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1. Introduction

It is well known that default risk only accounts for a part of the pricing of corporate bonds. For

example, Longstaff et al. [2005] estimate that the default component explains about 50% of the

spread between the yields of Aaa/Aa-rated bonds and Treasury, or 70% of the credit spreads for

Baa-rated bonds. Furthermore, Longstaff et al. [2005] show that the nondefault component of

corporate bond spreads is only weakly related to the differential state tax treatmnet on corporate

bonds and Treasury, but is strongly related to measures of corporate bond illiqiduity.

Until recently, the literature on credit risk modeling has mostly focused on understanding the

default component of credit spreads. The “credit spread puzzle”, first discussed by Huang and

Huang (2012), refers to the finding that, when calibrated to match the observed default rates

and recovery rates, traditional structural models have difficulty explaining the credit spreads for

bonds rated investment grade and above. By introducing time-varying macroeconomic risks into

the structual models, Chen, Collin-Dufresne, and Goldstein (2009), Bhamra et al. [2010] and Chen

[2010] are able to explain the default components of the credit spreads for investment-grade corpo-

rate bonds.1 However, the significant non-default components in credit spreads still remain to be

explained.

Our paper attempts to provide a full resolution of the credit spread puzzle by quantitatively

explaining both the default and non-default components of the credit spreads. To achieve this goal,

we follow the endogenous liquidity approach in He and Milbradt [2012] by introducing the secondary

over-the-counter market search friction (a la Duffie et al. [2005]) into the structual credit models

with aggregate macroeconomic fluctuations (e.g., Chen [2010]). In our model, bond investors who
1Chen (2010) explains the default component of the credit spread for BBB rated bonds by relying on the estimates

of Longstaff et al. (2005), while Bhamra et al. (2010) focus on the difference between BBB and AAA rated bonds.
The difference of spreads between BBB and AAA rated bonds presumably takes out the common liquidity component,
which is a widely used practice in the literature. This is valid only if the liquidity components for both bonds are
similar, an assumption that we later show is not true.
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purchase bonds in the primary market face the risk of idiosyncratic liquidity shocks that drive up

their costs for holding the bonds. Market illiquidity arises endogenously because to sell the bonds,

these investors have to search for dealers to intermediate transactions with other investors not

hit by liquidity shocks. The dealers set bid-ask spreads to capture part of trading surplus when

bargaining with the illiquid investors. Default risk affects the liquidity discount on corporate bonds

by influencing the bargaining power of the illiquid bond investors.

The endogenous liquidity is further amplified by the endogenous default mechanism, first estab-

lished in Leland and Toft [1996] and emphasized recently by He and Milbradt [2012]. As illustrated

in He and Milbradt [2012], a default-liquidity spiral arises: when secondary market liquidity dete-

riorates, equity holders suffer greater rollover losses in refinancing their maturing bonds and will

consequently default earlier. This earlier default in turn worsens secondary bond market liquidity

even further, and so on so forth.

In contrast to He and Milbradt [2012], where primitive parameters associted with secondary

market illiquidity are assumed to be constant over time, in this paper we explicitly model the cyclical

variation in the secondary bond market illiquidity, which interacts with the cyclical variation in the

firm’s cash flows and aggregate risk prices. Our calibration strategy is as follows. First, we calibrate

the parameters governing the pricing kernel to fit key moments of asset prices. The parameters for

the cash flow process are calibrated using moments of aggregate corporate profit and equity return

volatility. Next, the parameters governing secondary market liquidity are calibrated using data on

bond turnovers, dealer’s bargaining power and bid-ask spreads. Finally, we design a new strategy

to estimate the liquidity discount for defaulted bonds using the emergence returns of defaulted

bonds.

We examine the model performance for corporate bonds with four credit ratings: Aaa/Aa, A,

Baa, and Ba. There are two contributions relative to the existing literature. First, different from
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Chen, Collin-Dufresne, and Goldstein (2009), Bhamra et al. [2010] and Chen [2010] who focus

on explaining the default component of investment grade bonds (specifically, the spread difference

between Baa and Aaa), our model aims at explaining the total credit spreads across a wide range

of ratings including both Aaa and Baa. Second, modelling the bond market liquidity endogenously

allows us to directly investigate the model’s quantitative performance on bond market liquidity in

addition to the the two common measures — cumulative default probabilities and credit spreads

— that the previous literature on corporate bonds calibration (e.g., Huang and Huang, 2012) has

focused on. More specifically, we investigate the model performance in matching the observed

cross-sectional pattern of CDS spreads and bid-ask spreads across different ratings,2 as it is widely

accepted that CDS spreads mostly price the default component while the bid-ask spread reflects

the bond illiquidity.

The advantage of our model is its parsimony thanks to the endogenously linking illiquidity to

firm’s distance-to-default, so that we only change the distance to default across different credit

ratings to match the corresponding historical default rates. Even so, our model is able to match

the empirical cross-sectional pattern in bond illiquidity across credit ratings. Relative to previous

literature that only focused on explaining the difference between Baa and Aaa bond spreads, we

show that our model-predicted credit spreads, which include both the default premium and liquidity

premium, can quantitatively match the total credit spread we observe in the data.

A common practice in the emprical literature is to decompose credit spreads into liquidity

and default components, which natually leads to the interpretation that the iquidity and default

components are independent of each other. However, our structual model with endogenous de-

fault and endogenous liquidity challenges this view: both liquidity and default components are

endogenously linked and may reinforce each other, and thus there can be economically significant
2In a model without bond market illiquidity, there is no bid-ask spread and the CDS spread should be equal to

the bond’s credit spread.
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interaction terms. These dynamic interactions are difficult to capture using reduced-form models

with exogenously imposed liquidity premia.

Our structual model allows us to quantify the interactions between default and liquidity for

corporate bonds, as we propose a finer decomposition that nests the common default-liquidity

decomposition. More specifically, similar to the idea of Credit Derivative Swap (CDS) pricing in

Longstaff et al. [2005] proxying for default risk, we identify this “default” part by pricing a bond

in a counterfactually perfectly liquid market but with the model implied default boundary. We

identify the remaining credit spread after subtractnig this “default” part as the “liquidity” part.

Next, we further decomposes this “default” (or “liquidity”) part into a “pure default” (or a “pure

liquidity”) component and a “liquidity-driven-default” (or a “default-driven-liquidity”) component,

where the “pure default” (or “pure liquidity”) component is defined by the spread implied by a

counterfactual model where only the equity holders’ endogenous default in a perfectly liquid market

(or the over-the-counter secondary market search friction absent default) is at work as in Leland

and Toft [1996] (or as in Duffie et al. [2005]). The two interaction terms, i.e., the “liquidity-driven-

default” and the “default-driven-liquidity” components, thus capture the enodgenous positive spiral

between default and liquidity. For instance, “liquidity-driven-default” is driven by the rollover risk

mechanism in that firms relying on finite-maturity debt financing will default earlier when facing

worsening secondary market liquidity.

This finer decomposition proposed by our model not only gives a more complete picture of how

the default and liquidity forces affect credit spreads of corporate bonds, but also offers important

insight on evaluating hypothetical government policies. For instance, providing subsidized term

loans to financial intermediaries who are active in the secondary bond market improves the market

liquidity, and our model implies that the first-order impact of such policies aimed at market liquidity

is on the pure liquidity part and liquidity-driven-default part. In contrast, the prevailing view in

4



the literature, which masks the interdependence between default and liquidity components, would

interpret such a policy as only affecting the liquidity part. Thus, the liquidity-driven-default is

mistakenly excluded while the default-driven-liquidity part is mistakenly included.

The paper is strutured as follows. Section 2 introduces the model. Section 3 gives the solutions

to debt valuations and default boundaries. Section 4 presents the main calibration. Section 5

introduces the model based decomposition of the results of the calibration. Section 6 presents the

analaysis of hypothetical government policies. Section 7 concludes. The appendix provides proofs

and the general form of the model.

2. The Model

2.1 Aggregate States and the Firm

The following model elements are similar to Chen [2010] and Bhamra et al. [2010], except that we

sudy the case in which firms issue bonds with an average finite maturity a la Leland (1998) so that

rollover risk is present.

2.1.1 Aggregate states and stochastic discount factor

The aggregate state of the economy is described by a continuous time Markov chain, with the

current Markov state denoted by st and the physical transition density between state i and state j

denoted by ζPij . We assume an exogenuous stochastic discount factor (SDF):

dmt

mt
= −rdt− η (st) dZmt +

∑
st 6=s′t

(
eκ(st−,st) − 1

)
dM

(st−,st)
t , (1)

where η (·) is the state dependent price of risk for Brownian shocks, and dM (j,k)
t is a compensated

Poison process capturing switches between states and κ (i, j) embeds the jump risk premia such
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that in the risk neutral measure, the distorted jump intensity between states is ζQij = eκ(i,j)ζPij .

Note that in Eq. (1), motivated by US data we have assumed a constant (i.e., state-independent)

risk-free rate rf (s) = r. In this paper we focus on the case with binary aggregate states, i.e.,

st ∈ {G,B}. In Appendix we provide the general setup for the case with n > 2 aggregate states.

2.1.2 Firm cash flows

A firm has assets in place that gerenates cash flows at the rate of yt, and under the phyical measure

P we have

dyt
yt

= µP (s) dt+ σm (s) dZmt + σfdZ
f
t , (2)

with s being an aggregate state that (possibly) influences the cash-flow process. Here, dZmt captures

aggregate Brownian risk, while dZft captures idiosyncratic Brownian risk. Given the stochastic

discount factor mt, risk neutral cash flow dynamics under the risk neutral measure Q follow

dyt
yt

= µQ (s) dt+ σ (s) dZQt ,

dZQt = σm(s)√
σ2
m (st) + σ2

f

dZmt +

√√√√1− σ2
m (s)

σ2
m (s) + σ2

f

dZft + σm (s)
σ (s) η (s) dt,

where ZQt is a Brownian Motion under the risk-neutral measure Q. The risk-neutral cash-flow drift

is given by

µQ (s) ≡ µP (s)− σm (s) η (s) , and σ (s) ≡
√
σ2
m (s) + σ2

f .

For ease of notation, we work with log cash flows δ ≡ log (y) throughout. Define

µ (s) ≡ µQ (s)− 1
2σ

2 (s) = µP (s)− σm (s) η (s)− 1
2
(
σ2
m (s) + σ2

f

)
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so that we have

dδt = µ (s) dt+ σ (s) dZQt . (3)

From now on we work under measure Q unless otherwise stated, so we drop the superscript Q in

dZQt and ζQij to simply write dZt and ζij where no confusion can arise.

The unlevered firm value, given the aggregate state s, is denoted by

vU (δ) ≡ [RR − µµ−QQ]−1 1 exp (δ) (4)

where RR = rI2 and I2 is the 2x2 identity matrix, µµ ≡

 µG 0

0 µB

, and QQ =

 −ζG ζG

ζB −ζB

.
Later we will use vsU to denote the element of vU in state s.

2.1.3 Firm’s debt maturity structure and rollover frequency

The firm has bonds in place of measure 1 which are identical except for their time to maturity, and

thus the aggregate and individual bond coupon (face value) is c (p). As in Leland (1998), equity

holders commits to holding the aggregate coupon and outstanding face-value constant outside

default, and thus issues new bonds of the same average maturity as the bonds maturing.

Bonds’ maturity is stochastic: each unit of bonds matures “randomly” in a Poisson fashion

(i.i.d across individual bonds) with intensity m. This implies an expected average debt maturity

of 1
m . The deeper implication of this assumption is that the firm adopts a “smooth” debt maturity

structure with a uniform distribution, and the firm’s average refinancing/rollover frequency is m.

As shown later, the rollover frequency (at the firm level) is important for the impact of liquidity

affecting the firm’s endogenous default decisions. Later we will calibrate this number to the actual

rollover frequency of US firms.
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2.2 Liquidity in Secondary Over-the-Counter Corporate Bond Market

We follow He and Milbradt [2012] to model the over-the-counter corporate bond market. The setting

builds on Duffie et al. [2005], in that it seamlessly integrates a search-based dealer intermediation

OTC market into the Leand-type structual credit risk frameowork described above. Individual

bond holders are subject to liquidity shocks that entail a positive holding cost]. Bond holders hit

by liquidity shocks will search dealers in the over-the-counter secondary market, and endogenous

transaction prices are determined when they meet a dealer.

More specifically, every bond holder can only hold one unit of the bond. Individual bond

holders start in the H state without any holding cost when purchasing corporate bonds in the

primary market. As time passes by, H type bond holders are hit independently by liquidity shocks

with intensity ξ (s), which lead them to become L types who bear a positive holding cost χ (s) per

unit of time. As there is H investors without the bond waiting on the sideline, it is optimal for

L investors to try to sell the bond to H investors. However, there is a trading friction in moving

the bond holdings from inefficient L-type bond investors (seller) to efficient H-types, in that trades

have to be intermediated by dealers in the over-the-counter market.

L type sellers meet dealers with intensity λ (s), which we interpret as the intermediation intensity

of the financial sector. After L-type investors sell their holdings they exit the market forever.

The H-type buyers on the sideline currently not holding the bond also contact dealers with some

intensity λ (s). As no dealer meets a buyer and a seller at the same time, dealers use the competitive

(and instantaneous) interdealer market to lay of or buy a position in bonds. For simplicity, we

assume that the flow of H-type buyers contacting dealers is greater than the flows of L-type sellers

contacting dealers, so that the secondary market is a seller’s market.

Fixing any aggregate state s, and denote by Ds
l the individual bond valuation for the investor

with type l ∈ {H,L}. We follow [duffie2007b] and assume Nash-bargaining weights β of the investor
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and 1− β of the dealer across all dealer-investor pairs. When a contact between a type L investor

and a dealer occurs, the dealer can instantaneously sell a bond at a price M to another dealer

who is in contact with an H investor. If he does so, the bond travels from an L investor to an H

investor via the help of the two dealers who are connected in the inter-dealer market. Denote by

Bs the bid price at which the L type is selling his bond, by As the ask price at which the H type

is purchasing this bond, and by M s the inter-dealer market price. Similar to DGP05 and He and

Milbradt (2013), we have the following proposition.

Proposition 1 Fix valuations Ds
H and Ds

L, and denote the surplus from trade by Πs = Ds
H−Ds

L >

0. The ask price As and inter-dealer market price M s are equal to Ds
H , and the bid price is given by

Bs = βDs
H + (1− β)Ds

L. The dollar bid ask spread is As −Bs = (1− β) (Ds
H −Ds

L) = (1− β) Πs.

Essentially, Bertrand competition, the holding restriction and the surplus of buyer-dealer pairs

in the interedealer market drives the surplus of buyer-dealer pairs to zero. This further implies

that the value function of investors not holding the asset is identically zero, which makes the model

very tractable.

To compare our model with empirical studies on the bid-ask spread, in the calibration we report

the proportional bid-ask spread which is defined as the dollar bid-ask spread divided by the mid

price, i.e.,

∆s (δ, τ) = 2 (1− β) (Ds
H −Ds

L)
(1 + β)Ds

H + (1− β)Ds
L

.

The liquidity shock intensity ξ (s), the holding cost χ (s), and the meeting intensity with dealers

λ (s), can depend on the macro state s. From the perspective of bond investors, mutual funds that

hold corporate bonds may be more likely to experience fund outflows and thus more desperate

to selling their bolding holdings in bad state, which gives rise to a higher ξ (s) and χ (s). From

the perspective of market liquidity and intermediation, a rise of meeting intensityλ (s) resembles a
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shock to the financial system that lowers the intermediation ability of the financial sector.

2.3 Markov Transition Matrix

We will use capitalized bold-faced letters (e.g., X) to denote matrices, lower case bold face letters

(e.g. x) to denote vectors (the only exceptions are the value functions for debt and equity, D,E

respectively, which will be vectors, and the matrices for drift and volatility, µ and Σ), and non-

bold face letters denote scalars (e.g. x). Dimensions for most objects are given underneath the

expression. While in this paper we focus on 2-aggregate-state case where s ∈ {G,B}, i.e., good and

bad states, the Appendix presents general results for any arbitrary number of (Markov) aggregate

states.

Denote by Q the Markov-transition matrix of aggregate and individual states, where each entry

qls→l′s′ is the intensity of transitioning from (individual) liquidity state l to l′ where l, l′ ∈ {H,L}

and from aggregate state s to s′ where s, s′ ∈ {G,B}.3 Thus, the transition matrix Q is

Q︸︷︷︸
4×4

≡



−
∑
ls6=HG qHG→ls qHG→LG qHG→HB 0

qLG→HG −
∑
ls6=LG qLG→ls 0 qLG→LB

qHB→HG 0 −
∑
ls6=HB qHB→ls qHB→LB

0 qLB→LG qLB→HB −
∑
ls6=LB qLB→ls



=



−ξ (G)− ζ (G) ξ (G) ζ (G) 0

βλ (G) −βλ (G)− ζ (G) 0 ζ (G)

ζ (B) 0 −ξ (B)− ζ (B) ξ (B)

0 ζ (B) βλ (B) −βλ (B)− ζ (B)


(5)

3Our intensity-based modelling rules out the possibility of coinciding jumps in the aggregate and individual states
(i.e., qls→l′s′ = 0 if l 6= l′ and s 6= s′), an assumption that can potentially be relaxed. Economically, this implies that
the aggregate shock can bring about more liquidity shocks to individual debt holders given any time interval (but
these shocks are still i.i.d across individuals).
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The entry qLs→Hs in the above transition matrix requires further explanation. In our model,

given the aggregate state s, the intensity of switching from H state to L state is ξ (s), and the

L-state is absorbing (those L-type investors leave the market forever). Note that L-type’s intensity-

modulated surplus when meeting the dealer, as shown in Section 2.2, can be rewritten as

λ (s) (Bs −Ds
L) = λ (s)β (Ds

H −Ds
L) .

Thus, for the purpose of pricing, the “effective” transition intensity from L-type to H-type is

qLs→Hs = λ (s)β where λ (s) is the state-dependent intermediation intensity and β is the investor’s

bargaining power. To see this, n

2.4 Delayed Bankruptcy Payouts and Effective Recovery Rates

In Leland-type frameworks, when the firm cash flows deteriorates, equity holders are willing to

repay the maturing debt holders only when the equity value is still positive so that the option value

of keeping the firm alive justifies absorbing rollover losses. The firm defaults when its equity value

drops to zero at some endogenous default threshold δdef , which is endogenously chosen by equity

holders. As in Chen [2010], we will impose bankruptcy costs as a fraction 1− α̂ (s) of the value from

unlevered assets vsU (δdef ) in (4), where the debt holder’s bankrutpcy recovery α̂ (s) may depend

on the aggregate state s.

As emphasized in He and Milbradt [2012], because the driving force of liquidity in our model

is that agents value receiving cash early, our bankruptcy treatment has to be careful in this regard

(and different from typical Leland models). If bankruptcy leads investors to receive the proceeds

immediately, then bankruptcy confers a “liquidity” benefit similar to bond maturing. This “expe-

dited payment” benefit runs counter to the fact that in practice bankruptcy leads to the freezing of
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assets within the company and a delay in the payout of any cash depending on court proceeding.4

Moreover, bond investors with defaulted bonds may face a much more illiquid secondary market,

and potentially a much higher holding cost once liquidity shocks hit due to regulatory or charter

restrictions which prohibit institutions to hold defaulted bonds.

To capture above features, we assume that a bankruptcy court delay leads the bankruptcy cash

payout α̂ (s) vsU to occur at a Poisson arrival time with intensity θ.5 The holding cost for L-type

investors is χdefvsU where χdef > 0, and the secondary market for defaulted bonds is illiquid with

contact intensity λdef . Given aggregate state s and default boundary δdef , denote the value of

defaulted bonds by Ds,def
H and Ds,def

L . Their valuation equations are

rDs,def
H = θ

[
α̂ (s) vsU −D

s,def
H

]
+ ξ (s)

[
Ds,def
L −Ds,def

H

]
+ ζ (s)

[
Ds′,def
H −Ds,def

H

]
rDs,def

L = −χdef (s) vsU + θ
[
α̂ (s) vsU −D

s,def
L

]
+ λdef (s)β

[
Ds,def
H −Ds,def

L

]
+ ζ (s)

[
Ds′,def
L −Ds,def

L

]
(6)

Take Ds,def
L for example: the first term is the illiquidity holding cost, the second term captures the

bankruptcy payout, the third term captures trading the defaulted bonds with dealers, and the last

term captures the jump of the aggregate state. In Eq. (6) we have assumed that the cashflow rate

δ remains constant at δdef during bankrutpcy procedures, a simplifying assumption that can be

easily relaxed.6 Defining Ddef ≡
[
DG,def
H , DG,def

L , DB,def
H , DB,def

L

]>
, it is easy to show that

Ddef (δ) ≡ (R −Qdef + θI)−1 diag (vU (δ))
(
θα̂− χdef

)
= α> · diag (vU (δ)) (7)

4The Lehman Brothers bankruptcy in September 2008 is a good case in point. After much legal uncertainty,
payouts to the debt holders only started trickling out after about three and a half years.

5We could allow for a state-dependent bankruptcy court delay, i.e., θ (s); but the Moody’s Ultimary Recovery
Dataset reveals that there is little difference between the recovery time in good time versus bad time.

6And we assume that αV sFB (δdef ) < p, i.e., the total debt face value exceeds the payout. The result will be
identical if we assume that δ evolves as in (3), and debt holders receive the entire payout (net bankruptcy cost) of
αVFB eventually. The defaulted bonds values will be slightly lower if we take into account that equity holders receive
some payouts in the event of αVFB > p, but one can derive the forumula of Ds,def

H and Ds,def
L easily.
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where χdef ≡ [0, χdef (G) , 0, χdef (B)]> and where Qdef is the post-default counterpart of Q in in

(5).

For easier comparison to existing Leland-type models where debt recovery at bankruptcy is

simply α̂vU , we denote the (bold face) vector α ≡
[
αGH , α

G
L , α

B
H , α

B
L

]>
as the effective bankruptcy

recovery rates at the time of default. We will have αsH > αsL to capture the fact that default is

more hurtful for bond holders in the illiquid state. Since we mainly focus on bond spreads before

firm default, for the rest of the paper we take α as the primitive parameters, because they are

determined by post-default market structures. However, as emphasized in He and Milbradt [2012],

because vU (δ) is endogenous as it depends on δ, the dollar bid-ask spread of defaulted bonds is

higher if the firm defaults earlier. Thus, the illiquidity of defaulted bonds, relative to that of default-

free bonds whose dollar bid-ask spreads are proportional to principal p and coupon c, depends on

the firm’s pre-default parameters through the channel of endogenous default.

These effective bankruptcy recovery factors are the only critical ingredients for us to solve for

the pre-default bond valuations, as well as their the market liquidity. In calibration, we choose

these effective recovery rates to target the valuation gap between the market price of defaulted

bonds observed immedialy after default (which are close to L-type valuations) and their ultimate

recovery values (which are close to H-type valuations).

3. Debt Valuation and Default Boundaries

Denote by D(s)
l the l-type debt value in aggregate state s, E(s)

l the equity value in aggregate state

s, and δdef = [δdef (G) , δdef (B)]> the vector of endogenous default boundaries. We derive the

closed-form solution for debt and equity valuations in this section as a function of δdef , along with

the characterization of endogenous default boundaries δdef .
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3.1 Debt Valuations

Because equity holders will default earlier in bad state, i.e., δdef (G) < δdef (B), the domains of

debt valuations changes when the aggregate state switches. We deal with this issue by the following

treatment; see the Appendix for the generalization of this analysis.

Define two intervals I1 = [δdef (G) , δdef (B)] and I2 = [δdef (B) ,∞), and denote by Ds,i
l the

restriction of Ds
l to the interval Ii, i.e., Ds,i

l (δ) = Ds
l (δ) for δ ∈ Ii. Clearly, DB,1

l (δ) = αlV
B
U (δ) is

in the “dead” state, so that the firm immediately defaults in interval I1 when switching into state

B (from state G). In light of this observation, in interval I2 = [δdef (B) ,∞) all bond valuations

denoted by D(2) =
[
DG,2
H , DG,2

L , DB,2
H , DB,2

L

]>
are “alive.” We have the following system of ODEs

for D(2):

[(r +m) I4 −Q] D(2) =
(
c12i − χ(2)

)
+µ(2)

(
D(2)

)′
+1

2Σ(2)
(
D(2)

)′′
+m·p12i for δ ∈ I2 = [δdef (B) ,∞) .

(8)

In contrast, in interval I1 = [δdef (G) , δdef (B)] where D(B,1)
l is “dead,” D(1) =

[
D

(G,1)
H , D

(G,1)
L

]>
satisfies

[(r +m) I4 −Q] D(1) =
(
c12i − χ(1)

)
+µ(1)

(
D(1)

)′
+1

2Σ(1)
(
D(1)

)′′
+m·p12i for δ ∈ I1 = [δdef (G) , δdef (B)] .

(9)

As shown in Appendix, the general solution on interval i is given by

D(i)︸︷︷︸
2i×1

= G(i)︸︷︷︸
2i×4i

· exp
(
Γ(i)δ

)
︸ ︷︷ ︸

4i×4i

· b(i)︸︷︷︸
4i×1

+ k(i)
0︸︷︷︸

2i×1

+ k(i)
1︸︷︷︸

2i×1

exp (δ) (10)

where the constants vector b(i) will be determined via appropriate boundary conditions. The
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boundary conditions at δ =∞ and δ = δdef (G) are standard:

lim
δ→∞

∣∣∣D(2) (δ)
∣∣∣ <∞, and D(1) (δdef (G)) =

 αGH

αGL

 vGU (δdef (G)) (11)

For the boundary δdef (B), we must have value matching conditions for all functions across δdef (B):

D(2) (δdef (B)) =


D(1) (δdef (B)) αBH

αBL

 vBU (δdef (B))


(12)

and smooth pasting conditions for functions that are alive across δdef (B) (x[1,2] selects the first 2

rows of vector x): (
D(2)

)′
(δdef (B))[1,2] =

(
D(1)

)′
(δdef (B)) . (13)

3.2 Equity Valuations and Default Boundaries

When the firm refinances the maturing bonds, we assume that it can place newly issued bonds with

H investors in a competitive primary market. This implies that there is a rollover cash flow (inflow

or outflow) of m
[
S(i) ·D(i) (δ)− p1i

]
at each instant as a mass m · dt of debt holders matures on

[t, t+ dt], where S(i) is a i × 2i matrix that selects DH . For instance, for δ ∈ I2 = [δdef (B) ,∞),

we have D(2) =
[
DG,2
H , DG,2

L , DB,2
H , DB,2

L

]>
and S(2) =

 1 0 0 0

0 0 1 0

.7
For ease of exposition, we will denote by double letters (e.g. xx) a constant for equity that

takes a similar place as a single letter (i.e. x) constant for debt. We can write down the HJB
7This formulation can also accommodate the sitation where some maturing bonds are rolled over to L investors

by adjusting S(i).
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equation for equity on interval Ii similar to (8) and (9). For instance, on interval I2 we have

(
rI2 −QQ(2)

)
E(2) (δ) = µµ(2)

(
E(2)

)′
(δ) + 1

2ΣΣ(2)
(
E(2)

)′′
(δ)

+12 exp (δ)︸ ︷︷ ︸
Cashflow

− (1− π) c12︸ ︷︷ ︸
Coupon

+m
[
S(2) ·D(2) (δ)− p12

]
︸ ︷︷ ︸

Rollover

(14)

where

µµ(2) = diag ([µ (G) , µ (B)]) ,ΣΣ(2) = diag
([
σ2 (G) , σ2 (B)

])
,QQ(2) =

 −ζ (G) ζ (G)

ζ (B) −ζ (B)

(15)

The general solution to equity value is (please put dimentions in the following equation)

E(i) (δ)︸ ︷︷ ︸
i×1

= GG(i)︸ ︷︷ ︸ ·
i×2i

exp
(
ΓΓ(i)δ

)
︸ ︷︷ ︸

2i×2i

· bb(i)︸ ︷︷ ︸
2i×1

+ KK(i)︸ ︷︷ ︸
i×4i

exp
(
Γ(i)δ

)
︸ ︷︷ ︸

4i×4i

b(i)︸︷︷︸
4i×i

+ kk(i)
0︸ ︷︷ ︸

i×1

+ kk(i)
1︸ ︷︷ ︸

i×1

exp (δ) for δ ∈ Ii

and the particular solution is

E(2) (δ)︸ ︷︷ ︸
2×1

= GG(2)︸ ︷︷ ︸ ·
2×4

exp
(
ΓΓ(2)δ

)
︸ ︷︷ ︸

4×4

· bb(2)︸ ︷︷ ︸
4×1

+ KK(2)︸ ︷︷ ︸
2×8

exp
(
Γ(2)δ

)
︸ ︷︷ ︸

8×8

b(2)︸︷︷︸
4×2

+ kk(2)
0︸ ︷︷ ︸

2×1

+ kk(2)
1︸ ︷︷ ︸

2×1

exp (δ) for δ ∈ I2

E(1) (δ)︸ ︷︷ ︸
1×1

= GG(1)︸ ︷︷ ︸ ·
1×2

exp
(
ΓΓ(1)δ

)
︸ ︷︷ ︸

2×2

· bb(1)︸ ︷︷ ︸
2×1

+ KK(1)︸ ︷︷ ︸
1×4

exp
(
Γ(1)δ

)
︸ ︷︷ ︸

4×4

b(1)︸︷︷︸
4×1

+ kk(1)
0︸ ︷︷ ︸

1×1

+ kk(1)
1︸ ︷︷ ︸

1×1

exp (δ) for δ ∈ I1

where GG(i),ΓΓ(i), bb(i),KK(i), kk(i)
0 and kk(i)

1 for i ∈ {1, 2} are given in Appendix. In particular,

the constant vector bb(i) is determined by boundary conditions similar to those in Section 3.1.

Finally, the endogenous bankruptcy boundaries δdef = [δdef (G) , δdef (B)]> are given by the

standard optimization / smooth pasting condition:

(
E(1)

)′
(δdef (G))[1] = 0, and

(
E(2)

)′
(δdef (B))[2] = 0. (16)
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Symbol Interpretation State G State B

ζP Transition Density 0.10 0.50
κ Jump Risk Premium 2.50 0.40
µP Cash Flow Growth 0.04 0.02
η Risk Price 0.18 0.25
σm Systematic Vol 0.11 0.15
σi Idiosyncratic Vol 0.22 0.22
m Average Maturity Intensity 0.20 0.20
χ Holding Cost -2.15 -2.65
ξ Liquidity Shock Intensity 0.70 0.70

Table 1: Benchmark Parameters.This table reports the parameters values used in the benchmark
calibration. Unreported parameters are tax rate π = 0.35, bond holders’ bargaining power β = 5%
, and risk free rate rf = 0.02.

4. Calibration

We calibrate the parameters governing firm fundamentals and pricing kernels to key moments of

aggregate economy and asset pricing. Parameters governing time-varying liquidity conditions are

calibrated to their data counterparts on bond turnover, dealer’s bargaining power and observed

bid-ask spread. Since the credit spread of the randomly-maturing bonds in the model are not

directly compared to the data, we use simulation methods to compute the fixed maturity bond

whose holders are subject to the same liquidity shocks as modeled before.

4.1 Benchmark Parameters

4.1.1 Cash flows and liquidity parameters

We follow Chen et al. [2012] in calibrating firm fundamentals and investors’ pricing kernel. Table

1 reports the benchmark parameters we use. For average maturity, we consider a firm with a

continuum of bonds that matures (randomly) with intensity m = 0.2 so that the average debt

maturity is about 1/m = 5 years. This is close to the empirical median debt maturity (including

bank loans and public bonds) reported in Chen et al. [2012]. The set of parameters governing the

risk prices and firm’s cash flows are standard. For liquidity parameters, we assume a bondholder will
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be hit by liquidity shock of intensity ξ = 0.7 and take this number to be state independent. When

hit by a liquidity shock, it takes a bond holder on average 3 days (λ (G) = 100) in good state and 1

week (λ(B) = 50) in bad state to find an intermediary to sell the holding. Taken together, the model

implies an average annual turnover of about 70%, which is close to the value-weighted turnover as

we see in the data. Pro-cyclicality of λ captures time-varying liquidity conditions in the secondary

market, and is strongly supported in the data. We interpret lower λ as a weakining of the financial

system and its ability to intermediate markets. In our model, adverse macroeconomic condition

(risk prices) coincides and interacts with weaker firm fundamentals and worsened secondary market

liquidity to generate quantitatively important implications for the pricing of defaultable bonds.

Finally, we set bond holders bargaining power to be fixed at β = 0.05 and it does not vary across

states. This number is taken from empirical work that estimates search frictions in the bond market

(Feldhütter [2012]).

4.1.2 Effective recovery rates

The parameters that are specific to our model is the type and state-dependent recovery rates αsl

for l ∈ {L,H} and s ∈ {G,B}. We first borrow from the existing literature (say, Chen [2010])

who treats the traded prices right after default as recovery rates, and the estimates for recovery is

57.55% · vGu at normal time and 30.60% · vBu at recession. Assuming that post-default prices are bid

prices that investors are selling, then we have from Proposition 1 that

0.5755 = αGL + β(αGH − αGL ), and 0.3060 = αBL + β(αBH − αBL ). (17)

We need two more pieces of bid-ask information for defaulted bonds to rocover αsl ’s. Edwars

Harris Piwowar (2006) (henceforth EHP) report that in normal times, the transaction cost of

defaulted bonds for median-sized trades is about 200 bps. To gauge the bid-ask spread for defaulted
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Table 2: Summary Statistics for Annualized Net PME on Defaulted Bond by Default Time

Default Time # of Defaulted Bond Mean Annualized Net PME Mean Annualized Net Return
Non-Recession 512 0.3126 0.3922

Recession 130 0.5537 0.4672
Full Sample 642 0.3613 0.4074

bonds during recession, we take the following approach. Using TRACE data, we first follow Bao,

Pan and Wang (2012) (henceforth BPW) to calculate the implied bid-ask spreads for low rated

bonds (C and below) for both normal and recession times. We find that relative to normal times,

during recessions the implied bid-ask spread is around 2.6 times higher. Given a bid-ask spread

of 200 bps for defaulted bonds, this multipler implies that the bid-ask spread for defaulted bonds

during recession is about 520 bps. Hence we have

2% =
2
(
αGH − αGL

)
αGL + β(αGH − αGL ) + αGH

, and 5.2% =
2
(
αBH − αBL

)
αBL + β(αBH − αBL ) + αBH

. (18)

Solving (17) and (18) gives us the estimates of α =
[
αGH , α

G
L , α

B
H , α

B
L

]
.

4.1.3 Ultimate recovery rates

For later decomposition, we need information on ultimate recovery rates α̂s in different states. We

extract information on these recovery rates from Moody’s default and recovery database that covers

defaulted corporate bond between 1987 and 2011. We track the price path for each defaulted bond

from the default date to the settlement (or emergence) date. For each bond, Moody’s calculates

the emergence price using three methods: trading price, settlement price or liquidity price and

indicates which one is preferred. We follow Moody’s preferred method. The majority of our sample

are bankrupcy cases. The average time from credit event to ultimate resolution is 501 days, which

varies little across recession and non-recession periods.

We borrow from the empirical literature on vecture capital / private equity (eg. Kaplan and
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Schoar [2005])to adjust for risk by discounting the return for each defaulted bond by a public

market reference return over the same horizon (from default date to emergence date). We use

SP500 total return (including dividend) as the relevant benchmark. The resulting excess returns

are called “Public Market Equivalent” (PME). A PME greater than 1 implies the return earned by

investing in defaulted bond beat the public market over the same horizon. In table 2 we report the

mean annualized net PME.

To account for state dependence in risk premium, we sort our sample into two groups based

whether the default month is classified as recession by NBER. We map the G state and B state in

the model to recession and non-recession state in this way. Out of our full sample of 642 bonds,

130 defaulted in recession months. Table 2provides summary statistics on our excess return matric

and figure 3 plots its empirical distribution.

Following the above procedure, we find that over the bankruptcy resolution period of 501 days,

the average adjusted buy-and-hold return when default occurs in recession is about 212%, and

when default occurs in non-recession time is about 153%. Since at aggregate state s the trading

price right after default is [αsL + β(αsH − αsL)] vsU while the ultimate recovery is α̂svsU , we reach the

estimates for α̂s’s as (recall (17)):8

α̂G = 1.53× 0.5755 = 88%, and α̂B = 2.12× 0.3060 = 65%.

8This calculation implicitely assumes that there is no transitioning of aggregate states when waiting for ultimate
recoveries, as we only have average buy-and-hold return for bonds that defaulted at a given aggregate state. One can
potentially calculate the adjusted buy-and-hold return not only conditional on the state in which the firm defaults
(which is our treatment), but also conditional on the state in which the ultimate recovery occurs. This will significantly
complicate the analysis, and it is unclear which direction of bias that this treatment introduces.

20



Table 3: Implied Recovery Values

Symbol Interpretation State G State B

αH Recovery Rate of H Type 59.78% 33.78%
αL Recovery Rate of L Type 57.43% 30.43%
α̂ Ultimate Recovery Rate 88.05% 64.87%

4.2 Calibration Results on Credit Spreads and Default Probabilities

Table 4 presents our calibration results on aggregate default probability and total credit spread for

bonds of four rating classes: Aaa/Aa rated, A, Baa, and Ba; the first three ratings are investment

grade, while Ba is speculative grade. We combine Aaa and Aa together because there are few

observations for Aaa firms. The data counterpart is from Huang and Huang (2012).

Given a firm’s default boundary, we compute the default probability and total credit spread of

bonds at 5 and 10 year maturity using Monte-Carlo methods.9 As typical in structural corporate

bond pricing models, we find that the model implied default probability and total credit spread are

highly nonlinear in market leverage (see Figure 1). As inDavid [2008], the non-linearity inherent

in the model implies that the average credit spreads are higher than the spreads at average market

leverage. We thus follow David [2008] in computing model implied aggregate moments. Specifically,

we compute the market leverage of all Compustat firms for which we have ratings data between

1985 and 2012, and classify each quarterly observation as either in “G State” or “B State” based

on whether the specific quarter is classified as NBER recession.10 We then match each firm-quarter

observed in Compustat to its model counterpart and compute the average across aggregate states,

and repeat the procedure for each rating class and each maturity (5 or 10 years).
9Specifically, we simulate the cash flow of the firm and aggregate state for 50,000 times for a fixed duration of 5

or 10 years and count the times where the cash flow cross the state dependent default boundary and also record the
cash flow received by bond holders of either H or L type. Following the literature, we adjust the principle of the
bond to make it issue at par.

10 For empirical distribution of market leverage for each rating, see Figure 2. Market leverage is defined as the
ratio of book debt over book debt plus market equity (sometimes it is called quasi market leverage). We dropped
financial and utility firms.
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The resulting summary statistics are presented in Table 4. Our model matches a variety of

empirical moments commonly considered to be a puzzle in the literature, it also generates flatter

and more realistic term structure of default probability and credit spread. For example, for Aaa/Aa

(superior grade) bonds, we generate a 10 year credit spread of 84.89 bps (85.21 bps in data) with

a default probability of 2.09% (2.06 in data), and for Baa the 10 year credit spread is 219.29 bps

(194 bps in data) with a default probability of 8.82% (7.02% in data). Regarding term structure

implications on bond spreads, our model undershoot a bit for the 5 year aggregate moments in the

data.

We emphasize that relative to the existing literature, our calibration aims at explaining total

credit spread across ratings, rather than differences between ratings. For instance, Bhamra et al.

[2010] and Chen [2010] only focus on explaining the difference between Baa and Aaa rated bonds,

which is considered as the default component of Baa rated bonds under the assumption that the

observed spreads for AAA rated bonds are mostly driven by liquidity premium. Because our

framework endogenously models bond liquidity, we are able to match the total credit spread that

we observe in the data across ratings, especially across the superior ratings (Aaa/Aa) and the lower

end of investment rating bonds (say Baa).

4.3 Model Performance on Default and Non-Default Measures

Our model features an illiquid secondary market for corporate bonds, which implies that the equi-

librium credit spread must compensate the bond investors for bearing not only default risk but

also liquidity risk. This richness allows us to investigate the model’s quantitative performance on

dimensions specific to bond market liquidity, in addition to the two common measures — cumu-

lative default probabilities and credit spreads — that the previous literature on corporate bond
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Table 4: Calibration Results on Aggregate Moments Across Ratings

Panel A: Aaa/Aa Bonds
Maturity = 5 Years Maturity = 10 Years
Data Model Data Model

Default Probability (%) 0.66 0.49 2.06 2.09
Total Credit Spread (bps) 62.93 51.11 85.21 84.89

CDS Spread (bps) 30.72 16.69 44.78 43.93
Panel B: A Bonds

Maturity = 5 Years Maturity = 10 Years
Data Model Data Model

Default Probability (%) 1.31 1.23 3.44 4.55
Total Credit Spread (bps) 96.00 80.89 123.00 137.87

CDS Spread (bps) 45.10 40.20 64.32 88.16
Panel C: Baa Bonds

Maturity = 5 Years Maturity = 10 Years
Data Model Data Model

Default Probability (%) 3.08 3.25 7.02 8.82
Total Credit Spread (bps) 158.00 148.84 194.00 219.29

CDS Spread (bps) 91.19 90.66 120.15 151.37
Panel D: Ba Bonds

Maturity = 5 Years Maturity = 10 Years
Data Model Data Model

Default Probability (%) 9.81 8.32 19.01 16.66
Total Credit Spread (bps) 320.00 306.17 320.00 365.72

CDS Spread (bps) 237.82 204.14 281.77 264.62
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calibration (e.g., Huang and Huang, 2012) has focused on.

4.3.1 Credit Default Swap (CDS) Spread

Longstaff et al. [2005] argue that because the market for CDS contract is much more liquid than

secondary market for corporate bonds, the CDS spread should mainly price the default risk of a

bond, while the total credit spread also includes liquidity premium to compensate for the illiquidity

in the bond market. This is exactly what our model is trying to capture. To assess the model’s

quantitative performance, we compute the model implied CDS spread, under the assumption that

the CDS market is indeed perfectly liquid. Let τ (in years) be the first time that the cash flow

δ hits default boundary δB. The required flow payment f corresponding to a T -year CDS is the

solution to the following equation

EQ
[ˆ min[τ,T ]

0
exp (−rf t) fdt

]
= EQ [exp (−rfτ)LGD (s)] (19)

where LGD (s) is the loss-given-default when the default occurs in state s. If there is no default,

no LGD is paid out by the CDS seller. The loss-given-default is defined as the bond face value

minus its recovery value, which is usually defined as the transaction price right after default (thus

is subject to liquidity frictions). We calculate the required flow payment f that solves (19) using

a simulation method. Then the CDS spread CDSspread = f/p is defined as the ratio between the

flow payment f and the bond’s face value p. Thus, the model implied CDS spread is not equal to

credit spread. Finally, we calculate model implied CDS spread for each firm-quarter observation in

Compustat based on its leverage (see Section 4.2).

The last row in each panel of Table 4 reports the model-implied CDS spreads, together with

data counterparts that are only available from 2003 onwards. Overall, the quantitative matching
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is not as good as total credit spread, but is reasonably close. For example, for Aaa/Aa bonds our

model implies a 10 year CDS spread of 43.94 bps (44.78 bps in data), and 151.37 bps (120.15 bps

in data) for Baa rated bonds. The steeper model implied term structure relative to data is also

reflected in CDS spreads; for instance, for Baa rated bonds the 5 year CDS spread is close to data

(90.66 bps in the modelvs 91.99 bps in the data), while overshoot on 10 year CDS spread (151.37

in the model vs 120.15 in the data).

4.3.2 Bid-Ask Spread

For measures of non-default component in corporate bond yields, we focus on the bond’s endoge-

nous bid-ask spread. In our model, the trade between L type holders and dealers gives rise to

what we observe as bid-ask spread in bond trades. Previous empirical studies has uncovered rich

patterns of bid-ask spreads, and we investigate whether our model is able to match these patterns

quantitatively.

We combine Edwards et al. [2007] and Bao et al. [2011] to construct the data counterparts

for bid-ask spread, because Edwards et al. [2007] only reports the average bid-ask spread across

ratings in normal time (2003-2005). The ratings considered in Edwards et al. [2007] are supeior

grade (Aaa/Aa) with an bid-ask spread of 40 bps, investment grade (A/Baa) with an bid-ask spread

of 50 bps, and junk grade (below Ba) with a bid-ask spread of 70 bps.11 For each grade, we then

compute the Roll’s measure of liquidity as in Bao et al. [2011] and used them to back out the ratio

of B state bid-ask spread to the G-state bid-ask spreads. We multiply this ratio by the level of

bid-ask spread estimated by Edwards et al. [2007] to arrive at bid-ask spread in B state. These

empirical estimates are reported in Table 5.

On the model side, again we rely on empirical leverage distribution in Compustat across ratings
11We take the median size trade around 240K. Edwards et al. [2007] show that trade size is an important determi-

nants for transaction costs of corporate bonds. But, for tractability reasons, we have abstracted away from the trade
size.
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Table 5: Calibration Results on Bid-Ask Spread (in bps). The normal time bid-ask spread
are taken from Edward et. al. (2007) for a median size trade. The recession time numbers are
normal time numbers multiple the ratio of bid-ask spread implied by Roll’s measure of illiquidity
and constrcuted following Bao, Pan and Wang (2010). The model counterpart are computed for a
bond with average time to maturity of 8.3 years, which is the mean time-to-maturity of frequently
traded bonds (where we can compute a Roll’s measure) in the TRACE sample.

State G State B
Data Model Data Model

Superior Grade 40.00 37.23 71.86 79.14
Investment Grade 50.00 47.99 108.33 109.74

Junk Grade 70.00 75.94 144.2 171.48

and aggregate states to calculate the average of model implied bid-ask spreads. We calibrate two

state-dependent holding cost parameters (χG and χB) to match bid-ask spread of investment grade

bonds across two aggregate states. Since the average maturity in TRACE data is around 8.3 years,

the model implied bid-ask spread is calculated as the weighted average between the bid-ask spread

of a 5-year bond and a 10-year bond. We then ask whether the model is able to generate aggregate

state-, rating class- and horizon-dependent patterns in bid-ask spread that quantitatively matches

the data.

The model implied bid-ask spreads are reported in Table 5. The model is able to generate

several patters that quantitatively matches their data counterpart. First, in normal time, the

average bid-ask spread is 37.23 bps for superior grade bonds, 47.99 bps for investment grade bonds

and 75.94 bps for junk grade bonds, which are close to those estimated by Edwards et al. [2007].

Second, these bid-ask spreads doubles when the economy switches from G state to B state. Finally,

although not reported here, the model implies bid-ask spread of longer-maturity bonds are higher

than shorter-maturity bonds and this is also consistent with previous empirical studies (eg. Edwards

et al. [2007]; Bao et al. [2011]).

Our model provides a coherent economic explanation for the patterns documented in the data.

As the bond is closer to default (compare junk bonds to superior grade bonds), the valuation gap
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between H and L type widens a consequence of the heterogeneity in their recovery value when the

bond does default. When an intermediary meets an L type holder, it extracts part of the trading

surplus. When the bond become riskier, the trade surplus goes up, giving rise to a larger bid-ask

spread. The same logic applies when the economy switches to the B state since bonds are riskier

in the B state. Lower intermediary intensity in the B state further reduces the outside option of L

holders, driving up bid-ask spreads further. This worsened liquidity in turn leads to earlier default

by equity holders – a liquity-default loop arises. Although the economy spends considerably longer

time in the good state than in the bad state, and the fact that therefore most transactions happen

in a good state with low bid ask spreads does not remove the risk of holding such bonds. An

investor is most likely to get stuck with the illiquid bond precisely in B state, with high risk prices,

low recovery value and longer waiting time before he/she can sell the holdings. Our quantitative

results show this state-dependant liquidity risk contributes significantly to the overall risk profile

of a defaultable bond and thus goes a long way in explaining its credit spread.

5. Model Based Decomposition

Our structual model of corporate bonds with search friction in secondary market features a full

interaction between default and liquidity in determining the credit spread of corporate bonds. It

has been a common practice to decompose the credit spread into liquidity and default components

in an additive way, such as in Longstaff et al. [2005]. From the perspective of our model, this de-

composition — though intuitively appealing — over-simplifies the role of liquidity in determining

the credit spread. More importantly, the additive structure often leads to the interpretation that

liquidity or default is the cause of the corresponding component, and each component will be the

resulting credit spread when we shut down the other channel. We emphasize that this interpre-

tation may give rise to misleading answers in certain policy related questions. For instance, as
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our decomposition indicates, part of the default risk comes from the illiquidity in the secondary

market. Thus, when the government is considering providing liquidity to the marke, it is not only

improving liquidity directly but will also lower the default risk by via lowering the liquidity-driven

default. In contrast, this additional beneft can be easily missed in the traditional additive view, as

it imposes the assumption that default risk will not be affected when the bond market liquidity is

improved.

5.1 Decomposition Scheme

We propose a more detailed model-based decomposition, which nests the additive default-liquidity

decomposition that is common in the literature. Specifically, we further decompose the default part

into pure-default part and liquidity-driven-default part, and similarly decompose the liquidity part

into pure-liquidity and default-driven-liquidity parts:

ŷ =
Default Component ŷDEF︷ ︸︸ ︷
ŷpureDEF + ŷLIQ→DEF +

Liquidity Component ŷLIQ︷ ︸︸ ︷
ŷpureLIQ + ŷDEF→LIQ

In this way, we separate cause and from effect, and emphasize that liquidity (default) can lead

to the rise of spread through default (liquidity), which is important in evaluating the economic

consequence of improving market liquidity or allieviating default issues (through direct bailouts).

We start with the default component of the bond. Longstaff et al. [2005] proposes using CDS

price to measure the default component, because CDS contract prices the default event but is not

(or much less) subject to secondary market liquidity problems. We stress that one can turn off

the liquidity channel (on the derivative CDS market) without affecting the equity holders’ default

policy of δ∗B (who refinance their debt in the primary corporate bond market). This motivates

us to consider a hypothetical identical bond with the same default boundary, but for which bond

28



investors are not subject to liquidity problems, both pre default and post default. The spread of

this hypothetical bond over treasury, denoted by ŷDEF , is the default component of our bond.

Our strucutal model suggests that this default component ŷDEF is generally greater than ŷLT ,

which is the bond spread without any liquidity/search frictions as in Leland and Toft [1996] in

which we allow the equity holders to reoptimize with respect to the dfeault boundary.12 We call

this the pure-default spread, because ŷLT is the spread contribution solely comes from the default

by equity holders who default at the reoptimized boundary δLTB . The difference ŷDEF − ŷLT arises

because the illiquidity of bond market leads equity holders to face heavier rollover losses, and they

hence default earlier at δ∗B > δLTB . We label this difference as the liquidity-driven default part,

which quantifies the effect that bond illiquidity makes default more likely.

Now we move on to the liquidity component. As liquidity and default are the only two factors

that affect bond prices in our model, we define the liquidity component as the difference between

credit spread and default compoent, i.e., ŷLIQ = ŷ− ŷDEF . In a similar vein, we further decompose

ŷ − ŷDEF into a pure liquidity part and a default-driven liquidity part. We first calculate ŷDGP ,

which is the spread of a bond that is only subject to search/liquidity friction as in Duffie et al.

[2005] but does not have any default risk. This spread captures the pure liquidity part and is given

by δ → ∞ to make it default free. The remaining residual after controlling for the pure liquidity

component, i.e., ŷLIQ− ŷDGP , is what we term the default-driven liquidity part of our credit spread.

Intuitively, this part of liquidity component is driven by bond default, because default leads to a
12Because of delayed bankruptcy payout, the recovery rates for LT96 model where investors are not subject to liquid-

ity problems are different from the ultimate recovery rates in Table XX. Under our calibration, given the bankruptcy
resolution time of 501 days, the recovery rates for an investor who is not subject to liquidity problem are αGLT = XX
and αBLT = XX. How to calculate LT96 recovery rates given delay? let [xG, xB ]T ≡ [RR − µµ−QQ]−1 1, then

rαGLT = θ
(
α̂G − αGLT

)
+ ζG

(
αBLT

xB
xG
− αGLT

)
rαBLT = θ

(
α̂B − αBLT

)
+ ζB

(
αGLT

xG
xB
− αGLT

)
so [

αGLT
αBLT

]
=
[
r + θ + ζG −ζG xB

xG

−ζB xG
xB

r + θ + ζB

]−1 [
θα̂G
θα̂B

]
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more illiquid post-default secondary market.

In sum, we calculate the spreads for following hypothetical bonds:

• ŷLT : the hypothetical bond spread with perfect liquidy secondary bond market as in Leland

and Toft [1996], i.e., λ =∞; the equity holders’ default policy adjusts endogenously.

• ŷDEF : the hypothetical bond spread with perfect liquid secondary bond market, i.e., λ =∞;

but the equity holders’ default policy remains at δ∗B in the economy with liquidity friction. 13

• yDGP : the hypothetical risk-less bond spread with illiquid secondary bond market as in

Duffie-Garlenu-Pederson, i.e., δ =∞.

We then decompose credit spread in the following four parts:

ŷ =
Default Component ŷDEF︷ ︸︸ ︷
ŷpureDEF + ŷLIQ→DEF +

Liquidity Component ŷLIQ︷ ︸︸ ︷
ŷpureLIQ + ŷDEF→LIQ

= ŷLT + (ŷDEF − ŷLT ) + ŷDGP + [(ŷ − ŷDEF )− ŷDGP ]

We call the four components “Pure Default”, “Liquidity-Driven Default”, “Pure Liquidity” and

“Default-Driven Liquidity” respectively.

5.2 Decomposition Results

We performed the above decomposition of three bonds whose total credit spreads resemble those

of a typical 10 year superior, investment and junk grade bonds. Table 6 to table 8 present our

results. The standard decomposition scheme, as in Longstaff et al. [2005] measures the ratio of

CDS spread to total credit spread. While our model implies a ratio that is quantitatively close
13Keep in mind that although the firm defaults at VB (so the selling price is pVB), the hypothetical bond is valued

by investors who are not subject to liquidity shocks and thus recover more than pVB .
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to those reported in Longstaff et al. [2005] for different rating classes, it is clear from our model

that part of CDS spread is to compensate investors holding for “non-default” risks of corporate

bonds, and part of the total credit spread - CDS gap is to compensate investors for endogenuos

liquidity risks driven by cash flow risks (“default component”). Specifically, the interaction between

liquidity and default risks, first captured by “liquidity driven default” is quantitatively large even for

bonds with high credit ratings. The “liquidity driven default” term captures how corporate optimal

default decisions are affected by secondary market liquidity frictions via the rollover channel. Since

this term is quantitatively important, the indirect effect of improved secondary market liquidity

on reducing the borrowing cost of corporations need to be taken into account when considering

improving liquidity of markets. Second, “Default driven liquidity” captures how secondary market

liquidity endogenuously worsens when a bond is closer to default. This is due to the reduced outside

option of L type holders when bargaining with a dealer. Not surprisingly, this term becomes larger

when the bond falls into lower rating class, but it remains an non-negligible term even for superior

grade bonds.

Our decomposition offers a fresh perspective for a question that has interested empirical re-

searchers for a long time, that is, how much of the soaring credit spread when the economy switches

from boom to recession is due to increased credit risk and how much is due to worsened secondary

market liquidity (see, eg. Dick-Nielsen et al. [2011]; Friewald et al. [2012]). As our model endoge-

nizes both liquidity and credit risks, it provides a model-based answer to this question. As evident

from column 3 of table 6 to table 8, increased credit risks constitutes a large fraction of the jump

in credit spreads. Moreover, when the bond becomes riskier, its liquidity worsens in the model,

giving rise to larger “default driven liquidity”, which consists of 9.36% (superior) to 16.51% (junk)

of the increased credit spread when the economy encounters a recession. These interaction terms

represent quantitatively relevant economic forces that are new to this literature.
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State G State B Change G→ B

Total Credit Spread 76.68 102.03 25.35
Pure Default 28.73 41.56 12.83
% of Total 37.46 40.73 50.62

Liquidity Driven Default 9.13 13.36 4.23
% of Total 11.91 13.10 16.70

Pure Liquidity 34.05 39.96 5.91
% of Total 44.40 39.16 23.32

Default Driven Liquidity 4.78 7.15 2.37
% of Total 6.23 7.01 9.36

Implied CDS Spread 46.14 67.20
% of Total Credit Spread 60.17 65.87

Table 6: Model Based Decomposition: 10 year Superior Grade Bonds

State G State B Change G→ B

Total Credit Spread 140.61 185.20 44.59
Pure Default 70.09 96.18 26.09
% of Total 49.85 51.93 58.51

Liquidity Driven Default 16.56 22.82 6.27
% of Total 11.77 12.32 14.05

Pure Liquidity 38.78 45.53 6.75
% of Total 27.58 24.58 15.14

Default Driven Liquidity 15.19 20.67 5.49
% of Total 10.80 11.16 12.30

Implied CDS Spread 108.52 148.97
% of Total Credit Spread 77.18 80.44

Table 7: Model Based Decomposition: 10 year Investment Grade Bonds

The decomposition is highly informative for evaluating the effect of policies that targets on

lowering the borrowing cost of corporations in recession times by injecting liquidity in the secondary

market. As argued before, a full analysis of the effectiveness of such policy must take into account

of how corporate’s default policy responds to liquidity conditions and how liquidity conditions

respond to the default risks.

6. Policy Experiments

(to be completed)
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State G State B Change G→ B

Total Credit Spread 273.16 353.95 80.78
Pure Default 156.38 208.83 52.45
% of Total 57.25 59.00 64.92

Liquidity Driven Default 34.69 41.11 6.41
% of Total 12.70 11.61 7.94

Pure Liquidity 49.07 57.66 8.59
% of Total 17.96 16.29 10.63

Default Driven Liquidity 33.02 46.35 13.33
% of Total 12.09 13.10 16.51

Implied CDS Spread 227.88 305.60
% of Total Credit Spread 83.42 86.34

Table 8: Model Based Decomposition: 10 year Junk Grade Bonds

7. Concluding Remarks

(to be completed)
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Figure 1: Model Implied Relationship Between Market Leverage, Default Rates and Total Credit
Spread
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A Appendix
where diag (·) is the diagonalization operator mapping a vector into a diagonal matrix.

We follow the Markov-modulated dynamics approach of Jobert and Rogers (2006).
We note that there are multiple possible bankruptcy boundaries, δB (s), for each aggregate state s one boundary.

Order states s such that s > s′ implies that δB (s) > δB (s′) and denote the intervals Is = [δB (s) , δB (s+ 1)] where
δB (n+ 1) = ∞, so that Is ∩ Is+1 = δB (s+ 1). Finally, let δB = [δB (1) , ..., δB (n)]> be the vector of bankruptcy
boundaries.

It is important to have a clean notational arrangement to handle the proliferation of states. Let D(s)
l denote

the value of debt for an creditor in individual liquidity state l and with aggregate state s. We will use the following
notation: D(s,i)

l ≡ D(s)
l , δ ∈ Ii, that is D(s,i)

l is the restriction of D(s)
l to the interval Ii. It is now clear that D(s,i)

l = 0
for any i < s, as it would imply that the company immediately defaults in interval Ii for state s. Let us, for future
reference, call debt in states i < s dead and in states i ≥ s alive. Finally, let us stack the alive functions along states s

but still restricted to interval i so that D(i) =
[
D

(1,i)
H , D

(1,i)
L , ..., D

(i,i)
H , D

(i,i)
L

]>
where D(s,i)

l has s denoting the state,
i denotes the interval and l denotes the individual liquidity state. The separation of s and i will clarify the pasting
arguments that apply when δ crosses from one interval to the next. Let

Ii︸︷︷︸
i×i

=

 1 · · · 0
...

. . .
...

0 · · · 1

 (20)

i.e. a 2x2 diagonal identity matrix, and let
1i︸︷︷︸
i×1

= [1, ..., 1]> (21)

be a column vector of just ones.

36



Figure 2: Empirical Distribution of Market Leverage for Compustat Firms by Aggregate State and
Rating classes.
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Figure 3: Distribution of Annualized Net Return (left) and Public Market-Ajusted Return (right)
of Defaulted Bonds
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Fundamental parameters. For a 2x2 case, we have a transition matrix Q that looks like

Q︸︷︷︸
2n×2n

=


−
∑

ls6=H1 ξH1→ls ξH1→L1 ξH1→H2 ξH1→L2

ξL1→H1 −
∑

ls 6=L1 ξL1→ls ξL1→H2 ξL1→L2

ξH2→H1 ξH2→L1 −
∑

ls 6=H2 ξH2→ls ξH2→L2

ξL2→H1 ξL2→L1 ξL2→H2 −
∑

ls6=L2 ξL2→ls

 (22)

Further, define the possibly state-dependent discount rates

R︸︷︷︸
2n×2n

=


diag

([
rH (1)
rL (1)

])
· · · 02

...
. . .

...

02 · · · diag
([

rH (n)
rL (n)

])
+mI2n (23)

where we are including the intensity of the random maturity in the definition of R for notational convenience and
brevity.

Building blocks for interval Ii. We now decompose the matrix Q. Let Q(i) be the transition matrix of
jumping into an alive state s′ ≤ i when currently in interval i and in an alive state s ≤ i. Let Q̃(i) be the transition
matrix of jumping into a default state s′ > i when currently in interval i and in an alive state s ≤ i.

Let v(i) be the recovery or salvage value of the firm when default is declared in states s > i when currently in
interval i, where v(s,i)

l exp (δ) = α(s,l)
exp(δ)
rH

. Thus, v(i) is a vector containing recovery values for states (i+ 1, ..., n)×
(H,L) (i.e., it is of dimension 2 (n− i)× 1).

Let χ(i) be a vector of holding costs in states (1, ..., i)× (H,L) (i.e, it is of dimension 2i× 1). The holding costs
are all positive, and are deducted from the coupon payment. Higher holding costs indicate more severe liquidity
states L for the agent.

First, let us start with the interval i = n. On this interval, all debt D(s,n)
l is alive. Let

µ(n)︸︷︷︸
2n×2n

=

 µ (1) I2 · · · 0
...

. . .
...

0 · · · µ (n) I2

 (24)

and similarly let

Σ(n)︸︷︷︸
2n×2n

=

 σ2 (1) I2 · · · 0
...

. . .
...

0 · · · σ2 (n) I2

 (25)

and let

Q(n) = Q (26)
R(n) = R (27)
Q̃(n) = 0 (28)

Next, for the interval i = n − 1 we drop the last two rows and columns (i.e. rows and columns 2n and 2n − 1)
(because they account for different liquidity states) of µ(n),Σ(n),Q(n),R(n) to form µ(n−1),Σ(n−1),Q(n−1),R(n−1)

which are all 2 (n− 1)× 2 (n− 1) matrices. In contrast, we form Q̃(n−1) by dropping the last two rows and the first
2 (n− 1) columns of Q(n) to form a 2 (n− 1)× 2 matrix.

We repeat this procedure, dropping rows and columns and thus shrinking the matrices, step by step all the all
the way down to i = 1.

Debt valuation within an interval Ii. Debt valuation follows the following differential equation on
interval Ii: (

R(i) −Q(i))D(i) =
(
c12i − χ(i))+ µ(i) (D(i))′ + 1

2Σ(i) (D(i))′′ + Q̃(i)v(i) exp (δ) +m · p12i (29)
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where Q̃(i)v(i) exp (δ) represents the intensity of jumping into default times the recovery in the default state and
m · p12i represents the intensity of randomly maturing times the payoff in the maturity state. Next, let us conjecture
a solution of the kind g exp (γδ)+k(i)

0 +k(i)
1 exp (δ) where g is a vector and γ is a scalar. The particular part stemming

from c(i) is solved by a term k(i)
0 with

k(i)
0︸︷︷︸

2i×1

=
(
R(i) −Q(i))−1︸ ︷︷ ︸

2i×2i

(c+m · p) 12i − χ(i)︸ ︷︷ ︸
2i×1

(30)

and the particular part stemming from Q̃(i)v(i) is solved by a term k(i)
1 exp (δ) with

k(i)
1︸︷︷︸

2i×1

=
(

R(i) −Q(i) − µ(i) − 1
2Σ(i)

)−1

︸ ︷︷ ︸
2i×2i

Q̃(i)︸︷︷︸
2i×2(n−i)

v(i)︸︷︷︸
2(n−i)×1

(31)

It should be clear that k(n)
1 = 0 as on In there is no jump in the aggregate state that would result in immediate

default. Plugging in, dropping the c(i) and Q̃(i)v(i) exp (δ) terms, canceling out exp (γδ) > 0, we have

02i =
(
Q(i) −R(i))g + µ(i)γg + 1

2Σ(i)γ2g (32)

Following JR06, we premultiply by 2
(
Σ(i))−1 and define h = γg to get

γg = h (33)

γh = −2
(
Σ(i))−1

µ(i)h + 2
(
Σ(i))−1 (

R(i) −Q(i))g (34)

Stacking the vectors j =
[

g
h

]
we have

γj =
[

02i I2i

2
(
Σ(i))−1 (R(i) −Q(i)) −2

(
Σ(i))−1

µ(i)

]
j = A(i)︸︷︷︸

4i×4i

j (35)

where I is of appropriate dimensions. The problem is now a simple eigenvalue-eigenvector problem and each solution

j is a pair

 γ
(i)
j︸︷︷︸

1×1

, j(i)
j︸︷︷︸

4i×1

 (or rather

 γ
(i)
j︸︷︷︸

1×1

, g(i)
j︸︷︷︸

2i×1

, as the vector j(i)
j contains the same information as g(i)

j when we

know γ
(i)
j , so we discard the lower half of j(i)

j ).14 The number of solutions j to this eigenvector-eigenvalue problem is

14Note that if a program like MATLAB or Mathematica is used to calculate eigenvectors, it usually norms the
eigenvectors j so that they have unit length, i.e.

∣∣∣∣∣∣j(i)
j

∣∣∣∣∣∣ = 1 where ||·|| denotes the Euclidian norm. The norm of g(i)
j

is
∣∣∣∣∣∣g(i)

j

∣∣∣∣∣∣ =

(√
1 +

(
γ

(i)
j

)2
)−1 ∣∣∣∣∣∣j(i)

j

∣∣∣∣∣∣. This can be easily derived: First, note that γh = g. Second, writing out

the Euclidian norm, we have

||j|| =
√
j2

1 + ...+ j2
2i︸ ︷︷ ︸

g

+ j2
2i+1 + ...+ j2

4i︸ ︷︷ ︸
h=γg

=
√
j2

1 + ...+ j2
2i + γ2j2

1 + ...+ γ2j2
2i

=
√

(1 + γ2) (j2
1 + ...+ j2

2i)

=
√

(1 + γ2) ||g||

so that we would have to re-norm g by a factor
√

1 +
(
γ

(i)
j

)2
to recover a unit length vector if

∣∣∣∣∣∣j(i)
j

∣∣∣∣∣∣ = 1. Thus,

we can easily re-norm G(i) by the matrix operation G(i)
√

I4i +
(
Γ(i)
)2 where special care should be taken to select

the matrix power function when programming.
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4i. Let
G(i) ≡

[
g(i)

1 , ...,g(i)
2×2×i

]
(36)

be the matrix of eigenvectors, and let

γ(i) ≡
[
γ

(i)
1 , ..., γ

(i)
2×2×i

]′
(37)

Γ(i) ≡ diag
[
γ(i)] (38)

be the corresponding vector and diagonal matrix, respectively, of eigenvalues.
The general solution on interval i is thus

D(i)︸︷︷︸
2i×1

= G(i)︸︷︷︸
2i×4i

· exp
(
Γ(i)δ

)︸ ︷︷ ︸
4i×4i

· c(i)︸︷︷︸
4i×1

+ k(i)
0︸︷︷︸

2i×1

+ k(i)
1︸︷︷︸

2i×1

exp (δ) (39)

where the constants c(i) =
[
c

(i)
1 , ..., c

(i)
4i

]>
will have to be determined via conditions at the boundaries of interval Ii

(NOTE: c(i)
j 6= c where c is the coupon payment).

Boundary conditions. The different value functions D(i) for i ∈ {1, ..., n} are linked at the boundaries of
their domains Ii. Note that Ii ∩ Ii+1 = {δB (i+ 1)} for i < n.

For i = n, we can immediately rule out all positive solutions to γ as debt has to be finite and bounded as δ →∞,
so that the entries of C(n) corresponding to positive eigenvalues will be zero:15

lim
δ→∞

∣∣D(n) (δ)
∣∣ <∞ (40)

For i < n, we must have value matching of the value functions that are alive across the boundary, and we must
have value matching of the value functions that die across the boundary:

D(i+1) (δB (i+ 1)) =

 D(i) (δB (i+ 1))[
vi+1
H

vi+1
L

]
exp (δB (i+ 1))

 (41)

For i < n, we must have mechanical (i.e. non-optimal) smooth pasting of the value functions that are alive across
the boundary: (

D(i+1))′ (δB (i+ 1))[1...2i] =
(
D(i))′ (δB (i+ 1)) (42)

where x[1...2i] selects the first 2i rows of vector x.
Lastly, for i = 1, we must have

D(1) (δB (1)) =
[
v1
H

v1
L

]
exp (δB (1)) (43)

Full solution. We can now state the full solution to the debt valuation given cut-off strategies:
Proposition 2 The debt value functions D for a given default vector δB are

D (δ) =



D(n) (δ)︸ ︷︷ ︸
2n×1

= G(n) · exp
(
Γ(n)δ

)
· c(n) + k(n)

0 δ ∈ In

...
...

D(i) (δ)︸ ︷︷ ︸
2i×1

= G(i) · exp
(
Γ(i)δ

)
· c(i) + k(i)

0 + k(i)
1 exp (δ) δ ∈ Ii

...
...

D(1) (δ)︸ ︷︷ ︸
2×1

= G(1) · exp
(
Γ(1)δ

)
· c(1) + k(1)

0 + k(1)
1 exp (δ) δ ∈ I1

15 According to JR06, there are exactly 2×|S| = 2n eigenvalues of A in the left open half plane (i.e. negative) and
2n eigenvalues in the right open half plane (i.e. positive) (actually, they only argue that this holds if µ = R − 1

2 Σ,
but maybe not for general µ).
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with the following boundary conditions to pin down vectors c(i):

lim
δ→∞

∣∣∣∣∣∣D(n) (δ)︸ ︷︷ ︸
2n×1

∣∣∣∣∣∣ < ∞ (44)

D(i+1) (δB (i+ 1))︸ ︷︷ ︸
2(i+1)×1

=

 D(i) (δB (i+ 1))[
vi+1
H

vi+1
L

]
exp (δB (i+ 1))


︸ ︷︷ ︸

2(i+1)×1

(45)

(
D(i+1))′ (δB (i+ 1))[1...2i]︸ ︷︷ ︸

2i×1

=
(
D(i))′ (δB (i+ 1))︸ ︷︷ ︸

2i×1

(46)

D(1) (δB (1))︸ ︷︷ ︸
2×1

=
[
v1
H

v1
L

]
exp (δB (1))︸ ︷︷ ︸
2×1

(47)

where x[1..2i] selects the first 2i rows of vector x.
.
Note that the derivative of the debt value vector is(

D(i))′ (δ)︸ ︷︷ ︸
2i×1

= G(i)Γ(i) · exp
(
Γ(i)δ

)
· c(i) + k(i)

1 exp (δ) (48)

where we note that Γ(i) ·exp
(
Γ(i)δ

)
= exp

(
Γ(i)δ

)
·Γ(i) as both are diagonal matrices (although this interchangeability

only is important when s = 1 as it then helps collapse some equations).
The first boundary condition (44) essentially implies that we can discard any positive entries of γ(n) by setting

the appropriate coefficients of C(n) to 0. The second boundary condition (45) implies that we have value matching at
any boundary δB (i+ 1) for i < n, be it to a continuation state or a bankruptcy state . The third boundary condition
(46) implies that we also have smooth pasting at the boundary δB (i+ 1) for those states in which the firm stays alive
on both sides of the boundary. Finally, the fourth boundary condition (47) implies value matching at the boundary
δB (1), but of course only for those states in which the firm is still alive.

Thus, let us summarize the solution steps:
1. Order states so that the most restrictive/illiquid states are with the highest indices, such that δB (i) < δB (j)

implies i < j (i.e. they appear in the lowest rows/columns in the following matrices).
2. Define the suitable matrices R,Q for the transitions, and of course µ,Σ for drift and variance. These apply

on the highest interval In.
3. Set up the eigenvalue-eigenvector problem and solve for (the matrix of) eigenvectors G(n) and (the vector of)

eigenvalues γ(n). Solve for the constant k(n)
0 on this interval.

4. For intervals In−i we drop for each increment i the last pair of rows and columns of the appropriate matrices,
with the following exception. We define Q(n−i) as the matrix that arises out of Q when we drop the last
i pair of rows and columns, i.e. rows 1-2 and columns 1-2 survive in the 4x4 case. We similarly define
R(n−i),µ(n−i),Σ(n−i). We define Q̃(n−i) as the matrix that arises out of Q when we drop the last i pair of
rows and the first n− i pairs of columns, i.e. rows 1-2 and columns 3-4 survive in the 4x4 case.

5. Set up the eigenvalue-eigenvector problem for interval In−i and solve for (the matrix of) eigenvectors G(n−1)

and (the vector of) eigenvalues γ(n−1). Solve for the constant k(n−1)
0 on this interval and also for the particular

part k(n−1)
1 exp (δ).

6. Build the system of boundary conditions via the matrix definitions of the debt to solve for the linear coefficients
c(i). To impose boundary condition (44), it is probably easiest to just use those entries of γ(n) that are negative.
Thus, the appropriate C(n) for In is only a 2n× 1 vector, and not a 4n× 1 vector.

1.1 Deterministic maturity PDE
Debt valuation follows the following differential equation on interval Ii:

(R −Q) D = (c12i − χ) + µ (D)′ + 1
2Σ (D)′′ − Ḋ (49)
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where Ḋ is derivative wrt time-to-maturity and R is different

R︸︷︷︸
2n×2n

=


diag

([
rH (1)
rL (1)

])
· · · 02

...
. . .

...

02 · · · diag
([

rH (n)
rL (n)

])
 (50)

The above differential equation holds only for δ > δBB , any τ ∈ [0, T ], i.e. alive even in bad time. In states
δ ∈

[
δGB , δ

B
B

]
, the PDE should be written in a way that in good time, the states is still moving so an equation like

(37) applies but with
(R −Q) D = (c12i − χ) + µ (D)′ + 1

2Σ (D)′′ − Ḋ + Q̃v exp (δ)

; but in bad states the state does not move, and DB
i inD should be a constant function.

There are four debt values in (37). It remains to specify boundary conditions. When δ is sufficitently high, all
four debt contracts are riskfree. When τ = 0, D (δ, τ = 0) = Dτ=0 (δ), so that DG

i,τ=0 = p forδ ∈
[
δGB ,∞

]
, while in

state B,
DB
i,τ=0 = p forδ ∈

[
δGB ,∞

]
, and DB

i,τ=0 = v exp (δ) forδ ∈
[
δGB , δ

B
B

]
Finally, the boundary condition at δGB , we have

Dδ=δG
B

= Q̃v exp (δ)

note that since we force our DB
i inD to be constant over the state space of δ ∈

[
δGB , δ

B
B

]
and τ ∈ [0, T ], the boundary

at δGB is sufficient.

B Equity
The equity holders are unaffected by the individual liquidity shocks the debt holders are exposed to. The only shocks
the equity holders are directly exposed to are the shifts in µ (s) and σ (s), i.e. shifts to the cash-flow process.

However, as debt has maturity and is rolled over, equity holders are indirectly affected by liquidity shocks in the
market through the effect it has on debt prices. Thus, when debt matures, it is either rolled over if the debt holders
are of type H, or it is reissued to different debt holders in the case that the former debt holder is of type L. Either
way, there is a cash flow (inflow or outflow) of m

[
S(i) ·D(i) (δ)− p1i

]
at each instant as a mass m ·dt of debt holders

matures on [t, t+ dt].
For notational ease, we will denote by double letters (e.g. xx) a constant for equity that takes a similar place as

a single letter (i.e. x) constant for debt. Then, the HJB for equity on interval Ii is given by(
RR(i) −QQ(i))E(i) (δ) = µµ(i) (E(i))′ (δ) + 1

2ΣΣ(i) (E(i))′′ (δ)
+1i exp (δ)︸ ︷︷ ︸
Cashflow

− (1− π) c1i︸ ︷︷ ︸
Coupon

+m
[
S(i) ·D(i) (δ)− p1i

]︸ ︷︷ ︸
Rollover

(51)

where

RR(i) = diag ([rH (1) , ..., rH (i)]) (52)
µµ(i) = diag ([µ (1) , ..., µ (i)]) (53)
ΣΣ(i) = diag

([
σ2 (1) , ..., σ2 (i)

])
(54)

are i × i square matrices, QQ(i) is the transition matrix only between aggregate states that is also an i × i square
matrix, and S(i) is a i × 2i matrix that selects which debt values the firm is able to issue (each row has to sum
to 1), and m is a scalar (NOTE: In contrast to R, the matrix RR does not contain the maturity intensity m).

For example, for i = 2, if the company is able to place debt only to H types, then S(2) =
[

1 0 0 0
0 0 1 0

]
. It is

important that for reach row i only entries 2i−1 and 2i are possibly nonzero, whereas all other entries are identically
zero (otherwise, one would issue bonds belonging to a different state).

Writing out D(i) (δ) = G(i) exp
(
Γ(i)δ

)
c(i) and conjecturing a solution to the particular, non-constant part
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Debt Parameters Equity Parameters

Symbol Interpretation Dimension Symbol Interpretation Dimension

D(i) (δ) Debt Value Function 2i× 1 E(i) (δ) Equity Value Function i× 1
µ(i) (Log)-Drifts 2i× 2i µµ(i) (Log-)Drifts i× i
Σ(i) Volatilities 2i× 2i ΣΣ(i) Volatilities i× i
R(i) Discount rates and maturity 2i× 2i RR(i) Discount rates i× i
χ(i) Holding costs 2i× 1 c Coupon 1× 1
Q(i) Transition to cont. states 2i× 2i QQ(i) Transition to cont. states i× i
Q̃(i) Transition to default states 2i× 2 (n− i) AA(i) Matrix to be decomposed 2i× 2i
v(i) Vector of recovery values 2 (n− i)× 1 ΓΓ(i) Diag matrix of eigenvalues 2i× 2i
A(i) Matrix to be decomposed 4i× 4i GG(i) Matrix of eigenvectors i× 2i
Γ(i) Diag matrix of eigenvalues 4i× 4i kk(i)

0 ,kk(i)
1 Coeff. of particular sol. i× 1

G(i) Matrix of eigenvectors 2i× 4i S(i) Issuance matrix i× 2i
k(i)

0 ,k(i)
1 Coeff. of particular sol. 2i× 1 KK(i) Coeff. of particular sol. i× 4i

c(i) Vector of constants 4i× 1 cc(i) Vector of constants 2i× 1

Table 9: Matrix & Vector Dimensions.

KK(i)︸ ︷︷ ︸
i×4i

exp
(
Γ(i)δ

)︸ ︷︷ ︸
4i×4i

c(i)︸︷︷︸
4i×1

, we have

(
RR(i) −QQ(i))KK(i) exp

(
Γ(i)δ

)
c(i)

=
[
µµ(i) ·KK(i) · Γ(i) + 1

2ΣΣ(i)KK(i) ·
(
Γ(i))2

+m · S(i) ·G(i)
]

exp
(
Γ(i)δ

)
c(i) (55)

We can solve this by considering each γ
(i)
j separately — recall that c(i) is a vector and exp

(
Γ(i)δ

)
is a diagonal

matrix and in total there are 4i different roots. Consider the part of the particular part S(i) ·g(i)
j exp

(
γ

(i)
j δ
)
· c(i)
j and

our conjecture gives KK(i)
j︸ ︷︷ ︸

i×1

exp
(
γ

(i)
j δ
)

︸ ︷︷ ︸
1×1

· c(i)
j︸︷︷︸

1×1

for each root j ∈ [1, ..., 4i]. Plugging in and multiplying out the scalar

exp
(
γ

(i)
j δ
)
c

(i)
j , we find that

(
RR(i) −QQ(i))KK(i)

j = µµ(i) ·KK(i)
j · γ

(i)
j + 1

2ΣΣ(i)KK(i)
j ·
(
γ

(i)
j

)2
+m · S(i) · g(i)

j (56)

Solving for KK(i)
j , we have

KK(i)
j︸ ︷︷ ︸

i×1

=
[
RR(i) −QQ(i) − µµ(i) · γ(i)

j −
1
2ΣΣ(i) ·

(
γ

(i)
j

)2
]−1

︸ ︷︷ ︸
i×i

m · S(i)︸︷︷︸
i×2i

g(i)
j︸︷︷︸

2i×1

(57)

Finally, for the homogenous part we use the same approach as above, but now we have less states as the individual
liquidity state drops out. Thus, we conjecture gg exp (γγδ) to get

0i =
(
QQ(i) −RR(i))gg + µµ(i)γγgg + 1

2ΣΣ(i)γγgg (58)

so that, again, we have the following eigenvector eigenvalue problem

γγjj =
[

0i Ii
2
(
ΣΣ(i))−1 (RR(i) −QQ(i)) −2

(
ΣΣ(i))−1

µµ(i)

]
jj = AA(i)︸ ︷︷ ︸

2i×2i

jj (59)

which gives
(
γγ

(i)
j ,gg(i)

j

)
for j ∈ [1, ..., 2i] solutions. We stack these into a matrix of eigenvectors GG(i) and a vector

of eigenvalues γγ(i), from which we define the diagonal matrix of eigenvalues ΓΓ(i) ≡ diag
(
γγ(i)). What remains is
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to solve for kk(i)
0 and kk(i)

1 . We have

kk(i)
0 =

[
RR(i) −QQ(i)]−1

[
− (1− π) c1i +m

(
S(i)k(i)

0 − p1i
)]

(60)

and
kk(i)

1 =
[
RR(i) −QQ(i) − µµ(i) − 1

2ΣΣ(i)
]−1 (

1i +m · S(i)k(i)
1

)
(61)

with k(n)
1 = 0.

We are left with the following proposition.

Proposition 3 The equity value functions E for a given default vector δB are

E (δ) =



E(n) (δ)︸ ︷︷ ︸
n×1

= GG(n) · exp
(
ΓΓ(n)δ

)
· cc(n) + KK(n) exp

(
Γ(n)δ

)
c(n) + kk(n)

0 + kk(n)
1 exp (δ) δ ∈ In

...
...

E(i) (δ)︸ ︷︷ ︸
i×1

= GG(i) · exp
(
ΓΓ(i)δ

)
· cc(i) + KK(i) exp

(
Γ(i)δ

)
c(i) + kk(i)

0 + kk(i)
1 exp (δ) δ ∈ Ii

...
...

E(1) (δ)︸ ︷︷ ︸
1×1

= GG(1) · exp
(
ΓΓ(1)δ

)
· cc(1) + KK(1) exp

(
Γ(1)δ

)
c(1) + kk(1)

0 + kk(1)
1 exp (δ) δ ∈ I1

with the following boundary conditions to pin down the vector cc(i):

lim
δ→∞

∣∣∣∣∣∣E(n) (δ) exp (−δ)︸ ︷︷ ︸
n×1

∣∣∣∣∣∣ < ∞ (62)

E(i+1) (δB (i+ 1))︸ ︷︷ ︸
(i+1)×1

=
[

E(i) (δB (i+ 1))
0

]
︸ ︷︷ ︸

(i+1)×1

(63)

(
E(i+1))′ (δB (i+ 1))[1...i]︸ ︷︷ ︸

i×1

=
(
E(i))′ (δB (i+ 1))︸ ︷︷ ︸

i×1

(64)

E(i) (δB (1))︸ ︷︷ ︸
i×1

= 0 (65)

where x[1...i] selects the first i rows of vector x.

Note first the dimensionalities: ΓΓ(i)︸ ︷︷ ︸
2i×2i

,GG(i)︸ ︷︷ ︸
i×2i

and Γ(i)︸︷︷︸
4i×4i

,G(i)︸︷︷︸
2i×4i

. Note second the derivative of the equity value vector

is (
E(i))′ (δ)︸ ︷︷ ︸

i×1

= GG(i)ΓΓ(i) · exp
(
ΓΓ(i)δ

)
· cc(i) + KK(i)Γ(i) exp

(
Γ(i)δ

)
c(i) + kk(i)

1 exp (δ) (66)

where we note that Γ(i) · exp
(
Γ(i)δ

)
= exp

(
Γ(i)δ

)
· Γ(i) and ΓΓ(i) · exp

(
ΓΓ(i)δ

)
= exp

(
ΓΓ(i)δ

)
· ΓΓ(i) as both

are diagonal matrices (although this interchangeability only is important when s = 1 as it then helps collapse some
equations).

The optimality conditions for bankruptcy boundaries {δB (i)}i are given by(
E(i))′ (δB (i))[i] = 0 (67)

i.e., a smooth pasting condition at the boundaries at which default is declared.

2.1 The explicit matrices for the 4x2 case
• 2 individual states (H and L, i.e. normal and liquidity shocked)

44



• 4 aggregate states (1, 2, 3, 4) so that n = 4

Let us make the following assumptions:
• The bargaining power of the creditors is constant at β
• The firm is able to place new debt exclusively with H types
• The aggregate state switching intensities for switching from state s to state s′ are ζss′ = ζs→s′ . Let us write out

the transition matrix for the aggregate state only, where rows and columns are ordered according to [1, 2, 3, 4]:

QQ =

 ζ11 ζ12 ζ13 ζ14
ζ21 ζ22 ζ23 ζ24
ζ31 ζ32 ζ33 ζ34
ζ41 ζ42 ζ43 ζ44


where ζss = −

∑
s′ 6=s ζss′ is the ’intensity’ of staying in state s and we assume that ζss′ ≥ 0 for s 6= s′.

• The transition matrices for equity holders in Ii are

QQ(4) = QQ

QQ(3) =

[
ζ11 ζ12 ζ13
ζ21 ζ22 ζ23
ζ31 ζ32 ζ33

]

QQ(2) =
[
ζ11 ζ12
ζ21 ζ22

]
QQ(1) = [ζ11]

• There is a (possibly state dependent) individual liquidity shock intensity ξ (s) = ξHs→Ls. We will assume this
constant s.t. ξ = ξ (s) , ∀s

• There is a (possibly state dependent) intermediation intensity λ (s)
• Aggregate and liquidity shocks are independent
• Let us now write out the creditor transition matrix, where states are ordered according to the ordering

[H1, L1, H2, L2, H3, L3, H4, L4]:

Q =



−
∑

. . . ξ (1) ζ12 0 ζ13 0 ζ14 0
λ (1)β −

∑
. . . 0 ζ12 0 ζ13 0 ζ14

ζ21 0 −
∑

. . . ξ (2) ζ23 0 ζ24 0
0 ζ21 λ (2)β −

∑
. . . 0 ζ23 0 ζ24

ζ31 0 ζ32 0 −
∑

. . . ξ (3) ζ34 0
0 ζ31 0 ζ32 λ (3)β −

∑
. . . 0 ζ34

ζ41 0 ζ42 0 ζ43 0 −
∑

. . . ξ (4)
0 ζ41 0 ζ42 0 ζ43 λ (4)β −

∑
. . .


where −

∑
. . . is the term that makes each row of Q sum to zero.

• For interval I4, we have

Q(4) = Q
Q̃(4) = 0
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• For interval I3, we have

Q(3) =


−
∑

. . . ξ (1) ζ12 0 ζ13 0
λ (1)β −

∑
. . . 0 ζ12 0 ζ13

ζ21 0 −
∑

. . . ξ (2) ζ23 0
0 ζ21 λ (2)β −

∑
. . . 0 ζ23

ζ31 0 ζ32 0 −
∑

. . . ξ (3)
0 ζ31 0 ζ32 λ (3)β −

∑
. . .



Q̃(3) =


ζ14 0
0 ζ14
ζ24 0
0 ζ24
ζ34 0
0 ζ34


• For interval I2, we have

Q(2) =

 −
∑

. . . ξ (1) ζ12 0
λ (1)β −

∑
. . . 0 ζ12

ζ21 0 −
∑

. . . ξ (2)
0 ζ21 λ (2)β −

∑
. . .



Q̃(2) =

 ζ13 0 ζ14 0
0 ζ13 0 ζ14
ζ23 0 ζ24 0
0 ζ23 0 ζ24


• For interval I1, we have

Q(1) =
[
−
∑

. . . ξ (1)
λ (1)β −

∑
. . .

]
Q̃(1) =

[
ζ12 0 ζ13 0 ζ14 0
0 ζ12 0 ζ13 0 ζ14

]
• The placement matrix when the firm places new debt to H types only is given by

S(4) =

 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0


S(3) =

[ 1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

]

S(2) =
[

1 0 0 0
0 0 1 0

]
S(1) = [1, 0]

• The discount rate matrix for creditors is R(4) = R with

R =



rH (1) +m 0 0 0 0 0 0 0
0 rL (1) +m 0 0 0 0 0 0
0 0 rH (2) +m 0 0 0 0 0
0 0 0 rL (2) +m 0 0 0 0
0 0 0 0 rH (3) +m 0 0 0
0 0 0 0 0 rL (3) +m 0 0
0 0 0 0 0 0 rH (4) +m 0
0 0 0 0 0 0 0 rL (4) +m


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• The discount rate matrix for equity holders is

RR(4) = RR =

 rH (1) +m 0 0 0
0 rH (2) +m 0 0
0 0 rH (3) +m 0
0 0 0 rH (4) +m


2.2 Programming notes
Programming should take advantage of build in matrix functionality – all functions should be defined as matri-
ces/vectors where possible. The eigenvalue-eigenvector decomposition is a standard operation in both Mathematica
and MATLAB. There are a few issues that warrant further comments: (1) Difficulties arise from the matrix KK
which has to be defined row-by-row, and thus it cannot be as efficiently implemented. (2) It is important to use a
matrix exponential function instead of a simple exponential functions. (3) The boundary conditions (44) and (62) can
best be implemented by only defining a vector/matrix γ(n)/Γ(n) that contains negative entries and a vector/matrix
γγ(n)/ΓΓ(n) that only contains entries equal to or less than 1. A simple sort functions should do the job. (4) The
eigenvectors that come out of the eigenvector/eigenvalue decompositions (59) and (59) should be cut in half in that
the lower half of rows should be discarded.

Next, both debt and equity should be solved for an arbitrary vector δB , so that c(i) and cc(i) are functions of
the vector δB . The solutions to c(i) and cc(i) will come out of a linear system of equations that can be rapidly solved
(but of course, they both are highly nonlinear functions of δB). Then, we can numerically optimize equity. We can do
this in two ways: (1) we simply impose the smooth pasting condition (16) or (2) we pick a value δ ∈ Ii and optimize
equity in any one (alive) state s ≤ i over the vector δB , i.e. maxδB E

(i)
s (δ; δB) of course with an ordering restriction

on δB so that δB (1) ≤ δB (2) ≤ ... ≤ δB (n). Approach (2) can be significantly faster as MATLAB and Mathematica
have pretty good optimization routines, and approach (1) can lead to a highly nonlinear system of equations that
might be inaccurate to solve.
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