < \bar{w}_S \\
\{0, n\} & \text{if } 1 < w_S. \end{cases} \quad (A.9) \]

Substituting into the HJB equation and simplifying,

\[\rho + \kappa = \frac{1}{\psi} J + \frac{1}{\psi} (r + \lambda \sigma^2 \theta_\lambda + G n) \]

\[-1/\psi \left(J w \omega (1 - \omega) \mu_\omega + \frac{1}{2} \left[\left(\frac{\psi - \gamma}{1 - \psi} \right)^2 + \frac{J w \omega}{J} \right] \sigma^2 \right) \]

\[+ \frac{1}{2} \left(\frac{1 - 1/\psi}{\gamma} \right) \left[\frac{\mu - r}{\sigma^2} - \lambda \theta_\lambda + \left(\frac{1 - \gamma}{1 - \psi} \right) \frac{J w \omega}{J} (1 - \omega) \frac{\sigma_w}{\sigma} \right]^2 \sigma^2. \]

The market-clearing equation (17) for the endowment claim implies that only one type of agents, if any, takes leverage, so the equilibrium must be in one of the three cases,

\[w^A_S > 1, \quad w^B_S < 1 \quad (A.11) \]
\[w^A_S = 1, \quad w^B_S = 1 \quad (A.12) \]
\[w^A_S < 1, \quad w^B_S > 1. \quad (A.13) \]

Substituting,

\[\{w^A_S, w^B_S\} = \begin{cases}
\{\bar{w}_S, \bar{w}_S\} & \text{if } \bar{w}_S \leq 1 < w^A_S \\
\{1, 1\} & \text{if } w^A_S, w^B_S \leq 1 < \bar{w}_S, \bar{w}_S \\
\{\bar{w}^A_S, \bar{w}^B_S\} & \text{if } \bar{w}^A_S \leq 1 < \bar{w}^B_S. \end{cases} \quad (A.14) \]

Call these three cases (i), (ii), and (iii).

Under case (i),

\[w^A_S = \frac{1}{\gamma^A} \left[\frac{\mu - r}{\sigma^2} - \lambda n + \left(\frac{1 - \gamma^A}{1 - \psi^A} \right) \frac{J^A}{J^A} \omega (1 - \omega) \left(\frac{\sigma_w}{\sigma} \right) \right] \quad (A.15) \]
\[w^B_S = \frac{1}{\gamma^B} \left[\frac{\mu - r}{\sigma^2} + \left(\frac{1 - \gamma^B}{1 - \psi^B} \right) \frac{J^B}{J^B} \omega (1 - \omega) \left(\frac{\sigma_w}{\sigma} \right) \right]. \quad (A.16) \]

Note that

\[\frac{\sigma_w}{\sigma} = \frac{1}{1 - \omega} (w^A_S - 1). \quad (A.17) \]
Stock-market clearing gives

\[1 = \omega w^A_S + (1 - \omega) w^B_S \]
\[= \omega w^A_S + (1 - \omega) \frac{1}{\gamma_B} \left\{ \gamma^Aw^A_S + \lambda n \right\} \]
\[- \left\{ \left(\frac{1 - \gamma^A}{1 - \psi^A} \right) \frac{J^A}{J^A} - \left(\frac{1 - \gamma^B}{1 - \psi^B} \right) \frac{J^B}{J^B} \right\} \omega \left(w^A_S - 1 \right) \} \]

This gives a linear equation for \(w^A_S \) in terms of exogenous and conjectured quantities. The solution is

\[w^A_S = \frac{1 - \frac{1}{\gamma^B} (1 - \omega) \lambda n - \frac{1}{\gamma^B} \left[\left(\frac{1 - \gamma^A}{1 - \psi^A} \right) \frac{J^A}{J^A} - \left(\frac{1 - \gamma^B}{1 - \psi^B} \right) \frac{J^B}{J^B} \right] \omega (1 - \omega)}{\omega + (1 - \omega) \frac{\gamma^A}{\gamma^B} - \frac{1}{\gamma^B} \left[\left(\frac{1 - \gamma^A}{1 - \psi^A} \right) \frac{J^A}{J^A} - \left(\frac{1 - \gamma^B}{1 - \psi^B} \right) \frac{J^B}{J^B} \right] \omega (1 - \omega)} \]
\[\text{(A.20)} \]

We need to verify \(w^A_S > 1 \), which gives

\[\lambda n < \gamma^B - \gamma^A. \]
\[\text{(A.21)} \]

From here we can get \((\mu - r)/\sigma^2\), and \(\sigma_\omega/\sigma\). This also gives \(\sigma\) and hence \(\sigma_\omega\), and as a result, \(\mu - r\). To get the drift of \(\omega\), apply Ito’s Lemma to (4) and use \(W^A + W^B = P\) to obtain

\[\frac{d\omega}{\omega (1 - \omega)} = \left(\frac{dW^A}{W^A} - \frac{dW^B}{W^B} \right) - \left(\frac{dW^A}{W^A} - \frac{dW^B}{W^B} \right) \frac{(dP)}{(P)} \]
\[\text{(A.22)} \]

Substituting for the evolution of aggregate type-A and type-B wealth gives (4) and

\[\mu_\omega = (w^A_S - w^B_S) (\mu - r) + \lambda \sigma^2 (w^B_S - 1) n - (J^A - J^B) - \sigma_\omega \sigma. \]
\[\text{(A.23)} \]

This can be plugged into the dynamics of returns to get \(\mu\):

\[dR = \frac{dD/F}{D/F} + Fdt \]
\[= \frac{dD}{D} - \frac{dF}{F} \left(\frac{dD}{D} \right) \left(\frac{dF}{F} \right) + \left(\frac{dF}{F} \right)^2 + Fdt \]
\[\mu = \mu_D + F \frac{F\omega}{F} \omega (1 - \omega) (\mu_\omega + \sigma_\omega \sigma_D) \]
\[+ \left(\frac{F\omega}{F} \right)^2 - \frac{1}{2} \frac{F\omega}{F} \left(\omega^2 (1 - \omega)^2 \sigma_\omega^2 \right) \]
\[\sigma = \sigma_D - \frac{F\omega}{F} \omega (1 - \omega) \sigma_\omega. \]
\[\text{(A.27)} \]

From here, get \(r\) using \(r = \mu - (\mu - r)\). Finally, plug the constraints \(\theta^A_\lambda = n\) and \(\theta^B_\lambda = 0\) into the HJB equations to verify the conjectures for \(J^A\) and \(J^B\). To obtain the value of reserves,
use the reserves-market clearing equation (18),
\[
\{ w^A_M, w^B_M \} = \left\{ \frac{G}{\omega}, 0 \right\}. \tag{A.28}
\]
The binding leverage constraint pins down the value of reserves:
\[
G = \omega \lambda \sigma^2 (w^A_S - 1). \tag{A.29}
\]

Under case (ii),
\[
\{ w^A_S, w^B_S \} = \{ 1, 1 \} \tag{A.30}
\]
\[
\{ w^A_M, w^B_M \} = \{ 0, 0 \}. \tag{A.31}
\]
The stock market clears and \(G = 0 \). From here, we get \(\sigma_\omega = 0 \) and so \(\sigma = \sigma_D \). Next, use
\[
\mu_\omega = -\left(J^A - J^B \right). \tag{A.32}
\]
in the dynamics of returns (A.26) and (A.27) to get \(\mu \) and \(\sigma \). Substituting into the HJB equations and simplifying,
\[
\rho + \kappa = 1/\psi J + (1 - 1/\psi) \left(\mu - \frac{\gamma}{2} \sigma^2 \right) - 1/\psi \frac{J_\omega}{J} \left[\kappa (\overline{\omega} - \omega) + \omega (1 - \omega) \mu_\omega \right]. \tag{A.33}
\]
This case requires
\[
\lambda n > |\gamma^A - \gamma^B|. \tag{A.34}
\]
The real interest rate lies inside a range between a lending and a borrowing rate.

Case (iii) is analogous to Case (i) with the roles reversed. It requires \(\lambda n < \gamma^B - \gamma^A \), which is ruled out by assumption. This completes the proof. \(\square \)

Proof of Proposition 2. Banks take leverage under case (i) in the proof of Proposition 1 above. This case From (A.21), requires \(\lambda n < \gamma^B - \gamma^A \). Banks’ portfolio demand is then given by (A.15). \(\square \)

Proof of Proposition 3. Equation (28) follows from the fact that reserves are costly and therefore the reserve requirement binds, see (A.29). To obtain (29), apply Ito’s Lemma to \(\Pi_t = M_t \pi_t \) and use the fact that inflation \(-d\pi_t/\pi_t = \iota (\omega_t) dt = [n(\omega_t) - r(\omega_t)] dt\) is locally deterministic (equations 9 and 10). Finally, apply Ito’s Lemma to \(\Pi_t = G_t P_t \) to obtain (30). \(\square \)
Appendix B

This Appendix contains the derivations for the model with policy shocks. Denote the dynamics of ω by

$$d\omega = \kappa (\bar{\omega} - \omega) dt + \omega (1 - \omega) \left[\mu_\omega (\omega, n) dt + \sigma_\omega (\omega, n)' dB \right].$$ \hfill (B.1)

Write the return process

$$dR = \frac{dP + D dt}{P} \quad \hfill (B.2)$$

$$= \mu (\omega, n) dt + \sigma (\omega, n)' dB, \quad \hfill (B.3)$$

the instantaneous real risk-free rate as $r = r(\omega, n)$, and the dividend yield as $F = F(\omega, n)$. Applying Ito’s Lemma gives

$$\mu = \mu_D + F - \frac{F_\omega}{F} \left[\kappa (\bar{\omega} - \omega) + \omega (1 - \omega) (\mu_\omega + \sigma_\omega \sigma_D) \right] - \frac{F_n}{F} \kappa_n (n - n_b)$$

$$+ \left[\frac{F_\omega}{F} - \frac{1}{2} \frac{F_\omega}{F} \right] \omega^2 (1 - \omega)^2 \sigma_\omega \sigma_\omega + \left[\frac{F_n}{F} - \frac{1}{2} \frac{F_n}{F} \right] (n - n) (\bar{n} - n)^2 \sigma_n^2$$

$$+ 2 \left[\frac{F_\omega}{F} \left(\frac{F_n}{F}\right) - \frac{1}{2} \frac{F_\omega}{F} \right] \omega (1 - \omega) (n - n) (\bar{n} - n) \sigma_\omega \sigma_n \quad \hfill (B.4)$$

$$\sigma = \left[\begin{array}{c} \sigma_D \\ 0 \end{array} \right] - \frac{F_\omega}{F} \omega (1 - \omega) \sigma_\omega - \frac{F_n}{F} (n - n) (\bar{n} - n) \left[\begin{array}{c} 0 \\ \sigma_n \end{array} \right]. \quad \hfill (B.5)$$

The reserve requirement is

$$w_M \geq \max \left[\lambda \sigma' \sigma (w_S - 1), 0 \right]. \quad \hfill (B.6)$$

The wealth dynamics are as in the benchmark case.

Proof of Proposition 4. Dropping agent subscripts and applying LaGrange multipliers $\theta_A V_W W$ and $\theta_0 V_W W$ on the leverage and non-negativity constraints, the HJB equation is

$$0 = \max_{c, w_S, w_M} f(cW, V) + V_W W \left[r - c + w_S (\mu - r) - w_M n + G n \right]$$

$$+ V_\omega [k (\bar{\omega} - \omega) + \omega (1 - \omega) \mu_\omega] + V_n \kappa_n (n - n_b)$$

$$+ V_{W_\omega} W_\omega (1 - \omega) w_S \sigma_\omega \sigma_\omega + V_{W_W} W w_S (n - n) (\bar{n} - n) \sigma_2 \sigma_n + \frac{1}{2} V_{W_W} W^2 w_S^2 \sigma' \sigma$$

$$+ \frac{1}{2} V_{w_\omega} w_\omega (1 - \omega)^2 \sigma_\omega \sigma_\omega + V_{nw_\omega} (1 - \omega) (n - n) (\bar{n} - n) \sigma_n \sigma_\omega$$

$$+ \frac{1}{2} V_{n_\omega} (n - n)^2 (\bar{n} - n)^2 \sigma_n^2 + \theta_A V_W W [w_M - \lambda \sigma' \sigma (w_S - 1)] + \theta_0 V_W W w_M. \quad \hfill (B.7)$$
Conjecture that the value function has the form

\[V(W, \omega, n) = \left(\frac{W^{1-\gamma}}{1-\gamma} \right) J(\omega, n)^{1-\gamma}. \tag{B.8} \]

Then wealth drops out of the HJB equation:

\[
0 = \max_{c, w_S, w_M} \frac{1}{1 - 1/\psi} \left[\frac{1}{1 - \psi} J^{1/\psi} \right] + r + c + w_S (\mu - r) - \frac{\gamma}{2} w_S^2 \sigma' \sigma
\]

\[-w_M n + G n - \frac{1}{1 - 1/\psi} \left[J \frac{\rho + \kappa}{\psi} + \frac{\kappa (\overline{w} - \omega) + \omega (1 - \omega) \mu_w}{\psi} \right] + \frac{J_n}{J} \kappa_n (n - n_b)
\]

\[+ (1 - \gamma) \frac{J}{J} \omega (1 - \omega) w_S \sigma' \sigma + (1 - \gamma) \frac{J_n}{J} w_S (n - n) (\overline{n} - n) \sigma_2 \sigma_n \]

\[-\frac{1}{2} \frac{1}{1 - 1/\psi} \left[\left(\frac{1 - \gamma}{1 - \psi} - 1 \right) J \frac{\omega}{J} \right] + \frac{J_{\omega \omega}}{J} \omega^2 (1 - \omega)^2 \sigma' \sigma
\]

\[-\frac{1}{1 - 1/\psi} \left[\left(\frac{1 - \gamma}{1 - \psi} - 1 \right) \frac{J_n}{J} \right] + \frac{J_{\omega n}}{J} \omega (1 - \omega) (n - n) (\overline{n} - n) \sigma_n \sigma_\omega
\]

\[-\frac{1}{2} \frac{1}{1 - 1/\psi} \left[\left(\frac{1 - \gamma}{1 - \psi} - 1 \right) \frac{J_n}{J} \right] + \frac{J_{nn}}{J} (n - n) (\overline{n} - n)^2 \sigma_n^2
\]

\[+ \theta_\lambda [w_M - \lambda \sigma' \sigma (w_S - 1)] + \theta_0 w_M. \tag{B.9} \]

The FOC for consumption gives

\[c = J. \tag{B.10} \]

Substituting and rearranging,

\[
0 = \max_{w_S, w_M} \frac{1}{1 - 1/\psi} \left[\frac{1}{1 - \psi} J \frac{\rho + \kappa}{\psi} + r + w_S (\mu - r) - \frac{\gamma}{2} w_S^2 \sigma' \sigma - w_M n + G n \right]
\]

\[-\frac{1}{1 - 1/\psi} \left[\frac{J_n}{J} \kappa_n (n - n_b) \right] + (1 - \gamma) \frac{J}{J} \omega (1 - \omega) w_S \sigma' \sigma + (1 - \gamma) \frac{J_n}{J} w_S (n - n) (\overline{n} - n) \sigma_2 \sigma_n \]

\[-\frac{1}{2} \frac{1}{1 - 1/\psi} \left[\left(\frac{1 - \gamma}{1 - \psi} - 1 \right) J \frac{\omega}{J} \right] + \frac{J_{\omega \omega}}{J} \omega^2 (1 - \omega)^2 \sigma' \sigma
\]

\[-\frac{1}{1 - 1/\psi} \left[\left(\frac{1 - \gamma}{1 - \psi} - 1 \right) \frac{J_n}{J} \right] + \frac{J_{\omega n}}{J} \omega (1 - \omega) (n - n) (\overline{n} - n) \sigma_n \sigma_\omega
\]

\[-\frac{1}{2} \frac{1}{1 - 1/\psi} \left[\left(\frac{1 - \gamma}{1 - \psi} - 1 \right) \frac{J_n}{J} \right] + \frac{J_{nn}}{J} (n - n) (\overline{n} - n)^2 \sigma_n^2
\]

\[+ \theta_\lambda [w_M - \lambda \sigma' \sigma (w_S - 1)] + \theta_0 w_M. \tag{B.11} \]
Portfolio demand is characterized by

\[w_S = \frac{1}{\gamma} \left\{ \frac{\mu - r}{\sigma'} - \lambda \theta \right\} + \left(\frac{1 - \gamma}{1 - \psi} \right) \left\{ \frac{J_\omega}{J} (1 - \omega) \left(\frac{\sigma'_\omega \sigma}{\sigma' \sigma} \right) + \frac{J_n}{J} (n - n) \left(\frac{\sigma_{2 \omega n}}{\sigma' \sigma} \right) \right\} \]

\[n = \theta_0^B + \theta_\lambda. \]

(B.12)

Let

\[\bar{w}_S = \frac{1}{\gamma} \left\{ \frac{\mu - r}{\sigma'} - \lambda n \right\} + \left(\frac{1 - \gamma}{1 - \psi} \right) \left\{ \frac{J_\omega}{J} (1 - \omega) \left(\frac{\sigma'_\omega \sigma}{\sigma' \sigma} \right) + \frac{J_n}{J} (n - n) \left(\frac{\sigma_{2 \omega n}}{\sigma' \sigma} \right) \right\} \]

\[\bar{w}_S = \frac{1}{\gamma} \left\{ \frac{\mu - r}{\sigma'} \right\} + \left(\frac{1 - \gamma}{1 - \psi} \right) \left\{ \frac{J_\omega}{J} (1 - \omega) \left(\frac{\sigma'_\omega \sigma}{\sigma' \sigma} \right) + \frac{J_n}{J} (n - n) \left(\frac{\sigma_{2 \omega n}}{\sigma' \sigma} \right) \right\}. \]

(B.14)

(B.15)

There are three possible cases:

\[w_S = \begin{cases} \bar{w}_S & \text{if } \bar{w}_S \leq 1 \\ 1 & \text{if } \bar{w}_S \leq 1 < w_S \\ w_S & \text{if } 1 < w_S \end{cases} \]

(B.16)

The corresponding multipliers are

\[\{\theta_0, \theta_\lambda\} = \begin{cases} \{n, 0\} & \text{if } \bar{w}_S \leq 1 \\ \{\frac{\gamma}{\lambda} (1 - \bar{w}_S), \frac{\gamma}{\lambda} (\bar{w}_S - 1)\} & \text{if } \bar{w}_S \leq 1 < w_S \\ \{0, n\} & \text{if } 1 < w_S. \end{cases} \]

(B.17)

Substituting into the HJB equation and simplifying,

\[\rho + \kappa = \frac{1}{\psi J} + (1 - 1/\psi) \left(r + \lambda \sigma' \sigma \theta + G n + \frac{\gamma}{2} w_S^2 \sigma' \sigma \right) \]

\[-\frac{1}{\psi} \left[\frac{J_\omega}{J} (1 - \omega) \left[\kappa (\bar{w} - \omega) + \omega (1 - \omega) \mu \omega \right] + \frac{J_n}{J} \kappa_n (n - n) \right] \]

\[-\frac{1}{\psi} \left[\frac{J_\omega}{J} (1 - \omega)^2 \sigma'_\omega \sigma + 2 \frac{J_n}{J} \omega (1 - \omega) (n - n) \sigma_{n \sigma_{2 \omega}} \right. \]

\[+ \frac{J_n}{J} (n - n)^2 (\bar{n} - n)^2 \sigma_n^2 \left] - \frac{1}{\psi} \left(\psi - \gamma \right) \left(\frac{J_\omega}{J} \right) \omega (1 - \omega) \sigma \right. \]

\[+ \left(\frac{J_n}{J} \right) (n - n) (\bar{n} - n) \left[0 \sigma_n \right] \]

\[\left(\frac{J_\omega}{J} \right) \omega (1 - \omega) \sigma + \left(\frac{J_n}{J} \right) (\bar{n} - n) \left[0 \sigma_n \right] \].

The markets for goods, stocks, and reserves must clear (the bond market clears by Walras’
\[
\omega c^A + (1 - \omega) c^B = F
\]
\[
\omega w^A + (1 - \omega) w^B_S = 1
\]
\[
\omega w^A_M + (1 - \omega) w^B_M = G.
\]

Market-clearing implies that only one type of agents, at most, takes leverage, so there are three possible cases in equilibrium:

\[
w^A_S > 1, \quad w^B_S < 1
\]
\[
w^A_S = 1, \quad w^B_S = 1
\]
\[
w^A_S < 1, \quad w^B_S > 1.
\]

Call these three cases (i), (ii), and (iii). Under case (i),

\[
w^A_S = \frac{1}{\gamma^A} \left\{ \frac{\mu - r}{\sigma' \sigma} - \lambda n \right. \\
+ \left. \left(\frac{1 - \gamma^A}{1 - \psi^A} \right)^2 \left[\frac{J^A}{J^A} \omega (1 - \omega) \left(\frac{\sigma' \sigma}{\sigma' \sigma} \right) + \frac{J^A}{J^A} (n - n) (\bar{n} - n) \left(\frac{\sigma^2 \sigma^2}{\sigma' \sigma} \right) \right] \right\}
\]
\[
w^B_S = \frac{1}{\gamma^B} \left\{ \frac{\mu - r}{\sigma' \sigma} \\
+ \left. \left(\frac{1 - \gamma^B}{1 - \psi^B} \right)^2 \left[\frac{J^B}{J^B} \omega (1 - \omega) \left(\frac{\sigma' \sigma}{\sigma' \sigma} \right) + \frac{J^B}{J^B} (n - n) (\bar{n} - n) \left(\frac{\sigma^2 \sigma^2}{\sigma' \sigma} \right) \right] \right\}.
\]

Note that

\[
\frac{\sigma'_\sigma}{\sigma' \sigma} = \frac{1}{1 - \omega} (w^A_S - 1)
\]
\[
\frac{\sigma^2 \sigma^2}{\sigma' \sigma} = \left[1 + \frac{F_\omega}{F} \omega (w^A_S - 1) \right] \frac{-F_\omega (n - n) (\bar{n} - n) \sigma^2_n}{\sigma^2_n + (F_\omega)^2 (n - n)^2 (\bar{n} - n)^2 \sigma^2_n}.
\]

Stock-market clearing gives

\[
1 = \omega w^A_S + (1 - \omega) w^B_S
\]
\[
= \omega w^A_S + (1 - \omega) \frac{1}{\gamma^B} \left\{ \gamma^A w^A_S + \lambda n \right. \\
- \left. \left[\left(\frac{1 - \gamma^A}{1 - \psi^A} \right)^2 \left(\frac{J^A}{J^A} \omega (1 - \omega) \left(\frac{\sigma' \sigma}{\sigma' \sigma} \right) + \frac{J^A}{J^A} (n - n) (\bar{n} - n) \left(\frac{\sigma^2 \sigma^2}{\sigma' \sigma} \right) \right] \right\}
\]
\[
\cdot \left[\left(\frac{1 - \gamma^B}{1 - \psi^B} \right)^2 \left(\frac{J^B}{J^B} \omega (1 - \omega) \left(\frac{\sigma' \sigma}{\sigma' \sigma} \right) + \frac{J^B}{J^B} (n - n) (\bar{n} - n) \left(\frac{\sigma^2 \sigma^2}{\sigma' \sigma} \right) \right] \right\}.
\]

This gives a linear equation for \(w^A_S\) in terms of exogenous and conjectured quantities. The
We need to verify the solution is

\[w^A_S = \frac{1 - \frac{1}{\gamma} (1 - \omega) \lambda n - \frac{1}{\gamma} \left[\left(1 - \frac{\gamma A}{1 - \psi A} \right) \frac{J^A}{\tilde{J}^A} - \left(1 - \frac{\gamma B}{1 - \psi B} \right) \frac{J^B}{\tilde{J}^B} \right] \omega (1 - \omega) - \frac{1}{\gamma} \left[\left(1 - \frac{\gamma A}{1 - \psi A} \right) \frac{J^A}{\tilde{J}^A} - \left(1 - \frac{\gamma B}{1 - \psi B} \right) \frac{J^B}{\tilde{J}^B} \right] \omega (1 - \omega) - \frac{1}{\gamma} \left[\left(1 - \frac{\gamma A}{1 - \psi A} \right) \frac{J^A}{\tilde{J}^A} - \left(1 - \frac{\gamma B}{1 - \psi B} \right) \frac{J^B}{\tilde{J}^B} \right] \omega (1 - \omega) - \frac{1}{\gamma} \left[\left(1 - \frac{\gamma A}{1 - \psi A} \right) \frac{J^A}{\tilde{J}^A} - \left(1 - \frac{\gamma B}{1 - \psi B} \right) \frac{J^B}{\tilde{J}^B} \right] \omega (1 - \omega) \right] \] (B.30)

We need to verify \(w^A_S > 1 \):

\[\lambda n < \gamma^B - \gamma^A - \frac{1}{\gamma} \left[\left(1 - \frac{\gamma A}{1 - \psi A} \right) \frac{J^A}{\tilde{J}^A} - \left(1 - \frac{\gamma B}{1 - \psi B} \right) \frac{J^B}{\tilde{J}^B} \right] \omega (1 - \omega) \] (B.31)

From here we can get \((\mu - r) / (\sigma') \), \((\sigma'_\omega \sigma) / (\sigma' \sigma) \), and \((\sigma_2 \sigma_n) / (\sigma' \sigma) \). This also gives \(\sigma \) and hence \(\sigma_{\omega} \), and as a result, \(\mu - r \).

Next, calculate \(w^B_S \) (verify \(w^B_S < 1 \)) and calculate

\[\mu_{\omega} = (w^A_S - w^B_S) (\mu - r) + \lambda \sigma' \sigma (w^B_S - 1) n - (J^A - J^B) - \sigma'_\omega \sigma. \] (B.32)

This can be plugged into the dynamics of returns to get \(\mu \), which also gives \(r \). Finally, plug the constraints \(\theta^B = n \) and \(\theta^A = 0 \) into the HJB equations to verify the conjectures for \(J^A \) and \(J^B \).

Money-market clearing gives

\[\{ w^A_M, w^B_M \} = \left\{ 0, \frac{G}{1 - \omega} \right\}. \] (B.33)

The binding leverage constraint pins down the value of reserves:

\[G = (1 - \omega) \lambda \sigma' \sigma (w^B_S - 1). \] (B.34)

Under case (ii),

\[\{ w^A_S, w^B_S \} = \{ 1, 1 \} \] (B.35)

\[\{ w^A_M, w^B_M \} = \{ 0, 0 \}. \] (B.36)

The stock market clears and \(G = 0 \). From here, we get \(\sigma_{\omega} = 0 \) and so \(\sigma = \sigma_D \). Next, use \(\mu_{\omega} = -(J^A - J^B) \) in the dynamics of returns to get \(\mu \) and \(\sigma \). Substituting into the HJB
equations and simplifying,
\[\rho + \kappa = \frac{1}{\psi J} + (1 - 1/\psi) \left[\mu + \left(\frac{1 - \gamma}{1 - \psi} \right) \frac{J_n}{J} (n - n) (\pi - n) \sigma_n \sigma_2 - \frac{\gamma}{2} \sigma' \sigma \right] \] (B.37)
\[- \frac{1}{\psi} \left[\frac{J_\omega}{J} [\kappa (\omega - \omega) + \omega (1 - \omega) \mu_n] + \frac{J_n}{J} \kappa_n (n - n_b) \right] \]
\[- \frac{1}{2} \left[\left(\psi - \gamma \right) \left(\frac{J_n}{J} \right)^2 + \frac{J_m}{J} \right] (n - n) (\pi - n)^2 \sigma_n^2. \]

This case requires
\[\lambda n > |\gamma^A - \gamma^B| + \left[\left(\frac{1 - \gamma^A}{1 - \psi^A} \right) \frac{J_n^A}{J^A} - \left(\frac{1 - \gamma^B}{1 - \psi^B} \right) \frac{J_n^B}{J^B} \right] \left(\frac{E^A (n - n)^2 (\pi - n)^2 \sigma_n^2}{\sigma^2_D} + \left(\frac{E^B}{\pi^B} \right)^2 (n - n)^2 (\pi - n)^2 \sigma_n^2 \right) \] (B.38)

The real interest rate lies inside a range between a lending and a borrowing rate.

Case (iii) is analogous to Case (i) with the roles reversed. It requires
\[\lambda n < |\gamma^A - \gamma^B| + \left[\left(\frac{1 - \gamma^A}{1 - \psi^A} \right) \frac{J_n^A}{J^A} - \left(\frac{1 - \gamma^B}{1 - \psi^B} \right) \frac{J_n^B}{J^B} \right] \left[\frac{E^A (n - n)^2 (\pi - n)^2 \sigma_n^2}{\sigma^2_D} + \left(\frac{E^B}{\pi^B} \right)^2 (n - n)^2 (\pi - n)^2 \sigma_n^2 \right]. \] (B.39)

This completes the proof. \(\square \)

We solve the model using Chebyshev collocation with complete polynomials up to order \(N \) in \(\omega \) and \(n \) with \(N = 30 \).

Appendix C

Here we develop a parallel channel underlying the relationship between the nominal interest rate and banks’ external finance spread based on a liabilities-side friction rather than the asset-side friction presented in the main body of the paper. Both channels induce the same equation linking banks demand for leverage to the nominal interest rate and therefore have the same implications for risk premia.

The setup parallels that in the benchmark model. We focus on the points of departure. The first is that \(B \) agents now have a preference for liquidity services, which they derive from bank deposits. Let \(w_M \) be the portfolio share of deposits. We modify the preferences of type-\(B \) agents to include a current period utility flow from deposits:
\[f^B = \left(\frac{1 - \gamma^B}{1 - 1/\psi^B} \right) V \left[\frac{C}{([1 - \gamma^B] V)^{1/(1 - \gamma^B)}} \right]^{1 - 1/\psi^B} + (1 - 1/\psi^B) \chi (w_M^B - (\rho + \kappa)) \] (C.1)
The utility from deposits is given by the function χ, which we assume is increasing, concave, and satisfies the Inada conditions. There are no other changes to preferences relative to the benchmark model. A preference for liquidity makes households willing to supply deposits at a low rate. For simplicity we leave agent A’s preferences unchanged, but the model can be modified so that they also value liquidity.

Deposits are a long-lived asset that we take as numeraire. Each dollar of deposits is worth π_t units of consumption (the inverse price level). As in the main model, the central bank controls the inflation rate $-d\pi_t/\pi_t$ so that it is locally deterministic, $-d\pi_t/\pi_t = i(\omega_t)\,dt$. The real rate is r and the nominal rate is $n(\omega_t) = r(\omega_t) + i(\omega_t)$. Again, we think of n (or i) as an exogenous policy variable.

The key assumption that gives monetary policy traction is that the rate households earn on deposits is low and “sticky”, meaning that it does not adjust one-for-one with market rates. Deposit stickiness has been documented extensively in the banking literature (e.g. Driscoll and Judson 2013). It implies that the spread between the deposit rate and the nominal rate is increasing in the nominal rate. To keep things simple, we assume deposits earn zero nominal interest, although any positive fraction of the market rate would do.

Deposits are a particular debt liability of A agents, the banks, to be contrasted with non-deposits (such as Fed Funds). Deposits provide households with liquidity, whereas non-deposits do not. As a result, non-deposits have a higher equilibrium rate of return, making them expensive as a source of funding for banks. At the same time, non-deposits require less collateral than deposits, which sets up a tradeoff between leverage and funding cost.

To formalize this, consider a bank with risky assets (over equity) w^A_M and suppose that the fraction of these assets that is pledgeable as collateral is $(1 - \alpha_S)\,w_S$, with $0 < \alpha_S < 1$. Further suppose that each dollar of deposits requires a dollar of pledgeable collateral, whereas a dollar of non-deposits requires only $1 - \alpha_B$ dollars of pledgeable collateral, with $0 < \alpha_B < \alpha_S$. Letting w^A_M be the bank’s deposit holdings (so $w^A_M < 0$ when the bank is issuing deposits), and letting w^A_B similarly be the bank’s non-deposit or bond holdings, the bank must have enough collateral to pledge against its liabilities:

$$-w^A_{M,t} - (1 - \alpha_B)\,w^A_{B,t} \leq (1 - \alpha_S)\,w^A_{S,t}. \tag{C.2}$$

The left side of this equation gives the pledgeable collateral required for the bank’s liabilities, and the right side gives its total pledgeable capacity.

Imperfect pledgeability of assets is a widespread assumption in the literature. It can be motivated by a lack of commitment as in Kiyotaki and Moore (1997), moral hazard as in Holmström and Tirole (1998), or an arbitrarily small probability of a crash Moreira and Savov (2014). The assumption that deposits require greater collateralization than non-deposits follows the information-sensitivity argument in Gorton and Pennacchi (1990). This argument stresses the idea that money-like instruments must be sufficiently collateralized to dissuade agents from acquiring private information that could undermine their liquidity.

The collateral constraint (C.2) can be rewritten in a way that parallels the reserve requirement (7) in the text. Using $w_M + w_B + w_S = 1$ in equation (C.2) and rearranging
gives
\[w_M^{A,t} \geq \left(\frac{\alpha_S - \alpha_B}{\alpha_B} \right) w_S^{A,t} - \frac{1 - \alpha_B}{\alpha_B}. \] (C.3)

If we then let \(\alpha_S = (1 + \lambda \sigma_t^2) \alpha_B \), then the constraint becomes
\[w_M^{A,t} \geq \lambda \sigma_t^2 w_S^{A,t} - \frac{1 - \alpha_B}{\alpha_B}. \] (C.4)

This says that for each dollar of extra funding \(w_S^{A,t} \), banks must shrink their deposit funding \(w_M^{A,t} \) by \(\lambda \sigma_t^2 \) dollars.

Because the deposit rate is fixed, the amounts of deposits demanded by banks may not equal the amount supplied by depositors. In the case of reserves, the central bank cleared the money market. Here we instead model a new new institution that fulfills this role, which we call \(C \) banks, making them as simple as possible.

\(C \) banks issue deposits equal to the discrepancy between deposit supply coming from \(B \) households, and deposit demand coming from \(A \) banks, \(G(\omega_t) = \omega w_M^{A,t} + (1 - \omega) w_M^{B,t} \). On the asset side, \(C \) banks make loans to \(A \) banks at the non-deposit rate. This means that \(C \) banks earn a spread \(n_t G_t \). To minimize distortions, we assume this spread is refunded to all agents in proportion to their wealth.

Our interpretation of \(C \) banks is that they fulfill the role of regional retail banks, funneling deposits to the risk-taking national banks via interbank lending.

The optimization problem of \(B \) agents is similar to that in the main model except for the inclusion of the demand for liquidity. The HJB equation of \(B \) agents is
\[0 = \max_{c, w_S, w_M} f^B(cW, V, w_M) \, dt + E \left[dV^B(W, \omega) \right] \] (C.5)
subject to the wealth dynamics
\[\frac{dW}{W} = [r - c + w_S (\mu - r) - w_M n + Gn] \, dt + w_S \sigma dB, \] (C.6)
where \(Gn \) is the refund from the \(C \) banks. The deposit-taking constraint does not bind in equilibrium for \(B \) agents, so we leave it out. Then, by Ito’s Lemma, the LaGrangian is
\[0 = \max_{c, w_S, w_M} f^B(cW, V, w_M) + V_W^B W [r - c + w_S (\mu - r) - w_M n + Gn] + V_{\omega}^B [\kappa (\omega_0 - \omega) + \omega (1 - \omega) \mu_\omega] + V_{w_S}^B w_S (1 - \omega) w_S \sigma_\omega \sigma + \frac{1}{2} V_{w_S}^B W^2 (w_S \sigma)^2 \] (C.7)
\[+ \frac{1}{2} V_{\omega}^B \omega^2 (1 - \omega)^2 \sigma_\omega^2. \]

Conjecture that the value function has the form
\[V^B(W, \omega) = \left(\frac{W^{1-\gamma}}{1-\gamma} \right) J^B(\omega)^{\frac{1-\gamma}{1-\psi}}. \] (C.8)
Wealth drops out of the HJB equation. The FOC for consumption gives $c = J$. B agents’ portfolio demand is characterized by

$$w_B^S = \frac{1}{\gamma} \left[\frac{\mu - r}{\sigma^2} + \left(\frac{1 - \gamma}{1 - \psi} \right) \frac{J_B^B J_B^\omega (1 - \omega)}{\omega} \sigma_\omega \right]$$ \hspace{1cm} (C.9)

$$\chi'(w_M) = n.$$ \hspace{1cm} (C.10)

The supply of deposits is given by $w_M = \chi'(n)^{-1}$ and is decreasing in n. Substituting into the HJB equation and simplifying gives

$$\rho + \kappa = \frac{1}{\psi} J^B + (1 - 1/\psi) \left[r + \chi'(\chi'(n)^{-1}) - \chi'(n)^{-1} n + Gn \right]$$ \hspace{1cm} (C.11)

$$-1/\psi \left(\frac{J_B^B}{J_B^w} [\kappa (\omega_0 - \omega) + \omega (1 - \omega) \mu_w] \right)$$

$$+ \frac{1}{2} \left[\left(\psi - \gamma \right) \left(\frac{J_B^B}{J_B^w} \right)^2 + \frac{J_B^B}{J_B^w} \right] \omega^2 (1 - \omega)^2 \sigma_\omega^2$$

$$+ \frac{1}{2} \left(\frac{1 - 1/\psi}{\gamma} \right) \left[\frac{\mu - r}{\sigma^2} + \left(\frac{1 - \gamma}{1 - \psi} \right) \frac{J_B^B J_B^\omega (1 - \omega)}{\omega} \sigma_\omega \right]^2 \sigma^2.$$

The magnitude of the effect of n on the intertemporal decision of B agents depends on $\chi'(\chi'(n)^{-1}) - \chi'(n)^{-1} n$, which depends on the curvature of χ. If we use $\chi(w_M) = w_M^{1+1/\eta}/(1 - \eta)$, then higher rates induce B agents to save less. This force pushes real and nominal rates in the same direction.

The optimization problem of A agents is

$$0 = \max_{c, w_S, w_M} f^A(eW, V) dt + E \left[dV^A(W, \omega) \right]$$ \hspace{1cm} (C.12)

subject to the wealth dynamics and the deposit-taking constraint

$$\frac{dW}{W} = [r - c + s (\mu - r) - mn + Gn] dt + s \sigma dB$$ \hspace{1cm} (C.13)

$$w_M \geq \lambda \sigma^2 w_S - \frac{1 - \alpha_B}{\alpha_B}. \hspace{1cm} (C.14)$$

Let $\theta V^A_W W \geq 0$ be the LaGrange multiplier on the constraint. Then, by Ito’s Lemma, the LaGrangian is

$$0 = \max_{c, w_S} f^A(eW, V) + V^A_W [r - c + w_S (\mu - r) - w_M n + Gn]$$ \hspace{1cm} (C.15)

$$+ V^A_\omega [\kappa (\omega_0 - \omega) + \omega (1 - \omega) \mu_w] + V^A_{W, \omega} W \omega (1 - \omega) w_S \omega_s \sigma + \frac{1}{2} V^A_{WW} W^2 (w_S \sigma)^2$$

$$+ \frac{1}{2} V^A_{\omega \omega} \omega^2 (1 - \omega)^2 \sigma_\omega^2 + \theta V^A_W W \left[m - \left(\lambda \sigma^2 w_S - \frac{1 - \alpha_B}{\alpha_B} \right) \right].$$
Conjecture that the value function has the form

\[V^A(W, \omega) = \left(\frac{W^{1-\gamma}}{1-\gamma} \right) J^A(\omega)^{\frac{1-\gamma}{1-\psi}}. \]

(C.16)

Wealth drops out of the HJB equation. The FOC for consumption gives \(c = J \) and portfolio demand is characterized by

\[\theta = n \]

(C.17)

\[w_S^A = \frac{1}{\gamma} \left[\frac{\mu - r}{\sigma^2} - \lambda n + \left(\frac{1 - \gamma}{1 - \psi} \right) \frac{J^A_\omega}{J^A} \omega (1 - \omega) \frac{\sigma_\omega}{\sigma} \right]. \]

(C.18)

This expression for banks demand for the risky endowment claim matches that in the benchmark model. Substituting into the HJB equation and simplifying,

\[\rho + \kappa = \frac{1}{\psi} J^A + (1 - 1/\psi) \left(r + G n + \frac{1 - \alpha_B}{\alpha_B} n \right) - 1/\psi \left(\frac{J^A_\omega}{J^A} \left[\kappa (\omega_0 - \omega) + \omega (1 - \omega) \mu_\omega \right] \right) \\
+ \frac{1}{2} \left[\left(\frac{\psi - \gamma}{1 - \psi} \right) \left(\frac{J^A_\omega}{J^A} \right)^2 + \frac{J^A_\omega}{J^A} \right] \omega^2 (1 - \omega)^2 \frac{\sigma^2}{\omega} \\
+ \frac{1}{2} \left(\frac{1 - 1/\psi}{\gamma} \right) \left[\frac{\mu - r}{\sigma^2} - \lambda n + \left(\frac{1 - \gamma}{1 - \psi} \right) \frac{J^A_\omega}{J^A} \omega (1 - \omega) \frac{\sigma_\omega}{\sigma} \right]^2 \frac{\sigma^2}{\sigma}. \]

(C.19)

The markets for goods, the endowment claim, and deposits must clear (the bond market clears by Walras’ law). Since all wealth is ultimately invested in the endowment claim, \(W^A + W^B = P \).

\[\omega c^A + (1 - \omega) c^B = F \]

(C.20)

\[\omega w^A_S + (1 - \omega) w^B_S = 1 \]

(C.21)

\[\omega w^A_M + (1 - \omega) w^B_M = G. \]

(C.22)

The conditions for market clearing are therefore the same as in the benchmark model.

The solution procedure follows that of the benchmark model with the above modifications to the HJB equations. The drift of \(\omega \) now accounts for the fact that \(B \) agents now hold deposits:

\[\mu_\omega = (s^A - s^B) (\mu - r) + \frac{1}{\omega} \chi'(n)^{-1} n - \left(J^A - J^B \right) - \sigma_\omega \sigma. \]

(C.23)

The final step is to verify that \(n \) is not too high, so that \(w^A_S > 0 \).
Figure 1: **Fed Funds-TBill spread vs. Fed Funds rate.** The figure plots the 20-week moving averages of the Fed Funds rate (solid red line) and the difference between the Fed Funds rate and the 1-month Treasury Bill rate (dashed blue line). The sample is 7/25/1980 to 5/9/2008.
Figure 2: **Risk taking.** The figure plots the risky claim portfolio weight for agent A (top panel) and agent B (bottom panel) under the $n_1 = 0\%$ (blue triangles) and $n_2 = 5\%$ (red squares) interest-rate policies.
Figure 3: The price of risk and the risk premium. The figure plots the Sharpe ratio (top panel) and risk premium (bottom panel) of the endowment claim under the $n_1 = 0\%$ (blue triangles) and $n_2 = 5\%$ (red squares) interest rate policies.
Figure 4: **Volatility.** The figure plots the volatility of the endowment claim under the $n_1 = 0\%$ (blue triangles) and $n_2 = 5\%$ (red squares) interest rate policies.
Figure 5: **Risk-free rate.** The figure plots the risk-free rate under the $n_1 = 0\%$ (blue triangles) and $n_2 = 5\%$ (red squares) interest rate policies.
Figure 6: Valuations. The figure plots the wealth-consumption ratio under the $n_1 = 0\%$ (blue triangles) and $n_2 = 5\%$ (red squares) interest rate policies.
Figure 7: The Stationary Density of Banks’ Wealth Share (ω). The figure plots the stationary density of ω, the share of wealth owned by banks, under the $n_1 = 0\%$ (blue triangles) and $n_2 = 5\%$ (red squares) interest rate policies.
Figure 8: **Ratio of real reserves to wealth.** The figure plots the ratio of the real value of reserves to wealth G under the $n_1 = 0\%$ (blue triangles) and $n_2 = 5\%$ (red squares) interest rate policies.
Figure 9: **Quantity of reserves dynamics.** The figure plots the drift and diffusion of the growth rate in the quantity of reserves M under the $n_1 = 0\%$ (blue triangles) and $n_2 = 5\%$ (red squares) interest rate policies.
Figure 10: **Impact of forward guidance on prices.** The figure plots the impact of forward guidance on asset prices. The top panel plots the two nominal rate policies $n_{fg,1}$ (blue triangles) and $n_{fg,2}$ (red squares). The bottom panel plots the ratio of the price of the endowment claim for $n_{fg,1}$ relative to $n_{fg,2}$ ($P_{fg,1} / P_{fg,2}$).
Figure 11: Impact of Greenspan put policy on prices and volatility. The figure plots the impact of a Greenspan put policy on prices, risk premia, and volatility. The top left panel plots the two nominal rate policies n_{q1} (blue triangles) and n_{q2} (red squares). The top right panel plots the wealth-consumption ratio $1/F$, the bottom left panel plots the risk premium $\mu - r$, and the bottom right panel plots volatility σ.
Figure 12: **Results from the model with policy shocks.** The figure plots the response of the wealth share ω, the wealth-consumption ratio $1/F$, the risk premium $\mu - r$, and the real rate r to a policy shock that raises the nominal interest rate n from 1% to 4%. Blue triangles represent initial values, red squares represent after-shock values. Dashed red lines correspond to the “direct effect” of the policy shock, which excludes the impact on the wealth share ω.
Figure B.1: **Stationary density: model with policy shocks.** Stationary density of the state variables ω and n in the extended model with policy shocks. We set $\bar{n} = 0.00$, $\pi = 0.06$, $\kappa_n = 0.01$, and $\sigma_n = 5$. The density is obtained by solving the forward Kolmogorov equation of the system. The contour lines are at increments of 50.