Entrepreneurship, Agency Frictions and Redistributive Capital Taxation

Matthew Knowles ¹ Corina Boar ²

¹University of St Andrews
²Princeton University

August 23, 2017
Motivation

- Equity-efficiency tradeoff for capital taxation.
 - Still no consensus in literature.

- Literature focuses on effect of taxes on level of investment.
 - What about allocation of capital/efficiency of use.

- How should you tax capital? Capital income taxes? Wealth taxes?

- What about entrepreneurship?
 - Capital concentrated among poorly diversified business owners.
 - Do capital taxes discourage entrepreneurial activity/risk taking?
Outline

- Analytically tractable framework to look at these issues.

- Optimal linear capital taxation in a setting with...
 - Entrepreneurs (who own capital).
 - Workers (who do not own capital).

- Government seeks to redistribute from entrepreneurs to workers.
 - Can use multiple capital tax instruments and labor taxes.

- Financial markets are frictional:
 - Due to asymmetric information.
 - Entrepreneurs bear idiosyncratic risk.
 - Entrepreneurs must fund investment partly from own assets.
Preview of Results

- Capital taxes affect capital allocation and (therefore) TFP.
 - Affect entrepreneurs’ choices to put capital into ‘risky’ versus ‘risk free’ sector.
 - Affect degree to which capital is used by high productivity entrepreneurs.

- Taxes on capital income much less efficient than taxes on wealth.
 - Intuition: wealth taxes do not distort relative return of different capital uses. Income taxes do.

- Optimal to tax wealth (a lot) and subsidize investment.
 - Similar to results obtained without financial frictions.
 - Optimal to tax risky capital income much less than wealth.
Model: Agents

Continuum of four types of agent:

- **Households:**
 - **Entrepreneurs:** Own capital and produce intermediate goods. Measure 1.
 - **Workers:** Live hand to mouth. Supply labor. Measure N.

- **Competitive Firms:**
 - **Final goods producers:** Produce output using labor, capital and intermediate goods.
 - **Financial intermediaries:** Allocate finance between entrepreneurs.

Government levies taxes on agents and funds government spending G.
Production Technology

- In each period $t = 1, \ldots$, each entrepreneur i:
 - uses some capital (k_{it}^E) to produce Y_t^E intermediate goods (risky)
 - leases remainder (k_{it}^F) directly to final goods producers (risk free).

- Each worker supplies 1 unit of labor to final goods producers.

- Representative final goods producer:
 - Produces output according to $Y_t = F(Y_t^E, K_t^F, N)$
 - Pays each factor its marginal product, $r_{E,t}$, $r_{F,t}$, w_t (profit maximization).
Entrepreneurs vary in ability. At start of each period, entrepreneur i draws publicly observable ability $\theta_{it} \in [\underline{\theta}, \bar{\theta}]$, from the pdf $g(\theta) = \frac{A_1}{\theta^2}$.

Entrepreneur i starts period with k_{it} units of capital. Chooses k^E_{it}, k^F_{it}.

After choosing k^E_{it}, k^F_{it}, entrepreneur i draws a stochastic shock $\epsilon_{it} \sim H(\epsilon)$.

Entrepreneur’s output of intermediate goods given by:

$$y_{it} = \theta_{it}\epsilon_{it}k^E_{it}$$
Entrepreneur i may choose to borrow some b_{it} from the financial intermediary at the start of period, to buy capital.

At the end of each period, entrepreneur i

- Agrees to repay \hat{b}_{it} to the intermediary (state contingent).
- Pays taxes $\tau_E, \tau_F, \tau_W, \tau_I$.
- Divides remaining resources between consumption and investment.

Entrepreneur i faces budget constraints:

$$\hat{b}_{it} + c_{it} + l_{it} \leq r_t^E y_{it} (1 - \tau_E) + r_t^F k_{it}^F (1 - \tau_F)$$

$$- \tau_W (1 - \delta) (k_{it}^E + k_{it}^F) - \tau_I l_{it}$$

$$k_{i,t+1} = l_{it} + (1 - \delta) (k_{it}^E + k_{it}^F)$$
Demographics and Preferences

- Fraction γ of entrepreneurs and workers die at end of period.
 - Replaced by newborn entrepreneurs and workers.
 - Capital of dead redistributed between newborn entrepreneurs.

- Each agent i values consumption according to:

$$U_i = \sum_t \beta^t (1 - \gamma)^t \log(c_{i,t})$$
Financial Contract

- Entrepreneur writes one-period contract with intermediary.
 - Contract specifies b_{it} & state contingent \hat{b}_{it}.
 - Maximizes entrepreneur’s expected present discounted utility subject to constraint that intermediary breaks even.

However:
- Entrepreneur’s realization of ϵ_{it} is private information.
- Entrepreneur can falsely under-report ϵ_{it} and can secretly hide intermediate goods and convert into units of final output.
Agency Frictions

- For each unit of intermediate goods the entrepreneur hides, she can convert this into $\rho \in (0, 1)$ units of final output for herself.

\[
\frac{\partial \hat{b}_{it}}{\partial \epsilon_{it}} \leq (1 - \rho) \frac{\partial y_{it}}{\partial \epsilon_{it}}
\]

- Agency friction \Rightarrow entrepreneur cannot fully diversify risk:
 - \Rightarrow discourages from choosing high k^E_{it}.
- Entrepreneur’s k^E_{it} depends on initial wealth.
Effects of Taxes

- Taxes affect both the level and the allocation of capital.

- In particular, taxes affect:
 - How much entrepreneurs allocate capital to the risky sector versus the risk-free sector.
 - How much capital in the risky sector is held by high θ entrepreneurs.

\[\therefore \text{Taxes affect both aggregate } K \text{ and aggregate measured TFP.} \]
Government’s Problem

- Government chooses constant tax rates $\tau_E, \tau_F, \tau_W, \tau_I$.
 - To maximize steady state utility of workers.
 - Results similar if government cares about entrepreneurs a little.

- Government choices must satisfy:
 - $\tau_W \leq \bar{\tau}_W$.
 - Budget balance in steady state (with no debt).
Optimal Tax Scheme

- **Proposition:** If a positive measure of entrepreneurs chooses $k_i^E = 0$ in the steady state, then the optimal tax policy entails:
 - $\tau_W = \bar{\tau}_W$
 - $\tau_E \in (0, 1 - \frac{\rho}{r^E}]$
 - $\tau_F \in (0, 1)$
 - $\tau_I \in (-1, 0)$

- **Intuition:**
 - Wealth taxes do not distort relative return of different capital uses. Income taxes do.
 - Gov. can use $\tau_I < 0$ to counteract effect of taxes on investment.
 - So nothing wrong with confiscatory taxes on wealth.
Properties of Optimal Tax Scheme

- Optimal taxes can be written as functions of r_E, r_F, K_E, K_F etc.
 - In calibration, optimal $\tau_E \leq 0.32$.

- Consumption tax or gov. bonds can replicate one of these taxes.
Conclusion

- Study redistributive capital taxation with financial frictions.
 - Government seeks to redistribute from entrepreneurs to workers.

- Taxes affect capital allocation and TFP.

- Financial frictions limit taxation on risky capital income.
 - Lower than without financial frictions.
 - But financial frictions do not counteract desire for confiscatory wealth taxes, with investment subsidies.
Calibration of τ_E

- Optimal τ_E depends on degree of financial frictions, ρ.

- To calibrate ρ, we use that optimal financial contract looks like combination of equity and debt:
 - Entrepreneur retains $\frac{\rho}{(1-\tau_E) r_E}$ equity in her business.
 - Find this to be 0.84 on average in Survey of Consumer Finances.

- Calibration implies optimal $\tau_E \in (0, 0.32)$
 - roughly in line with current US levels.