Estimation in Threshold Autoregressive Models with Nonstationarity

Dr. Jiying Yin
School of Economics
The University of Adelaide

joint work with Prof. Jiti Gao and Prof. Dag Tjøstheim

September 27, 2009
Outline

1 Existing TAR Models 3
2 New TAR Model 9
3 Estimation in The TAR Model 14
4 Examples of Implementation 15
5 Conclusions and Discussion 26
6 Appendix 29
1. Existing TAR Models

- Threshold auto–regressive (TAR) models have been quite popular in the literature, since its invention mainly by Howell Tong (1983).

- The TAR model has been generalized to the Smooth Transition Auto–regressive (STAR) model mainly by Clive Granger & Timo Teräsvirta (1993).
Consider a threshold auto-regressive (TAR) model of the form

\[y_t = \alpha_1 y_{t-1} I[z_t \in C_\tau] + \alpha_2 y_{t-1} I[z_t \in C^c_\tau] + e_t, \quad (1.1) \]

where

- \(C_\tau \) is a subset of \(\mathbb{R}^1 = (-\infty, \infty) \) indexed by \(\tau \),
- \(\{z_t\} \) is a stationary threshold variable,
- \(-\infty < \alpha_1, \alpha_2 < \infty \) are unknown parameters,
- \(\{e_t\} \) is an error with \(E[e_1] = 0 \) and \(0 < \sigma^2_e = E[e^2_1] < \infty \),
- \(\{e_t\} \) and \(\{y_s\} \) are mutually independent for all \(s < t \), and
- \(1 \leq t \leq n \), \(n \) is the sample size of the time series.
1. Many of the threshold models used have been stationary models, i.e., models for which $|\alpha_1| < 1$ and $|\alpha_2| < 1$.
2. Econometrics literature proposes testing whether

\[H_0 : \alpha_1 = \alpha_2 = 1 \]

in a model of the form

\[
y_t - y_{t-1} = (\alpha_1 - 1) y_{t-1} I[z_t \in C_\tau] \\
+ (\alpha_2 - 1) y_{t-1} I[z_t \in C_\tau^c] + e_t,
\]

(1.2)

where

- the parameters \(\alpha_1 \) and \(\alpha_2 \) are then estimated under

\[H_0 : y_t = y_{t-1} + e_t. \]
• A closely related paper is by Caner & Hansen (2001); and

• The authors also point out that there are several nonstationary alternatives when H_0 does not hold.
The main aim of this paper is then to estimate the unknown parameters involved in a nonstationary alternative.

This research aim falls into the recent research agenda of this research group on

Estimating Unknown Parameters and Functions After a Hypothesis or Specification Testing
2. New TAR Model

The rest of this paper is interested in a new TAR model of the form:

\[y_t = \alpha_1 y_{t-1} I[y_{t-1} \in C_\tau] + \alpha_2 y_{t-1} I[y_{t-1} \in C^c_\tau] + e_t \]

\[= \begin{cases}
\alpha_1 y_{t-1} + e_t & \text{if } y_{t-1} \in C_\tau, \\
\alpha_2 y_{t-1} + e_t & \text{if } y_{t-1} \in C^c_\tau,
\end{cases} \quad (2.1) \]

where

- \(C_\tau \) is a subset of \(R^1 = (-\infty, \infty) \),
- \(|\alpha_1| < 1 \) or \(|\alpha_1| > 1 \), \(\alpha_2 \equiv 1 \), and
- \(\{e_t\} \) is an independent error with \(E[e_1] = 0 \), \(0 < \sigma_e^2 = E[e_1^2] < \infty \) and \(E[e_1^4] < \infty \).
It is obvious that α_1 and α_2 can be estimated by the ordinary least squares estimators

\[
\hat{\alpha}_1 = \hat{\alpha}_1(\tau) = \frac{\sum_{t=1}^{n} y_t y_{t-1} I[y_{t-1} \in C_\tau]}{\sum_{t=1}^{n} y_{t-1}^2 I[y_{t-1} \in C_\tau]}
\]

(2.2)

\[
\hat{\alpha}_2 = \hat{\alpha}_2(\tau) = \frac{\sum_{t=1}^{n} y_t y_{t-1} I[y_{t-1} \in C_c]}{\sum_{t=1}^{n} y_{t-1}^2 I[y_{t-1} \in C_c]}
\]

(2.3)
Observe that model (2.1) can be written as

\[y_t - y_{t-1} = (\alpha_1 - 1)y_{t-1}I[y_{t-1} \in C_\tau] + e_t \]
\[\equiv u_t + e_t, \]

(2.4)

where \(u_t = (\alpha_1 - 1)y_{t-1}I[y_{t-1} \in C_\tau] \neq 0 \) unless \(\alpha_1 = 1 \).

- This shows that \(\{y_t\} \) does not follow a standard random walk model.
- It has been shown that \(\{y_t\} \) is a \(\beta \)-null recurrent Markov chain with \(\beta = \frac{1}{2} \).
Theorem 2.1 Assume that model (2.1) holds. Then as \(n \to \infty \)

\[
\sqrt{T(n)} (\hat{\alpha}_1 - \alpha_1) \to_D N \left(0, \sigma_e^2 \sigma_1^{-2} \right), \quad (2.5)
\]

\[
n (\hat{\alpha}_2 - 1) \to_D \frac{(Q^2(1) - \sigma_e^2)}{2 \int_0^1 Q^2(r) dr}, \quad (2.6)
\]

where

1. \(T(n) \approx \sqrt{n} \) is the (random) number of visits of \(\{y_t\} \) to a particular set in the time period \([0, n]\),

2. \(\sigma_1^2 = \int_{-\infty}^{\infty} y^2 I[y \in C_\tau] \pi_s(dy) \) with \(\pi_s(\cdot) \) being an invariant measure, and

3. \(Q(r) = \sigma_e B(r) + m_u M_{\frac{1}{2}}(r) \), in which
 - \(m_u = (\alpha_1 - 1) \mu_1 \) with \(\mu_1 = \int_{-\infty}^{\infty} y I[y \in C_\tau] \pi_s(dy) \) and
 - \(M_{\frac{1}{2}}(r) \) is a known random process.
Remark 2.1. Theorem 2.1 shows that

1. the rate of convergence of $\hat{\alpha}_1$ to α_1 is proportional to $\sqrt{\sqrt{n}} = n^{1/4}$, and
 - the reason is that one can only get $\lfloor \sqrt{n} \rfloor$ number of observations in the stationary regime.

2. the rate of convergence of $\hat{\alpha}_2$ to 1 is proportional to n
 (this is because one can have $n - \lfloor \sqrt{n} \rfloor$ number of observations in the nonstationary regime).
3. Estimation in The TAR Model

Let

\[\hat{e}_t(\tau) = y_t - \hat{\alpha}_1 y_{t-1} I[y_{t-1} \in C_\tau] - \hat{\alpha}_2 y_{t-1} I[y_{t-1} \in C^c_\tau] \]

and then define the estimated variance by

\[\hat{\sigma}^2(\tau) = \frac{1}{n} \sum_{t=1}^{n} \hat{e}_t^2(\tau). \] (3.1)

The \(\tau \) and \(\alpha_i \) can finally be estimated by

\[\hat{\tau} = \operatorname{arg\,min}_{\tau} \hat{\sigma}^2(\tau), \] (3.2)

\[\tilde{\alpha}_1 = \hat{\alpha}_1(\hat{\tau}) = \frac{\sum_{t=1}^{n} y_t y_{t-1} I[y_{t-1} \in C_\hat{\tau}]}{\sum_{t=1}^{n} y_{t-1}^2 I[y_{t-1} \in C_\hat{\tau}]}, \] (3.3)

\[\tilde{\alpha}_2 = \hat{\alpha}_2(\hat{\tau}) = \frac{\sum_{t=1}^{n} y_t y_{t-1} I[y_{t-1} \in C^c_\hat{\tau}]}{\sum_{t=1}^{n} y_{t-1}^2 I[y_{t-1} \in C^c_\hat{\tau}]}. \] (3.4)
4. Examples of Implementation

1. Consider model (2.1) with $e_t \sim N(0, 1)$;

2. Consider the case of $n = 1000$, 2000, 5000 and 10000;

3. Let $N = 1000$ be the number of replications; and

4. $\tilde{\alpha}_i(j)$ and $\hat{\tau}(j)$ be the respective value of $\tilde{\alpha}_i$ and $\hat{\tau}$ at the j–th replication throughout Examples 4.1 and 4.2 below.
• Calculate the standard deviations of the form

\[
\text{std}(\tilde{\alpha}_i) = \sqrt{\frac{1}{N-1} \sum_{j=1}^{N} \left(\tilde{\alpha}_i(j) - \overline{\tilde{\alpha}_i} \right)^2}
\]

\[
\text{std}(\hat{\tau}) = \sqrt{\frac{1}{N-1} \sum_{j=1}^{N} \left(\hat{\tau}(j) - \overline{\hat{\tau}} \right)^2}
\]

for \(i = 1, 2 \), where

\[
\overline{\tilde{\alpha}_i} = \frac{1}{N} \sum_{j=1}^{N} \tilde{\alpha}_i(j) \quad \text{and} \quad \overline{\hat{\tau}} = \frac{1}{N} \sum_{j=1}^{N} \hat{\tau}(j).
\]
Example 4.1 Consider an asymmetrical (bounded) form of $C_{\tau} = [\tau_1, \tau_2]$ with

- Case A: $\alpha_1 = \frac{1}{2}, \quad \alpha_2 = 1, \quad \tau_1 = -3$ and $\tau_2 = 2.5$;

- Case B: $\alpha_1 = \frac{3}{2}, \quad \alpha_2 = 1, \quad \tau_1 = -1.5$ and $\tau_2 = 1$.

Table 4.1 Simulation Results for Cases A and B

<table>
<thead>
<tr>
<th>Case</th>
<th>std($\tilde{\alpha}_1$)</th>
<th>std($\tilde{\alpha}_2$)</th>
<th>std($\hat{\tau}_1$)</th>
<th>std($\hat{\tau}_2$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n = 1000</td>
<td>0.0694</td>
<td>0.0208</td>
<td>0.2506</td>
<td>0.1396</td>
</tr>
<tr>
<td>n = 2000</td>
<td>0.0503</td>
<td>0.0074</td>
<td>0.2029</td>
<td>0.1186</td>
</tr>
<tr>
<td>n = 5000</td>
<td>0.0362</td>
<td>0.0024</td>
<td>0.1634</td>
<td>0.0754</td>
</tr>
<tr>
<td>n = 10000</td>
<td>0.0359</td>
<td>0.0008</td>
<td>0.1401</td>
<td>0.0659</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n = 1000</td>
<td>0.7606</td>
<td>0.0028</td>
<td>0.2825</td>
<td>0.3146</td>
</tr>
<tr>
<td>n = 2000</td>
<td>0.7438</td>
<td>0.0015</td>
<td>0.2501</td>
<td>0.2937</td>
</tr>
<tr>
<td>n = 5000</td>
<td>0.6596</td>
<td>0.0006</td>
<td>0.2155</td>
<td>0.2799</td>
</tr>
<tr>
<td>n = 10000</td>
<td>0.6168</td>
<td>0.0003</td>
<td>0.1938</td>
<td>0.2535</td>
</tr>
</tbody>
</table>
Example 4.2 Consider a TAR model of the form

\[y_t = \alpha_1 y_{t-1} I[y_{t-1} \leq \tau] + \alpha_2 y_{t-1} I[y_{t-1} > \tau] + e_t, \]

(4.1)

where

- Case A: \(\alpha_1 = \frac{1}{2}, \ \alpha_2 = 1, \ \tau = 3; \)
- Case B: \(\alpha_1 = \frac{3}{2}, \ \alpha_2 = 1, \ \tau = 3. \)
Table 4.2 Simulation Results for Case A and Case B

<table>
<thead>
<tr>
<th>Case A</th>
<th>std($\tilde{\alpha}_1$)</th>
<th>std($\tilde{\alpha}_2$)</th>
<th>std($\hat{\tau}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n = 1000$</td>
<td>0.0413</td>
<td>0.1177</td>
<td>0.1595</td>
</tr>
<tr>
<td>$n = 2000$</td>
<td>0.0373</td>
<td>0.0475</td>
<td>0.1133</td>
</tr>
<tr>
<td>$n = 5000$</td>
<td>0.0192</td>
<td>0.0155</td>
<td>0.0677</td>
</tr>
<tr>
<td>$n = 10000$</td>
<td>0.0169</td>
<td>0.0052</td>
<td>0.0556</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Case B</th>
<th>std($\tilde{\alpha}_1$)</th>
<th>std($\tilde{\alpha}_2$)</th>
<th>std($\hat{\tau}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n = 1000$</td>
<td>0.2798</td>
<td>0.0034</td>
<td>0.1830</td>
</tr>
<tr>
<td>$n = 2000$</td>
<td>0.1712</td>
<td>0.0012</td>
<td>0.1530</td>
</tr>
<tr>
<td>$n = 5000$</td>
<td>0.1551</td>
<td>0.0005</td>
<td>0.1453</td>
</tr>
<tr>
<td>$n = 10000$</td>
<td>0.1340</td>
<td>0.0002</td>
<td>0.1247</td>
</tr>
</tbody>
</table>
Tables 4.1 and 4.2 show that the proposed estimation method works well numerically with

- the rate of $\tilde{\alpha}_1$ is proportional to $n^{-\frac{1}{4}}$, and
- the rate of $\tilde{\alpha}_2$ is proportional to n^{-1}.
Example 4.3 The series under study are 2–year \((x_{1t})\) and 30–year \((x_{2t})\) Australian government bonds, representing short–term and long–term series in the term structure of interest rates.

1. The analysis will be based on the transformed versions of \(y_{it} = \ln(x_{it})\) for \(i = 1, 2\).

2. The time frame of the study is January 1957 to March 2009, with 627 monthly collected observations for each of \(y_{it}\).
Figure 1: A: Plot of the logged series y_{1t}; B: Plot of the logged series y_{2t}
Our estimation method suggests using

\[y_{1t} = 1.1173 \, y_{1,t-1} \, I(y_{1,t-1} \leq 1.5439) \]
\[+ 0.9995 \, y_{1,t-1} \, I(y_{1,t-1} > 1.5439) + e_t \]

(4.2)

for \{y_{1t}\}, where \(\hat{\tau} = 1.5439 \) and \(\hat{\sigma}^2 = 0.0023 \), and

\[y_{2t} = 1.0004 \, y_{2,t-1} \, I(y_{2,t-1} \leq 1.6101) \]
\[+ 0.9955 \, y_{2,t-1} \, I(y_{2,t-1} > 1.6101) + e_t \]

(4.3)

for \{y_{2t}\}, where \(\hat{\tau} = 1.6101 \) and \(\hat{\sigma}^2 = 0.0016 \).
Model (4.2) implies

\[y_{1t} - y_{1,t-1} = 0.1173 \ y_{1,t-1} \ I(y_{1,t-1} \leq 1.5439) - 0.0005 \ y_{1,t-1} \ I(y_{1,t-1} > 1.5439) + e_t, \]

(4.4)

and model (4.3) implies

\[y_{2t} - y_{2,t-1} = 0.0004 \ y_{2,t-1} \ I(y_{2,t-1} \leq 1.6101) - 0.0045 \ y_{2,t-1} \ I(y_{2,t-1} > 1.6101) + e_t. \]

(4.5)
1. While model (4.5) indicates that \(\{y_{2t}\} \) may be modeled by a simple random walk model,

2. model (4.4) shows that \(\{y_{1t}\} \) is nonstationary but does not necessarily follow a random walk process, since the value of 0.1173 >> 0.

3. This provides support from an empirical application point of view that there is some need to study a nonstationary threshold model of the form (1.2).
5. Conclusions and Discussion

• Conclusions include

 – This paper has considered a class of threshold autoregressive models with possible non-stationarity.
 – The slope parameters have been consistently estimated.
 – Both simulated and real data examples are used to support the theory.
• Discussion

– 1st issue is how to establish an asymptotic theory for $\hat{\tau}$ in this kind of nonlinear and nonstationary situation.

– 2nd issue is possible extensions to higher-order models as well as vector threshold auto-regressive (VTAR) models.

– 3rd issue is possible extensions to threshold cointegration models with nonstationarity.
Estimation in an autoregressive model of the form

\[y_t = g(y_{t-1}, \theta) + e_t, \quad (5.1) \]

where \(g(\cdot, \cdot) \) is a known function, and \(\{y_t\} \) is nonstationary but not just \(I(1) \).

Note that model (5.1) is an autoregressive counterpart of the nonlinear regression model

\[
\begin{align*}
y_t &= g(x_t, \theta) + e_t, \\
x_t &= x_{t-1} + \epsilon_t.
\end{align*}
\quad (5.2)
\]

Estimation results for (5.2) are available in the literature by Park & Phillips (2001).
6. Appendix

Definition: Let $T(n)$ denote the complete number of regenerations in the time interval, and its sample version is

$$T_C(n) = \sum_{k=0}^{n} I_C(y_k)$$

(6.1)

for some compact set C.

It has been shown that

$$\frac{T(n)}{\sqrt{n}} \rightarrow_D \xi$$

(6.2)

for some random variable $\xi > 0$.
Proposition: Consider an autoregressive model of the form

\[y_t = g(y_{t-1}) + e_t, \quad (6.3) \]

where

- \(\{e_t\} \) is an i.i.d. with density function \(f(\cdot) \);
- \(\inf_{u \in \mathcal{C}} f(u) > 0 \) for all compact subsets \(\mathcal{C} \) in \(\mathbb{R}^1 \);
- \(g(y) \) is bounded on all compact subsets in \(\mathbb{R}^1 \).

Then, \(\{y_t\} \) is a \(\beta \)-null recurrent Markov chain with \(\beta = \frac{1}{2} \).
Proposition: Consider model (6.3). The sequence \(\{y_t\} \) is \(\beta \)-null recurrent if and only if

\[
P(S_n > n) = \frac{1}{\Gamma(1 - \beta)n^\beta L_s(n)} (1 + o(1)), \quad (6.4)
\]

where \(S_n = \sum_{t=1}^{n} y_t \), and \(L_s(\cdot) \) is a slowly-varying function.
References

